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Abstract
Large language models (LLMs) have performed
well across various clinical natural language
processing tasks, despite not being directly
trained on electronic health record (EHR) data.
In this work, we examine how popular open-
source LLMs learn clinical information from
large mined corpora through two crucial but
understudied lenses: (1) their interpretation of
clinical jargon, a foundational ability for un-
derstanding real-world clinical notes, and (2)
their responses to unsupported medical claims.
For both use cases, we investigate the frequency
of relevant clinical information in their cor-
responding pretraining corpora, the relation-
ship between pretraining data composition and
model outputs, and the sources underlying this
data. To isolate clinical jargon understanding,
we evaluate LLMs on a new dataset MedLingo.
Unsurprisingly, we find that the frequency of
clinical jargon mentions across major pretrain-
ing corpora correlates with model performance.
However, jargon frequently appearing in clinical
notes often rarely appears in pretraining cor-
pora, revealing a mismatch between available
data and real-world usage. Similarly, we find
that a non-negligible portion of documents sup-
port disputed claims that can then be parroted
by models. Finally, we classified and analyzed
the types of online sources in which clinical jar-
gon and unsupported medical claims appear,
with implications for future dataset composi-
tion.

Data and Code Availability This paper lever-
ages publicly available pre-training corpora, the
Clinical Acronym Sense Inventory (CASI) dataset,
and the MIMIC-IV dataset (Moon et al., 2014;
Johnson et al., 2023, 2020). The code, our new

benchmark MedLingo, and analysis results can be
found here: https://github.com/Flora-jia-jfr/

diagnosing_our_datasets

Institutional Review Board (IRB) This re-
search does not require IRB approval.

1. Introduction

In recent years, there has been significant warranted
excitement around the application of large language
models (LLMs) to diverse clinical applications, in-
cluding information extraction, summarization, ques-
tion answering, and trial matching (Li et al., 2024a;
Van Veen et al., 2024; Agrawal et al., 2022; Zakka
et al., 2024; Jin et al., 2024). Researchers have
found promising performance with both off-the-shelf
general domain models (e.g., GPT and Llama fam-
ilies), as well as models fine-tuned specifically with
biomedical corpora, such as PubMed, clinical guide-
lines, and medical question answering datasets (Chen
et al., 2023; Christophe et al., 2024). Recent re-
search has actually found that general domain mod-
els can perform just as well as these medically fine-
tuned counterparts on standard benchmarks, despite
being trained only on general online corpora (Jeong
et al., 2024a; Li et al., 2024b). This raises major
questions around where and how open-source LLMs
are learning clinical information, given that they are
not trained on EHR text.

In this paper, we aim to better understand this
phenomenon by characterizing the composition of
clinical information in standard open-source training
corpora and the relation to LLM behavior. Given
that these corpora are generally multiple terabytes,
it is most feasible to investigate this question through
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The patient presents with a distal 
radius fracture. The fx is immobilized 
with a cast.

Figure 1: An overview of our analysis: 1) Benchmarking models on their knowledge of the clinical jargon
and debunked medical claims. 2) Estimating the prevalence of clinical keywords in the pretraining
corpora and examining its correlation with model performance, and 3) Investigating the sources
of clinical data in pretraining corpora, both for jargon and unsupported medical claims.

narrow well-defined tasks that enable us to probe
the corpora for specific knowledge (Kandpal et al.,
2023). Therefore we study model behavior and
dataset composition through the lens of two tasks
that are amenable to probing: (i) clinical jargon
understanding and (ii) unsupported medical claims
(overview in Figure 1).

Clinical jargon understanding is particularly top-
ical, as a recent systematic review found that only
5% of over 500 recent studies on LLMs in medicine
have used real patient care data in their evaluation
(Bedi et al., 2024). The rest rely often on synthetic or
stylized clinical vignettes, as in licensing exams (Raji
et al., 2025). While these evaluations may be able
to portend medical reasoning capabilities, they don’t
necessarily extend to tasks that require EHR note un-
derstanding. In particular, there is a significant dis-
tribution shift between clinical note text and biomed-
ical text more broadly. Clinicians often have limited
time to generate clinical documentation and there-
fore resort to shorthand (Figure 2). Therefore, we
probe (i) LLMs for clinical jargon understanding and
(ii) their training corpora for co-occurrences of both
clinical shorthand and their expansion, from which
these LLMs could have learned.

A 27-year-old male 
presents to urgent 
care complaining of 
chest pain. He 
reports that the 
pain started three 
days ago…

Sample Clinical Note:
27 yo M p/w CP. Pt 
reports...
Physical Exam 
Gen: WD/WN 
HEENT: EOMI, PERRLA
Abd: Soft, NT, BS+ 
Extrem: WWP. No C/C/E. 

Sample Exam:

Figure 2: Example of the difference between lan-
guage in clinical notes vs. benchmarks.

On the flip side, it is also important to understand
how LLMs may be acquiring potentially dangerous
information from these mined online corpora. Gener-
ation of unsupported medical claims poses risks when
models are used in patient-facing applications, and
there are existing concerns around model fragility
and safety for high-stakes medical applications. For
example, LLMs are sensitive to whether generic or
brand names are used, and even small injections of
incorrect information can propagate through models
(Gallifant et al., 2024; Alber et al., 2025). Given the
rise of unsupported medical claims overall online, it
is interesting to see how this may extend to common
pretraining corpora. Therefore, we probe for pairs
of keywords (e.g. ‘Covid’, ‘5g’) that correspond to
unsupported medical claims, both in models and in
training corpora.

In this work, we analyze how open-source LLMs
acquire clinical information through the lenses of
both clinical jargon and unsupported medical claims.
We tackle this by benchmarking model performance,
identifying the frequency of the knowledge in training
corpora, and investigating the composition of clinical
information in those corpora (Figure 1). Specifically,
we make the following contributions:

1. Direct Evaluation of Clinical Jargon
Knowledge: We introduce an evaluation frame-
work and dataset centered on clinical jargon
from real-world clinical notes. With this isolated
assessment of how well LLMs understand real-
world clinical text, we analyze how this perfor-
mance relates to the frequency of clinical jargon
in training corpora.
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2. Investigation over unsupported medical
claims: We probe LLMs for their generation
of unsupported medical claims under different
prompting techniques and connect this to how
frequently these claims are supported vs. refuted
in these corpora.

3. Analysis of Sources in Pretraining Cor-
pora: Finally, we go past frequency alone to
understand the sources from which this clinical
information (and unsupported medical claims) is
learned, which could inform future training cor-
pora.

2. Related Work

Clinical Jargon Understanding Unfortunately,
many tasks in medical NLP don’t test on actual clin-
ical text, but even when models are evaluated specif-
ically on clinical text interpretation, the tasks don’t
necessarily require a deep understanding of clinical
jargon (Jeong et al., 2024b). For example, MedNLI
aims to test whether a given clinical premise sup-
ports a hypothesis. However, in practice, one can
perform well even without access to the premise, due
to shallow heuristics that are artifacts from dataset
construction (Herlihy and Rudinger, 2021). Simi-
larly, synthetic GPT-4 generated questions often re-
sult in artificially simple datasets (Bai et al., 2024).
Finally, one can achieve high accuracy on multiple-
choice acronym disambiguation by just choosing the
most common expansion for a given acronym, or
knowing what section of the note the acronym was
mentioned in (Adams et al., 2020; Moon et al., 2014).
Further, we know that LLMs do not always possess
full knowledge of arbitrary clinical concepts such as
ICD codes (Lee and Lindsey, 2024; Soroush et al.,
2024). Therefore, this gap motivates the need for
more direct measurements of how well LLMs han-
dle the unique clinical language used in real patient
records, a gap we fill in this work.

