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Abstract— Accurate motion estimation using low-cost sensors
for autonomous robots in visually-degraded environments is
critical to applications such as infrastructure inspection and
indoor rescue missions. This paper analyzes the feasibility of
utilizing multiple low-cost on-board sensors for ground robots
or drones navigating in visually-degraded environments. We
select four low-cost and small-size sensors for evaluation: IMU,
EO stereo cameras with LED lights, active IR cameras, and
2D LiDAR. We adapt and extend state-of-the-art multi-sensor
motion estimation techniques, including a factor graph frame-
work for sensor fusion, under poor illumination conditions.
We evaluate different sensor combinations using the factor
graph framework, and benchmark each combination with its
accuracy for two representative datasets acquired in totally-
dark environments. Our results show the potential of this sensor
fusion approach towards an improved ego-motion solution in
challenging dark environments.

I. INTRODUCTION

The estimation of a robot’s ego-motion is fundamental for
autonomous navigation and control in GPS-denied environ-
ments with a variety of critical applications, such as infras-
tructure inspection [1], surveillance [2], and indoor search
and rescue missions [3], [4]. In the absence of GPS signals,
robots need to rely on their on-board sensors to compute
odometry as they navigate through the environments. Due to
recent advances in visual odometry [5]–[8], electro-optical
(EO) cameras have become a popular choice to estimate
accurate motion for robots. Compared to costly and bulky
sensors such as 3D LiDAR, it provides a more feasible and
attractive solution for small ground robots and drones.

However, camera-based methods cannot provide reliable
motion estimation for robots in visually-degraded environ-
ments. The quality of image data from EO cameras de-
creases dramatically in dark locations such as tunnels and
mine environments, that are common places for search and
rescue operations. In addition, the lack of texture in these
environments largely reduces the reliability of visual odom-
etry methods that track discriminate features over time to
compute the motion. Accurate motion estimation using low-
cost sensors for autonomous robots in such visually-degraded
environments remains an open and challenging problem.

The goal for this paper is to analyze the feasibility
of utilizing multiple low-cost on-board sensors for robotic
inspection and rescue applications in visually-degraded envi-
ronments, that is a new and rarely explored field in robotics.
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Fig. 1: Our experimental platform in visually-degraded environments: A
device (4 sensors, 2 LED lights, and one computation board) on a cart.

In this paper, we specifically adapt and extend state-of-the-art
multi-sensor motion estimation techniques, including an in-
ference framework based on factor graphs [9], for navigating
under dark conditions. The key benefit of our sensor fusion
approach for motion estimation is to combine the strengths
of different sensors with diverse physical characteristics to
improve navigation accuracy [10]. Fusing complementary
information from multiple sensors also provides more robust
estimation than using a single sensor, by avoiding the single
point of failure in navigation.

We conduct our experiments using a device (Figure 1)
equipped with a set of low-cost sensors: IMU (Inertial Mea-
surement Units), EO stereo cameras with LED lights, active
Infrared (IR) cameras, and 2D LiDAR (Light Detection And
Ranging). This equipped device can be installed on ground
robots or drones. Currently we set it up on a mobile cart
for data collection and experiments. We evaluate different
sensor combinations, and benchmark each combination with
its accuracy for two representative datasets acquired using
this device in totally-dark environments. Our results show the
potential of the sensor fusion approach towards an improved
ego-motion solution in challenging dark environments. Our
datasets will be available to the public, so the research
community can utilize them to better tackle problems of
navigating in GPS-denied, visually-degraded environments.

The rest of the paper is organized as follows. In Section
II, we present the related work for motion estimation in
visually-degraded environments. In Section III, we introduce



the properties of sensors we chose for experiments. We also
describe how we adapt and improve cutting-edge techniques
to process data from each sensor. In Section IV, we present
how we formulate measurements from processed data of each
sensor. We also describe how we leverage a modern inference
engine based on factor graphs to estimate motion in real time
by fusing measurements from multiple sensors. In Section V,
we present our experimental setup and results for different
sensor combinations on two representative datasets. Finally
the conclusions and future work is presented in Section VI.

