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ABSTRACT

The ability to interpret machine learning models is critical for high-stakes appli-
cations. Due to its desirable theoretical properties, path integration is a widely
used scheme for feature attribution to interpret model predictions. However, the
methods implementing this scheme currently rely on absolute attribution scores to
eventually provide sensible interpretations. This not only contradicts the premise
that the features with larger attribution scores are more relevant to the model pre-
diction, but also conflicts with the theoretical settings for which the desirable prop-
erties of the attributions are proven. We address this by devising a method to first
compute an appropriate reference for the path integration scheme. This reference
further helps in identifying valid interpolation points on a desired integration path.
The reference is computed in a gradient ascending direction on the model’s loss
surface, while the interpolations are performed by analyzing the model gradients
and variations between the reference and the input. The eventual integration is ef-
fectively performed along a non-linear path. Our scheme can be incorporated into
the existing integral-based attribution methods. We also devise an effective sam-
pling and integration procedure that enables employing our scheme with multi-
reference path integration efficiently. We achieve a marked performance boost
for a range of integral-based attribution methods on both local and global evalua-
tion metrics by enhancing them with our scheme. Our extensive results also show
improved sensitivity, sanity preservation and model robustness with the proposed
re-calibration of the attribution techniques with our method.1

1 INTRODUCTION

How to interpret deep learning predictions is a major concern for the real-world applications, es-
pecially in the high-stakes domains. Feature attribution methods explain a model’s prediction by
assigning importance scores (attributions) to the input features (Simonyan et al., 2014; Springen-
berg et al., 2015; Shrikumar et al., 2017). They assert that features with larger attribution scores are
more relevant to the model prediction than those with smaller scores. Among a variety of attribution
methods, integral-based techniques (Sundararajan et al., 2017; Sturmfels et al., 2020) are particu-
larly attractive because they satisfy certain desirable axiomatic properties, which others do not. This
also makes them suitable for model regularization (Chen et al., 2019; Erion et al., 2021).

Inspired by the cooperative game theory, integral-based attribution methods introduce a reference
to represent the absence of the input signal. This allows them to calculate the attribution for the
presence of an input feature (Sundararajan et al., 2017; Erion et al., 2021; Pan et al., 2021). Since the
attribution is computed with respect to a reference, finding the correct reference that represents the
absence of a feature in a true sense, is critical for the reliability of these methods. In their Integrated
Gradient (IG) method, Sundararajan et al. (2017) chose a black image (zero input) as the reference.
However, this result is always assigning zero attribution to black input pixels. Sturmfels et al. (2020)
confirmed that a fixed reference renders an attribution method blind to the features that the reference

1Our code is available at https://github.com/ypeiyu/attribution_recalibration
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Figure 1: Attribution maps of existing methods (Vanilla) suffer from large variations between posi-
tive and negative scores, which forces them to use the Absolute Values of the scores for a sensible
interpretation. However, this contradicts the primary assertion of this research direction, and with
the settings used to claim the desirable theoretical properties of these methods. Re-calibrating the
methods with our technique addresses the issue, while also improving the performance. Maps are
shown for VGG-16. The pixel perturbation (%) AUC is reported. Lower values are more desirable.

employs. To resolve that, multiple references are now commonly used by the attribution methods.
The choices of multiple references include, uniform noise references (IG-Uniform) (Sturmfels et al.,
2020), Gaussian noise references (IG-SG and IG-SQ) (Smilkov et al., 2017; Hooker et al., 2019),
training distribution (EG) (Erion et al., 2021) and adversarial examples (AGI) (Pan et al., 2021),
etc. However, the attribution maps computed by these methods face frequent variations between
positive and negative attribution scores, see Figure 1 top row. To handle that, these methods must use
absolute scores to generate plausible explanations, see Figure 1 middle row. Numerically, computing
the absolute values re-orders the estimated attributions for the pixels, which violates the primary
assertion of the attribution methods. Moreover, relying only on the magnitude of the attributions is
also in contradiction with the axiomatic properties, which are proven for the actual numerical scores.
This inconsistency compromises the desirability of these methods.

To address these problems, we develop a method to compute the desired reference for an input along
the model’s gradient ascending direction. Moreover, we allow the gradient integration along a non-
linear path from the reference to the input. This is made possible by systematically identifying valid
interpolation points on the path. It eventually enables us to directly use the actual, instead of the
absolute attributions for model interpretation. We further devise a technique to efficiently compute
the integral with valid references which can be estimated using the predefined references employed
by the existing methods. This enables us to leverage our technique to re-calibrate the attributions
of the existing methods without additional computational overhead. Figure 1 bottom row shows the
attribution maps calculated by the popular integral-based attribution methods calibrated with our
technique. These maps are computed with the actual attributions scores, not the absolute values.
Hence, they conform to the primary assertion of the attribution methods and to the settings used in
establishing their theoretical properties. Moreover, they achieve better quantitative scores.

In our experiments, quantitative evaluation is performed with pixel perturbation (Samek et al., 2016)
and DiffROAR (Shah et al., 2021) on ImageNet-2012 validation set (Russakovsky et al., 2015),
CIFAR-100 and CIFAR-10 (Krizhevsky et al., 2009). We show a marked performance improvement
for a range of integral-based attribution methods by re-calibrating them with our technique. We also
provide a detailed sensitivity analysis of the improved methods with Sensitivity-n (Ancona et al.,
2018), and passing the sanity checks (Adebayo et al., 2018). Moreover, we also show consistent
improvements in attribution prior based regularization (Erion et al., 2021) with our technique. A
considerable performance gain for a variety of techniques and models across a range of evaluation
metrics ascertains the effectiveness of our re-calibration method. In summary, we make the follow-
ing major contributions.
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1. We propose a method to compute a reliable reference for integral-based attribution methods.

2. We devise a technique to efficiently integrate over a non-linear path that enables meaningful
interpretations using the actual, as opposed to absolute attribution scores.

3. We enhance a range of existing methods with our findings to demonstrate a considerable perfor-
mance boost across the board over multiple evaluation metrics, and for model regularization.

