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ABSTRACT

We further research on the acceleration phenomenon on Riemannian manifolds
by introducing the first global first-order method that achieves the same rates as
accelerated gradient descent in the Euclidean space for the optimization of smooth
and geodesically convex (g-convex) or strongly g-convex functions defined on the
hyperbolic space or a subset of the sphere, up to constants and log factors. To
the best of our knowledge, this is the first method that is proved to achieve these
rates globally on functions defined on a Riemannian manifoldM other than the
Euclidean space. Additionally, for any Riemannian manifold of bounded sectional
curvature, we provide reductions from optimization methods for smooth and g-
convex functions to methods for smooth and strongly g-convex functions and vice
versa.

1 INTRODUCTION

Acceleration in convex optimization is a phenomenon that has drawn lots of attention and has yielded
many important results, since the renowned Accelerated Gradient Descent (AGD) method of Nesterov
(1983). Having been proved successful for deep learning Sutskever et al. (2013), among other fields,
there have been recent efforts to better understand this phenomenon Allen Zhu & Orecchia (2017);
Diakonikolas & Orecchia (2019); Su et al. (2016); Wibisono et al. (2016). These have yielded
numerous new results going beyond convexity or the standard oracle model, in a wide variety of
settings Allen-Zhu (2017; 2018a;b); Allen Zhu & Orecchia (2015); Allen Zhu et al. (2016); Allen-Zhu
et al. (2017); Carmon et al. (2017); Cohen et al. (2018); Cutkosky & Sarlós (2019); Diakonikolas &
Jordan (2019); Diakonikolas & Orecchia (2018); Gasnikov et al. (2019); Wang et al. (2016). This
surge of research that applies tools of convex optimization to models going beyond convexity has
been fruitful. One of these models is the setting of geodesically convex Riemannian optimization. In
this setting, the function to optimize is geodesically convex (g-convex), i.e. convex restricted to any
geodesic (cf. Definition 1.1).

Riemannian optimization, g-convex and non-g-convex alike, is an extensive area of research. In recent
years there have been numerous efforts towards obtaining Riemannian optimization algorithms that
share analogous properties to the more broadly studied Euclidean first-order methods: deterministic
de Carvalho Bento et al. (2017); Wei et al. (2016); Zhang & Sra (2016), stochastic Hosseini &
Sra (2017); Khuzani & Li (2017); Tripuraneni et al. (2018), variance-reduced Sato et al. (2017;
2019); Zhang et al. (2016), adaptive Kasai et al. (2019), saddle-point-escaping Criscitiello & Boumal
(2019); Sun et al. (2019); Zhang et al. (2018); Zhou et al. (2019); Criscitiello & Boumal (2020),
and projection-free methods Weber & Sra (2017; 2019), among others. Unsurprisingly, Riemannian
optimization has found many applications in machine learning, including low-rank matrix completion
Cambier & Absil (2016); Heidel & Schulz (2018); Mishra & Sepulchre (2014); Tan et al. (2014);
Vandereycken (2013), dictionary learning Cherian & Sra (2017); Sun et al. (2017), optimization under
orthogonality constraints Edelman et al. (1998), with applications to Recurrent Neural Networks
Lezcano-Casado (2019); Lezcano-Casado & Martínez-Rubio (2019), robust covariance estimation
in Gaussian distributions Wiesel (2012), Gaussian mixture models Hosseini & Sra (2015), operator
scaling Allen-Zhu et al. (2018), and sparse principal component analysis Genicot et al. (2015); Huang
& Wei (2019b); Jolliffe et al. (2003).
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However, the acceleration phenomenon, largely celebrated in the Euclidean space, is still not under-
stood in Riemannian manifolds, although there has been some progress on this topic recently (cf.
Related work). This poses the following question, which is the central subject of this paper:

Can a Riemannian first-order method enjoy the same rates as AGD in the Euclidean space?

In this work, we provide an answer in the affirmative for functions defined on hyperbolic and spherical
spaces, up to constants depending on the curvature and the initial distance to an optimum, and up to
log factors. In particular, the main results of this work are the following.

Main Results:

• Full acceleration. We design algorithms that provably achieve the same rates of convergence
as AGD in the Euclidean space, up to constants and log factors. More precisely, we obtain
the rates Õ(L/

√
ε) and O∗(

√
L/µ log(µ/ε)) when optimizing L-smooth functions that

are, respectively, g-convex and µ-strongly g-convex, defined on the hyperbolic space or a
subset of the sphere. The notation Õ(·) and O∗(·) omits log(L/ε) and log(L/µ) factors,
respectively, and constants. Previous approaches only showed local results Zhang & Sra
(2018) or obtained results with rates in between the ones obtainable by Riemannian Gradient
Descent (RGD) and AGD Ahn & Sra (2020). Moreover, these previous works only apply to
functions that are smooth and strongly g-convex and not to smooth functions that are only
g-convex. As a proxy, we design an accelerated algorithm under a condition between of
convexity and quasar-convexity in the constrained setting, which is of independent interest.