II. RELATED WORK

Motion estimation methods using low-cost on-board sen-
sors - with camera-based methods leading the way - have
grown rapidly in the recent years. However, most of these
methods are not designed to handle poor illumination condi-
tions. There are only limited works on utilizing these sensors
specifically in large-scale visually-degraded environments for
robotic applications.

A. EO cameras and IMU

Current state-of-the-art visual odometry algorithms [5]
can be classified into two categories: feature-based pipelines
[6] or semi-direct methods [7]. Semi-direct methods require
constant and stable illumination in the environments, which
is seldom satisfied in robotic applications. Feature-based
pipelines find keypoint correspondences across sequential
video frames to obtain an estimate of the camera motion.

There are also many visual-inertial fusion works [11]–
[13] that combine visual odometry methods with an IMU for
motion estimation. The IMU sensor measures the platform’s
specific force and angular rate. Fusing information from IMU
and cameras increases robustness and reliability of odometry
estimation under rapid movements.

These visual odometry or visual-inertial methods using
conventional EO cameras struggle under low-light operations
[14], [15]. There are a few works that improve visual odome-
try performance under poor illumination conditions by using
large headlights [16], artificial light sources [14], or low-light
features descriptors [17]. However, all these works focus on
night-time operations in outdoor driving environments where
there are still illumination sources (such as light poles, moon
light) available.

In contrast, our work targets fully dark environments, such
as subterranean mines or basements. There is no external
light available in these environments.

B. Time-of-Flight Depth Sensors and Active IR Cameras

Time-of-flight depth sensors emit a very short infrared
light pulse, and each pixel of the sensor measures the return
time. Active IR cameras use their short wavelength infrared
light to illuminate an area of interest. Both sensors are robust
under poor illumination conditions. However, time-of-flight
depth sensors require the sensing environment being well
structured. They tend to fail in symmetric or less-structured
places, such as empty rooms. On the other hand, active IR

cameras do not work well at less-texture places, such as
tunnels and mines.

There are a few works [18]–[20] that incorporate an IMU
to improve the robustness of visual odometry methods using
either time-of-flight depth sensors or active IR cameras. [20]
fuses IMU, EO cameras with LED lights, and depth data
obtained from active IR cameras for motion estimation inside
a dark room. However, they reported only the final fusion
accuracy on one small-scale scenario: the navigation time is
less than 2 minutes while the moving distance is smaller than
15 meters. [18], [19] do not provide any quantitative evalu-
ation for their accuracy in visually-degraded environments.

Compared to [20], our goal is to analyze the feasibility of
utilizing multiple low-cost sensors for robotic applications in
fully dark environments. Therefore, we adapt state-of-the-art
sensor fusion techniques and verify the influence from each
sensor in a sensor set similar to [20] to the final estimation
accuracy. We also evaluate the performance of different
sensor combinations on larger scale scenarios (navigation
distance > 100 meters), that are more representative for
robotic inspection and rescue applications.

C. LiDAR and Other Sensors

The 3D LiDAR sensor scans the surrounding environment
to produce depth measurements at long ranges, and stores
the obtained data as 3D point clouds. The ego-motion of the
platform can be computed by aligning 3D point clouds across
sequential scans. State-of-the-art techniques [21] augment 3D
LiDAR sensors with IMU and cameras to estimate robust
odometry over long ranges.

However, the 3D LiDAR sensor is bulky and expensive. It
is not feasible for platforms such as small ground robots or
drones. Therefore, we choose a small low-cost 2D LiDAR
sensor for evaluation. The 2D LiDAR sensor scans the
environment on a 2D plane. The relative change of 2D
position and heading for the platform can be computed by
matching data across sequential scans. Although information
from this sensor is limited within the 2D world, we can fuse
it with other low-cost on-board sensors (such as IMU and
cameras) to compute the entire 3D motion (3D position and
3D orientation).

