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Abstract

The deployment of machine learning models in safety-critical applications comes
with the expectation that such models will perform well over a range of contexts
(e. g., a vision model for classifying street signs should work in rural, city, and
highway settings under varying lighting/weather conditions). However, these
one-size-fits-all models are typically optimized for average case performance,
encouraging them to achieve high performance in nominal conditions but exposing
them to unexpected behavior in challenging or rare contexts. To address this
concern, we develop a new method for training context-dependent models. We
extend Bridge-Mode Connectivity (BMC) (1) to train an infinite ensemble of
models over a continuous measure of context such that we can sample model
parameters specifically tuned to the corresponding evaluation context. We explore
the definition of context in image classification tasks through multiple lenses
including changes in the risk profile, long-tail image statistics/appearance, and
context-dependent distribution shift. We develop novel extensions of the BMC
optimization for each of these cases and our experiments demonstrate that model
performance can be successfully tuned to context in each scenario.

1 Introduction

Machine learning (ML) systems must be capable of operation in a wide range of contexts and
scenarios to be effective in safety-critical deployments. While system-level safeguards can constrain
an ML model’s behavior to ensure safe operation, it is desirable that the model itself would implicitly
(through its design or optimization) learn to make safe predictions. Current conventions for training
deep networks assume that trained models will perform well over all operating conditions. However,
this one-size-fits-all approach introduces limitations that have been demonstrated across a variety of
tasks and benchmark datasets (3; 10; 4; 6), raising concerns about the ability of any single model to
perform well over many contexts. In this work, we consider an orthogonal perspective: is it possible
to maintain or improve model performance without retraining via adaption according to the model’s
specific operating context at test-time?
As a motivating example, consider an autonomous vehicle which must be able to detect and classify
street signs. The vehicle’s context may be approximated by measurements such as its speed (e. g.
accelerating vs. braking), location (e. g. rural vs. urban), and/or current environmental conditions
(e. g. rain vs. sunshine). In these cases, the context is measurable and exists along a continuum. More
importantly, the context provides additional information about, e. g., class priors or critical failure
modes. For instance, if the vehicle is operating at a high speed, then mistaking a 50mph sign for a
Stop Sign has more severe consequences than mistaking for a 40mph sign. Furthermore, it may
also be more likely to observe the 40mph sign over the Stop Sign in that context as well. This
illustrative example points to the fact that the system’s operating state and context provide useful cues
regarding what constitutes safe behavior and critical failure modes.
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Contributions In a paradigm shift away from the conventional one-size-fits-all approach, we
develop a method to train models that can be adapted on-the-fly at test-time to different contexts
without retraining. Our approach extends BMC to incorporate three definitions of context. We then
use the parameterization of the BMC curve to sample a context-specific model for evaluation.
Related Work Test-time adaptation (9; 11; 7; 12; 13) considers how model weights, activations,
and/or architecture might be modified at test-time to optimize model performance on current test data.
While adaptive, these models are informed about context only through data from the testing domain
rather than any other measures of system state and potentially without reference to the original
training distribution.
Cost-sensitive robustness (5; 14; 16) methods consider how to adjust model performance to deal
with, e. g., class imbalances or to avoid specific failure cases. While not adaptive at test time, these
methods manipulate the training objective to build models which may be implicitly robust to rare
classes/scenarios or safety-critical decisions.
Bridge-Mode Connectivity BMC (1) was initially identified as a means to learn paths of equivalent
loss in weight-space connecting two pre-trained models. The points along the path correspond to
unique sets of interpolated weights such that the learned path can be repeatedly sampled to quickly
generate ensembles of neural networks. Beyond ensembling, BMC has been applied in the domain of
adversarial machine learning (15) for mitigating various forms of train-time attacks. In these cases,
the weights for the endpoints are assumed compromised/vulnerable and the bridge-mode enables
mitigation via sampling a set of weights from the learned ensemble away from the endpoints that
maintains performance but mitigates the vulnerability. To our knowledge, our approach is the first to
consider using the bridge-mode parameterization as a proxy for context (See Sec. 2) and modifying
the objective and/or optimization to align the model’s performance with the associated context.