2 RELATED WORK

Feature attribution methods explain a model’s prediction by assigning attribution scores to the input
features. These techniques can be roughly categorized into perturbation based, and back-propagation
based methods. The former, e.g., (Zeiler & Fergus, 2014; Fong & Vedaldi, 2017), calculates the
attribution scores by repeatedly perturbing the input features and analyzing the resulting effects on
the model output. Back-propagation methods, e.g., (Simonyan et al., 2014; Sundararajan et al.,
2017) estimate the attribution scores using a backward pass of model gradients, and enjoy multiple
advantages over the former (Ross et al., 2017; Chen et al., 2019). Since our contribution relates to
the back-propagation methods, we focus on the related work in this sub-category.

Gradient-Based Methods: Simonyan et al. (2014) first employed input gradients for class-specific
saliency mapping for model interpretation. Deconvolutional Network (Zeiler & Fergus, 2014) and
Guided Backpropagation (Springenberg et al., 2015) also propagate the activation information in the
backward direction to highlight important input features. Layer-wise Relevance Propagation (Bach
et al., 2015) defines the relevance of neurons to recursively assign the attributions to the input.
Similarly, DeepLIFT (Shrikumar et al., 2017) assigns attribution scores to the input by comparing
the relative contributions of features using a reference input.

Integral-Based Methods: Integrated Gradients (IG) (Sundararajan et al., 2017) computes an inte-
gral for the input attribution along a linear path from the input to a reference representing the absence
of the input feature. However, the zero reference chosen by the IG makes it blind to black pixels.
To overcome that, Expected Gradients (Erion et al., 2021) samples multiple references from the
model’s training distribution. IG-SG (Smilkov et al., 2017) and IG-SQ (Hooker et al., 2019) perturb
input images with Gaussian noise as the references. In addition, Adversarial Gradient Integration
(Pan et al., 2021) adversarially perturbs the input to compute the desired reference. Sturmfels et al.
(2020) compared different references for the path attribution methods, demonstrating their weak-
nesses.

Evaluation Metrics: A fair benchmarking is critical to establish the reliability of attribution meth-
ods. Pixel perturbation (Samek et al., 2016; Petsiuk et al., 2018; Srinivas & Fleuret, 2019) is one
of the popular quantitative evaluation techniques, which removes the most or least salient pixels (as
deemed by the attribution method) to note their effects on model output changes. It is operated on
individual inputs, hence considered a local metric. ROAR (RemOve And Retrain) (Hooker et al.,
2019) and DiffROAR (Shah et al., 2021) are popular global metrics that utilize retraining over data
distribution after removing the attributed pixels from the data. Sensitivity-n (Ancona et al., 2018) is
proposed to test the sensitivity of different feature groups while accounting for the attribution scores.
Adebayo et al. (2018) also proposed sanity checks to verify reliability of the attribution maps com-
puted by different methods. All these metrics evaluate different aspects of the attribution techniques.
We employ all of them for an extensive benchmarking.

3 PRELIMINARIES

For classification, a machine learning model maps an input x = [x1, . . . , xn] ∈ Rn to an output score
Sc(x) for class c. For explaining the model prediction, an attribution method M aims at attributing
this score to the input features (pixels) by an attribution map M c(x) = [M c

1 (x), . . . ,M
c
n(x)].

Input Gradients: To explain model predictions, Input Gradients (Simonyan et al., 2014) computes
model gradients with respect to the input x as the importance scores (attributions). Following the
notations from above, for class c, the attribution of the i-th feature xi calculated by this method is

M c
i (x) = ∂Sc(x)/∂xi. (1)

Simonyan et al. (2014) arrived at this strategy by applying the first-order Taylor expansion to the
non-linear model: Sc(x) ≈ wT ∗ x + b. This allows the attribution of each input feature to be
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represented by the input gradient wi = ∂Sc(x)/∂xi. However, due to the high non-linearity of deep
models, the input gradients cannot provide reliable attributions. Ancona et al. (2018) also regarded
the input gradients as a local attribution method that cannot provide a complete explanation for a
specific prediction. Input gradients can mainly indicate how to obtain the desired output by changing
the features around the original input. This notion also has similarities to adversarial examples and
other feature visualization methods (Goodfellow et al., 2015; Carter et al., 2019).

Integrated Gradients: Different from the input gradients with local interpretability, integral-based
attribution methods, e.g., Integrated Gradients (IG) (Sundararajan et al., 2017), estimate an integral
over a path to calculate the attributions. Inspired by the cooperative game theory, IG chooses a
reference to represent the complete absence of the input signals, which enables it to integrate gra-
dients from the reference to calculate the attribution for the presence of the input features. The IG
calculates the attribution for the i-th input feature xi with the reference x′ = [x′

1, . . . , x
′
n] ∈ Rn as

follows

M c
i (x, x

′) = (xi − x′
i) ·

∫ 1

α=0

∂Sc(x̃)

∂x̃i

∣∣∣∣
x̃=x′+α(x−x′)

dα, (2)

where α represents the step along a linear path from the reference to the input. Since the integral of
Equation (2) satisfies the fundamental theorem of calculus, IG can satisfy the desirable completeness
axiom, i.e., the output changes can be completely attributed to the input features:

∑n
i=1 M

c
i (x, x

′) =
Sc(x) − Sc(x

′). In contrast to the input gradients, integral-based attribution methods are regarded
as global attribution methods (Ancona et al., 2018), which can estimate the marginal effect from the
reference to the input for model prediction.

Existing Inconsistency: The primary assertion of the attribution methods is that the input features
with larger attribution scores are more relevant to the model predictions. However, the attributions
computed by the back-propagation techniques suffer from frequent variations between positive and
negative scores, even among the neighboring pixels of a (relatively) uniform image region. Thus, for
plausible interpretations, these methods eventually use the absolute values of the attributions instead
of the actual numerical scores (Sundararajan et al., 2017; Srinivas & Fleuret, 2019). However,
considering the absolute values not only re-orders the computed pixel importances, it also contradicts
the theoretical settings assumed to prove the desirable axiomatic properties of these techniques.