There are also works [18], [22] that fuse IMU and thermal
cameras for odometry estimation. Thermal cameras render
infrared radiation as visible light to see areas of heat through
darkness. However, they are much more expensive than
conventional EO cameras and active IR cameras. Ultrasonic
sensors were also considerd in the beginning, but we found
their readings are unreliable on aerial platforms due to the
airflow from the rotor blades on the drone. Therefore, we do
not include these sensors for our evaluation.

III. SENSOR PROCESSING

For this work, we select four sensors for evaluation: IMU,
EO stereo cameras with LED lights, active IR cameras,
and 2D LiDAR. Due to their low cost and small size, the
combination of these sensors forms a feasible and attractive
hardware choice (Figure 2) for ground robots and drones to



Fig. 2: Our device: Sensor head (IMU, EO/IR cameras), 2D LiDAR, 2 LED
lights, and one computation board.

navigate in visually-degraded environments. All sensors are
calibrated and synchronized for our experiments.

While data measured from sensors such as IMU can be
directly used in odometry estimation, data from complicated
sensors such as cameras and LiDAR needs to be processed
to extract meaningful information for computing the motion
of the platform. We describe how we adapt and improve
cutting-edge techniques to extract useful information from
raw data obtained from these sensors as follows.

A. EO Cameras with LED lights

We adapt and improve a state-of-the-art feature-based
visual odometry pipeline [23] to process data from EO stereo
cameras under totally-dark conditions. This visual odometry
method associates features between left image and right
image obtained from EO stereo cameras. It also detects
and matches features across consecutive frames, and rejects
outliers using additional rigid motion constraints. All valid
tracked features with stereo depth information then become
measurements for motion estimation.

To adapt this visual odometry method for poor illumi-
nation conditions, we add two small LED lights with EO
stereo cameras. However, when the platform moves in the
totally dark environment, the image quality from EO cameras
still decreases dramatically. As shown in Figure 3 (top),
the light sensitivity of our small-form low-cost EO stereo
cameras is not very high. This creates significant limitations
in extracting and tracking visual features and, consequently,
quality of the final odometry estimation. We therefore add
a gamma-correction intensity mapping algorithm [24] to
process raw images in real time. This image processing
technique enhances the intensity values to bring them into
more uniform 0-255 spectra. The scene content becomes
more visible and features can be detected and tracked.

To find the balance between computation time and track-
ing performance, we have evaluated many choices of fea-
ture detectors and descriptors. Currently we use a slightly
modified version of Harris corner detector [25] where an
image is subdivided into tiles (e.g. 64×48 for 640×480

Fig. 3: Feature extraction and association from EO stereo cameras with
two LED lights in totally-dark environments: top - original images, middle
- images with gamma correction, bottom - feature extraction/association
on images with gamma correction. For visualization, stereo matches are in
yellow color. Detected features are marked as blue points, with tracking
direction in purple color.

image). The strongest 10 corners are chosen in each tile,
This way provides a uniform and dense spread of feature
points extracted from a single video frame. We use the ORB
descriptor [8], which is very fast to compute and correlate,
to match detected features from previous frame to current
frame. Currently our average processing time for the entire
process takes only 15 milliseconds to process an image size
of 640 pixels by 480 pixels, using a single core of an Intel
i7 CPU running at 2.80 GHz.

B. Active IR Cameras

We use an IR camera with active stereo depth techniques
for our evaluation. This IR camera emits short wavelength
infrared light to illuminate an area of interest, and then
computes stereo depth in real time. To best exploit the depth
data from IR cameras for motion estimation, we utilize a
similar ICP technique as [18], [19] that computes the relative
pose at 1 Hz across depth frames from IR cameras. We use a
pose predicted from IMU mechanism [26] as the prior pose
to initialize the ICP alignment process, that has been proven
to be the state-of-the-art mechanism [27] for large-scale
navigation and mapping based on 3D point cloud alignment.