Unsupported Medical Claims One concern
about the reliability of open-sourced clinical LLMs
hinges on the fact that they may be trained on unsup-
ported medical claims found in open corpora. unsup-
ported health claims are incredibly common online,
particularly on social media around topics includ-
ing vaccines and drugs (Suarez-Lledo and Alvarez-
Galvez, 2021). Several studies have investigated the
prevalence of unsupported health claims, but the fo-
cus has been on social media, as opposed to pretrain-

ing corpora for LLMs. Recent work demonstrates
that medical LLMs are susceptible to data-poisoning
attacks via injections of unsupported medical claims
into pretraining corpora(Alber et al., 2025). How-
ever, less attention has been paid to pre-existing in-
accuracies across pretraining corpora, which can per-
petuate harmful biases or errors even without further
malicious intervention.

Pretraining Dataset Analysis Understanding
the composition and quality of pretraining data is
critical, as it directly shapes the capabilities and lim-
itations of large language models (LLMs). Kandpal
et al. (2023) found that a language model’s ability to
answer fact-based trivia questions was directly linked
to the frequency of pertinent documents (containing
keywords of interest) in its training data. More re-
cent work has introduced systems like What’s In My
Big Data (WIMBD) and Infini-gram to analyze lin-
guistic patterns and dataset artifacts from large pre-
training corpora (Elazar et al., 2023; Liu et al., 2024).
WIMBD provides an efficient tool for counting case-
insensitive keyword occurrences and retrieving docu-
ments based on specified keywords. We build upon
these modern frameworks that make it scalable to ask
questions of clinical knowledge at a terabyte scale.

Clinical Pretraining Analysis Prior studies have
begun exploring clinical knowledge in pretraining cor-
pora, though with limited scope. Initial investiga-
tions have studied co-occurrences of diseases in The
Pile dataset compared to real-world prevalence (Chen
et al., 2024) and the frequency of prescription vs.
generic drug names across common corpora (Galli-
fant et al., 2024). Alber et al. (2025) examined the
input distribution to corpora to understand where
unsupported medical claims could be injected by a
malicious actor, but didn’t go so far as to analyze the
existing data. Finally, a study of the Colossal Clean
Crawled Corpus (C4) dataset (Dodge et al., 2021) re-
vealed that certain content clusters were dispropor-
tionately excluded during the dataset filtering pro-
cess, some of which were health-related. This raises
possible concerns about the loss of medically rele-
vant information in the pretraining corpus and under-
scores the need for targeted analyses of clinical knowl-
edge in pretraining corpora. Our work extends these
lines of inquiry by systematically analyzing both the
presence of clinical jargon knowledge and potential
unsupported clinical claims across several pretraining
corpora, providing a more general and comprehensive
understanding.
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3. Models and Datasets

3.1. Pretraining Corpora and Models

Wemainly evaluate models pretrained on three major
open-sourced corpora: RedPajama (Together Com-
puter, 2023; Weber et al., 2024), Dolma (Soldaini
et al., 2024), and C4 (Raffel et al., 2020). Their
corresponding models are available in Table 1. For
OLMo and T5, we use their instruction-tuned vari-
ants due to increased instruction following capabil-
ities; no medical-specific fine-tuning datasets were
used in the instruction-tuning phase for these models.

Our focus is on LLMs with known pretraining cor-
pora, since these enable further analysis and prov-
ing. For contextualization, we do include evaluations
on several models with unknown pretraining corpora
(Table 1).

In addition to the open-source models with docu-
mented pretraining corpora, we also evaluate several
large language models that are continually pretrained
or fine-tuned with medical data. These include Open-
BioLLM (Ankit Pal, 2024), Meditron (Chen et al.,
2023), MeLLaMA (Chen et al., 2023), ClinicalCam-
mel (Toma et al., 2023) and MedAlpaca (Han et al.,
2023). Each of these is built upon a base model and
continually pretrained with biomedical corpora such
as PubMed or MIMIC notes. Detailed configurations
of these medically pre-trained and fine-tuned LLMs
can be found in Table 8 under Appendix A.

3.2. Evaluation Datasets

We evaluate the models on the existing CASI dataset,
a new dataset MedLingo, and on a set of compiled
disputed medical claims.

CASI The Clinical Acronym Sense Inventory
(CASI) dataset consists of deidentified clinical note
snippets across several specialties; each snippet con-
tains an acronym to disambiguate that can take on
multiple meanings (Moon et al., 2014). The dataset
covers 75 acronyms with two or more expansions
each; each acronym appears in 500 clinical snippets.
We verified that the CASI dataset is not present in
the pretraining corpora. A random selection of 10
sentences from CASI was searched via WIMBD, and
no matches were found in the Dolma or c4 datasets.
Starting with a filtered version of the dataset pro-
vided by Adams et al. (2020) which removes noise, we
further perform balancing to address data imbalance
in expansions. The final dataset retains 59 acronyms,

147 expansions, and 5887 examples. Additional de-
tails regarding filtering, question design, and evalua-
tion are provided in Appendix B.

MedLingo Unfortunately, the context in CASI can
inadvertently disclose the intended expansion. For
example, a snippet might mention “Enterocutaneous
fistula” and then later refer to “EC fistula,” effec-
tively revealing that “EC” stands for “Enterocuta-
neous.” Therefore, we construct MedLingo to provide
only the minimal context necessary, to similar pre-
vent leakage. We extracted potential jargon of inter-
est from 3,317 discharge notes sampled from MIMIC-
IV (Johnson et al., 2023) using a regular expression
(shown in Appendix C) that applies word bound-
aries to identify tokens with abbreviation-like pat-
terns. These patterns capture uppercase sequences,
mixed characters with special symbols or digits, and
similar forms. Candidate tokens were lemmatized us-
ing spaCy and filtered by excluding common English
words from the NLTK corpus.

Given this candidate set, we selected 100 pieces of
jargon with varying frequency in MIMIC-IV and gen-
erated their corresponding expansions based on the
context in which they appeared in the MIMIC notes.
Using these generated pairs, we derived 100 questions
with the assistance of OpenAI o1, followed by manual
revisions to ensure that the questions prompt direct
responses without revealing excessive context. The
design of these questions reflects the typical presen-
tation in clinical notes, where context can be limited.
More details on dataset construction can be found in
Appendix C.

Disputed Medical Claims We constructed a
dataset comprising 12 keyword pairs corresponding
to disputed or debunked medical associations (e.g.,
vaccines and autism). For each pair, we formulated
two query types—direct queries (e.g., “Is there any
evidence that X causes Y?”) and presuppositional
prompts (e.g., “How does X cause Y?”) to evaluate
whether models reproduce inaccurate claims given
the queries.

