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ABSTRACT

Multi-Agent Path Finding (MAPF) is a representative multi-agent coordination
problem, where multiple agents are required to navigate to their respective goals
without collisions. Solving MAPF optimally is known to be NP-hard, leading to
the adoption of learning-based approaches to alleviate the online computational
burden. Prevailing approaches, such as Graph Neural Networks (GNNs), are
typically constrained to pairwise message passing between agents. However, this
limitation leads to suboptimal behaviours and critical issues, such as attention
dilution, particularly in dense environments where group (i.e. beyond just two
agents) coordination is most critical. Despite the importance of such higher-
order interactions, existing approaches have not been able to fully explore them.
To address this representational bottleneck, we introduce HMAGAT (Hypergraph
Multi-Agent Attention Network), a novel architecture that leverages attentional
mechanisms over directed hypergraphs to explicitly capture group dynamics.
Empirically, HMAGAT establishes a new state-of-the-art among learning-based
MAPF solvers: e.g., despite having just 1M parameters and being trained on
100× less data, it outperforms the current SoTA 85M parameter model. Through
detailed analysis of HMAGAT’s attention values, we demonstrate how hypergraph
representations mitigate the attention dilution inherent in GNNs and capture
complex interactions where pairwise methods fail. Our results illustrate that
appropriate inductive biases are often more critical than the training data size or
sheer parameter count for multi-agent problems.

1 INTRODUCTION

Multi-agent coordination is a fundamental topic in multi-agent systems, where multiple agents work
together to achieve a common goal. Applications include warehouse automation (Wurman et al.,
2008), autonomous driving (Shalev-Shwartz et al., 2016), traffic management (Adler & Blue, 2002)
and manufacturing process control (Leng et al., 2023). These settings involve complex interactions
and dependencies among agents. In the literature, such interactions are typically modelled in a
pairwise manner, using graph neural networks (GNNs) or transformers (Bernárdez et al., 2023; Liu
et al., 2024; Li et al., 2024b). However, pairwise interactions are insufficient to fully capture highly-
coupled multi-agent dynamics, where interactions may involve multiple agents simultaneously.

This insufficiency has led to the exploration of higher-order representational structures, such
as hypergraphs, which can naturally model group interactions. Recent works have shown that
hypergraphs can effectively model small-scale multi-agent problems (Zhu et al., 2024; Zhao et al.,
2025) and simple group interactions, like social groups in trajectory prediction tasks (Lin et al.,
2024; Xu et al., 2022). However, the question remains, “Can hypergraphs scale beyond simple
group settings to capture the dynamics of complex, highly-coupled multi-agent tasks?”

In this work, we provide a positive answer to this question by focusing on one such problem of
multi-agent pathfinding (MAPF), where the goal is to compute collision-free paths that efficiently
guide a team of agents to their respective destinations. Optimally solving MAPF is known to be
NP-hard (Surynek, 2010), even in sparse grids (Geft & Halperin, 2022), which highlights the strong
entanglement among agents. This makes MAPF a suitable testbed for studying highly-coupled
multi-agent problems, especially in obstacle-dense maps with large numbers of agents.
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Figure 1: (a) Positioning of our work in relation to existing MAPF works with respect to the
interaction modelling. (b) Radar plot comparing HMAGAT with other learning-based MAPF solvers,
showing average solution quality and scalability (both the higher the better) across different small
maps1and agent densities, and a focused view on the highest agent density (High AD) scenarios.
Details of the metrics are in Appendix B. (c) MAPF requires group interactions. (i) The SoC-
optimal (sum-of-costs) group interaction-based solution. (iii-v) Pairwise interactions with agent A,
showing the optimal paths when agent pairs are isolated. (ii) Combination of the pairwise solutions.
This solution is sub-optimal compared to the group interaction-based solution.

As with the other multi-agent problems, previous works on MAPF have focused on pairwise
interaction-modelling, popularly using GNNs (Li et al., 2020; 2021; Veerapaneni et al., 2025) or
transformers (Wang et al., 2023; Andreychuk et al., 2025a). However, MAPF is inherently a group
problem, i.e., optimality and completeness can, generally, only be achieved when modelling the
full joint state space of all agents (not just two), as shown in Figure 1b. We argue that the use of
hypergraphs provides strong inductive biases for capturing group interactions, thereby enabling the
development of more capable MAPF approaches.

To address this gap, (i) we propose HMAGAT, a novel imitation learning framework for MAPF,
leveraging a hypergraph attention network to better model the higher-order group interactions.
(ii) We propose hypergraph generation strategies that dynamically construct directed hypergraphs
and (iii) empirically demonstrate the prowess of our approach over existing solvers, as shown in
Fig. 1c, beating the previous state-of-the-art learning model while using only ~1.2% parameters and
~1% of the training data. (iv) Through experiments, we perform a deeper analysis on why pairwise
attention fails while modelling group interactions, and how hypergraphs overcome these issues.

2 PRELIMINARIES

2.1 HYPERGRAPHS AND MULTI-AGENT LEARNING

Hypergraphs are a higher-order generalisation of graphs, where edges, called hyperedges, can
connect any number of nodes. Formally, a directed hypergraph is defined as H = (V, E), where

1Large maps not included in the radar plot, as MAPF-GPT fails to scale to them, resulting in skewed results.
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V is the set of nodes and E is the set of directed hyperedges. Each hyperedge e ∈ E is an ordered
pair (T (e), H(e)), where T (e) ⊆ V is the tail and H(e) ⊆ V is the head of the hyperedge. A set of
hyperedges incident to node i ∈ V is denoted as Γ(i) = {e ∈ E | i ∈ T (e) ∪H(e)}.