4 METHODOLOGY

In this section, we first assume a reliable attribution calculation with an automatically chosen refer-
ence. Then we propose a technique to estimate the proposed attribution, which enables us to reveal
a reason for the inconsistency problem. Finally, the proposed technique is extended to popular
attribution methods for calibrating their attributions within limited computational resources.

4.1 PURSUING RELIABLE ATTRIBUTION

The reference image in an integral-based method has the central importance. As noted earlier, the
zero image of IG (Sundararajan et al., 2017) renders it blind to the black pixels in the input. The
primary motivation behind using multiple references created with uniform noise (Sturmfels et al.,
2020), Gaussian noise (Smilkov et al., 2017) or training samples (Erion et al., 2021), etc., is to avoid
this blindness issue. These methods create multiple references in the hope that some of those can
correctly capture the abstract notion of feature absence, thereby resulting in a reliable attribution.

Instead of hoping to accidentally stumble on the desired reference, we propose to systematically
identify it. To that end, we can modify the input image with the model gradients to construct the ref-
erence. Optimizing the input in the gradient ascending direction leads to local features that decrease
the target prediction scores, providing a reasonable analogy of feature ‘absence’ in computational
sense. Such a reference is computed with respect to the model itself, instead of relying on an exter-
nal operator, which can also ensure the model-fidelity of the eventually computed attribution scores.
We also emphasize that considering a uniform reference for all the input features is not ideal, as
feature absence is a relative notion which is not handled well by uniformity assumption. Hence, a
set of references for an input is more desirable, which we also employ.

Given a feature xi of the input x, we hypothesize a computable desired reference x′ = Di within a
reference set D. Then, the attribution M c

i of xi can be calculated by integrating the gradients along
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the integration path from the input x to the reference x′ as

M c
i (x, x

′) = (xi − x′
i)×

∫ 1

α=0

∂Sc(x̃)

∂x̃i

∣∣∣∣
x̃=x′+γi(α)(x−x′)

dα s.t. x′ = Di, (3)

where γi(·) indicates a (possibly non-linear) integration path function defined by x and x′, with the
step γi(α) over a domain Ω ∈ Rn, and x̃ is the interpolation point that resides on this path. We note
that our idea of computable reference along the gradient ascending direction has some similarity
with the Adversarial Gradient Integration (Pan et al., 2021) which integrates gradients along the
path from the input to class-specific adversarial examples. However, in contrast to AGI, we allow
different features to have different paths to different references. This effectively enables integration
along a non-linear path defined by the reference set.

4.2 INTEGRAL ESTIMATION WITH DESIRED INTERPOLATIONS

So far, we have only set our compass in the direction of pursuing reliable attributions. Different
from the linear path employed by the IG-like methods (Sundararajan et al., 2017; Erion et al., 2021),
this pursuit requires integration of gradients along a non-linear path γi, as per Equation (3).

To compute the required integral, the key is to identify the interpolation points that reside on the
integration path from the desired reference x′ to the input x (or vice versa). Assuming an interpo-
lation point x̃ to be in the same input space Rn, it is possible to identify it systematically. Recall
that, the gradient can induce a change in the input feature towards the desired reference, as discussed
in the previous section. Given an input feature xi of input x, the signed input gradient within the
set {∇+

xi
,∇0

xi
,∇−

xi
} indicates the direction of the variation δi from xi to its local desired reference

x′ = Di along the gradient ascending direction. Thus, the gradient with respect to an interpolation
point x̃ residing on the path between the input and the reference, has the same sign as the variation
δi ∈ {δ+i , δ0i , δ

−
i } over the i-th feature of x̃. If the interpolation point does not reside on the de-

sired path, the gradient ∇x̃i
always has the opposite sign compared to δi. To exemplify, let an input

feature xi have a positive gradient ∇+
xi

, and this indicates xi should take a negative step towards its
local desired reference (xi − δ+i = x′

i). This implies that the variation δi is positive, i.e., δ+i . As
such, we can identify the interpolation point x̃ that resides on our desired integration path by the
product between the gradient∇x̃i

and the variation δi.

In light of the above discussion, we can integrate gradients over identified interpolations. If we
can obtain the variation between xi and x′

i, the required integral can be estimated. Defining the
interpolations as a set X̃ = {x̃(1), . . . , x̃(m)} with m interpolations residing on the integration path,
we can obtain the variation from xi to x′

i by following Lemma 1. We use x̃(j) instead of x̃ here to
distinguish multiple interpolated image points, and x̃

(j)
i is the i-th feature of x̃(j).

Lemma 1. Given two feature points xi and x′
i, and m uniformly distributed interpolation points

x̃
(1)
i , . . . , x̃

(m)
i between xi and x′

i, the variation δi = xi−x′
i is proportional to the average distance

from xi to all interpolation points x̃i, and the proportionality coefficient is 2.

We provide proof of Lemma 1 in Appendix A.1. Following Lemma 1, the attribution Mi defined in
Equation (3) can be estimated over m interpolations as follows

Mi(x, X̃) =
λ

m

m∑
j

δ
(j)
i ∇x̃

(j)
i
, (4)

where λ is the proportionality coefficient, and δ
(j)
i is the variation between xi and x̃

(j)
i .

The above insights are simple yet powerful. They can be leveraged to re-calibrate attribution scores
computed by the existing path attribution methods. Current integral-based attribution methods with
multiple references, e.g., IG-SG, EG and AGI, employ different strategies to sample the references
and integrate the gradients of interpolation points from the input to the references. These points can
be viewed as adopting different sampling strategies to approach the input space via Monte Carlo
estimation (Erion et al., 2021). This view allows us to utilize our technique with these attribution
methods to modulate their interpolations for the integral estimation. In the text to follow, we distin-
guish the interpolation points resulting from incorporating our insights into an attribution technique
as valid interpolations. In essence, current methods end up estimating attributions using interpola-
tion points that are not valid, which causes them to compute sub-optimal attributions.
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Figure 2: Illustration of integration over valid interpolations. Step 1: For an input x, multiple inter-
polated images are computed with given references. Step 2: Variations and gradients are computed
for the interpolated images. Step 3: Variations become positive when they cross-over the input, and
gradients become positive when they over-shoot the desired reference. Between these two extremes,
interpolation points remain valid. Hence, they are selected. Step 4: Only valid interpolation points
are used for integration, and the rest are discarded.