4. Clinical Jargon

Here we assess the accuracy of models on clinical jar-
gon interpretation, and then analyze how that per-
formance correlates with appearances of the jargon
in pretraining corpora.
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Pretraining Dataset Size # Tokens Model Model Size
(TB) (Trillion)

RedPajama v1 3.0 1.2 LLaMA (Touvron et al., 2023) 7B, 13B, 33B, 65B
Alpaca (Taori et al., 2023) 7B

Dolma v1.7 4.5 2.3 OLMo Instruct (Groeneveld et al., 2024) 7B

C4 0.84 0.15 Flan T5 (Chung et al., 2024) 11B

- - LLaMA 3.1 Instruct (Dubey et al., 2024) 8B
Unknown - - LLaMA 3.3 Instruct (Dubey et al., 2024) 70B

- - Claude 3.5 Sonnet (20241022) -

Table 1: Pretraining Datasets and Corresponding Models

4.1. Methods

4.1.1. Model Accuracy

We regard jargon interpretation for both CASI and
MedLingo as an open-ended generation task. Specif-
ically, we prompt models with a snippet and the
associated jargon and ask them to autoregressively
complete the expansion. For CASI, the task is per-
formed in a zero-shot setting; for MedLingo we pro-
vide a one-shot demonstration (e.g., “In a clinical
note that mentions a high creat, creat stands for cre-
atine.”) to ensure proper task interpretation. The
LLM-as-a-judge approach (Zheng et al., 2023) al-
lows for flexible yet semantically equivalent responses
(e.g., counting “basic metabolic profile” as correct
for a ground truth of “basic metabolic panel”). We
randomly sampled 50 CASI examples and compared
GPT-4o’s decisions with two human annotators; 98%
concordance was found. For MedLingo, with multiple
LLM judges, only 4.6% of answers conflicted, and
we manually adjudicated these cases. We employ
gpt-4o-2024-11-20 for the CASI dataset evalua-
tion, while for MedLingo we use gpt-4o-2024-11-20,
gpt-4-0613, and claude-3-5-sonnet-20241022 to
assess each answer independently, with disagreements
manually adjudicated. For CASI, we examine both
overall accuracy and accuracy per jargon-expansion
pair.

4.1.2. Estimation of Frequency in
Pretraining Corpora

To explore the link between pretraining corpora and
performance, we use the WIMBD (What’s In My Big
Data?) platform (Elazar et al., 2023) to measure
the frequency of these terms in various pretraining

datasets1. WIMBD provides the frequency for the
occurrence of one or more terms in its corpora, along-
side access to the matching documents. We employ
two approaches to approximate the number of docu-
ments that reveal clinical-jargon correspondence:

Estimated Co-occurrence Frequency:

We first count how often an abbreviation or acronym
A appears alongside its expansion E in the same doc-
ument, assuming that co-occurrence signals the con-
nection between the two. Let Ncooc(A,E) be the to-
tal number of documents that contain both the ab-
breviation A and its expansion E. However, some
popular shorthand may have different meanings. For
instance, “CA” can refer to “cancer” or “California,”
so not all co-occurrences of “CA” and “cancer” are
relevant. To address this, we draw a sample of size
n ≤ 500 from these Ncooc(A,E) documents and ask
GPT4o to determine which documents actually use A
to refer to the clinical expansion E. Let nrelevant be
the number of sampled documents in which A indeed
refers to E in its clinical sense. We define

f̂cooc =
nrelevant

n
,

as the fraction of sampled co-occurrences that truly
use A to mean E. We then scale this fraction to ap-
proximate the total number of relevant documents,
which we refer to as the estimated co-occurrence fre-
quency:

N̂cooc(A,E) = fcooc × Ccooc(A,E).

further define the estimated co-occurrence frequency
counts: Since WIMBD is under maintenance for

1. We note various analyses may not include RedPajama, as
its index became inaccessible over the course of this study.
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abbr expansion Dolma C4 RedPajama MIMIC-IV Notes

HKS heel-knee-shin test 1 0 0 6457
GynHx gynecological history 8 1 2 2452
AVSS afebrile, vital signs stable 12 0 0 10766
DLP dyslipidemia 486 28 220 2821
ppx prophylaxis 594 44 154 20231

EOMI extraocular movements intact 875 193 216 179351
BK below knee 1251 352 593 3661
PRN as needed 91 284 31 815 40 474 1043282
AFIB atrial fibrillation 111 475 44 439 49 898 82950
GBM glioblastoma 204 479 29 267 82 529 1824

Table 2: Estimated counts N̂final(A,E) for jargon–expansion pairs in MedLingo across three pretraining
corpora; the last column lists the total occurrences in the MIMIC-IV discharge notes.

RedPajama indexing, so we use an average of f̂cooc
of Dolma and C4 to approximate RedPajama’s, as
Dolma and C4’s f̂cooc had high Spearman correlation
of 0.80 (p = 1.53× 10−33).

Estimated Contextual Frequency:

An abbreviation A may convey the intended clinical
meaning based on context alone, even if E is never ex-
plicitly stated in the same document. For instance, a
note might repeatedly use “fx” to mean “fracture”
under a clinical context, without ever writing the
word “fracture.”
Let Ctotal(A) be the total number of documents

containing A. Similarly, we take a sample of size m ≤
500 from those documents and ask GPT4o whether A
is used in the intended clinical sense. Let mrelevant be
the number of sampled documents in whichA conveys
the clinical meaning. We define

f̂context =
mrelevant

m
.

We then estimate the total number of relevant docu-
ments from context as

N̂context(A) = f̂context × Ctotal(A).

Since sampling variation might lower one of the
estimates, and the co-occurrence-based measure is a
lower bound while the context-based measure may
capture more hidden uses, we define:

N̂final(A,E) = max
(
N̂cooc(A,E), N̂context(A)

)
.

For MedLingo, we use N̂final(A,E) for further anal-
ysis, with 10 examples presented in Table 2. Since

the CASI dataset contains many short abbrevia-
tions widely used in non-clinical contexts (e.g., “AB,”

“AC”), we rely on f̂cooc-based estimates for these

acronyms, as .f̂context is often 0.

4.2. Results

4.2.1. Overall Model Accuracy

CASI MedLingo

Alpaca 7B 0.52 0.50
OLMo Instruct 7B 0.53 0.54
Flan T5 11B 0.37 0.38

LLaMA 7B 0.44 0.54
LLaMA 13B 0.53 0.55
LLaMA 33B 0.58 0.66
LLaMA 65B 0.64 0.71

LLaMA 3.1 Instruct 8B 0.64 0.64
LLaMA 3.3 Instruct 70B 0.76 0.83

Claude Sonnet - 0.96

Table 3: Accuracy for models on CASI and MedLingo

Table 3 compares multiple LLMs on both CASI
and MedLingo. To contextualize model performance,
we also compare open-source models to Claude Son-
net 3.5 on MedLingo. We did not test Claude Son-
net against the CASI dataset due to possible dataset
contamination. Claude Sonnet gets 96% accuracy on
MedLingo, confirming the feasibility of the task. In
contrast, the open-source models lag in performance,
though the Llama 3 Instruct models, whose pretrain-
ing copora is not public, outperform their older coun-
terparts. Alpaca 7B, OLMo Instruct 7B, and Flan T5
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Model MedLingo Base Model Base Model Performance on MedLingo

OpenBioLLM 8B 0.64 LLaMA 3 8B 0.64
OpenBioLLM 70B 0.80 LLaMA 3 70B 0.83

Meditron 8B 0.62 LLaMA 2 8B 0.49
Meditron 70B 0.81 LLaMA 2 70B 0.73
MeLLaMA 13B 0.84 LLaMA 2 13B 0.61
Clinical Camel 70B 0.80 LLaMA 2 70B 0.73

MedAlpaca 7B 0.52 Alpaca 7B 0.50

Table 4: Accuracy for medical adapted LLMs on MedLingo

11B have comparable parameter counts, but different
pre-training data; their relative performance aligns
with the relative sizes of their pretraining corpora.
For LLaMA 7B-65B (all pretrained from RedPajama-
v1), the larger models unsurprisingly achieve higher
accuracy on both datasets.