The hypergraph counterpart of graph neural networks (GNNs) is referred to as hypergraph neural
networks (HGNNs). HGNNs have been increasingly adopted in multi-agent learning tasks due to
their ability to capture higher-order interactions. E.g., HGNNs for formation control and robotic
warehouses (Zhao et al., 2025), multi-agent continuous trajectory prediction (Lin et al., 2024; Xu
et al., 2022) and social robot navigation (Li et al., 2024a; Wang et al., 2024). While these studies
focus on problems with often modest team sizes (≈ 101 agents), where tightly coupled coordination
among agents is less critical, our work explores the potential of HGNNs in a more challenging
coupled setting containing large number of agents, namely, MAPF.

2.2 MULTI-AGENT PATHFINDING (MAPF)

We consider a widely used MAPF formulation (Stern et al., 2019), defined by a team of agents
A = {1, 2, . . . , n}, a four-connected grid graph G = (V,E), and a distinct start si ∈ V and goal
gi ∈ V for each agent i ∈ A. At each timestep, each agent either stays in place or moves to an
adjacent vertex. Vertex and edge collisions are prohibited: agents cannot occupy the same vertex
simultaneously or swap their occupied vertices. Then, for each agent i ∈ A, we aim to assign a
collision-free path πi = (v0 = si, v

1, . . . , vT = gi). The solution quality is assessed by sum-of-
costs (SoC), which sums the travel time of each agent until it stops at the target location. Herein, a
configuration Q ∈ V n refers to the locations for all agents. The dist function returns the shortest
path length between two vertices on G, while neigh(v) represents adjacent vertices for v ∈ V .

MAPF is an appealing benchmark to assess the capabilities of multi-agent learning techniques,
tailored to industrial setups such as warehouse automation (Agaskar et al., 2025). Several directions
exist on how to leverage ML for MAPF (Alkazzi & Okumura, 2024), with a major thrust being
the governance of agent-wise neural policies that interpret their surrounding information and output
actions, ideally leading to coordination beyond mere greedy behaviour. Such policies are typically
constructed either via reinforcement learning (RL) (Sartoretti et al., 2019) or imitation learning
(IL) (Li et al., 2021). This work focuses on IL setups, motivated by recent findings that (i)
collecting demonstration data is inexpensive with modern MAPF solvers (Okumura, 2024), and
(ii) IL consistently outperforms RL (Andreychuk et al., 2025a; Veerapaneni et al., 2025).

2.3 MAGAT: GNN-BASED POLICY FOR MAPF

Among existing IL policies for MAPF to date, MAGAT (Li et al., 2021) is a representative approach
that employs GNNs to capture pairwise agent interactions. Formally, it governs a policy πi(v | oi,G)
that outputs an action distribution over candidate target vertices v for agent i, given its observation oi
and the communication graph G, which is constructed based on spatial proximity within a radius
Rcomm ∈ N>0. The model consists of (i) a CNN encoder that converts oi into the node feature xi,
(ii) a GNN layer that aggregates messages from other agents following G, and (iii) an MLP decoder.

Our proposed HMAGAT builds upon MAGAT. In addition to replacing the GNN with HGNN layers,
HMAGAT also incorporates techniques introduced in follow-up works on MAGAT. These include
stacking GNN layers (three) to enhance representational power (Veerapaneni et al., 2025) and
incorporating position-based edge features embedded into G. Our implementation of MAGAT also
includes these improvements.

Local Observation. Throughout the rest of the paper, we fix the observation tensor oi for agent i
at a configuration Q to be centred around its current position Q[i], with shape 4 × (2Robs + 1) ×
(2Robs + 1), where Robs ∈ N>0 determines the FOV size. The four channels consist of (i) an
obstacle map, (ii) an agent map, (iii) a projection of the goal direction, and (iv) a normalised cost-
to-go map. For each location v ∈ V within FOV, the normalised cost-to-go value is computed
as (dist(v, gi) − dist(Q[i], gi))/(2R

obs), while setting it to 1 for obstacles. This construction is
commonly used in learning-based MAPF studies (Alkazzi & Okumura, 2024).
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Figure 2: Overview of HMAGAT. (a) We collect demonstrations using an expert solver over 21K
instances. (b) For each timestep, we extract a directed hypergraph representation (head agent shown
with bold outline here). (c) These are used to train our HGNN-based model. (d) Post-training, we
train the model using expert trajectories over intermediate instances, to improve solution quality. A
temperature sampler is also trained to make the model more confident.

3 HMAGAT

While GNNs have shown promise in modelling multi-agent systems, they inherently focus on
pairwise interactions between agents. This pairwise focus can limit their ability to capture the
complex coupled-dynamics in multi-agent systems with interactions involving multiple agents
simultaneously. We identify two key limitations of GNNs, specifically MAGAT, in this context.

Attention in dense scenarios. In multi-agent systems, agent interactions tend to be uneven, where
for a given agent, some interactions might be more important than others. Thus, methods like MAGAT
use an attentional mechanism to better model the interactions between agents. The attention scores
are computed in a pairwise manner and normalised over the neighbourhood (via softmax). This,
however, can be problematic in out-of-distribution dense scenarios. In such scenarios, each agent
will have a dense neighbourhood, with only a few agents being truly relevant. However, since
the attention scores are first computed pairwise and then normalised over the neighbourhood, the
presence of many irrelevant agents will dilute the attention scores of the relevant agents.