C. 2D LiDAR

We use a 2D LiDAR sensor that performs a 270-degree
scan within the range of 20 meters to obtain data points
in space. To align data from sequential scans, we apply a
popular PlICP algorithm [28] that uses a point-to-line metric



Fig. 4: Our factor graph framework with factors from four sensor types:
IMU, EO stereo cameras, active IR cameras, and 2D LiDAR.

instead of traditional point-to-point metric to minimize the
aligned difference between data points across sequential
scans. The relative change of 2D position and heading
(between two scans) of the platform can be computed based
on the aligned transformation. Currently we perform this
sensor processing pipeline at 5 Hz.

IV. SENSOR FUSION

In this work, we adapt and extend a sensor fusion frame-
work [29] based on factor graphs, which is capable of
incorporating multiple sensors with different rates, latencies,
and error characteristics. Factor graphs have been used [9] for
many applications related to robotic navigation. We describe
this factor graph framework, and show how we formulate
measurements from our sensors within this framework.

A. Factor Graphs

Factor graphs [30] are a probabilistic Bayesian graphical
model involving state variables and factor nodes. They natu-
rally encode the factored nature of the probability density
over the states, clearly separating the state representation
from the constraints induced by the measurements. The
connectivity of the factor graph defines which state variables
are affected by which sensor measurements. This explicit
representation makes it ideal for us to implement a sensing
and navigation framework using multiple sensors.

In our framework, we call X the navigation state and
the state of the platform at time i as xi = {pi, vi, bi}.
Each state x covers three kinds of nodes: the pose node p
includes 3d translation t and 3d rotation R, the velocity node
v represents 3d velocity in the world coordinate system, and
b denotes sensor-specific bias block which are varied for
different sensors. Note that the 3d rotation R represents the
rotation from the world coordinate system to the local body’s
coordinate system, while the 3d translation t represents the
position of the local coordinate system’s origin in the world
coordinate system. To simplify the notation, we assume all
sensors have the same center, which is the origin of the body
coordinate system.

The optimal estimate of the states X given all measure-
ments Z is given by the following maximum a posteriori
estimator:

X̂ = arg max
X

p(X |Z) (1)

A factor graph [30] represents this joint probability dis-
tribution as a bipartite graph G = (F , X, E) with two node
types: factor nodes fi ∈ F and state variable nodes xj ∈ X .
An edge eij ∈ E exists if and only if factor fi involves state
variables xj . The factor graph G defines the factorization of
the joint probability p(X |Z) as a product of factors fi:

p(X |Z) ∝
∏
i

fi(Xi) (2)

where Xi = {xj | eij ∈ E} is the set of all state variables
xj involved in factor fi, and independent relationships are
encoded by edges eij .

To model navigation problems using factor graphs, our
framework represents a sensor measurement as a factor
affecting state variables. A generative model

zi = hi(Xi) + wi (3)

predicts a sensor measurement zi using a function hi(Xi)
with measurement noise wi. Given a realization z̃i of the
random variable zi in (3), a factor encodes the difference
between the measurement function hi(Xi) and the actual
measurement z̃i. If the underlying noise is distributed ac-
cording to a zero-mean Gaussian with covariance Σ, then
the likelihood of the received measurement is represented
by the following factor:

fi(Xi) ∝ exp

{
−1

2
||hi(Xi)− z̃i||2Σ

}
(4)

where || · ||2Σ is the squared Mahalanobis distance.
Inference over a factor graph corresponds to finding the

MAP estimate of the state variables, X̂ . To solve the full
nonlinear optimization problem underlying the factor graph
framework, the recent iSAM2 algorithm provides an efficient
solution with incremental updates using the Bayes tree
structure [31]. iSAM2 is able to achieve real-time odometry
estimation by keeping all past information and only updating
state variables influenced by each new measurement. For
more details, we refer the reader to [31].