• Reductions. We present two reductions for any Riemannian manifold of bounded sectional
curvature. Given an optimization method for smooth and g-convex functions they provide a
method for optimizing smooth and strongly g-convex functions, and vice versa. This allows
to focus on designing methods for one set of assumptions only.

It is often the case that methods and key geometric inequalities that apply to manifolds with bounded
sectional curvatures are obtained from the ones existing for the spaces of constant extremal sectional
curvature Grove et al. (1997); Zhang & Sra (2016; 2018). Consequently, our contribution is relevant
not only because we establish an algorithm achieving global acceleration on functions defined on
a manifold other than the Euclidean space, but also because understanding the constant sectional
curvature case is an important step towards understanding the more general case of obtaining
algorithms that optimize g-convex functions, strongly or not, defined on manifolds of bounded
sectional curvature.

Our main technique for designing the accelerated method consists of mapping the function domain
to a subset B of the Euclidean space via a geodesic map: a transformation that maps geodesics to
geodesics. Given the gradient of a point x ∈M, which defines a lower bound on the function that is
linear over the tangent space of x, we find a lower bound of the function that is linear over B, despite
the map being non-conformal, deforming distances, and breaking convexity. This allows to aggregate
the lower bounds easily. We believe that effective lower bound aggregation is key to achieving
Riemannian acceleration and optimality. Using this strategy, we are able to provide an algorithm
along the lines of the one in Diakonikolas & Orecchia (2018) to define a continuous method that we
discretize using an approximate implementation of the implicit Euler method, obtaining a method
achieving the same rates as the Euclidean AGD, up to constants and log factors. Our reductions take
into account the deformations produced by the geometry to generalize existing Euclidean reductions
Allen Zhu & Hazan (2016); Allen Zhu & Orecchia (2017).

Basic Geometric Definitions. We recall basic definitions of Riemannian geometry that we use in
this work. For a thorough introduction we refer to Petersen et al. (2006). A Riemannian manifold
(M, g) is a real smooth manifoldM equipped with a metric g, which is a smoothly varying inner
product. For x ∈M and any two vectors v, w ∈ TxM in the tangent space ofM, the inner product
〈v, w〉x is g(v, w). For v ∈ TxM, the norm is defined as usual ‖v‖x

def
=
√
〈v, v〉x. Typically, x is

known given v or w, so we will just write 〈v, w〉 or ‖v‖ if x is clear from context. A geodesic is a
curve γ : [0, 1]→M of unit speed that is locally distance minimizing. A uniquely geodesic space is
a space such that for every two points there is one and only one geodesic that joins them. In such a
case the exponential map Expx : TxM→M and inverse exponential map Exp−1

x :M→ TxM
are well defined for every pair of points, and are as follows. Given x, y ∈ M, v ∈ TxM, and a
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geodesic γ of length ‖v‖ such that γ(0) = x, γ(1) = y, γ′(0) = v/‖v‖, we have that Expx(v) = y
and Exp−1

x (y) = v. Note, however, that Expx(·) might not be defined for each v ∈ TxM. We
denote by d(x, y) the distance between x and y. Its value is the same as ‖Exp−1

x (y)‖. Given a
2-dimensional subspace V ⊆ TxM, the sectional curvature at x with respect to V is defined as the
Gauss curvature of the manifold Expx(V ) at x.

Notation. Let M be a manifold and let B ⊆ Rd. We denote by h : M → B a geodesic map
Kreyszig (1991), which is a diffeomorphism such that the image and the inverse image of a geodesic
is a geodesic. Usually, given an initial point x0 of our algorithm, we will have h(x0) = 0. Given a
point x ∈ M we use the notation x̃ = h(x) and vice versa, any point in B will use a tilde. Given
two points x, y ∈ M and a vector v ∈ TxM in the tangent space of x, we use the formal notation
〈v, y− x〉 def

= −〈v, x− y〉 def
= 〈v,Exp−1

x (y)〉. Given a vector v ∈ TxM, we call ṽ ∈ Rd the vector of
the same norm such that {x̃+ λ̃ṽ|λ̃ ∈ R+, x̃+ λ̃ṽ ∈ B} = {h(Expx(λv))|λ ∈ I ⊆ R+}, for some
interval I . Likewise, given x and a vector ṽ ∈ Rd, we define v ∈ TxM. Let x∗ be any minimizer
of F :M→ R. We denote by R ≥ d(x0, x