Group Interactions. The interactions in GNNs are inherently pairwise, while multi-agent
problems, like MAPF, tend to be fundamentally a group planning problem. Models like MAGAT can
assuage this to some extent by using multiple GNN layers, where deeper layers can theoretically
learn to capture group interactions. However, without an explicit bias for these group interactions,
the model would likely struggle to learn such interactions.

Motivated by these observations, we propose HMAGAT, an attentional hypergraph neural network
(HGNN)-based imitation learning model for MAPF. We first describe the architecture of HMAGAT,
and then explore different hypergraph generation strategies.

3.1 ARCHITECTURE

To model the group interaction of multiple agents influencing a single agent’s decision, we design
directed hypergraphs, with a singleton head and a multi-node tail. We replace the GNN layers in
MAGAT with our HGNN layers, resulting in a pipeline consisting of (i) a CNN encoder, followed by
(ii) HGNN layers, and (iii) an MLP decoder.

Communication Hypergraph. We detail several strategies to generate a hypergraph H in
Section 3.2. We include hyperedge features ωje for each e ∈ H and j ∈ T (e). This is set to
be a three-dimensional vector, consisting of the relative positional co-ordinates and the Manhattan
distance between the agent and the hyperedge centre, which is taken to be the position of the head
agent or, in the general case, the centroid of the head agents.

Hypergraph Attention Network. We design our HGNN in a message-passing manner, with
messages going from the tail nodes to the hyperedges to the head nodes. Concretely, let x(l)

i denote
the node feature of agent i at layer l. The layer update proceeds with:
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Here, wje = ϕ(ωje) is the hyperedge feature processed via an MLP ϕ, α
(l)
ej and α

(l)
ie are the

normalised attention weights, W(l)
{R,n,e,h} and Θ

(l)
{n,e,h} are the learnable weights, and σ is a non-

linearity. The above design reflects the necessity of modelling variable hypergraph and hyperedge
sizes. Instead of architectures with fixed and uniquely identifiable relation types (Busbridge et al.,
2019), HMAGAT is derivative from attentional HGNNs (Bai et al., 2021; Chen et al., 2020), which
can accommodate dynamic and flexible hypergraph structures.

3.2 HYPERGRAPH GENERATION

Algorithm 1 COLOURINGBASEDHYPERGRAPHS

input: colours C, colouring R, agents A, positionsQ
1: E ← ∅
2: for v ∈ A, c ∈ C do
3: T ← {u ∈ A | ∥Q[u]−Q[v]∥ ≤ Rcomm ∧ (Q[u], c) ∈ R}
4: if T ̸= ∅ then E ← E ∪ {(T ∪ {v}, {v})}
5: return (A, E) ▷ directed hypergraph

Unlike GNNs, which naturally
introduce pairwise interactions over
a communication graph, defining
hypergraphs for MAPF that capture
group interactions is not trivial. We
focus on directed hypergraphs with
singleton heads and multi-node tails.
An intuitive approach is to assign a
colour—potentially multiple colours—to each vertex v ∈ V , based on geometric adjacency, under
the belief that agents in the same local region are more likely to interact collectively. We then form
groups according to agent locations and their colours; that is, agents sharing the same colour form
the tail of a hyperedge. Concretely, let C be the set of colours, and let R : V 7→ 2|C| denote the
colouring function. Given C and R, Alg. 1 creates a directed hypergraph subject to the constraint
of a communication radius Rcomm. We next discuss strategies to build the colouring R.

(a) (b)

Figure 3: Going from (a) strict partitioning
to (b) overlapping groups.

Lloyd Hypergraphs. A principled approach
to workspace partitioning is to employ a
Voronoi diagram, which divides the space
into regions based on distances to a set of k
initial seed locations. By applying Lloyd’s
algorithm (Lloyd, 1982; Zaman et al., 2024),
one can obtain a balanced Voronoi partition
with approximately equal-sized regions,
regardless of the choice of initial seeds. In
principle, each region can be assigned a distinct
colour. However, a strict partitioning is not ideal for our setting, since agents may interact across
these artificial boundaries. This motivates us to introduce “soft” borders by allowing multiple
colours per vertex. Concretely, after the Lloyd’s algorithm, we discard half of the least populous
colours and reassign the corresponding regions to the colours of their neighbouring regions. An
illustration of this process is shown in Figure 3, with the pseudocode provided in Appendix A.

k-means Hypergraphs. Since Lloyd’s algorithm requires O(|V |3) time for updating centroids, it
becomes impractical for large graphs. In a faster method, we first diffuse colours from k randomly
sampled vertices, where each vertex is associated with a k-dimensional vector and each dimension
corresponds to one colour. Over a fixed number of iterations T , each vertex updates its vector to
the mean of its neighbours’ vectors. We then apply k-means clustering (MacQueen, 1967) to these
vectors, followed by the “soft boundary operation” described above. This procedure reduces the
complexity to O(k|V |). See Appendix A for the detailed procedure.
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Shortest Distance-based Hypergraphs. We also explore non-colouring-based hypergraphs.
Given an agent i, we say that two agents j and k should be in the tail of a hyperedge with head
i if agent i can encounter one agent while visiting the other. We formalise this using the shortest
path distances between the agents. We include further details of this strategy in Appendix A.