We also include the performance of these medically
adapted LLMs on MedLingo, including a comparison
with the base model that they continually pretrained
or finetuned on in Table 4. Models continually pre-
trained or fine-tuned from a LLaMA2 base show mod-
erate performance gains, suggesting that clinical pre-
training can be beneficial, though its impact varies by
dataset and metric. Notably, MeLLaMA 8B, which
is pretrained on MIMIC-III and MIMIC-IV notes,
demonstrates strong performance on jargons common
in clinical notes but rare online (see Figure 12). How-
ever, this advantage narrows when using LLaMA3 as
the base model, with LLaMA3 and OpenBioLLM ex-
hibiting nearly identical performance across both 8B
and 70B.

4.2.2. Correlation between Counts and
Performance
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OLMo-Instruct ~ Dolma

Figure 3: OLMo accuracy vs. Dolma estimated
co-occurrence frequency on CASI dataset.
Each dot shows a jargon-expansion pair.

For each jargon-expansion pair in CASI, our esti-
mated occurrence counts in the training corpora cor-
relate strongly (0.56 ≤ ρ ≤ 0.72) with performance
across all models (Table 9); using raw occurrence
counts yields weaker associations (0.44 ≤ ρ ≤ 0.66) as
seen in Table 10. Figure 3 shows this relationship for
the OLMo Instruct and the Dolma data set; a similar
association can be seen for MedLingo, found in Fig-
ure 10, alongside plots for further models in Appendix
D. Additionally, as the model size grows, rarer terms
are gradually learned. Comparing LLaMA variants of
different sizes (7B, 13B, 33B, and 65B) in Figures 7
and 8 reveals that larger models maintain decent ac-
curacy even for terms with relatively few examples.

4.2.3. Frequency of Online Clinical Data

We also note that the estimated frequency in pre-
training corpora does not necessarily correspond to
the frequency of jargon appearances in clinical notes.
For MedLingo, we compare the total number of oc-
currences of each abbreviation in MIMIC-IV dis-
charge notes with the corresponding N̂final(A,E) in
Dolma (Figure 4). The Spearman correlation be-
tween the counts in MIMIC-IV and Dolma is only
0.15 (p = 0.13), indicating a mismatch.

For example, as shown in Table 2, “AVSS”
(“afebrile, vital signs stable”) appears 10,766 times
in MIMIC-IV discharge notes but only 12 times (with
its expansion) in Dolma. In both C4 and RedPajama,
the co-occurrence is zero. Consequently, all evaluated
models except Claude Sonnet 3.5 fail on the AVSS
test question.

5. Disputed Medical Claims

Although clinical jargon knowledge acquired from
pretraining corpora can be beneficial, unsupported
medical claims within these corpora pose risks, espe-
cially for patient-facing applications of LLMs. Given
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Dolma C4 RedPajama
ratio estimated counts ratio estimated counts ratio estimated counts

5G COVID 13% 7000 - - 4% 1100
Chelation Autism 23% 990 44% 45 24% 550
Chelation Cancer 20% 780 19% 24 0% 0
Fluoride Cancer 61% 5000 75% 130 56% 3300
Gerson Cancer 52% 7200 50% 150 57% 1800
MMS Autism 6% 120 58% 8 5% 66
Magnet Therapy Arthritis 66% 330 95% 45 54% 83
Mask Oxygenation 29% 390 0% 0 33% 52
Vaccines Autism 31% 46000 44% 700 25% 19000
Vaccines Microchips 4% 330 4% 1 10% 390
Antiperspirant Breast Cancer 43% 1800 54% 30 47% 470
Ivermectin COVID 30% 27000 - - 35% 7700

Table 5: We have the supporting ratio Rsupport and the estimated total counts for documents supporting
disputed claims across the pretraining corpora. All estimated counts are rounded to two significant
figures.
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Figure 4: Estimated frequency of jargon in the
Dolma dataset vs. in MIMIC-IV Notes

the prevalence of unsupported medical claims online,
we further investigate how this propagates into the
generations of LLMs.

5.1. Methods

Evaluating Misleading Model Response We
evaluated the instruction-tuned models of simi-
lar size: Alpaca, Flan T5, OLMo Instruct, and
LLaMA3.1 Instruct, as well as the medically adapted
LLMs, using the dataset on disputed medical claims
described in Section 3.

The responses were then manually classified by an
author into three categories: denial (refuting the un-
supported medical claim), neutral (neither support-
ing nor refuting the claim), and supportive (endorsing
the claim).

Estimation of Documents that Support Dis-
puted Medical Claims We estimate the num-
ber of documents endorsing each disputed medical
claim by first collecting allNtotal documents that con-
tain both of the relevant keywords and then select-
ing at most 100 documents in which the keywords
appear within 200 characters (we name it close co-
occurrence). Given how common some of the terms
are, we found very often the terms happened to be
found on the same webpage, but not in relation to
one another.

Let Nscanned be the number of documents actually
examined and Nclose be the total count of documents
meeting the close co-occurrence criterion so that

ρclose =
Nclose

Nscanned
.

Next, we use GPT4o to classify each of theNclose doc-
uments as support, against, or unknown with counts
nsupport, nagainst, and nunknown, and define

Rsupport =
nsupport

nsupport + nagainst
.

and

Ragainst =
nagainst

nsupport + nagainst
.

Finally, we estimate the total number of supporting
documents as

Nsupport =
nsupport

nsupport+nagainst+nunknown
× ρclose ×Ntotal,
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5.2. Results

Misleading Model Response When presented
with direct queries about the evidence behind claims,
the general instruction tuned models (Alpaca, Flan
T5, OLMo Instruct, LLaMA3 Instruct) largely re-
futed unsupported medical claims: 85% of responses
denied the false statements, 10% supported them,
and 4% were neutral. In contrast, presuppositional
prompts led to more misleading or speculative re-
sponses, with 54% denying, 31% supporting, and 13%
neutral. The medically adapted ones have similar
performance, with 17% supportive of disputed med-
ical claims in response to a direct query, and 27%
supportive in response to a presuppositional query.2

For instance, all four general models correctly an-
swered “Is there any evidence that chelation ther-
apy treats cancer?” by stating that no reliable data
supports such use. However, on “How does chela-
tion therapy treat cancer?”, Alpaca and LLaMA 3.1
Instruct gave explanations hinting at possible effi-
cacy while ultimately mentioning the lack of evidence,
while Flan T5 directly states that chelation therapy
is used for cancer. A similar pattern arose with “vac-
cines contain microchips,” where all models denied
this claim when asked, “Is there any evidence that
vaccines contain microchips?”, but Alpaca and Flan
T5 provided technical-sounding, unsupported med-
ical claims when prompted with “How do vaccines
contain microchips?”