∗) a bound on the distance between x∗ and the initial
point x0. Note that this implies that x∗ ∈ Expx0

(B̄(0, R)), for the closed ball B̄(0, R) ⊆ Tx0M.
Consequently, we will work with the manifold that is a subset of a d-dimensional complete and
simply connected manifold of constant sectional curvature K, namely a subset of the hyperbolic
space or sphere Petersen et al. (2006), defined as Expx0

(B̄(0, R)), with the inherited metric. Denote
byH this manifold in the former case and S in the latter, and note that we are not making explicit
the dependence on d, R and K. We want to work with the standard choice of uniquely geodesic
manifolds Ahn & Sra (2020); Liu et al. (2017); Zhang & Sra (2016; 2018). Therefore, in the case that
the manifold is S, we restrict ourselves to R < π/2

√
K, so S is contained in an open hemisphere.

The big O notations Õ(·) and O∗(·) omit log(L/ε) and log(L/µ) factors, respectively, and constant
factors depending on R and K.

We define now the main properties that will be assumed on the function F to be minimized.
Definition 1.1 (Geodesic Convexity and Smoothness). Let F :M→ R be a differentiable function
defined on a Riemannian manifold (M, g). Given L ≥ µ > 0, we say that F is L-smooth, and
respectively µ-strongly g-convex, if for any two points x, y ∈M, F satisfies

F (y) ≤ F (x) + 〈∇F (x), y−x〉+ L

2
d(x, y)2, resp. F (y) ≥ F (x) + 〈∇F (x), y−x〉+ µ

2
d(x, y)2.

We say F is g-convex if the second inequality above, i.e. µ-strong g-convexity, is satisfied with µ = 0.
Note that we have used the formal notation above for the subtraction of points in the inner product.

Comparison with Related Work. There are a number of works that study the problem of first-
order acceleration in Riemannian manifolds of bounded sectional curvature. The first study is Liu
et al. (2017). In this work, the authors develop an accelerated method with the same rates as AGD
for both g-convex and strongly g-convex functions, provided that at each step a given nonlinear
equation can be solved. No algorithm for solving this equation has been found and, in principle,
it could be intractable or infeasible. In Alimisis et al. (2019) a continuous method analogous to
the continuous approach to accelerated methods is presented, but it is not known if there exists an
accelerated discretization of it. In Alimisis et al. (2020), an algorithm presented is claimed to enjoy
an accelerated rate of convergence, but fails to provide convergence when the function value gets
below a potentially large constant that depends on the manifold and smoothness constant. In Huang
& Wei (2019a) an accelerated algorithm is presented but relying on strong geometric inequalities that
are not proved to be satisfied. Zhang & Sra (2018) obtain a local algorithm that optimizes L-smooth
and µ-strongly g-convex functions achieving the same rates as AGD in the Euclidean space, up to
constants. That is, the initial point needs to start close to the optimum, O((µ/L)3/4) close, to be
precise. Their approach consists of adapting Nesterov’s estimate sequence technique by keeping
a quadratic on Txt

M that induces onM a regularized lower bound on F (x∗) via Expxt
(·). They

aggregate the information yielded by the gradient to it, and use a geometric lemma to find a quadratic
in Txt+1

M whose induced function lower bounds the other one. Ahn & Sra (2020) generalize the
previous algorithm and, by using similar ideas for the lower bound, they adapt it to work globally,
obtaining strictly better rates than RGD, recovering the local acceleration of the previous paper, but
not achieving global rates comparable to the ones of AGD. In fact, they prove that their algorithm
eventually decreases the function value at a rate close to AGD but this can take as many iterations
as the ones needed by RGD to minimize the function. In our work, we take a step back and focus
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on the constant sectional curvature case to provide a global algorithm that achieves the same rates
as AGD, up to constants and log factors. It is common to characterize the properties of spaces of
bounded sectional curvature by using the ones of the spaces of constant extremal sectional curvature
Grove et al. (1997); Zhang & Sra (2016; 2018), which makes the study of the constant sectional
curvature case critical to the development of full accelerated algorithms in the general bounded
sectional curvature case. Additionally, our work studies g-convexity besides strong g-convexity.