3.3 TRAINING PIPELINE

Model Training. We use the POGEMA toolkit (Skrynnik et al., 2025), also employed in the
development of MAPF-GPT (Andreychuk et al., 2025a). Following MAPF-GPT’s training protocol,
we generate a total of 21K instances, of which, 20% feature randomly placed obstacles, while the
remaining 80% are maze-like environments. Map sizes range from 17×17 to 21×21, with 16, 24, or
32 agents. For reference, MAPF-GPT uses 3.75M instances for training. In line with MAPF-GPT,
we generate expert trajectories using lacam3 (Okumura, 2024), a state-of-the-art anytime MAPF
solver. We adopt a staged timeout strategy with time limits of [1, 5, 15, 60]s, where a longer timeout
is used only if the shorter ones fail. As the training set does not include challenging situations, most
instances were solved within 1 s. HMAGAT, with Rcomm = 7 and Robs = 5, is trained on the collected
expert trajectories using cross-entropy loss. We train for 200 epochs, requiring about 100 hours on
an NVIDIA L40S GPU, using the AdamW optimiser (Loshchilov & Hutter, 2019).

Online Expert. To mitigate the distributional shift common in imitation learning, we further apply
on-demand dataset aggregation (Ross et al., 2011), collecting new trajectories where the model
fails, following MAGAT (Li et al., 2021). To improve the quality of trajectories, after achieving 80%
success rate, we check if the length of the model’s solution exceeds δbuf× the expert trajectory length,
with δbuf = 1.2. If so, we follow Andreychuk et al. (2025b) and extract instances at every h-th step,
where h = 16. We then solve these instances using lacam3 with timeouts of [1, 2, 10]s, adding
trajectories that are δbuf× shorter than the model’s trajectory. To keep the training time manageable,
we limit the total number of quality improvement expert-calls to 30 per online expert phase.

Post-Training. We follow MAPF-GPT-DDG (Andreychuk et al., 2025b) and apply a post-training
phase to further improve the solution quality. This follows the same training procedure as before, but
with the quality improvement online expert being called for all 500 instances and with the training
consisting of 1 : 3 ratio of the quality improvement instances and the pre-collected instances,
respectively. We run the online expert after every epoch, due to the high accuracy of the model.
We run this post-training for 20 epochs, requiring about 30 hours on an NVIDIA L40S GPU.

Temperature Sampling. Previous works have shown that GNNs can achieve high accuracy, but
tend to be miscalibrated, having low confidence in their predictions (Hsu et al., 2022; Wang et al.,
2021). This is particularly problematic in MAPF, where we sample the next action based on the
model’s output distribution. Similar problems are likely to exist for HGNNs as well. To tackle this,
we use a softmax temperature τ between 0.5 and 1.0. We train an RL module to dynamically adjust
τ for each agent based on its local observability and action log-odds. This module is trained for 50
epochs, taking about 3 hours on an NVIDIA L40S GPU. We include further details in Appendix A.

4 EVALUATION

Baselines. We compare HMAGAT with the following three state-of-the-art learning-based MAPF
solvers: (i) MAGAT (Li et al., 2021), an attentional GNN-based model. (ii) MAPF-GPT (Andreychuk
et al., 2025a), the most capable IL policy to date, using a GPT-like architecture. The authors provided
three model sizes: 2M, 6M, and 85M. (iii) MAPF-GPT-DDG (Andreychuk et al., 2025b), a fine-
tuned version of MAPF-GPT (2M) model, which the authors claim matches the 85M model. We use
PIBT-based collision shielding (Okumura et al., 2022) for all these methods, as recommended by
Veerapaneni et al. (2025). We also run our evaluation on SSIL (Veerapaneni et al., 2025), another
GNN-based IL model, and SCRIMP (Wang et al., 2023) and DCC (Ma et al., 2021), two RL models.
However, due to the vast difference in performance, we limit their results to Appendix C.

Metrics. We present the success rates, the average relative sum-of-costs (Rel. SoC) with respect
to lacam3 with a 30 s budget and the average runtime per-map. The success rate measures the
percentage of instances in which all the agents reach their respective goals.
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Evaluation Maps. The commonly used MAPF-benchmarking maps can be divided into seven
main categories (Stern et al., 2019): (i) Maze, (ii) Warehouse, (iii) Room, (iv) Game, (v) City,
(vi) Random and (vii) Open.

In our evaluation below, we use (i) Sparse Maze and (ii) Empty Room with 256 step limit and
60 s time limit, (iii) Dense Maze, (iv) Dense Room and (v) Dense Warehouse with 512 step
limit and 60 s time limit, and (vi) ost003d with 1024 step limit and 90 s time limit. Since Random
and Open maps are just simpler versions of Maze maps, we omit their results. City maps are large
and sparse, with simple obstacle structures, so we limit their evaluation to Appendix C.

4.1 RESULTS
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Figure 4: Evaluation of the learning-based MAPF policies, averaged over 128 instances. Transparent
regions represent 95% confidence intervals. SoC is reported relative to lacam3 (w/ 30 s time limit).

Figure 4 shows the results on the different maps. We see that all HMAGAT strategies consistently
obtain higher quality solutions than MAGAT, as well as larger models, like MAPF-GPT (2M),
MAPF-GPT (6M) and MAPF-GPT-DDG (2M). HMAGAT remains competitive with the largest
MAPF-GPT (85M) model, while being significantly faster. k-means and Lloyd’s HMAGAT have
consistently high solution quality, with the k-means strategy being faster, especially on the larger
maps, as expected. For the rest of the analysis, we focus on k-means hypergraphs.