Documents Contributing to Disputed Medi-
cal Claims Table 5 shows Rsupport and Nsupport

for each keyword pair in a disputed medical claim,
indicating that a substantial share of documents in
some corpora promote unverified or debunked health
claims. We do find that a substantial fraction fall into
the unknown category; upon manual review, we find
that these largely consist of low-quality documents
(e.g., a long list of terms) that are often duplicative
with one another. It is worth noticing that because
the C4 dataset predates COVID, it contains no ref-
erences to “COVID” or related mask claims. For the
same reason, for masks and oxygenation, most docu-
ments from C4 turned out to be unrelated (e.g., spa
treatments).
We observe that the percentage of documents sup-

porting an unsupported medical claim appears linked
to likelihood to output unsupported medical claims
among the instruction-tuned models (Alpaca, OLMo

2. Percentages are rounded to the nearest whole number;
slight discrepancies in the totals are due to the rounding.

Instruct, Flan T5) with open pretraining corpora.
For example, ”fluoridated drinking water increases
cancer risk” and ”magnet therapy is effective for
arthritis” were the two pieces of unsupported claims
with the highest support ratios across corpora. None
of the three models denied either of these debunked
claims. Moreover, our analysis indicates that the
correlation between levels of generating unsupported
medical claims in responses and the ratio of sup-
portive responses is stronger than that based on the
raw count of supportive documents, as demonstrated
across both OLMo and Alpaca models. More details
can be found in Appendix E.

In addition to these debunked claims, we also ex-
amined instances where true medical associations
might be misinterpreted. For example, for “The
MMR vaccine is safe and effective at preventing
measles”, Ragainst is 17% respectively in the Dolma
dataset, stemming from descriptions of anecdotal ex-
periences. This indicates similar findings around sig-
nificant unsupported medical claims as our existing
analysis.

6. Sources of Online Clinical Data

Moving beyond raw counts, here we aim to under-
stand where LLMs are learning clinical information
(and unsupported medical claims) from online, with
implications for future training dataset composition.

6.1. Methods

We came up with 9 categories for online health
sources based on iterative scans of the data: Clin-
ician Forum, Commercial Health, Medical Encyclo-
pedia/Dictionary, News Article, Patient Forum, Pa-
tient Health Resource, Peer-reviewed Research Pub-
lication, Personal Blog, and Other. We performed all
source analyses over the Dolma corpus, as it contains
the highest percentage of URLs, which we found use-
ful for source classification. We used OpenAI GPT4o
API for zero-shot classification; as input, we provided
the URL + the first 5000 characters of the docu-
ment. For each set of keywords, we classify up to
100 nrelevant documents.

6.2. Results

Table 6 shows the classification of sources from the
Dolma corpus, including the median and the max-
imum observed across jargon-expansion pairs per
dataset. While the plurality of mentions come from
peer-reviewed publications for both datasets, they do
not make up the majority; further, these numbers
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CASI MedLingo

Median Maximum Observed (example) Median Maximum Observed (example)
Clinician Forum 1% 11% (CVA, costovertebral angle) 2% 17% (pna, pneumonia)
Commercial Health 9% 54% (ES, extra strength) 6% 48% (inh, inhalation)
Medical Encyclopedia 3% 29% (AC, before meals) 5% 47% (EOMI, extraocular movements intact)
News Article 3% 35% (SMA, spinal muscular atrophy) 1% 30% (AFIB, atrial fibrillation)
Patient Forum 1% 56% (BM, breast milk) 2% 61% (Abx, antibiotics)
Patient Health Resource 4% 42% (ET, enterostomal therapy) 2% 14% (IADLs, Instr. activities of daily living)
Research Publication 46% 92% (BM, bone marrow) 33% 96% (DLP, dyslipidemia)
Personal Blog 3% 34% (MOM, milk of magnesia) 5% 36% (trach, tracheotomy)
Other 10% 50% (DC, direct current) 11% 61% (NBS, normal bowel sounds)

Table 6: Source classification for clinical jargon in the Dolma corpus.

Example Source Example Quote
Research Publication Semantic Scholar “considered 12 predictors (platelet ...HTN) as inde-

pendent risk factors ...”
Patient Health Resource Patient Education Sheet

on a Hypertension Diet
“ Hypertension (HTN) also known as high blood
pressure is a long-term medical condition ...”

Commercial Health Medgadget (selling blood
pressure monitor)

“Will there be guidance for users that have a record
of pre-hypertension or Stage 1/2 HTN ...”

Medical Encyclopedia The Free Dictionary “Ginseng should not be used in Pts with asthma,
arrhythmias, HTN, or post-menopausal bleeding...”

Clinician Forum UCLA Mednet “A simple score to identify individuals at high early
risk ... 1 point for HTN at acute evaluation... ’

Personal Blog Personal Website of a
PharmD

“... diet sodas have been linked to an increased inci-
dence of strokes and high blood pressure (HTN) ...”

News Article MedPage Today “Is Isolated Diastolic HTN Meaningless? ... guide-
lines pick up more isolated diastolic hypertension.”

Patient Forum Veterans Community “I...put up the VA ratings for HTN (Hypertension
aka High Blood Pressure). This might help...”

Table 7: Examples for the eight major categories (excluding Other) of websites containing clinical jargon.
Examples shown for HTN and hypertension.

are significantly lower for MedLingo than CASI, as
the jargon is much more colloquial. As a result, we
see slightly more information coming from medical
encyclopedia/dictionaries, clinician forums, patient
forums, and blogs. However, importantly, we find
that the distribution of sources varies widely across
instances of clinical jargon, indicating the potential
importance of a diverse dataset mix. For example,
while patient forums only make up 1-2% of the over-
all dataset mix, 56% of breast milk mentions stem
from patient forums; similarly, while medical ency-
clopedias and dictionaries make up 3-5% of the mix,
they make up almost half of the mentions for extraoc-
ular movements intact. Table 7 provides examples of
htn cooccuring with hypertension from the 8 defined
source types. We also classify the sources for the
documents supporting disputed medical claims using
GPT4o. Figure 5 compares the source distributions
for CASI, MedLingo, and the documents that sup-
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and the documents supporting disputed
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port disputed medical claims in Dolma’s corpus. The
content originates primarily from commercial health
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sites, personal blogs, and news articles, and mini-
mally from peer-reviewed research, clinician forums,
and medical encyclopedias. This could indicate fur-
ther filtering one may want to apply on these training
sets, before deployment in clinical settings.