We describe how to encode sensor measurements into
factors (Figure 4) for our four sensors as follows.

B. IMU

A single factor typically encodes only one sensor mea-
surement. However, IMU sensors produce measurements
at a much higher rate than other sensor types. To fully
utilize high-frequency IMU data, while avoiding to create
factors and variables at high rate, we design a single factor
to summarize multiple consecutive IMU measurements. A
navigation state is only created at the time when a non-
IMU measurement comes or no non-IMU measurements
arrive after a certain interval, and the IMU factor is built
to connect two sequential navigation states by integrating
IMU measurements between them (see Figure 4).



Denoting with ai−1:i and ωi−1:i all the accelerometer and
gyroscope measurements collected between two consecutive
navigation states (at time i−1 and i), we formulate the IMU
factor using the pre-integration theory [26]:

xi = xi−1 +ml(ai−1:i, ωi−1:i) (5)

This IMU factor is a binary factor between two consecu-
tive states xi−1 and xi. It generates 6 degrees of freedom
relative pose and corresponding velocity change between
time i − 1 and i. It also tracks the IMU-specific bias as
part of the state variables, assuming a random-walk model
for the IMU bias evolution. Therefore, the IMU factor also
provides the linearization point for the navigation state at the
current time i which is necessary for all other factors to be
linearized. If no IMU measurement is available, we use a
constant-velocity model for state propagation. In contrast to
tradition filtering techniques, the IMU motion factor is part
of the nonlinear optimization leading to improved accuracy,
while we avoid the burden of repeated integrations by using
IMU pre-integration.

C. EO Stereo Cameras

In our system, we represent each visual feature tracked
across multiple navigation states by utilizing extrinsic factors
(Figure 4) to simultaneously estimate the 3D location l of
this feature and the tracked navigate states (corresponding
to the times when this feature is observed). Since there are
limited features detected from EO stereo cameras in totally-
dark environments (even the cameras are associated with
LED lights), estimating all landmark states and involved
pose states for all tracked features is feasible. Modeling each
tracked feature as individual measurements also allows a
tightly-coupled approach [32] to fuse IMU data and feature
track measurements, that have achieved superior performance
over computing a single visual odometry pose using all
tracked features. The measurement model for the extrinsic
factor between the landmark state l and the pose state xi is:

z = h(l, xi) + w = Proj(Ri(q − ti)) + w (6)

where z is the normalized pixel describing the projection of
the 3d landmark l onto the camera at time i, the platform
pose (Ri, ti) from xi is used to transform the landmark to the
local (camera) frame, and w is the pixel noise. The function
Proj(m) is the function that project a 3d point m onto the
image plane:

Proj(m) = Proj ([m1,m2,m3]) =

[
m1

m3
,
m2

m3

]
(7)

For the details, we refer the reader to [31].

D. Active IR Cameras

We compute the relative pose change from IR depth
data, using ICP alignment techniques [27] . Therefore, we
formulate a relative pose measurement as a binary factor

which involves only pose nodes pi−1 = (Ri−1, ti−1) and
pi = (Ri, ti) as follows:

z = h(xi−1, xi) + w =

[
RT

i−1(ti − ti−1) + ωt

RT
i−1Ri exp(ωR)

]
(8)

where exp is the exponential map for the rotation group
SO(3) and the measurement noise ω = [ωR ωt] includes the
rotation noise ωR ∈ R3 and the translation noise ωt ∈ R3.
The corresponding linearized model is:

δz = Fδpi−1 +Gδpi + w

F =

[
− 1

2I3×3 03×3[
R̂i−1(t̂i − ˆti−1)

]
×
−R̂i−1

]
,

G =

[
1
2 R̂

T
i−1R̂i 03×3

03×3 R̂i−1

]
(9)

E. LiDAR 2D

Using scan matching results from a 2D LiDAR sensor,
we formulate Lidar2D measurements to describe the change
in position and orientation on the 2D plane between two
consecutive sampling scanning times i− 1 and i. We model
this relative pose measurement as a binary factor similarly to
the one presented in Section IV-D, except that error contri-
butions to altitude, roll and pitch are zero. Therefore, in this
factor formulation we set the uncertainties for altitude, roll,
and pitch to be infinity, or, equivalently, the corresponding
entries in the measurement information (inverse covariance)
matrix to be zero.