HMAGAT outperforms MAPF-GPT (85M) in the Maze maps in terms of solution quality, but
MAPF-GPT (85M) outperforms HMAGAT in the Room and Warehouse maps, except for the
highest agent density case for Dense Warehouse map. In fact, HMAGAT achieves 75+%
success rate even in this challenging scenario, while the other methods achieve <11% success
rates. MAPF-GPT (85M) is fails to scale to ost003d, while HMAGAT obtains solutions close
to lacam3’s quality.
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Figure 5: Ablation study. We start from MAGAT and
incrementally add components to reach HMAGAT. We plot
the failure rate and Rel. SoC (both the lower the better),
over the highest agent density scenarios of the small maps.

Ablation Study. Figure 5 shows
the results of our ablation study over
the highest agent density scenarios
on each of the small maps, where we
start from MAGAT and incrementally
add components to reach HMAGAT.
For ease, we fix the hypergraph
generation strategy to be k-means
colouring-based. The addition of
each module improves both the
success rate and the solution quality,
except for the RL-based temperature
sampling, which trades off the
success rate for improved solution
quality. This shows the importance of each component for the success of HMAGAT.
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Table 1: Comparison of HGNN and GNN, corresponding to HMAGAT w/o embellishments and
MAGAT, on different maps with the maximum agent density. Rel. SoC is relative to lacam3.

Metric Method Dense Dense Dense
ost003d Paris

Maze Warehouse Room

Success Rate GNN 72.7% 2.3% 66.4% 100.0% 100.0%
HGNN 75.8% 39.8% 75.0% 100.0% 100.0%

Rel. SoC GNN 2.07± 0.09 2.12± 0.10 2.63± 0.07 1.06± 0.00 1.03± 0.00
(95% CI) HGNN 1.79± 0.09 1.78± 0.08 2.35± 0.06 1.05± 0.00 1.02± 0.00

4.2 HGNN VS GNN – DEEPER ANALYSIS
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Figure 6: Attention score distribution
in the first layer of the models with 128
agent instances.

In this section, we further analyse the difference due to
the use of HGNNs over GNNs. To isolate the effects and
perform a direct comparison, we focus on a stripped-down
version of HMAGAT, consisting solely of the replacement
of the GNN layers with HGNNs. To emphasise the
difference from HMAGAT, we refer to this stripped-down
version as simply the HGNN model and MAGAT as the
GNN model, for this analysis.

Table 1 shows the comparison between the two models
over different maps. We see that the HGNN model
consistently outperforms the GNN model across all maps,
especially in the denser maps. This aligns with our
hypothesis that HGNNs are better able to capture complex
group interactions. The HGNN model also has a higher
success rate in the dense scenarios. This gap is particularly
pronounced on the Dense Warehouse map, where the
HGNN model has a success rate of 39.8% compared to the
GNN model’s 2.3%.

Attentional Analysis. To better understand the difference in performance of the two models, we
analyse the attention scores in the first layer of both the models. Figure 6 shows the distribution
of these attention scores over a sample instance of Dense Warehouse and Dense Maze maps.
The GNN model has a high concentration of attention scores in the higher-middle range, which leads
to a dilution of attention, resulting in very few agents receiving high attention. On the other hand,
the HGNN model has fewer agents in this range, allowing it to maintain more agents in the highest
attention score bin. This supports our hypothesis that GNNs struggle in high density scenarios due
to the dilution of attention scores, which our HGNN model is able to overcome.

4.3 HAND-CRAFTED SCENARIOS

We now analyse the two models on hand-crafted scenarios and showcase the limitations of GNNs
due to (i) attention dilution in dense scenarios and (ii) the inability to effectively capture group
interactions, which HGNNs are able to overcome since they do not rely on pairwise interactions.

Scenario 1. Since, in GNNs, the attention scores are computed in a pairwise manner, a high density
of agents in unimportant regions will lead to a dilution of attention. To illustrate this, we consider
the scenario shown in Figure 7 (left). We can create a sequence of scenarios by starting with 4
agents (agents 0-3 in groups 0-3, respectively) and sequentially adding agents 4-7 to group 3. We
focus on the first layer attention scores wrt. agent 0. By design, agent 0 primarily needs to attend to
agent 2 and, potentially, agent 1, as their respective greedy paths have intersections with agent 0’s.
On the other hand, the agents in group 3 are not expected to interfere with agent 0’s path, and thus,
increasing the number of agents in group 3 should not affect the attention distribution for agent 0.

Table 2 shows the coefficient of variation (CV) of the attention scores. The GNN model exhibits a
high variation in the attention scores as we increase the number of agents in less important regions,
leading to a dilution of the attention scores in the important regions. In contrast, the HGNN model
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Figure 7: Hand-crafted scenarios. The filled
circles represent the agent locations, while the
empty ones represent their targets. Scenario 1
(left): We form 4 groups of agents, shown by
different colours here. Scenario 2 (right): We
show the next greedy actions for the agents.

Table 2: CV of attention scores (in the first layer)
for agent 0 as we vary the number of agents from
4 to 8 (inclusive both) in the map described in
Figure 7 (left).

Method Grp. 0 Grp. 1 Grp. 2 Grp. 3

GNN 29.4% 20.0% 14.9% 39.2%
HGNN 6.0% 4.3% 7.4% 14.7%

Ratio 4.94 4.66 2.01 2.66

Table 3: Percentage Shapley values for the agents
with respect to agent 0 in Figure 7 (right).