Algorithm 1: Attribution Re-Calibration
input : Input x, reference set D,

number of steps n.
output: Attribution Mi

1 initialize:M← ∅
2 for each x′ in D do // Iterate references.
3 for k ← 1 to n do // Integral path.
4 x̃← x′ + k

n (x− x′)

5 ∇xi
← ∂Sc(x̃)

∂x̃i

6 if ∇xi · (xi − x̃i) ≥ 0 then
7 // Integrate gradients with

valid interpolations.
8 M←M∪ (xi − x̃i)×∇xi

9 Mi← λ × avg(M)

In Figure 2, the notion of integration using valid
interpolation points is illustrated. The central idea
of identifying the valid interpolations for any refer-
ence, followed by the integration with Equation 4
is generic. In the figure, for the input x, x′ is the
desired reference in a gradient ascending direction.
The first step produces interpolation points to dif-
ferent references. Then, the variations δ

(j)
i and the

corresponding gradients ∇
x̃
(j)
i

are calculated in the
second step. The red and blue colors indicate the
positive and negative values in δ

(j)
i and∇

x̃
(j)
i

whose
sign change after crossing the input feature xi and
the desired reference x′

i separately. The variation
and the gradient always have the same signs for the
valid interpolation points along the integration path
in the neighborhood of the input. This observation is
used to identify the valid interpolations. Finally, the attribution Mi is computed over the identified
valid interpolations following Equation 4.

We also present the pseudo-code to re-calibrate the current integral-based methods with valid inter-
polations in Algorithm 1. Given a feature xi of the input x, and a reference set D identified by the
method’s own strategy, we iterate over the references (Line 2). For each reference, the method com-
putes the gradients of interpolated images x̃ from the input to the reference (Lines 3-5). However,
different from the existing practice, we let the integral to be estimated on valid interpolations that
satisfy the condition that∇xi

· (xi− x̃i) is positive (Line 6-8). Finally, we compute the integral with
the averaging operation (Lines 9).

4.3 EFFICIENT ATTRIBUTION RE-CALIBRATION WITH VALID REFERENCES

Sampling sufficient references and interpolation points allow us to estimate an accurate integral.
However, limited computational resources must be accounted for by the attribution methods. To
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estimate an accurate integral with limited resources, we employ importance sampling (Kloek &
Van Dijk, 1978). Let f(·) be a function of n inputs X = {x(1), . . . , x(n)} over the domain Ω ∈ Rn.
Then, the integral is defined as v =

∫
Ω
f(X)dX . Importance sampling approaches this integral as

v =

∫
Ω

f(X)

g(X)
g(X)dX, (5)

where g(X) > 0 for X ∈ Ω is a probability function called the importance function. In order
to estimate the integral, we generate n samples x(i) from g(X) and estimate the integral by the
following sample-mean formula.

v̂ =
1

n

n∑
i=1

f(x(i))

g(x(i))
, (6)

where the estimator v̂ can converge to the integral v. Instead of randomly sampling inputs in the
input space, importance sampling enables us to sample input with the importance function for effi-
ciently estimating the integral. Let f(X)/g(X) be a function β(X), we have the following Lemma.

Lemma 2. If the ratio between the function f(X) and β(X) has small fluctuations, the estimator
v̂ can be approached by the mean formula v̂ = 1

n

∑n
i=1 β(x

(i)), where x(i), . . . , x(n) are sampled
uniformly from g(x).

Let β(X) be defined on a linear integration path from the input to the reference. If the underlying
distribution of g(X) fluctuates slightly, we can estimate the integral along a linear path with β(X).
Since only slight fluctuations cannot be guaranteed along the full path in our case, we approach
f(X) with β(X) · g(X) in different segments. Since the integral estimated from an input to its
desired reference is also expected to have a positive attribution, we relax the condition of the integral
estimated on the valid interpolations with∇ · δ ≤ 0 to the valid reference that has a positive integral
estimation for approaching a segment in f(X). Then, we average positive integrals in k segments
for estimating the final integral as

Mi =
λ

k

k∑
i

∫ k
m

α=0

∂S(x̃)

∂x̃i

∣∣∣∣
x̃=x′+α(x−x′)

, (7)

The integral estimation is also guided by Lemma 1. Using the same number of references, the pro-
posed technique enables attribution methods to calculate more precise attributions without incurring
needless computational overhead. In Appendix A.2, we provide the pseudo-code of our technique.

5 EXPERIMENTS

To evaluate the proposed technique, we conduct experiments to test both performance and sensitivity.
We take existing popular multi-reference attribution techniques as baseline methods; including IG-
SG (Smilkov et al., 2017), IG-SQ(Hooker et al., 2019), IG-Uniform (Sturmfels et al., 2020), EG (Pan
et al., 2021) and AGI(Pan et al., 2021). All these methods enhanced with the proposed re-calibration
technique are benchmarked in our experiments. Additionally, other feature attribution methods,
including InputGrad (Simonyan et al., 2014), Integrated Gradients (IG) (Sundararajan et al., 2017),
SmoothGrad (SG) (Smilkov et al., 2017) and FullGrad (Srinivas & Fleuret, 2019) are also compared
in our evaluation. More detailed hyper-parameter settings and extended experimental results are
provided in Appendices A.3 and A.4.

5.1 PIXEL PERTURBATION PERFORMANCE

Pixel perturbation is a widely used quantitative evaluation metric for the attribution methods (Samek
et al., 2016; Ancona et al., 2018; Srinivas & Fleuret, 2019; Yang et al., 2023). Since an attribution
map is expected to identify the correct order of relative importance of the input features, pixel
perturbation evaluation iteratively removes the most or the least salient pixels (Pixel Insertion and
Deletion) and measures the output changes to quantify the performance of attribution methods. In
this part, we employ DiffID metric (Yang et al., 2023) to measure the performance difference on
images with inserted k% most salient pixels and deleted 1− k% least salient pixels.