Another related work is the approximate duality gap technique Diakonikolas & Orecchia (2019),
which presents a unified view of the analysis of first-order methods for the optimization of convex
functions defined in the Euclidean space. It defines a continuous duality gap and by enforcing
a natural invariant, it obtains accelerated continuous dynamics and their discretizations for most
classical first-order methods. A derived work Diakonikolas & Orecchia (2018) obtains acceleration in
a fundamentally different way from previous acceleration approaches, namely using an approximate
implicit Euler method for the discretization of the acceleration dynamics. The convergence analysis
of Theorem 2.4 is inspired by these two works. We will see in the sequel that, for our manifolds of
interest, g-convexity is related to a model known in the literature as quasar-convexity or weak-quasi-
convexity Guminov & Gasnikov (2017); Hinder et al. (2019); Nesterov et al. (2018).

2 ALGORITHM

We study the minimization problem minx∈M F (x) with a gradient oracle, for a smooth function
F :M→ R that is g-convex or strongly g-convex. In this section,M refers to a manifold that can
beH or S, i.e. the subset of the hyperbolic space or sphere Expx0

(B̄(0, R)), for an initial point x0.
For simplicity, we do not use subdifferentials so we assume F :M→ R is a differentiable function
that is defined over the manifold of constant sectional curvatureM′ def

= Expx0
(B(0, R′)), for an

R′ > R, and we avoid writing F :M′ → R. We defer the proofs of the lemmas and theorems in
this and following sections to the supplementary material. We assume without loss of generality
that the sectional curvature ofM is K ∈ {1,−1}, since for any other value of K and any function
F : M → R defined on such a manifold, we can reparametrize F by a rescaling, so it is defined
over a manifold of constant sectional curvature K ∈ {1,−1}. The parameters L, µ and R are
rescaled accordingly as a function of K, cf. Remark C.1. We denote the special cosine by CK(·),
which is cos(·) if K = 1 and cosh(·) if K = −1. We define X = h(M) ⊆ B ⊆ Rd. We use
classical geodesic maps for the manifolds that we consider: the Gnomonic projection for S and the
Beltrami-Klein projection forH Greenberg (1993). They map an open hemisphere and the hyperbolic
space of curvature K ∈ {1,−1} to B = Rd and B = B(0, 1) ⊆ Rd, respectively. We will derive our
results from the following characterization Greenberg (1993). Let x̃, ỹ ∈ B be two points. Recall that
we denote x = h−1(x̃), y = h−1(ỹ) ∈M. Then we have that d(x, y), the distance between x and y
with the metric ofM, satisfies

CK(d(x, y)) =
1 +K〈x̃, ỹ〉√

1 +K‖x̃‖2 ·
√

1 +K‖ỹ‖2
. (1)

Observe that the expression is symmetric with respect to rotations. In particular, the symmetry implies
X is a closed ball of radius R̃, with CK(R) = (1 +KR̃2)−1/2.

Consider a point x ∈ M and the lower bound provided by the g-convexity assumption when
computing ∇F (x). Dropping the µ term in case of strong g-convexity, this bound is linear over
TxM. We would like our algorithm to aggregate effectively the lower bounds it computes during the
course of the optimization. The deformations of the geometry make it a difficult task, despite the
fact that we have a simple description of each individual lower bound. We deal with this problem in
the following way: our approach is to obtain a lower bound that is looser by a constant depending
on R, and that is linear over B. In this way the aggregation becomes easier. Then, we are able
to combine this lower bound with decreasing upper bounds in the fashion some other accelerated
methods work in the Euclidean space Allen Zhu & Orecchia (2017); Diakonikolas & Orecchia (2018;
2019); Nesterov (1983). Alternatively, we can see the approach in this work as the constrained
non-convex optimization problem of minimizing the function f : X → R, x̃ 7→ F (h−1(x̃)):

minimize f(x̃), for x̃ ∈ X .
In the rest of the section, we will focus on the g-convex case. For simplicity, instead of solving the
strongly g-convex case directly in an analogous way by finding a lower bound that is quadratic over
B, we rely on the reductions of Section 3 to obtain the accelerated algorithm in this case.
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The following two lemmas show that finding the aforementioned linear lower bound is possible, and
is defined as a function of ∇f(x̃). We first gauge the deformations caused by the geodesic map h.
Distances are deformed, the map h is not conformal and, in spite of it being a geodesic map, the
image of the geodesic Expx(λ∇F (x)) is not mapped into the image of the geodesic x̃+ λ̃∇f(x̃),
i.e. the direction of the gradient changes. We are able to find the linear lower bound after bounding
these deformations.
Lemma 2.1. Let x, y ∈ M be two different points, and in part b) different from x0. Let α̃ be the
angle ∠x̃0x̃ỹ, formed by the vectors x̃0 − x̃ and ỹ − x̃. Let α be the corresponding angle between
the vectors Exp−1

x (x0) and Exp−1
x (y). Assume without loss of generality that x̃ ∈ span{ẽ1} and

∇f(x̃) ∈ span{ẽ1, ẽ2} for the canonical orthonormal basis {ẽi}di=1. Let ei ∈ TxM be the unit
vector such that h maps the image of the geodesic Expx(λei) to the image of the geodesic x̃+ λ̃ei,
for i = 1, . . . , d, and λ, λ̃ ≥ 0. Then, the following holds.