Method Agt. 1 Agt. 2 Agt. 3 Agt. 4 Agts.
3 vs. 4

GNN 15.0% 60.3% 13.1% 11.6% +13%
HGNN 19.0% 59.6% 19.3% 2.1% +802%

exhibits a much lower variation, remaining relatively unaffected by the number of agents in group
3, as desired. We include more details on the attention scores in Appendix D.

Scenario 2. In this scenario, we aim to illustrate the ability of HGNNs to capture group interactions
as opposed to GNNs. Towards this end, we design the scenario shown in Figure 7 (right),
analysing how agents 1-4 influence agent 0. To quantify the influence, we make use of Shapley
values (Shapley, 1951; Lundberg & Lee, 2017), taking the mean of the absolute Shapley values for
each plausible action-class log-odds prediction.

By design, we expect the following influence ranking: Agent 2 > Agent 3 ≈ Agent 1 > Agent 4.
This is because agent 2’s next greedy action conflicts with agent 0’s. Agent 3’s greedy path will
want agent 1 to occupy this conflicting cell, leading to a group interaction effect and thus, a similar
high influence on agent 0’s actions. Since agent 2 is already moving away from agent 4, agent 4 is
expected to have a low influence. From a purely pairwise perspective, agents 3 and 4 have mirrored
start and goal locations wrt. agent 0, and thus, should have similar influence on agent 0’s actions.
However, due to group interactions, we expect agent 3 to have a higher influence than agent 4.

Table 3 shows the percentage Shapley values for the GNN and HGNN models. As expected, we
see that both models assign the highest influence to agent 2. For the GNN model, agents 1, 3 and 4
have a similar influence, with agent 3 having only 13% more influence than agent 4. This highlights
the inability of the GNN model to capture group interactions effectively. On the other hand, in the
HGNN model, agent 3 has a significantly higher influence (802% more) than agent 4, showcasing
the ability of HGNNs to capture group interactions and distinguish between the agents.

5 CONCLUSION

In this work, we explored MAPF as a representative multi-agent problem with complex interactions.
We proposed HMAGAT, an MAPF solver based on hypergraph neural networks (HGNNs), as
a solution to model higher order interactions. We empirically demonstrated that our approach
outperforms current state-of-the-art methods, which only consider pairwise interactions. HMAGAT
achieves superior performance to MAPF-GPT (85M), a 85× larger model, trained on 100× more
data. We perform further analyses to show that, indeed, the HGNNs help to capture group
interactions better than GNNs via explicit group modelling. Our results show how higher order
representational learning models can lead to improved model performance, while lowering the
sample complexity and model size, strongly motivating future research to explore hypergraph-based
methods for challenging multi-agent problems with highly coupled interactions. As our model
achieves SoTA performance with a significantly smaller parameter count than previous works, our
results demonstrate that better inductive biases, such as hypergraph-based interaction modelling, are
a complementary strategy to training larger models when tackling difficult multi-agent problems.
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Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the International Conference
on Artificial Intelligence and Statistics (AISTATS), 2011.

Guillaume Sartoretti, Justin Kerr, Yunfei Shi, Glenn Wagner, TK Satish Kumar, Sven Koenig, and
Howie Choset. Primal: Pathfinding via reinforcement and imitation multi-agent learning. IEEE
Robotics and Automation Letters (RA-L), 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforcement
learning for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

Lloyd S. Shapley. Notes on the N-Person Game — II: The Value of an N-Person Game. RAND
Corporation, Santa Monica, CA, 1951. doi: 10.7249/RM0670.

Alexey Skrynnik, Anton Andreychuk, Anatolii Borzilov, Alexander Chernyavskiy, Konstantin
Yakovlev, and Aleksandr Panov. Pogema: A benchmark platform for cooperative multi-agent
pathfinding. In Proceedings of the International Conference on Learning and Representation
(ICLR), 2025.

Roni Stern, Nathan Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne Walker, Jiaoyang Li,
Dor Atzmon, Liron Cohen, TK Kumar, et al. Multi-agent pathfinding: Definitions, variants, and
benchmarks. In Proceedings of Annual Symposium on Combinatorial Search (SoCS), 2019.

Nathan R. Sturtevant. Benchmarks for grid-based pathfinding. IEEE Transactions on Computational
Intelligence and AI in Games, 4(2):144–148, 2012. doi: 10.1109/TCIAIG.2012.2197681.

Pavel Surynek. An optimization variant of multi-robot path planning is intractable. In Proceedings
of the AAAI conference on artificial intelligence, volume 24, pp. 1261–1263, 2010.

11



Under review at the 7th International Workshop on Multi-Agent Pathfinding (AAAI 2026)

Yimin Tang, Xiao Xiong, Jingyi Xi, Jiaoyang Li, Erdem Bıyık, and Sven Koenig. Railgun: A unified
convolutional policy for multi-agent path finding across different environments and tasks. arXiv
preprint arXiv:2503.02992, 2025.

Rishi Veerapaneni, Qian Wang, Kevin Ren, Arthur Jakobsson, Jiaoyang Li, and Maxim Likhachev.
Improving learnt local mapf policies with heuristic search. In Proceedings of International
Conference on Automated Planning and Scheduling (ICAPS), 2024.

Rishi Veerapaneni, Arthur Jakobsson, Kevin Ren, Samuel Kim, Jiaoyang Li, and Maxim Likhachev.
Work smarter not harder: Simple imitation learning with cs-pibt outperforms large scale imitation
learning for mapf. In Proceedings of IEEE International Conference on Robotics and Automation
(ICRA), 2025.