7. Discussion and Conclusion

In this work, we study the composition of open-source
pretraining corpora and how this affects LLM be-
havior in two medical settings: clinical jargon in-
terpretation and propagation of unsupported med-
ical claims. For the former, we introduced a new
dataset MedLingo to isolate the ability of large lan-
guage models to interpret clinical jargon. Concordant
with the literature, we find that models perform bet-
ter when the jargon appears more frequently in their
pretraining corpora. Across the board, our additional
post-processing on the raw counts yields higher cor-
relations, indicating the utility of additional filtering
steps. This indicates that clinical NLP practition-
ers could estimate a model’s performance for a cer-
tain clinical subspecialty, by examining training cor-
pora alone. Our results on MedLingo also mirror re-
cent findings that the newest language models (e.g.
LLaMA 3) doesn’t necessarily benefit from the cur-
rent iteration of biomedical fine-tuning techniques.
Concretely, we found there was little correlation be-

tween frequency in EHR data and frequency in public
corpora, highlighting a gap between available train-
ing data and usage in clinical notes. We also found
that while peer-reviewed articles make up the plu-
rality of clinical jargon knowledge, there is a wide
distribution across sources and abbreviations, indi-
cating a strong data mix may be important for high
performance across clinical jargon.
While there has traditionally been a focus on pre-

training with PubMed, these findings could inform
how researchers construct biomedical fine-tuning cor-
pora going forward. That being said, personal blogs
and commercial health sites are the most common
sources that support disputed or controversial med-
ical claims. We found that open-source and clin-
ically fine-tuned models can easily reproduce un-
supported medical claims when prompted in certain
ways, which indicates a need for further work before
integration into patient-facing or adversarial settings.
Disputed medical claims don’t need to be frequent in
the dataset, but can propagate if they’re not suffi-
ciently debunked. Concretely, we call for better fil-
tering of pre-training data, continuous, targeted eval-
uations towards propagation of unsupported medi-

cal claims, and post-training safeguards for LLMs
in the medical setting. While conventional web-
scale filtering pipelines typically remove profanity or
hate speech, methods to detect subtle disputed med-
ical claims in the pretraining corpora, especially in
the health domain, remain under-explored. Existing
classifier-based fact-checking approaches developed
for disputed COVID-19 claims could be extended
continuously and at-scale to effectively prune domain-
specific inaccuracies (Malla and Alphonse, 2022; Ku-
mari et al., 2021). In addition, the development of
targeted evaluation benchmarks is essential to assess
models’ susceptibility to generating false claims, par-
ticularly as medical knowledge continuously evolves
(Zhang et al., 2025). Finally, introducing safeguards
using external knowledge during inference (such as
retrieval-augmented generation or knowledge graph
consistency checks) can help prevent the propagation
of harmful or incorrect health information in patient-
facing scenarios (Masanneck et al., 2025; Alber et al.,
2025).

In conclusion, while open-source large language
models show significant promise in learning clinical
information from public data, closing the gap be-
tween pretraining data and real-world clinical lan-
guage—and addressing the risk of propagating un-
supported medical claims—will be essential for gen-
eralizable use in medicine.

Limitations and Future Work In our qualitative
analyses, we encountered a shockingly large fraction
of low-quality and duplicated documents, a finding
also made by Elazar et al. (2023). Leveraging unique
occurrences, rather than total occurrences, may yield
even higher correlations with performance. We leave
estimation with larger sample sizes for more precise
estimates as future work, due to resource constraints.

There are several interesting next steps examining
how pretraining corpora affect LLM performance on
medical tasks. For example, future work should also
examine how pretraining corpora may reveal whether
models are memorizing vs. reasoning for diagnosis
tasks. Along this same vein, we propose exploring
how influence functions can estimate which inputs
in pretraining corpora led to the generation of both
correct and incorrect outputs (Grosse et al., 2023).

Finally, we note that our analysis with MedLingo

centered on jargon from a single hospital, only from
the ICU. While the CASI dataset is more general, sig-
nificant future work requires expanding our analysis
to additional clinical settings.
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Appendix A. Medical Large Language Models

Dataset Base Model Medical Adapted Model Model Size
General Domain Medical Adaptation Corpora

Unknown Undisclosed Biomedical Data LLaMA3 OpenBioLLM(Ankit Pal, 2024) 8B, 70B
Unknown Clinical Practice Guidelines LLaMA2 Meditron(Chen et al., 2023) 8B, 70B

PubMed Articles (Lo et al., 2019)
Unknown PubMed Central and PubMed Abstracts LLaMA2 MeLLaMA(Xie et al., 2024) 13B

(sourced from the Pile dataset (Gao et al., 2020))
MIMIC-III Clinical Notes (Johnson et al., 2016b,a)
MIMIC-IV Clinical Notes (Johnson et al., 2023, 2020)
MIMIC-CXR Clinical Notes (Johnson et al., 2019)

Unknown ShareGPT LLaMA2 Clinical Camel(Toma et al., 2023) 70B
20k Pre-2021 PubMed articles
Random 4k Subset of MedQA (Jin et al., 2021)

RedPajama v1 Medical Meadow Dataset (Han et al., 2023) Alpaca MedAlpaca(Han et al., 2023) 7B
Open Medical Datasets (e.g., MEDIQA, CORD-19, MMMLU)

Table 8: Additional Medical LLMs and Their Medical Adaptation Corpora. For models with continual
pretraining, the listed corpora are those used for adaptation. Clinical Camel and MedAlpaca are
fine-tuned, with the listed corpora indicating their fine-tuning pretraining data.

Additional Continual Pretrained or Finetuned for medical purpose LLMs are listed in the Table 8

Appendix B. CASI Dataset

Data Filtering Due to the noise in the original dataset, we start with the filtered version provided by
Adams et al. (2020). Even after filtering, the dataset exhibits a long-tail distribution of expansion frequencies.
For instance, for the acronym PT, the expansion physical therapy appears 452 times, prothrombin time 22
times, posterior tibial 21 times, and prothrombin once. To balance the data, we downsample each expansion
to a maximum of 50 examples and discard those that appear only once or twice. We also drop 5 acronyms
with non-medical meanings, 6 cases containing special characters (that are incompatible with the WIMBD
index), and 1 case (AB blood group) whose expansion is unchanged. This yields a final set of 59 acronyms,
147 pairs, and 5887 test examples.
The removed pairs are:

• AB, blood group in the ABO system

• MP, metatarsophalangeal/metacarpophalangeal

• OP, oblique presentation/occiput posterior

• SA, slow acting/sustained action

• C&S, conjunctivae and sclerae

• C&S, culture and sensitivity

• C&S, protein C and protein S

• IB, international baccalaureate

• MS, master of science

• MP, military police

• PD, police department
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Evaluation Implementation The actual implementations of evaluation on the CASI Dataset can be
found in the Github Repository, which contains the actual inputs, evaluation framework, and LLM-as-a-
judge codes.

Appendix C. MedLingo

Regex Selection Criterion To extract potential abbreviation tokens from the clinical notes, we applied
five regular expression patterns to search for those that employ word boundaries for precise matching. The
patterns are as follows:

1. ’\b[A-Z]{2,5}\b’: Matches tokens consisting entirely of 2 to 5 uppercase letters.

2. ’\b[A-Za-z]{1,3}[/&-][A-Za-z]{1,3}\b’: Matches tokens with 1 to 3 letters, followed by a slash,
ampersand, or hyphen, and another 1 to 3 letters.

3. ’\b[a-z]{2,5}\b’: Matches tokens consisting entirely of 2 to 5 lowercase letters.

4. ’\b[A-Za-z]{1,3}\.[A-Za-z]{1,3}\.\b’: Matches tokens that contain two segments of 1 to 3 letters
separated by periods.

5. ’\b[A-Za-z]{2,3}\d{1,2}\b’: Matches tokens composed of 2 to 3 letters immediately followed by 1
to 2 digits.

Select 100 pieces of jargon with varying frequency

Jargon

NAD 1887

Selected!

mg 3243

... ...

... ...

...