a) Distance deformation:

KC2
K(R) ≤ K d(x, y)

‖x̃− ỹ‖
≤ K.

b) Angle deformation:

sin(α) = sin(α̃)

√
1 +K‖x̃‖2

1 +K‖x̃‖2 sin2(α̃)
, cos(α) = cos(α̃)

√
1

1 +K‖x̃‖2 sin2(α̃)
.

c) Gradient deformation:

∇F (x) = (1 +K‖x̃‖2)∇f(x̃)1e1 +
√

1 +K‖x̃‖2∇f(x̃)2e2 and ei ⊥ ej for i 6= j.

And if v ∈ TxM is a vector normal to∇F (x), then ṽ is normal to∇f(x).

The following uses the deformations described in the previous lemma to obtain the linear lower
bound on the function, given a gradient at a point x̃. Note that Lemma 2.1.c implies that we have
〈∇f(x̃), ỹ − x̃〉 = 0 if and only if 〈∇F (x), y − x〉 = 0. In the proof we lower bound, generally,
linear functions defined on TxM by linear functions in the Euclidean space B. This generality allows
to obtain a result with constants that only depends on R.
Lemma 2.2. Let F : M → R be a differentiable function and let f = F ◦ h−1. Then, there are
constants γn, γp ∈ (0, 1] depending on R such that for all x, y ∈M satisfying 〈∇f(x̃), ỹ − x̃〉 6= 0
we have:

γp ≤
〈∇F (x), y − x〉
〈∇f(x̃), ỹ − x̃〉

≤ 1

γn
. (2)

In particular, if F is g-convex we have:

f(x̃) +
1

γn
〈∇f(x̃), ỹ − x̃〉 ≤ f(ỹ) if 〈∇f(x̃), ỹ − x̃〉 ≤ 0,

f(x̃) + γp〈∇f(x̃), ỹ − x̃〉 ≤ f(ỹ) if 〈∇f(x̃), ỹ − x̃〉 ≥ 0.

(3)

The two inequalities in (3) show the linear lower bound. Only the first one is needed to bound
f(x̃∗) = F (x∗). The first inequality applied to ỹ = x̃∗ defines a model known in the literature
as quasar-convexity or weak-quasi-convexity Guminov & Gasnikov (2017); Hinder et al. (2019);
Nesterov et al. (2018), for which accelerated algorithms exist in the unconstrained case, provided
smoothness is also satisfied. However, to the best of our knowledge, there is no known algorithm
for solving the constrained case in an accelerated way. The condition in (3) is, trivially, a relaxation
of convexity that is stronger than quasar-convexity. We will make use of (3) in order to obtain
acceleration in the constrained setting. This is of independent interest. Recall that we need the
constraint to guarantee bounded deformation due to the geometry. We also require smoothness of f .
The following lemma shows that f is as smooth as F up to a constant depending on R.
Lemma 2.3. Let F :M→ R be an L-smooth function and f = F ◦ h−1. Assume there is a point
x∗ ∈M such that∇F (x∗) = 0. Then f is O(L)-smooth.
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Using the approximate duality gap technique Diakonikolas & Orecchia (2019) we obtain accelerated
continuous dynamics, for the optimization of the function f . Then we adapt AXGD to obtain an
accelerated discretization. AXGD Diakonikolas & Orecchia (2018) is a method that is based on
implicit Euler discretization of continuous accelerated dynamics and is fundamentally different
from AGD and techniques as Linear Coupling Allen Zhu & Orecchia (2017) or Nesterov’s estimate
sequence Nesterov (1983). The latter techniques use a balancing gradient step at each iteration
and our use of a looser lower bound complicates guaranteeing keeping the gradient step within the
constraints. We state the accelerated theorem and provide a sketch of the proof in Section 2.1.

Theorem 2.4. Let Q ⊆ Rd be a convex set of diameter 2R. Let f : Q→ R be an L̃-smooth function
satisfying (3) with constants γn, γp ∈ (0, 1]. Assume there is a point x̃∗ ∈ Q such that ∇f(x̃∗) = 0.

Then, we can obtain an ε-minimizer of f using Õ(
√
L̃/(γ2

nγpε)) queries to the gradient oracle of f .