Binyu Wang, Zhe Liu, Qingbiao Li, and Amanda Prorok. Mobile robot path planning in dynamic
environments through globally guided reinforcement learning. IEEE Robotics and Automation
Letters, 5(4):6932–6939, 2020. doi: 10.1109/LRA.2020.3026638.

Weizheng Wang, Aniket Bera, and Byung-Cheol Min. Hyper-samarl: Hypergraph-based
coordinated task allocation and socially-aware navigation for multi-robot systems. arXiv preprint
arXiv:2409.11561, 2024.

Xiao Wang, Hongrui Liu, Chuan Shi, and Cheng Yang. Be confident! towards trustworthy graph
neural networks via confidence calibration. 2021.

Yutong Wang, Bairan Xiang, Shinan Huang, and Guillaume Sartoretti. Scrimp: Scalable
communication for reinforcement-and imitation-learning-based multi-agent pathfinding. In 2023
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 9301–9308.
IEEE, 2023.

Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz. Coordinating hundreds of cooperative,
autonomous vehicles in warehouses. AI Magazine, 29(1):9, Mar. 2008. doi: 10.
1609/aimag.v29i1.2082. URL https://ojs.aaai.org/aimagazine/index.php/
aimagazine/article/view/2082.

Chenxin Xu, Maosen Li, Zhenyang Ni, Ya Zhang, and Siheng Chen. Groupnet: Multiscale
hypergraph neural networks for trajectory prediction with relational reasoning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6498–6507, 2022.

Tareq Zaman, Nicolas Nytko, Ali Taghibakhshi, Scott MacLachlan, Luke Olson, and Matthew West.
Generalizing lloyd’s algorithm for graph clustering. SIAM Journal on Scientific Computing, 46
(5):A2819–A2847, 2024. doi: 10.1137/23M1556800. URL https://doi.org/10.1137/
23M1556800.

Delin Zhao, Yanbo Shan, Chang Liu, Shenghang Lin, Yingxin Shou, and Bin Xu. Sdhn: Skewness-
driven hypergraph networks for enhanced localized multi-robot coordination. arXiv preprint
arXiv:2504.06684, 2025.

Tianyu Zhu, Xinli Shi, Xiangping Xu, Jie Gui, and Jinde Cao. Hypercomm: Hypergraph-based
communication in multi-agent reinforcement learning. Neural networks: the official journal of
the International Neural Network Society, 178:106432, 2024.

A FURTHER DETAILS FOR HMAGAT

A.1 TEMPERATURE SAMPLING MODULE

We consider a lightweight temperature sampling module to predict the softmax temperature τ . To
train this module, we consider an actor-critic setup. For each agent, the actor takes the log-odds
predicted by the model, the number of agents in its FOV, the number of obstacles in its FOV, and
the distance and relative positional vector to its goal as input, passing them through a 2-layer MLP
with ReLU activations, outputting a scalar τ ∈ [0.5, 1.0] for each agent, by applying a sigmoid
activation and scaling the output. The critic takes the same input, passing them through a 2-layer
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Algorithm 2 SHORTESTDISTANCEBASEDHYPERGRAPHS

input: grid G = (V,E), agents A, agent positionsQ
params: communication radius Rcomm, dynamic slack variable ϵ
1: E ← ∅ ▷ set of hyperedges
2: for v ∈ A do
3: H ← {v} ▷ head of hyperedge
4: AC ← {u ∈ A | ∥Q[u]−Q[v]∥ ≤ Rcomm} \ {v} ▷ communicating agents
5: EC ← ∅ ▷ initialize candidate edges
6: for u ∈ AC do
7: for w ∈ AC \ {u} do
8: if dist(Q[v],Q[u]) + dist(Q[u],Q[w]) ≤ max(dist(Q[v],Q[u]), dist(Q[v],Q[w])) + ϵ then
9: EC ← EC ∪ {(u,w), (w, u)}

10: C ← GETCLIQUES(AC , EC )
11: for T ∈ C do
12: E ← E ∪ {(T ∪ {v}, H)}
13: return E

Algorithm 3 GRIDCOLOURING

input: grid G = (V,E)
params: number of initial colours k′, number of final colours k, number of iterations n
1: R′, C′ ← LLOYDSONGRAPH(G, k′, n) ▷ Rigid colouring from Lloyd’s
2: C ← k-most populous colours in R′ ▷ We use k = k′/2
3: R← {(v, c) ∈ R′ | c ∈ C} ▷ Discard least populous colourings
4: U ← V \ {v | ∃c ∈ C.(v, c) ∈ R} ▷ Initial uncoloured vertices
5: while ∃v ∈ V . !∃c ∈ C . (v, c) ∈ R do ▷ While there are uncoloured vertices
6: Rold ← R
7: for u ∈ U do
8: R← R ∪ {(u, c) ∈ V × C | ∃v ∈ neigh(u) . (v, c) ∈ Rold} ▷ Take neighbours’ colours
9: return R,C ▷ Less rigid colouring

MLP with ReLU and outputs a scalar value for the instance by averaging the outputs for all agents.
We consider a simple reward function, where we give a reward of +1 to each agent if all agents reach
their goals, else a reward of −1, in order to encourage higher success rates, while also encouraging
shorter paths.

We train this module using the PPO algorithm (Schulman et al., 2017), with a clip ratio of 0.2, a
discount factor of 0.99, and a GAE λ of 0.95. We use a learning rate of 3× 10−4 and a batch size of
64. We train this module for 50 epochs, requiring about 3 hours on an NVIDIA L40S GPU. These
are trained on 85 instances, each with 32 agents, on a 20+80% combination of Random and Maze
maps, with 15 separate instances for validation.