POBHx 6
PHD 3

past obstertic history

Abd 746

Frequency

Generate jargon-expansion pairs

Construct Questions

(full version in the provided codebase)

Extract potential jargon from MIMIC-IV Sampled notes

Constructing MedLingo Dataset

... ...

Jargon

NAD no abnormality detected

POBHx

Abd abdomen

Expansion

In a clinical note that mentions an X-ray finding is noted as NAD, NAD stands for
In a clinical note that mentions the physician refers to the Abd, Abd stands for

In a clinical note that mentions POBHx is included, POBHx stands for

Pt 1026

Figure 6: Steps to Construct MedLingo Dataset. The extraction of potential jargon follows the regex selec-
tion criterion described in Appendix C

Additional filtering, including lemmatization and exclusion of common English words from the NLTK
corpus, is applied in the pipeline. This pipeline effectively captures potential clinical jargon, a full pipeline
of constructing the MedLingo dataset is shown in Figure 6.
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The actual implementations of evaluation on MedLingo can be found in the Github Repository, which
contains the full dataset, evaluation framework, and LLM-as-a-judge codes.

Appendix D. Correlation Between Jargon Accuracy and Frequency in
Pretraining Corpora

Model RedPajama C4 Dolma

Alpaca 0.56 (p=1.22E-13) 0.64 (p=4.90E-18) 0.64 (p=3.54E-18)
Flan T5 0.57 (p=3.09E-14) 0.64 (p=2.74E-18) 0.65 (p=4.97E-19)
OLMo Instruct 0.64 (p=1.33E-13) 0.70 (p=1.33E-17) 0.72 (p=3.35E-18)
LLaMA 7B 0.56 (p=1.33E-13) 0.63 (p=1.33E-17) 0.64 (p=3.35E-18)

Table 9: Spearman Correlations and p-value between Models and Pretraining Corpora on CASI

Model RedPajama C4 Dolma

Alpaca 0.44 (p=2.15E-08) 0.51 (p=5.62E-11) 0.55 (p=8.88E-13)
Flan T5 0.51 (p=2.53E-11) 0.58 (p=2.32E-14) 0.61 (p=1.81E-16)
OLMo Instruct 0.55 (p=3.83E-13) 0.61 (p=2.89E-16) 0.66 (p=1.16E-19)
LLaMA 7B 0.45 (p=8.39E-09) 0.51 (p=3.80E-11) 0.56 (p=2.02E-13)

Table 10: Spearman Correlations and p-value between Models and raw co-occurrence counts in Pretraining
Corpora on CASI

Overall Correlation Table 9 shows significant Spearman correlations between estimated occurrence
counts and accuracy for each jargon-expansion pair in the CASI dataset. We further note that Alpaca
and LLaMA 7B have similar correlations, which makes sense given Alpaca is an instruction-tuned variant of
LLaMA 7B. All have a high correlation, though the correlation isn’t stronger for a model’s own pretraining
dataset vs. others. We note that counts are highly correlated between datasets; the occurrence of terms
in Dolma and RedPajama is highly linearly related, largely because these datasets combine similar online
textual sources. In comparison, Table 10 indicates that using estimated co-occurrence frequencies yields a
stronger correlation with accuracy than using raw co-occurrence counts.
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Figure 7: Accuracy on CASI dataset across LLaMA models of different sizes. ρ means Spearman correlation
score.
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Figure 8: Comparsion across LLaMA 7B, LLaMA 13B, LLaMA 33B, LLaMA 65B on MedLingo
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Figure 9: Accuracy on CASI dataset across models pretrained on the different corpus. ρ means Spearman
correlation score.
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MedLingo
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In Figure 7 and 9, each point represents a jargon-expansion pair with the corresponding occurrence in
pretraining corpus and accuracy. In Figure 8 and 10, each bar shows the number of correct answers alongside
the estimated count of occurrence of jargon-expansion documents.

Frequent Terms Lead to Better Accuracy. As shown in all models demonstrated in the Figure 7 9, 8,
10, in nearly all models, jargon-expansion pairs with higher frequency in the training corpus show stronger
performance. However, one exception is Flan-T5, which performs notably worse on MedLingo, achieving
just 37% overall accuracy. This suggests a limited ability to learn clinical abbreviations, regardless of how
frequently they appear.

As model size grows, Rare terms are gradually learned Comparing LLaMA variants of different
sizes (7B, 13B, 33B, and 65B) in Figures 7 and 8 reveals that larger models maintain decent accuracy even
for terms with relatively few examples. Even with the same pretraining corpus and training strategy, the
accuracy of models varies a lot on both the CASI and MedLingo. Both Figure 7 and 8 show that as the
model size grows, generally more data points have an improved accuracy; mostly frequently appeared pairs
have the accuracy increase first and then those less frequently appeared data also demonstrate increased
accuracy. The trend is especially eminent across plots in figure 8. Larger models appear more capable of
leveraging the limited instances that exist in the corpus, suggesting that additional capacity of the model
can improve performance even on rarer items. This also suggests that the performance of the majority of
the clinical jargon is not bottlenecked by the existing data in the pretraining corpus, even if they appear a
few times, large models can grasp the understanding.
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Figure 11: OLMo accuracy vs. Dolma esti-
mated co-occurrence frequency on
CASI dataset. Each dot shows a
jargon-expansion pair. Green points
indicate high-accuracy low-frequency
instances (top 5 rows in adjacent
table); red points represent low-
accuracy despite high-frequency cases
(bottom 10 rows).

sf ground truth
PAC post anesthesia care
MOM multiples of median
MP metatarsophalangeal
PAC picture archiving communication
VBG venous blood gas

OP operative
AC acetate
ASA aminosalicylic acid
CA carbohydrate antigen
CR controlled release
SBP spontaneous bacterial peritonitis
AV arteriovenous
IR immediate-release

ALD adrenoleukodystrophy
LA long-acting

To complement the correlation results, we identify and inspect outlier abbreviations, those with unexpect-
edly high accuracy despite low corpus frequency, or conversely, low accuracy despite high frequency. Figure
11 marks these cases in red (high-frequency/low-accuracy) and green (low-frequency/high-accuracy), with
specific instances listed in the adjacent table of the figure. Meanwhile, we track how the outlier instances
changed as the model sizes increased. We look at outlier instances in a LLaMA 7B model and track the
accuracy as the model size increases to 65B, as shown in Table 11. For both the high-frequency low-accuracy
and the low-frequency high-accuracy instances, the accuracy generally increases as the model size grows.
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abbr expansion Estimated Counts Accuracy
7B 13B 33B 65B

PAC post anesthesia care 25 0.60 0.85 0.85 0.89
PAC premature atrial contraction 200 0.72 0.84 0.96 0.98
CVP cyclophosphamide, vincristine, prednisone 381 0.76 0.72 0.86 0.92
MP metatarsophalangeal 259 0.70 0.64 0.58 0.58
CVS cardiovascular system 1038 0.80 0.90 0.88 0.93
AVR aortic valve replacement 4894 0.96 0.96 0.98 1.00
CTA computed tomographic angiography 3325 0.90 0.82 0.90 0.94

PA physician assistant 64401 0.34 0.96 0.80 0.82
DC discharge 29024 0.31 0.38 0.66 0.72
OP operative 167626 0.28 0.78 0.28 0.40
PR progesterone receptor 17130 0.22 0.92 0.80 0.98
DC direct current 120562 0.26 0.86 0.64 0.92
CR controlled release 5831 0.10 0.88 0.62 0.78
DT diphtheria-tetanus 3885 0.02 0.18 0.36 0.18
SA saturation 2123 0.00 0.00 0.25 0.25

AMA advanced maternal age 844 0.00 0.00 0.77 0.94
ASA aminosalicylic acid 2630 0.00 0.00 0.33 0.33
PD phosphate dehydrogenase 1889 0.00 0.00 0.00 0.11

Table 11: Outlier points tracked across different LLaMA model sizes (7B to 65B), with the top rows showing
low-frequency, high-accuracy cases and the bottom rows showing high-frequency, low-accuracy
cases in the 7B model.