Figure 3 reports the fractional output change difference with pixel deletion and insertion on Ima-
geNet 2012 Validation set (Russakovsky et al., 2015) evaluated on ResNet-34 (He et al., 2016b) and
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Image with K% most and least salient pixels

IG-Uniform IG-SG IG-SQ EG AGI

Figure 3: Results on DiffID metric on ImageNet 2012 val. set. Higher values indicate better results.
Enhancing methods with our technique provides a considerable performance boost.

Image with K% most and least salient pixels Image with K% most and least salient pixels

(a) DiffID on ResNet-34 (b) DiffID on VGG-16 (c) DiffROAR on CIFAR-10 (d) DiffROAR on CIFAR-100

Figure 4: DiffID results comparison of enhanced baselines with other existing methods using
ResNet-34 (a), and VGG-16 (b) on ImageNet 2012 val. set. Baseline methods enhanced with our
technique are identified with *. AUC values for each curve is reported. Larger values are more
desirable. DiffROAR results on CIFAR-10 (c) and CIFAR-100 (d) are also reported following the
same convention. Larger AUC values imply better results.

VGG-16 (Simonyan & Zisserman, 2015). Higher values in these curves indicate better performance.
The Absolute Value curves are obtained by allowing the methods to replace the negative attributions
with their absolute values. For the Vanilla values, we do not allow this operation. The results are
reported for five popular baseline multi-reference integral-based attribution methods. We can ob-
serve that the proposed re-calibration technique consistently improves all the baseline methods by
a large margin. It is also clear that the original methods heavily rely on taking the absolute value
to provide explanations. The proposed technique strongly improves IG-Uniform, IG-SG and AGI.
The improvements for EG and IG-SQ are also reasonably large. These results ascertain that our
technique can enable an across-the-board performance gain for the existing methods.

In Figure 4a and 4b, we provide further comparisons on DiffID baseline with the popular original
exiting methods, including InputGrad, IG, SG and FullGrad. A noticeable performance gap is clearly
visible between these methods and the enhanced baselines, favoring the enhanced techniques. The
results show that our method provides a notable positive off-set to the state-of-the-art in integral-
based attribution.

5.2 REMOVE AND RETRAIN PERFORMANCE

Although pixel perturbation can provide an estimate of the interpretability of the attribution meth-
ods, Hooker et al. (2019) argued that pixel perturbations also cause a distribution shift for the inputs,
and thus it is unclear whether the output change comes from removing informative pixels or the
distribution shift. To alleviate the effect of input distribution shift, RemOve and Retrain (ROAR)
(Hooker et al., 2019) is a commonly used metric that retrains the model with the perturbed images
produced by the pixel perturbation and measures the output change. To provide a more compre-
hensive evaluation, DiffROAR (Shah et al., 2021) extends the ROAR metric to test the difference
between the model retrained with the k% most and least salient pixels. To thoroughly establish the
effectiveness of our technique, we also conduct experiments using DiffROAR. We again enhance
the popular attribution methods IG-Uniform, IG-SG, IG-SQ, EG and AGI for this evaluation.
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IG-Uniform IG-SG IG-SQ EG AGI

Image with K% most and least salient pixels

Figure 5: Results on DiffROAR metric on ImageNet 2012 val. set. Larger values indicate better
performance. Methods achieve a consistent gain with our enhancement.

IG-Uniform IG-SG IG-SQ EG AGI

Sampling set size ratio K%P
ea

rs
o

n
 C

o
rr

el
at

io
n

 C
o

ef
fi

ci
en

t

Figure 6: Sensitivity-n evaluation. Higher values indicate better performance.

We retrain the PreActResNet-18 (He et al., 2016a) on both CIFAR-100 and CIFAR-10 datasets
(Krizhevsky et al., 2009). Figure 5 shows the accuracy change difference on the model retrained
with the most and least important k% pixels separately. Since retraining models with different
perturbed inputs causes these models to fit different input distributions, we can observe that the
curves in Figure 5 have different undulations as compared to the pixel perturbation experiments.
Nevertheless, the results establish that our method again generally improves the performance for
all the methods. We also summarize our quantitative evaluation using DiffROAR in Figure 4c and
4d for CIFAR-10 and CIFAR-100 datasets. The figure compares the results with other existing
methods which are used in their original form. These results also consistently favor our technique
of enhancing the methods.

5.3 SENSITIVITY-N PERFORMANCE & FURTHER RESULTS

Ancona et al. (2018) proposed Sensitivity-n metric to verify that the model output variations are
sensitive to the features as prescribed by the attribution method. Given any subset of features
xS = [x1, . . . , xm] ⊆ x, Sensitivity-n requires the sum of attributions Mi to hold

∑m
i=1 Mi =

Sc(x)−Sc(x[xS=0]). Although no method can be expected to fully satisfy Sensitivity-n due to prac-
tical reasons, the definition still enables a pragmatic benchmarking scheme. By varying the feature
fraction in the subsets in the range [0.1, 0.9] of the total features, we test the Pearson Correlation
Coefficient (PCC) computed between the sum of the attributions and the target output variation,
shown in Figure 6. For each feature subset, we sample 100 different subsets of the input features
with a uniform probability distribution. The PCC is averaged over 1000 testing images of ImageNet
2012 Validation set. Compared with the vanilla attribution map, we can observe that the proposed
re-calibration generally shows better sensitivity-n results for all the baseline methods. In Appendix
A.4.3, we provide more results for the Sensitivity-n metric.

6 CONCLUSION

We identified an inconsistency between the theoretical treatment of path integral-based attribution
and its practical implementation in various methods. We address this by devising a scheme that
re-calibrates attribution computation by identifying a desired reference and selecting only valid in-
terpolation points for integration. This scheme is applicable to all integral-based attribution meth-
ods. Enhancing a range of multi-reference methods with it, we showed considerable performance
gain on multiple evaluation metrics. We also demonstrated sanity preservation and improved model
robustness by using the proposed scheme as attribution prior regularization.
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A.1 PROOF

In this section, we provide the proof of Lemma 1 and Lemma 2.