Finally, we have Riemannian acceleration as a direct consequence of Theorem 2.4, Lemma 2.2 and
Lemma 2.3.
Theorem 2.5 (g-Convex Acceleration). Let F : M → R be an L-smooth and g-convex function
and assume there is a point x∗ ∈M satisfying∇F (x∗) = 0. Algorithm 1 computes a point xt ∈M
satisfying F (xt)− F (x∗) ≤ ε using Õ(

√
L/ε) queries to the gradient oracle.

We observe that if there is a geodesic map mapping a manifold into a convex subset of the Euclidean
space then the manifold must necessarily have constant sectional curvature, cf. Beltrami’s Theorem
Busemann & Phadke (1984); Kreyszig (1991). This precludes a straightforward generalization from
our method to the case of non-constant bounded sectional curvature.

Algorithm 1 Accelerated g-Convex Minimization
Input: Smooth and g-convex function F :M→ R, forM = H orM = S .

Initial point x0; Constants L̃, γp, γn. Geodesic map h satisfying (1) and h(x0) = 0.
Bound on the distance to a minimum R ≥ d(x0, x

∗). Accuracy ε and number of iterations t.
1: X def

= h(Expx0
(B(0, R))) ⊆ B; f

def
= F ◦ h−1 and ψ(x̃)

def
= 1

2‖x̃‖
2

2: z̃0 ← ∇ψ(x̃0); A0 ← 0
3: for i from 0 to t− 1 do
4: ai+1 ← (i+ 1)γ2

nγp/2L̃
5: Ai+1 ← Ai + ai+1

6: λ← BinaryLineSearch(x̃i, z̃i, f,X , ai+1, Ai, ε, L̃, γn, γp) (cf. Algorithm 2 in Appendix A)
7: χ̃i ← (1− λ)x̃i + λ∇ψ∗(z̃i)
8: ζ̃i ← z̃i − (ai+1/γn)∇f(χ̃i)

9: x̃i+1 ← (1− λ)x̃i + λ∇ψ∗(ζ̃i)
[
∇ψ∗(p̃) = arg minz̃∈X {‖z̃ − p̃‖} = ΠX (p̃)

]
10: z̃i+1 ← z̃i − (ai+1/γn)∇f(x̃i+1)
11: end for
12: return xt.

2.1 SKETCH OF THE PROOF OF THEOREM 2.4.

Inspired by the approximate duality gap technique Diakonikolas & Orecchia (2019), let αt be an
increasing function of time t, and denote At =

∫ t
t0
dατ =

∫ t
t0
α̇τdτ . We define a continuous method

that keeps a solution x̃t, along with a differentiable upper bound Ut on f(xt) and a lower bound Lt
on f(x̃∗). In our case f is differentiable so we can just take Ut = f(xt). The lower bound comes
from

f(x̃∗) ≥
∫ t
t0
f(x̃τ )dατ

At
+

∫ t
t0

1
γn
〈∇f(x̃τ ), x̃∗ − x̃τ 〉dατ

At
, (4)

after applying some desirable modifications, like regularization with a 1-strongly convex function
ψ and removing the unknown x̃∗ by taking a minimum over X . Note (4) comes from averaging (3)
for ỹ = x̃∗. Then, if we define the gap Gt = Ut − Lt and design a method that forces αtGt to be
non-increasing, we can deduce f(xt)− f(x∗) ≤ Gt ≤ αt0Gt0/αt. By forcing d

dt (αtGt) = 0, we
naturally obtain the following continuous dynamics, where zt is a mirror point and ψ∗ is the Fenchel
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dual of ψ, cf. Definition A.2.

˙̃zt = − 1

γn
α̇t∇f(x̃t); ˙̃xt =

1

γn
α̇t
∇ψ∗(z̃t)− x̃t

αt
; z̃t0 = ∇ψ(x̃t0), x̃t0 ∈ X (5)

We note that except for the constant γn, these dynamics match the accelerated dynamics used in the
optimization of convex functions Diakonikolas & Orecchia (2019; 2018); Krichene et al. (2015).
The AXGD algorithm Diakonikolas & Orecchia (2018), designed for the accelerated optimization
of convex functions, discretizes the latter dynamics following an approximate implementation of
implicit Euler discretization. This has the advantage of not needing a gradient step per iteration to
compensate for some positive discretization error. Note that in our case we must use (3) instead of
convexity for a discretization. We are able to obtain the following discretization coming from an
approximate implicit Euler discretization:{

χ̃i = γ̂iAi

Aiγ̂i+ai+1/γn
x̃i + ai+1/γn

Aiγ̂i+ai+1/γn
∇ψ∗(z̃i); ζ̃i = z̃i − ai+1

γn
∇f(χ̃i)

x̃i+1 = γ̂iAi

Aiγ̂i+ai+1/γn
x̃i + ai+1/γn

Aiγ̂i+ai+1/γn
∇ψ∗(ζ̃i); z̃i+1 = z̃i − ai+1

γn
∇f(x̃i+1)

(6)

where γ̂i ∈ [γp, 1/γn] is a parameter, x̃0 ∈ X is an arbitrary point, z̃0 = ∇ψ(x̃0) and now αt is a
discrete measure and α̇t is a weighted sum of Dirac delta functions α̇t =

∑∞
i=1 aiδ(t− (t0 + i− 1)).