2 Interpretations of Operating Context

The primary goal of this work is to develop context-dependent models. We assume context can be
measured and represented by a parameter c ∈ R and normalized such that c ∈ [0, 1]. Also, denote
(X,Y ) ∼ D where (X,Y ) are (data, label) pairs drawn from a distribution D. We consider three
possible interpretations of context.
(1) Risk profile - In real world deployment, context may necessitate that the DNN prioritize certain
types of predictions and avoid others. In this sense, we model context here by making the loss
function dependent on the context parameter: l(θ) −→ l(θ, c).
(2) Long-tail Robustness - In many deployment scenarios, data may be corrupted naturally by factors
due to the environment, sensor, and/or other sources. For example, images collected for autonomous
driving may be biased toward an expected set of operating conditions, and rare weather events, motion
artifacts, noise or other naturally-induced corruptions may be underrepresented in training. We will
assume that D is stationary but that corrupted samples come from the tails of the distribution. The
frequency of corrupted samples occurring as a function of the corruption strength can be captured by
the following assumption: if c′ > c, then p(c′) ≤ p(c). This limits the types of corruptions to those
that may occur naturally (given assumptions about the underlying image generating process) and treats
corresponding samples as in-distribution. In this case, we model context by a corruption function
ψ(x, c) = x′. We assume that ψ obeys the property: c′ > c⇒ |ψ(x, c′)− x| > |ψ(x, c)− x|.
(3) Contextual distribution shift - Lastly, we consider the case where the data distribution is also
parameterized by c such that (X,Y ) ∼ Dc. In this case, we define context such that Dc′ ̸= Dc

for c′ ̸= c. Since context is assumed to exist along a continuum, this perspective reduces to the
context-agnostic view when Dc does not change with c and allows for the difference between
Dc′ ,Dc to be small when |c′ − c| is also small (i.e., the distribution can also vary smoothly as c
changes). This interpretation captures cases where, e.g., label priors may shift as a function of c (i.e.,
p(Y |c) ̸= p(Y |c′) for c ̸= c′). For example, in the street-sign classification case discussed earlier,
city driving increases the likelihood of Stop Sign or Yield whereas highway driving decreases
those same class likelihoods in favor of 70 mph.

3 Bridge-Mode Connectivity

The original BMC formulation from (1) learns a low-loss path connecting two sets of pre-trained
model weights, θ0 and θ1. The method learns a curve ϕ parameterized by t ∈ [0, 1] and an accompa-
nying set of bridge-mode weights θb which interpolate between the endpoints θ0, θ1.
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Figure 1: (left) Adaptive Risk Profile: Comparing the per-class accuracies of the up-weighted and unweighted
BMC models shows that the risk profile is positively shaped such that higher class weights (β) also produce
higher accuracy gains. (right) Long-tail Robustness: The BMC performance is maintained as the corruption
severity increases and interpolates between endpoints specialized for clean and heavily-corrupted data.

ϕθb(t) = (1− t)2θ0 + 2t(t− 1)θb + t2θ1 (1)

The BMC training objective minimizes:

L(θb) = Et∼U(0,1)[l(ϕθb(t))] (2)

where l(w) is the cross-entropy loss and w is the set of weights of the the BMC network. Standard
training proceeds by first sampling a value of t ∼ U(0, 1), then drawing a minibatch of data, Bi, to
optimize the BMC loss (2) for the sampled value of t. Here, i indicates the training step index. Note
that Bi does not depend on t and in conventional training of deep networks and BMC curves, and
typically consists of samples drawn independently from D. The endpoints θ0 and θ1 can be fixed or
allowed to float while training.
When adapting the BMC to model the various interpretations of context, we assume t ≡ c in our
experiments for simplicity. However, more general relationships between t and c are not precluded.