Proof of Lemma 1. Given two points xi and x′
i, n interpolations X̃ = { 1n (xi−x′

i), . . . ,
n
n (xi−x′

i)}
uniformly distributed between xi and x′

i. The average distance d̄ from xi to all interpolation points
is calculated as follows.

d̄ =

n∑
a=1

a(xi − x′
i)

n

1

n
,

= (
1

n
+ · · ·+ n

n
)
(xi − x′

i)

n
,

=
1 + n

2n
(xi − x′

i).

(8)

Then, the limit of 1+n
2n (xi − x′

i), as the number n of interpolations approaches positive infinity, is
1
2 (xi − x′

i), donated as follows.

lim
n→+∞

1 + n

2n
(xi − x′

i) =
1

2
(xi − x′

i) (9)

Thus, the distance δ = xi − x′
i between xi and x′

i is proportional to the the average distance d̄ with
coefficient 2 donated as δ = 2d̄.

Proof of Lemma 2. If the ratio f(x)/β(x) fluctuates slightly, the importance function g(x) from
which we sample the inputs can be approximatively viewed as a uniform probability density func-
tion. Therefore, the importance scores β(X1), . . . , β(Xn) can be calculated with the uniformly
sampled inputs X1, . . . , Xn as follows.

β(Xi) =
f(Xi)

g(Xi)
, (10)

Thus, the β(Xi) can be used to estimate the integral v̂.

A.2 PSEUDO-CODE TO RE-CALIBRATION ATTRIBUTION WITH VALID REFERENCES

Algorithm 2: Attribution Re-Calibration
input : Input x, reference set D, number

of steps n.
output: Attribution Mi

1 initialize:M← ∅, ḡ ← 0
2 for each x′ in D do // Iterate references.
3 for k ← 1 to n do // Integral path.
4 x̃← x′ + k

n (x− x′)
5 // Compute the average gradient.
6 ḡ ← ḡ + ∂Sc(x̃)

∂x̃i
/n

7 if ḡ · (xi − x′
i) ≥ 0 then

8 // Integrate integrals estimated
with valid references.

9 M←M∪ (xi − x′
i)× ḡ

10 Mi ← λ × avg(M)

In this section, we present the pseudo-code of our
technique to re-calibrate the integral-based meth-
ods with valid references in Algorithm 2. Given
a feature xi of the input x, and a reference set D
identified by the method’s own strategy, we iter-
ate over the references (Line 2). For each refer-
ence, the method computes an average ḡ of gradi-
ents with respect to the interpolated image x̃ from
the input x to the reference x′ (Lines 3-6). Differ-
ent from the existing methods, we let the integral
to be estimated on the valid references that satisfy
the condition that ḡ · (xi − x′

i) is positive (Lines
7-9). Finally, we approximate the integral with the
averaging operation (Line 10). As such, We can re-
calibrate the integral-based methods by identifying
valid references with valid references without the
additional computational overhead.

A.3 EXPERIMENTAL SETUP

In this section, we provide details of the experimental setup, including the hyperparameter choice
and the experimental software and platform.
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A.3.1 HYPERPARAMETER CHOICE

Hyperparameter Choice of Attribution Methods. In our experiments, we employ five popular
integral-based attribution methods as our baseline methods including IG-Uniform (Sturmfels et al.,
2020), IG-SG (Smilkov et al., 2017), IG-SQ (Hooker et al., 2019), EG (Erion et al., 2021) and
AGI (Pan et al., 2021). Specifically, IG-Uniform defines multiple by sampling references from
uniform noise whereas IG-SQ squares the gradients in the integral estimation. Similarly, IG-SG
adds Gaussian noise to the input as references. EG samples training images as the reference to as-
sume the underlying training distribution as the reference. AGI computes class-specific adversarial
examples as references. For the experiments on the ImageNet-2012 dataset (Russakovsky et al.,
2015), we select 10 references and 5 interpolations (k=5) for IG-Uniform, IG-SG and IG-SQ. Be-
sides, we chose 50 references and one random interpolation (k=1) for EG, and set 10 interpolations
(k=10) and 5 class-specific adversarial references for AGI as the recommended settings in these
papers. For a fair comparison, we ensure all these methods use the same number of 50 back propa-
gations. Considering the small input size of CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al.,
2009), we employed 30 back propagations for all the baseline attribution methods. We employed
the same hyperparameter settings for all the experiments in this paper (e.g., with pixel perturbation,
DiffROAR, Sensitivity-n, etc.). In addition to the baseline methods, other compared methods that
rely on multiple gradient computations including Integrated Gradients (IG) and SmoothGrad (SG)
are also implemented with the same hyperparameters. In IG, we produce 50 interpolations (k=50)
for the final integral estimation. In SG, we average 50 gradients on inputs with Gaussian noise.

Hyperparameter Choice of Explained Models. Three deep models including VGG-16, ResNet-
34 and PreActResNet-18 are chosen to be explained by different attribution methods in our ex-
periments. For the pixel perturbation and Sensitivity-n benchmarks, VGG-16 and ResNet-34 net-
works are trained on the ImageNet-2012 training dataset. For the DiffROAR benchmark, we first
train a PreActResNet-18 on CIFAR-10 and CIFAR-100 training datasets separately. Then, the
PreActResNet-18 is fine-tuned for a total of 10 epochs with the initial learning rate 10−2 decayed
by 10 on the 5-th and 7-th epochs.

A.3.2 EXPERIMENTAL SOFTWARE AND PLATFORM

All the experiments were conducted on a Linux machine with an NVIDIA GTX 3090Ti GPU with
24GB memory and a 16-core 3.9GHz Intel Core i9-12900K CPU and 125GB main memory. All at-
tribution methods are tested and trained on PyTorch deep learning framework (v1.12.1) with Python
language.

A.4 EXTENDED EXPERIMENTS

Below extended experiments are conducted to test the efficacy of the proposed technique.

A.4.1 EXTENDED EXPERIMENTS ON VALID INTERPOLATIONS AND VALID REFERENCES

In this paper, we propose two techniques to identify valid interpolations and references for estimating
an integral along a non-linear integration path. Here, we provide more detailed experiments for
further understanding the valid interpolations and references. We randomly sample 1,000 testing
images from the ImageNet 2012 Validation set to show the effectiveness of both valid interpolations
and references. Here, we take IG-Uniform as the baseline attribution method. On both ResNet-34
and VGG-16, we re-calibrate attribution maps produced by IG-Uniform with valid interpolations
and references. In Figure 7 and 8, we show the AUC of the fractional output change difference
under different numbers of references with a fixed number of interpolations (k=5).