V. EXPERIMENTAL EVALUATION

We equipped 4 sensors on our platform (Figure 1 and
Figure 2) for experimental evaluation. The Veronica stereo
sensor head provides both depth data from narrow field of
view (FOV) active IR cameras and video data from wide
FOV EO stereo cameras. We installed two COAST FL80
LED headlamps to increase the illumination for the EO
stereo cameras up to 10 feet and beyond. We also added one
Bosch BMI160 IMU and one small light 20-meter Hokuyu
2D LiDAR. To achieve real-time estimation performance on
a Tegra TX2 computation board, we process and integrate
IMU data at 200 Hz, EO camera data at 15 Hz, 2D LiDAR
data at 5 HZ, and IR depth data at 1 Hz.

A. Dark Room

We collected two representative datasets in totally-dark
environments. The first dataset is collected inside a 7.5
meter by 5 meter dark room with ground truth information
(3D moving trajectory) obtained using a OptiTrack Motion
Capture System1. The platform moves with different patterns
(mostly circles or figure-eight loops) for 350 seconds in this
dataset. The total navigation distance is 119.89 meters based
on ground truth trajectory.

Table I and Figure 5 show the estimated odometry accu-
racy using different sensor combinations on this dataset. For
each sensor combination, the error is computed by aligning

1https://optitrack.com/motion-capture-robotics/



TABLE I: The table below shows the estimated odometry accuracy using different sensor combinations for navigating inside a dark room.

Estimated Odometry Accuracy All four sensors IMU, EO cameras, 2D LiDAR 2D LiDAR IMU, EO cameras EO cameras
3D/2D Mean Error (meter) 0.19/0.18 0.25/0.16 0.61/0.61 0.55/0.47 6.55/1.75

3D/2D Median Error (meter) 0.17/0.16 0.27/0.16 0.53/0.53 0.50/0.38 6.87/1.63
3D/2D 90 percentile Error (meter) 0.30/0.29 0.37/0.26 1.39/1.39 1.04/0.98 10.66/3.17

Fig. 5: 3D error in meter for different sensor combinations inside the dark room over 350 seconds.

TABLE II: The table below shows the loop closure error using different sensor combinations for navigating inside a basement.

Estimated Odometry Accuracy All four sensors IMU, EO cameras, 2D LiDAR 2D LiDAR IMU, EO cameras EO cameras
3D/2D Loop Closure Error (meter) 6.33/4.63 5.25/4.59 10.14/10.14 31.09/30.98 78.16/26.55

our estimated trajectory to the reference trajactory (ground
truth) captured from the OptiTrack Motion Capture System.
Due to the lack of tracked features under poor illumination
conditions, the visual odometry performance of EO cameras
is unsatisfactory. However, the tightly-coupled inertial-visual
fusion (IMU and EO cameras) largely improves the odometry
accuracy compared to the result using only EO cameras. Us-
ing 2D LiDAR sensor alone also obtains good performance
(slightly worse than IMU and EO cameras). Note the 3D
error is the same as 2D error using only 2D LiDAR sensor,
since the data is collected using a ground platform on the
planar floor inside the room. Adding 2D LiDAR sensor into
visual-inertial fusion further improves the overall navigation
accuracy, especially along the horizontal direction.