4 Experiments

4.1 Adaptive Risk Profile via Class-Weighted BMC

Here we use t ∈ [0, 1] as a proxy for context and first partition [0, 1] into bins, each corresponding
to a specific class. To enable tuning model performance towards particular classes, we change l in
(Eq. 2) to be dependent on the value of t as follows: l(w, t) =

∑
k∈K −α(t, k) · pk log pk, where K

is the set of class labels and k is the index of a particular class. We use α(t, k) to up-/down-weight
specific classes in the cross-entropy (CE) loss in order to tune the BMC-derived weights for the class
corresponding to t.
Define α(·) as:

α(t, k) =

{
β if k = ⌊t · |K|⌋
1 else

(3)

for β ≥ 1. Here, each value of t corresponds to a context where the associated class is prioritized
which is reflected in the loss of Eq. 3. We set the endpoint models for the bridge mode to correspond
to the same initial mode weights but allow the weights at each endpoint to float during the BMC
optimization. This effectively results in two different endpoints by the end of training. We follow the
same training process as the original BMC with respect to data sampling. The results provided in
Fig. 1 show that the BMC successfully shifts the performance profile by improving the accuracy for
the up-weighted class relative to an unweighted BMC baseline.

4.2 Long-tail Robustness

To enable the BMC to model context for long-tail robustness, we update the data that is used for
training the BMC after it is sampled. A corruption, ψ, is applied to each mini-batch Bi. Every
element xj ∈ Bi is updated with ψ(xj , t) = x′j before it is used for training and where x ∼ D.
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Figure 2: Contextual Distribution Shift: We vary P (Y = c|t) linearly for each class along t with
different probability distributions above and below t = 0.5. The BMC successfully accounts for this
variation and achieves small gains over the baseline one-size-fits-all model.

We normalize the corruption severity to range between 0 and 1 such that it maps linearly to t. Our
experiment adds Gaussian noise with µ = 0 and σ = γt (for scaling factor γ which bounds the
perturbation magnitude). The endpoints are allowed to float and other details of the training follow
the standard BMC procedure described above. The results are shown in Fig. 1, and demonstrate
the BMC not only smoothly interpolates between the range of uncorrupted and corrupted contexts,
but achieves small gains in a subset of contexts. Since the real-world allows for many simultaneous
corruptions and robustness challenges, we extend our approach to the two-dimensional case where we
can generalize the BMC to account for combinations corruptions during training/evaluation. Details
of this approach and results are found in Appendix B.

4.3 Contextual Distributional Shift

Lastly, we experiment with contextual distributional shift by altering the class distribution of the data
based on sampled values of t. Here, minibatch Bi is sampled according to a defined distribution of
target classes based on t (i.e., P (Y |t)). We experiment specifically with the case where all classes
are sampled with P (Y = c|t) = (1− 2t)(c− 0.5 ·N)/N + 0.5, where N is the number of classes
and all classes are equally likely at t = 0.5. The results are shown in Fig. 2 and illustrate that the
BMC is able to compensate well for the changes in class distribution as t varies and even achieve a
small gain over baseline models in this case.

5 Discussion

Given the need for ML models to work well in a range of contexts, we consider here a shift away from
one-size-fits-all approaches toward context-adaptive methods. We introduced three interpretations of
context and made novel extensions to Bridge-Mode Connectivity to train context-sensitive models.
Our results show that we can train Bridge-Mode curves with these various context perspectives and
show that performance across contexts is maintained in all cases. We hypothesize that the marginal
increase in performance is due to the lack of diversity in the weights along the curve (even after the
context-sensitive training). This lack of diversity was also noted in the original formulation by (1)
and remains an open topic of exploration in the context of training Bridge-Mode ensembles.
The models sampled from the context-adaptive BMC provide an added degree of trust relative to
one-size-fits-all methods. This is taken from the fact that the construction of the BMC loss and/or
optimization ensures that weights sampled from the BMC for a specific context have been directly
optimized for that context in terms of the perceived risks or properties of the data. This cannot be said
for single, static models which are optimized over all (or none) of the contexts without any guarantee
of performance for any specific point on that continuum. This may be an important consideration
when attempting to certify the safety of ML models for deployment.
Overall, we believe this work demonstrates novel methods for utilizing the BMC towards achiev-
ing context-adaptive models and lays the foundation for future work to focus on improving the
specialization of models to their associated context along the BMC.
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A Model architecture and training details