Both valid references and interpolations can re-calibrate attributions. In comparison with the
experimental results of the vanilla attribution map produced by IG-Uniform in Figure 3, Figure 7
and Figure 8 show that both valid interpolations and references can improve the interpretability of
IG-Uniform by a large margin. The significant improvement demonstrates the effectiveness of the
assumed desired reference and the proposed re-calibration technique.

Valid References lead to efficient integral estimation. Different from valid interpolations, valid
references employ importance sampling to efficiently estimate the integral. Figure 7a shows that
integrating with valid references enables the attribution method to achieve high performance with
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(a) Valid Interpolations 

and references

(b) AUC under different 

valid interpolations

(c) AUC under different 

valid references

Figure 7: The comparison between valid interpolations and valid references on ResNet-34. (a) The
AUC of fractional output change difference comparison between valid interpolations and references.
(b) The relationship between the AUC and average valid interpolations. (c) The relationship between
the AUC and average valid references.

(a) Valid Interpolations 

and references

(b) AUC under different 

valid interpolations

(c) AUC under different 

valid references

Figure 8: The comparison between valid interpolations and valid references on VGG-16. (a) The
AUC of fractional output change difference comparison between valid interpolations and references.
(b) The relationship between the AUC and average valid interpolations. (c) The relationship between
the AUC and average valid references.

a small number of references. However, estimating an accurate integral with valid interpolations
requires a large number of references.

More references lead to high performance. Figures 7b&7c and Figure 8b&8c shows the relation-
ship between the AUC of fractional output change difference and the number of references. We can
observe that more references and interpolations can lead to high performance by re-calibrating with
both valid interpolations and references, which demonstrates that more references can cover a more
accurate integration path.

Drawbacks and superiority of valid references. In Figure 8, we can observe that IG-Uniform
re-calibrated with valid references cannot outperform the results calibrated with valid interpolations
on VGG-16, which is inconsistent with the results on ResNet-34. The reason is that the valid refer-
ence relies on a relaxed condition to approach an accurate integral. However, VGG-16 has a more
complicated decision pathway, which is hard to estimate an accurate integral along a linear inte-
gration path. As compared to VGG-16, ResNet-34 with a more flattened decision pathway enables
attribution methods to obtain accurate results with valid references, which also aligns with the ex-
isting works that show the residual block can flatten the loss landscape (Li et al., 2018). Although a
complicated model impedes the performance of valid references, valid references can still improve
the reliability of baseline methods. Moreover, identifying valid references require less memory con-
sumption than identifying valid interpolations. Thus, the efficiency of identifying valid references
enables the attribution method incorporated into the model training process. In addition, training
a robust model can flatten the loss landscape of the model, which also favors the proposed valid
references for robust model training. In Appendix A.4.2, we perform experiments of regularizing
the behavior of the model with feature attribution.
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(b) PreActResNet with Pixel Attribution Prior 

on CIFAR-10 dataset

(a) MLP with Pixel Attribution Prior 

on MNIST dataset

Figure 9: The accuracy comparison under testing images with the increased standard deviation of
Gaussian noise between an original model, the model trained with EG regularization term, and the
model trained with EG (Ours) regularization term. (a) The accuracy comparison of three MLP
models trained on MNIST dataset. (b) The accuracy comparison of three PreActResNet models
trained on MNIST dataset. Higher values indicate better results.

A.4.2 EXTENDED EXPERIMENTS ON ATTRIBUTION PRIOR

In addition to explaining a model prediction, attribution methods are also expected to regularize the
behavior for constructing a robust model. Therefore, many regularization terms (Ross et al., 2017;
Erion et al., 2021) are proposed to regularize the behavior by the attributions for obtaining a robust
model. Erion et al. (2021) assert a prior for the image classification task that adjacent features or pix-
els should have similar attributions for the model prediction. To regularize the model behavior with
this prior knowledge, they employed a Laplace zero-mean prior on the difference between attribu-
tions of neighborhood pixels to encourage the adjacent pixels to have similar attributions. Since the
regularization term encourages the input pixels to make the prediction jointly, the trained model is
robust to the input with Gaussian noise. In this part, we also combine the prior with the re-calibrated
attributions as the regularization term for training a robust model. We train two robust models with
the regularization term on MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky et al., 2009)
datasets. For MNIST, we train a multi-layer perceptron (MLP) with two convolution layers and one
fully connected layer. On CIFAR-10 dataset, we take a PreActResNet-18 (He et al., 2016a) as the
baseline network. On both datasets, we employ one interpolation (k=1) and 5 references randomly
sampled from the training dataset in the training process. For each dataset, we compare the original
model, the model trained with EG regularization and the model trained with re-calibrated EG regu-
larization to test their robustness on the test set with Gaussian noise. Figure 9 shows the accuracy
change with the increase of the standard deviation of Gaussian noise on the three models. Although
two robust models (EG and EG Ours) can improve the robustness of the baseline model on Gaussian
noised input, we can observe that our method can outperform the regularization term with Expected
Gradients (EG) on both two datasets, which demonstrates that the proposed re-calibration technique
can effectively enhance the reliability of EG.

A.4.3 EXTENDED EXPERIMENTS ON SENSITIVITY-N

In this part, we provide more experimental results on Sensitivity-n metric. Figure 10 shows the
results of ResNet-34 on Sensitivity-n, which shows that the proposed technique can also improve
the sensitivity of the model on ResNet-34. In addition, Figure 11 shows the results of PreActResNet-
18 on CIFAR-10 and CIFAR-100 datasets on Sensitivity-n metric. These experimental results also
ascertain that our re-calibration technique enables the vanilla methods to improve their sensitivity
under smaller sampling set sizes. Since Sensitivity-n benchmark randomly removes pixels from the
input to test their sensitivity, the re-calibrated attribution maps with well-aligned explanations for
the foreground object are more robust to the random removal than the vanilla attribution maps.
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Figure 10: Experimental results of ResNet-34 on Sensitivity-n benchmark. Higher values indicate
better results.
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(PreActResNet-18 on CIFAR-10 dataset)

(PreActResNet-18 on CIFAR-100 dataset)

Figure 11: Experimental results of CIFAR-10 and CIFAR-100 datasets on Sensitivity-n benchmark.
Higher values indicate better results.