We found the IR depth data is very noisy due to its limited
infrared illumination within a very narrow field of view. The
estimated odometry using only IR depth data is much worse
than using EO cameras or 2D LiDAR, due to many outliers
during navigation. When we fuse IR cameras with the other
three sensors, we therefore apply a consistency checking
mechanism to remove its outliers. So the combination of all
four sensors achieves the best 3D navigation accuracy.

B. Basement

The second dataset is collected in a totally-dark basement
(turning off all external lighting source) inside a large-scale
building. There are many long hallways with intersections
inside this basement, that resembles the internal structures
in a typical subterranean mine environment for robotic in-
spection and rescue applications. The platform moves along
two hallways across an intersection inside the basement,
and comes back to the original starting place (Figure 6).

So we use loop closure error to evaluate the performance
for different sensor combinations on this dataset. The total
navigation distance is around 416.5 meters while the total
navigation time is 13.1 minutes.

Table II shows the loop closure error using different sensor
combinations on this dataset. For each sensor combination,
the loop closure error is computed by the difference between
the starting point and the end point from our estimated
trajectory. The loop closure error will be zero meters, if there
is no error from our estimation. Figure 6 shows our estimated
trajectory on the map (assuming the initial geodetic position
and orientation is known). The estimated final position drifts
slightly compared to the actual ground truth (yellow-marked
starting point).

The dark basement environment is very challenging due
to its large scale (compared to small rooms) and lack of
textures. Both EO and IR cameras are only able to detect
and to track limited nearby features under their own illumina-
tions. We found the translation (scale) of the visual-inertial or
camera-based odometry results is accurate. However, the lack
of far-away features detected in the long hallways decreases
the heading estimation accuracy [33] in camera-based motion
estimation methods: the loop closure error using IMU and
EO cameras is 31.09 meters (II). For comparison, with good
illumination in the same basement environment, the loop
closure error from our visual-inertial solution (IMU and EO
cameras) is only 3.89 meters.

The addition of 2D LiDAR improves the result in dark
basement environment dramatically, because it provides more
accurate heading information to complement the estimation.
Note our narrow field-of-view active IR camera performs
poorly in this environment. Even with our outlier rejection



Fig. 6: Our estimated trajectory inside the basement on the map (the yellow
marked point is the starting/end point).

Fig. 7: The aligned 3D point clouds from IR depth data in basement: The
top view of the 3D point clouds (top), and the side view of the 3D point
clouds (bottom). Different colors represent different heights.

mechanism, the addition of IR cameras does not improve the
overall results. Our outlier rejection mechanism still fails to
filter a few erroneous IR measurements, that influence the
results. Figure 7 shows the 3D point clouds aligned from
IR depth data during navigation. Although the IR depth data
is noisy, the overall structure and shape of the navigated
hallways is preserved.

VI. CONCLUSIONS

This work adapts and extends state-of-the-art sensor fusion
techniques to evaluate different low-cost sensor combinations
for navigating in totally-dark environments to robotic inspec-
tion and rescue applications. A ground platform equipped
with four sensors (IMU, EO stereo cameras with two LED
lights, active IR cameras, and 2D LiDAR) is used for data
collection and experiments in two representative visually-
degraded environments: A dark room and a basement with
long hallways. Results are evaluated using ground truth
trajectory or loop closure measure.

The experimental results demonstrate the potential of this
sensor fusion approach towards an improved ego-motion
solution in challenging dark environments. Although the
performance of camera-based methods degrades under poor
illumination conditions, the addition of IMU and 2D LiDAR
largely improves the estimated odometry accuracy.

Future work is to further improve the navigation perfor-
mance using low-cost sensors in visually-degraded environ-

ments. For example, recent visual-inertial SLAM (simulta-
neous localization and mapping) methods [12], [34] map the
environment during the navigation, and correct the estimated
odometry error when the platform revisits the same place.
The sensor fusion approach described in this paper can be
naturally extended to incorporate SLAM methods to further
improve the results.
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