Compare (6) with the discretization in AXGD Diakonikolas & Orecchia (2018) that is equal to
our discretization but with no γn or γ̂i. Or equivalently with γ̂i = 1/γn and with no γn for the
mirror descent updates of ζ̃i and z̃i+1. However, not having convexity, in order to have per-iteration
discretization error less than ε̂/AT , we require γ̂i to be such that x̃i+1 satisfies

f(x̃i+1)− f(x̃i) ≤ γ̂i〈∇f(x̃i+1), x̃i+1 − x̃i〉+ ε̂, (7)

where ε̂ is chosen so that the accumulated discretization error is < ε/2, after having performed
the steps necessary to obtain an ε/2 minimizer. We would like to use (3) to find such a γ̂i but we
need to take into account that we only know x̃i+1 a posteriori. Indeed, using (3) we conclude that
setting γ̂i to 1/γn or γp then we either satisfy (7) or there is a point γ̂i ∈ (γp, 1/γn) for which
〈∇f(x̃i+1), x̃i+1 − x̃i〉 = 0, which satisfies the equation for ε̂ = 0. Then, using smoothness of f ,
existence of x∗ (that satisfies∇f(x∗) = 0), and boundedness of X we can guarantee that a binary
search finds a point satisfying (7) in O(log(L̃i/γnε̂)) iterations. Each iteration of the binary search
requires to run (6), that is, one step of the discretization. Computing the final discretization error, we
obtain acceleration after choosing appropriate learning rates ai. Algorithm 1 contains the pseudocode
of this algorithm along with the reduction of the problem from minimizing F to minimizing f . We
chose ψ(x̃)

def
= 1

2‖x̃‖
2 as our strongly convex regularizer.

3 REDUCTIONS

The construction of reductions proves to be very useful in order to facilitate the design of algorithms in
different settings. Moreover, reductions are a helpful tool to infer new lower bounds without extra ad
hoc analysis. We present two reductions. We will see in Corollary 3.2 and Example 3.4 that one can
obtain full accelerated methods to minimize smooth and strongly g-convex functions from methods
for smooth and g-convex functions and vice versa. These are generalizations of some reductions
designed to work in the Euclidean space Allen Zhu & Hazan (2016); Allen Zhu & Orecchia (2017).
The reduction to strongly g-convex functions takes into account the effect of the deformation of the
space on the strong convexity of the function Fy(x) = d(x, y)2/2, for x, y ∈M. The reduction to
g-convexity requires the rate of the algorithm that applies to g-convex functions to be proportional to
the distance between the initial point and the optimum d(x0, x

∗). The proofs of the statements in this
section can be found in the supplementary material. We will use Timens(·) and Time(·) to denote
the time algorithms Ans and A below require, respectively, to perform the tasks we define below.
Theorem 3.1. LetM be a Riemannian manifold, let F :M→ R be an L-smooth and µ-strongly
g-convex function, and let x∗ be its minimizer. Let x0 be a starting point such that d(x0, x

∗) ≤ R.
Suppose we have an algorithmAns to minimize F , such that in time T = Timens(L, µ,R) it produces
a point x̂T satisfying F (x̂T )− F (x∗) ≤ µ · d(x0, x

∗)2/4. Then we can compute an ε-minimizer of
F in time O(Timens(L, µ,R) log(R2µ/ε)).

Theorem 3.1 implies that if we forget about the strong g-convexity of a function and we treat it as it
is just g-convex we can run in stages an algorithm designed for optimizing g-convex functions. The

7
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fact that the function is strongly g-convex is only used between stages, as the following corollary
shows by making use of Algorithm 1.
Corollary 3.2. We can compute an ε-minimizer of an L-smooth and µ-strongly g-convex function
F :M→ R in O∗(

√
L/µ log(µ/ε)) queries to the gradient oracle, whereM = S orM = H.