A.4.4 EXTENDED EXPERIMENTS ON SANITY CHECKS

In addition to the quantitative evaluation benchmarks, Adebayo et al. (2018) proposed two sanity
checks that attribution methods should pass including: (i) the method should provide different at-
tributions for the model trained with randomly permuted labels, and (ii) the attribution map should
show a substantial change to the model parameter randomization. In this part, we test the baseline
methods and their re-calibrated variants for the two sanity checks.

Data randomization test. Since deep models can easily fit random labels Zhang et al. (2017),
data randomization test permutes the training labels to train a model and test the sanity of attribu-
tion methods. In Figure 12, we compare the attribution methods for the models trained with true
and random labels. The first four columns show the comparison between the attribution maps cali-
brated with our technique and taken absolute values. The second four columns show the comparison
between re-calibrated attribution maps and the vanilla attribution maps. Compared with the base-
line methods, our method leads to a larger change in the calculated attribution maps. In addition,
we quantitatively compare the similarity between the attribution maps trained with true and ran-
dom labels. Figure 13 shows the comparison of Spearman rank correlation between the attribution
maps produced by the baseline methods and re-calibrated methods. Compared with both absolute
attributions and vanilla attributions, the experimental results show that the proposed re-calibration
technique improves the sanity of the baseline attribution methods for the data randomization test.

Model parameter randomization test In addition to the sanity of the data randomization, the at-
tribution methods are also expected to pass the model parameter randomization test. In our exper-
iments, we successively randomize the weights of an Inception V3 model (Szegedy et al., 2016)
from top to bottom layers. Figures 14 - 17 show the examples of the attributions maps as the param-
eter cascading from the top to bottom. We mark attribution maps produced by the baseline method
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Figure 12: Data randomization test for the baseline attribution maps (vanilla and absolute values)
and the proposed re-calibrated attribution maps for a true label trained model and a random label
trained model.

and our re-calibration method with blue boxes for easy comparison. We can observe that the cali-
brated attribution maps are more sensitive with the increased randomization layer numbers, which
shows the proposed technique enables the baseline methods to improve the sensitivity for the model
parameter randomization test.

A.5 VISUAL INSPECTION

In this section, we provide visualization examples of calculated attribution maps for visual inspec-
tion. Figures 18 - 20 show the comparison of vanilla attribution maps, attribution maps computed
with absolute values and the attribution maps re-calibrated with our technique on ResNet-34. In
addition, Figures 21 - 23 show the comparison of attribution maps on VGG-16. We can observe
that the attributions re-calibrated with our technique enable the maps to better align with the fore-
ground objects. In addition, vanilla attribution maps suffer from a large variation between positive
and negative scores on both ResNet-34 and VGG-16.
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(b) The comparison of spearman rank correlation 

(where baseline methods without absolute value). 

(a) The comparison of spearman rank correlation 

(where baseline methods with absolute value). 

Figure 13: Quantitative evaluations for data randomization test. (a) The spearman rank correla-
tion for baseline attribution maps with absolute values and re-calibrated attribution maps. (b) The
spearman rank correlation for baseline attribution maps without vanilla values and re-calibrated at-
tribution maps. Larger correlations indicate better results.

A.6 LIMITATIONS

In this paper, to improve the inconsistency of integral-based attribution methods, we assume different
references for different input features to re-calibrate attributions. Although our method has been
shown to enhance the reliability of popular attribution methods, the modification also carries the risk
of violating the completeness axiom. Therefore, exploring an explainable method that guarantees
the consistency between practice and their theoretical guarantee and their practical implementation
is still an important task. In addition, we devise our method based on theoretical insights. However,
precisely quantifying the impact of these insights is not possible due to the intrinsic ambiguities in
the quantitative evaluation metrics used in this research direction. This is a limitation of this domain
in general. Nevertheless, we verify that our method consistently improves the evaluation scores.
In practice, it may be important to verify that the used evaluation metric represents the real-world
scenario appropriately.
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Figure 14: Model parameter randomization test on Inception v3 for the testing image from the
ImageNet-2012 dataset. The attribution maps produced by baseline methods and our calibration
method are compared as cascading randomization from top to bottom layers.
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Figure 15: Model parameter randomization test on Inception v3 for the testing image from the
ImageNet-2012 dataset. The attribution maps produced by baseline methods and our calibration
method are compared as cascading randomization from top to bottom layers.
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Figure 16: Model parameter randomization test on Inception v3 for the testing image from the
ImageNet-2012 dataset. The attribution maps produced by baseline methods and our calibration
method are compared as cascading randomization from top to bottom layers.
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Figure 17: Model parameter randomization test on Inception v3 for the testing image from the
ImageNet-2012 dataset. The attribution maps produced by baseline methods and our calibration
method are compared as cascading randomization from top to bottom layers.
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Figure 18: The comparison of vanilla attribution maps, attribution maps taken absolute values, and
attribution maps calibrated with the re-calibrated technique on ResNet-34.
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Figure 19: The comparison of vanilla attribution maps, attribution maps taken absolute values, and
attribution maps calibrated with the re-calibrated technique on ResNet-34.
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Figure 20: The comparison of vanilla attribution maps, attribution maps taken absolute values, and
attribution maps calibrated with the re-calibrated technique on ResNet-34.
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Figure 21: The comparison of vanilla attribution maps, attribution maps taken absolute values, and
attribution maps calibrated with the re-calibrated technique on VGG-16.
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Figure 22: The comparison of vanilla attribution maps, attribution maps taken absolute values, and
attribution maps calibrated with the re-calibrated technique on VGG-16.
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Figure 23: The comparison of vanilla attribution maps, attribution maps taken absolute values, and
attribution maps calibrated with the re-calibrated technique on VGG-16.
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