Appendix E. Disputed Medical Claims Correlation Analysis

We score responses as follows: denial = 0, neutral = 1, and support = 2, and sum these scores for each
example across both prompt types for each example. We further compare the correlation between the two
metrics, the ratio and the estimated counts of supportive documents, with the score of the disputed medical
claims. Although neither metric shows a strong correlation, the ratio exhibits a more meaningful correlation
(Spearman correlation p = 0.28) compared to the estimated counts (Spearman correlation p = −0.20). We
also observed the same trend across examples. For instance, examples such as ”fluroide” with ”cancer” and
”magnet therapy” with ”arthritis” demonstrates high ratios, and both corresponds to a high tendency to
output disputed medical claims, while the later pair has a low estimated count for supportive documents.
Moreover, stratifying responses into top and bottom 50% groups further supports that the ratio metric more
effectively differentiates levels of disputed medical claims: OLMo’s average score increases from 0.33 to 0.67
with ratio-based grouping, while it remains 0.5 with count-based grouping. Similarly, Alpaca’s score rises
from 0.5 to 1.50 with the ratio split, but with a count split, the trend inverts (1.33 in the bottom half and
0.67 in the top half). Furthermore, stratifying into four quartiles by the metrics also support the findings, as
illustrated in Figure 13, where ratio-based grouping shows a steady increase in the level of disputed medical
claims in the response. These results suggest that the ratio of supportive documents is a more reliable
indicator of unsupported medical claims in outputs than the estimated counts, although further work is
needed to explore the correlation between the claims in pretraining corpora and the level of disputed medical
claims in model outputs at scale. Evaluation results can be found in the Github Repository.
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Figure 12: Comparsion of MeLLaMA2 and LLaMA2 chat on MedLingo
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Figure 13: Level of Disputed Medical Claims in Alpaca’s response across ratio of supportive documents and
estimated counts of supportive documents in its pretraining corpora RedPajama
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Jargon Expansion Dolma C4 RedPajama MIMIC IV Notes Maximum Source Category
Source Percentage

AVSS afebrile, vital signs stable 12 0 0 10766 Commercial Health 7/12
BRBPR bright red blood per rectum 368 42 58 33533 Research Publication 29/99
cc chief complaint 2740 269 1274 29932 Other 25/99
CCE clubbing, cyanosis, and edema 3 1 3 6698 Medical Encyclopedia 2/3
chole cholecystostomy 18 1 6 4193 Medical Encyclopedia 6/18
HKS heel-knee-shin test 1 0 0 6457 Medical Encyclopedia 1/1
HLD hyperlipidemia 1393 191 711 74585 Research Publication 54/100
HSM hepatosplenomegaly 271 35 84 55181 Research Publication 49/100
MMM moist mucous membrane 1 0 0 168801 Clinician Forum 1/1
NBS normal bowel sounds 72 2 21 1372 Other 44/72
NC normocephalic 50 10 33 114379 Other 16/50
NGTD no growth to date 26 35 11 13043 Research Publication 4/7
NVI neurovascularly intact 7 0 0 5546 Medical Encyclopedia 3/7
QPM every afternoon 8 1 2 157805 Medical Encyclopedia 3/7
RPRNR nonreactive RPR (Rapid Plasma Reagin) 0 0 0 1317 Clinician Forum 0/0
sp status post 48 396 323 73993 Other 9/25
Tc Tympanic Membrane Temperature 3 0 2 14508 Research Publication 2/3
Utox urine toxicology screen 256 35 101 3162 Research Publication 11/13

Table 12: Jargon-Expansion pairs in MedLingo that all models on open-source pretraining corpora fail

Jargon Expansion Dolma C4 RedPajama MIMIC IV Notes Maximum Source Category
Source Percentage

Abx antibiotics 36701 7381 13364 28046 Patient Forum 60/99
amio Amiodarone 2945 154 951 2452 Research Publication 29/99
brady bradycardia 2972 482 1641 5175 Research Publication 30/97
bx biopsy 5341 708 2493 11592 Research Publication 33/100
coag coagulation 9441 2796 6477 19577 Research Publication 29/94
ddx differential diagnosis 11404 10860 3727 6774 Medical Encyclopedia 24/100
DM2 Type 2 diabetes 23182 1087 7211 34022 Research Publication 47/100
etoh alcohol 120236 8570 31384 70849 Research Publication 46/97
FHx family history 1710 343 629 2209 Research Publication 42/99
fx fracture 6283 3220 2191 16449 Other 24/100
GBM glioblastoma 204479 29267 82529 1824 Research Publication 66/99
hd hemodialysis 314956 4101 148309 124976 Research Publication 80/100
HTN hypertension 100600 10102 28103 285064 Research Publication 53/99
LCx left circumflex artery 19521 1327 4146 23790 Research Publication 87/99
MTX methotrexate 208569 9825 48585 17704 Research Publication 61/100
nl normal limits 269 16 179 92981 Research Publication 43/68
NS normal saline 15803 980 5902 49587 Research Publication 70/99
osm osmolarity 1165 290 486 2549 Research Publication 53/98
RUQUS right upper quadrant ultrasound 18 1 13 6149 Clinician Forum 2/4
subq subcutaneous 26097 3432 6082 2912 Commercial Health 23/100
Sx symptoms 42050 2080 16177 20118 Patient Forum 27/89
trach tracheotomy 44240 15624 16864 18097 Personal Blog 36/100
Vanc vancomycin 2946 311 1188 33783 Research Publication 56/100
vfib ventricular fibrillation 3948 472 759 1439 Other 19/100

Table 13: Jargon-Expansion pairs in MedLingo that all models on open-source pretraining corpora succeed

Appendix F. Example of Clinical Jargon-Expansion Pairs in MedLingo

Tables 12 and 13 list the jargon–expansion pairs from the MedLingo dataset on which models with open-
source pretraining corpora (including LLaMA models of varying size, Alpaca, Flan T5, and OLMo Instruct)
fail or succeed, respectively. Although the counts of these terms in MIMIC IV notes are similar, models tend
to fail on pairs that are rarely represented in the pretraining corpora and succeed on those that are well
represented. For each pair, we also report the majority source category and its percentage based on the total
documents examined. Among the 24 pairs that all models succeed on, 16 are predominantly sourced from
peer-reviewed research publications. In contrast, for the 18 pairs that all models fail on, only 7 are primarily
from research publications; 5 are mainly from medical encyclopedias/dictionaries, 4 from other sources, 1
from clinical forums, and 1 from commercial health sources. This suggests that clinical jargon supported
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by fewer documents tends to originate from informal sources rather than academic literature, potentially
offering less clinical contextual information for effective model learning.
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