For our main experiments, we utilize the ResNet18 architecture (2) as the seed model for the BMC
training. We train all endpoint models using standard stochastic gradient descent. The learning
rate is initialized at 0.1, and is then adjusted at each epoch based on cosine annealing. Further, the
momentum is set to 0.9, the weight decay is set to 0.0005, and we use Nesterov momentum. We train
for 200 epochs with a batch size of 128. Images are also normalized prior to corruption, and during
training, random flipping and cropping are applied.
BMC models are also trained with stochastic gradient descent, but for 600 epochs. We use a Bezier
curve with one bend for our curve parameterization, and weight decay of 0.0005, and an initial
learning rate of 0.015. The learning rate varies according to Equation 4:

Learning Rate =


r if α ≤ 0.5

(1− ((α− 0.5) · 2.5 · 0.99))r if 0.5 ≤ α ≤ 0.9

0.01r otherwise
(4)

where r is the initial learning rate; i.e. r = 0.015 in our experiments.

B Planar Model - 2D BMC

Extending from the initial formulation in (8), we train a planar model composed of the following
trainable elements:

• w0 ∈ Rm: the vectorized weights of a pre-trained base model, where m ∈ N is the number
of parameters for the base model,

• w1 ∈ Rm: a vector of weights corresponding to the first corruption,
• w2 ∈ Rm: a vector of weights corresponding to the second corruption,
• s ∈ R: a scaling factor for w1 and w2

We parameterize corruptions by tc ∈ [0, 1] for corruptions c = 1, 2, where tc = 0 corresponds to no
corruption and tc = 1 corresponds to severe corruption. During training and testing, we selected a
corruption point (t1, t2) ∈ [0, 1]2, corrupted the input images accordingly, and classified the corrupted
images with a model instantiated with weights w, where

w = w0 + t1sw1 + t2sw2.

Conceptually, the set of weights {w|(t1, t2) ∈ [0, 1]2} provided by the planar model corresponds a
parallelogram on a 2D plane in Rm (Figure 3).
During training, we accumulated loss across 50 randomized (t1, t2) ∈ [0, 1]2 points before performing
stochastic gradient descent. After each epoch, we evaluated the accuracy of the planar model at
all points in the set {(t1, t2)|t1, t2 ∈ {0, 0.1, 0.2, ..., 1}} and terminated training when the average
accuracy did not increase for 20 epochs.
During testing, we evaluated the accuracy of the planar model at all points in the set {(t1, t2)|t1, t2 ∈
{0, 0.1, 0.2, ..., 1}}.
We constructed and evaluated the planar model using Gaussian noise and contrast image corruptions,
with two examples shown in Figure 4. For our base model, we used a network architecture which
contains 4 convolutional layers (with [32, 32, 64, 64] channels)and 3 fully connected layers (with
[512, 512, 10] nodes) with ReLU activations for a total of 2,466,858 trainable parameters (i.e.
m = 2466858).
Figure 5 illustrates that in the 2D case, we’re still able to train the Bridge-Mode to achieve more
uniform performance across all corruptions compared to the baseline. In the case where both the
baseline and BMC were trained on corrupted data (bottom row of Fig. 5), the BMC improves
measurably over the baseline indicating better context-specific adaptation for the more severe noise
and contrast corruptions.
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Figure 3: The planar model components w0, w1, w2, s visualized in weight-space Rm, where m
is the number of parameters in the base model architecture. A corruption point (t1, t2) ∈ [0, 1]2

determines (1) the corruption levels of the input images (where tc = 0 is no corruption and tc = 1 is
severe corruption for corruptions c = 1, 2) and (2) the model weights w used to classify the corrupted
images.

Figure 4: Examples of images that are corrupted by Gaussian noise and contrast corruptions. The
upper-left image has no corruptions, while Gaussian noise increases from top to down and contrast
corruption increases from left to right. The lower-right corner is thus severely corrupted by both
corruptions. This layout corresponds to the accuracy values presented in subsequent figures.
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Figure 5: Accuracy of the planar models and the base models on corrupted images, where in each
grid, the upper-left is evaluated on images without corruptions and lower-right is evaluated on highly
corrupted images. For base models, the one trained only on clean images has a quick drop-off in
accuracy as images are corrupted, while base models trained with Gaussian noise corruptions do well
on all severities of Gaussian noise corruption, with the planar model mostly improving accuracy on
contrast-corrupted images.
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