We note that in the strongly convex case, by decreasing the function value by a factor we can guarantee
we decrease the distance to x∗ by another factor, so we can periodically recenter the geodesic map to
reduce the constants produced by the deformations of the geometry, see the proof of Corollary 3.2.
Finally, we show the reverse reduction.
Theorem 3.3. LetM be a Riemannian manifold of bounded sectional curvature, let F :M→ R be
an L-smooth and g-convex function, and assume there is a point x∗ ∈ M such that ∇F (x∗) = 0.
Let x0 be a starting point such that d(x0, x

∗) ≤ R and let ∆ satisfy F (x0)− F (x∗) ≤ ∆. Assume
we have an algorithm A that given an L-smooth and µ-strongly g-convex function F̂ :M→ R, with
minimizer in Expx0

(B̄(0, R)), and any initial point x̂0 ∈M produces a point x̂ ∈ Expx0
(B̄(0, R))

in time T̂ = Time(L, µ,M, R) satisfying F̂ (x̂) −minx∈M F̂ (x) ≤ (F̂ (x̂0) −minx∈M F̂ (x))/4.
Let T = dlog2(∆/ε)/2e + 1. Then, we can compute an ε-minimizer in time

∑T−1
t=0 Time(L +

2−t∆K−R/R2, 2−t∆K+
R/R

2,M, R), where K+
R and K−R are constants that depend on R and the

bounds on the sectional curvature ofM.
Example 3.4. Applying reduction Theorem 3.3 to the algorithm in Corollary 3.2 we can optimize
L-smooth and g-convex functions defined onH or S with a gradient oracle complexity of Õ(L/

√
ε).

Note that this reduction cannot be applied to the locally accelerated algorithm in (Zhang & Sra, 2018),
that we discussed in the related work section. The reduction runs in stages by adding decreasing
µi-strongly convex regularizers until we reach µi = O(ε). The local assumption required by the
algorithm in (Zhang & Sra, 2018) on the closeness to the minimum cannot be guaranteed. In (Ahn &
Sra, 2020), the authors give an unconstrained global algorithm whose rates are strictly better than
RGD. The reduction could be applied to a constrained version of this algorithm to obtain a method
for smooth and g-convex functions defined on manifolds of bounded sectional curvature and whose
rates are strictly better than RGD.

4 CONCLUSION

In this work we proposed a first-order method with the same rates as AGD, for the optimization of
smooth and g-convex or strongly g-convex functions defined on a manifold other than the Euclidean
space, up to constants and log factors. We focused on the hyperbolic and spherical spaces, that have
constant sectional curvature. The study of geometric properties for the constant sectional curvature
case can be usually employed to conclude that a space of bounded sectional curvature satisfies a
property that is in between the ones for the cases of constant extremal sectional curvature. Several
previous algorithms have been developed for the optimization in Riemannian manifolds of bounded
sectional curvature by utilizing this philosophy, for instance Ahn & Sra (2020); Ferreira et al. (2019);
Wang et al. (2015); Zhang & Sra (2016; 2018). In future work, we will attempt to use the techniques
and insights developed in this work to give an algorithm with the same rates as AGD for manifolds of
bounded sectional curvature.

The key technique of our algorithm is the effective lower bound aggregation. Indeed, lower bound
aggregation is the main hurdle to obtain accelerated first-order methods defined on Riemannian
manifolds. Whereas the process of obtaining effective decreasing upper bounds on the function works
similarly as in the Euclidean space—the same approach of locally minimizing the upper bound given
by the smoothness assumption is used—obtaining adequate lower bounds proves to be a difficult
task. We usually want a simple lower bound such that it, or a regularized version of it, can be easily
optimized globally. We also want that the lower bound combines the knowledge that the g-convexity
or g-strong convexity provides for all the queried points, commonly an average. These Riemannian
convexity assumptions provide simple lower bounds, namely linear or quadratic, but each with respect
to each of the tangent spaces of the queried points only. The deformations of the space complicate
the aggregation of the lower bounds. Our work deals with this problem by finding appropriate lower
bounds via the use of a geodesic map and takes into account the deformations incurred to derive
a fully accelerated algorithm. We also needed to deal with other technical problems. Firstly, we

8
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needed a lower bound on the whole function and not only on F (x∗), for which we had to construct
two different linear lower bounds, obtaining a relaxation of convexity. Secondly, we had to use an
implicit discretization of an accelerated continuous dynamics, since at least the vanilla application of
usual approaches like Linear Coupling Allen Zhu & Orecchia (2017) or Nesterov’s estimate sequence
Nesterov (1983), that can be seen as a forward Euler discretization of the accelerated dynamics
combined with a balancing gradient step Diakonikolas & Orecchia (2019), did not work in our
constrained case. We interpret that the difficulty arises from trying to keep the gradient step inside
the constraints while being able to compensate for a lower bound that is looser by a constant factor.
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