A.2 HYPERGRAPH GENERATION

Colouring-based Hypergraphs. Algorithm 3 shows the pseudocode for generating a colouring
for a given grid using Lloyd’s algorithm, with overlapping regions. Algorithm 4 shows the
pseudocode for generating a colouring using k-means clustering, with overlapping regions.

Lloyds versus k-means. Lloyd’s algorithm for graphs employs Floyd-Warshall’s algorithm to
update centroids, which has a time complexity of O(

∑
c∈C |sc|3), where sc is the size of cluster c.

The cluster sizes can be imbalanced, leading to a worst-case time complexity of O(|V |3). In contrast,
k-means clustering has a time complexity of O(

∑
c∈C d × |sc|) for the updates, because it only

requires computing the mean of the features of the vertices in the cluster, where d is the feature
dimension. Since, in our case, d = k (the number of clusters) and

∑
c∈C |sc| = |V |, this complexity

becomes O(k × |V |).

Shortest Distance-based Hypergraphs. Algorithm 2 shows the pseudocode for generating
shortest distance-based hypergraphs. In order to get faster clique computations, we simply sample
cliques by randomly selecting an agent from the communicating agents, and then greedily adding
agents to the clique by checking if the new agent is connected to all the existing agents in the clique.
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Algorithm 4 KMEANSCOLOURING

input: grid G = (V,E)
params: number of initial colours k′, number of final colours k, number of iterations n
1: X ← 0|V |×k′ ▷ Initial colour vectors
2: X ← Randomly assign k′ vertices to unique colours (i.e. set X[v, c] := 1) ▷ Random seeding
3: for i ∈ [1, n] do ▷ Diffuse colours
4: Xold ← X
5: for v ∈ V do
6: X[v]←

∑
u∈neigh(v) Xold[u]

7: X[v]← X[v]/∥X[v]∥1 ▷ Mean of neighbours’ colours
8: R′, C′ ← KMEANS(X, k′, n) ▷ Rigid colouring from k-means
9: C ← k-most populous colours in R′ ▷ We use k = k′/2

10: R← {(v, c) ∈ R′ | c ∈ C} ▷ Discard least populous colourings
11: U ← V \ {v | ∃c ∈ C.(v, c) ∈ R} ▷ Initial uncoloured vertices
12: while ∃v ∈ V . !∃c ∈ C . (v, c) ∈ R do ▷ While there are uncoloured vertices
13: Rold ← R
14: for u ∈ U do
15: R← R ∪ {(u, c) ∈ V × C | ∃v ∈ neigh(u) . (v, c) ∈ Rold} ▷ Take neighbours’ colours
16: return R,C ▷ Less rigid colouring

Table 4: Map details.

Map Size (H × W) Obstacle Density Step Limit Time Limit

Sparse Maze 21× 21 8− 24% 256 60 s
Empty Room 23× 23 ~20% 256 60 s

Sparse Warehouse 22× 23 ~32% 256 60 s
Dense Maze 21× 21 30− 40% 512 60 s
Dense Room 23× 23 34− 42% 512 60 s

Dense Warehouse 16× 23 ~43% 512 60 s
ost003d 194× 194 ~65% 1024 90 s
lak303d 194× 194 ~61% 1024 90 s
Paris 256× 256 ~28% 1024 90 s
Berlin 256× 256 ~27% 1024 90 s

We repeat this process until we have each communicating agent in at least one clique, each time
selecting one of the non-selected agents as the starting agent. We repeat the process if we have
less than 5 total cliques, in order to ensure that we have a reasonable number of sampled cliques
even in highly connected distance graphs. To lower the computation time, we only generate new
hypergraphs every 5 timesteps.

B RADAR PLOT DETAILS

Figure 1c shows the performance of various learning-based MAPF solvers on the small maps, i.e.
on Sparse Maze, Empty Room, Sparse Warehouse, Dense Maze, Dense Room and
Dense Warehouse. More details on the maps can be found in Appendix C. Figure 8 shows more
detailed results on these maps. We define the metrics used in the radar plot as follows:

Sol. Quality =

{
SoCbest/SoC
0 , if no solution found (5)

Scalability =

{ runtime(#agents)
#agents · Min. #agents

runtime(Min. #agents)
0 , if timed out

(6)
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C FURTHER EVALUATION RESULTS

C.1 MORE EVALUATION MAPS

We provide further evaluation results on more maps with more methods here. Table 4 shows the
details for each map. ost003d and lak303d are Game maps, while Paris and Berlin are
City maps, all taken from the MovingAI pathfinding repository (Sturtevant, 2012).
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Figure 8: Evaluation of the learning-based MAPF policies on the small maps, averaged over 128
instances. Transparent regions represent 95% confidence intervals. SoC is reported relative to
lacam3 (w/ 30 s time limit).

C.2 COMPARISON OF HMAGAT VARIANTS

Small maps. Figure 8 shows the results on the small maps. On the sparse maps, all HMAGAT
variants perform nearly identically in terms of SoC. They also have similar success rates, except
for k-means-based HMAGAT on Sparse Warehouse, where it has slightly worse success rate.
k-means-based and Lloyds-based HMAGAT have similar runtimes, while the shortest-distance based
HMAGAT is slightly slower, with the gap being more pronounced the more agents there are. This
is expected because unlike the colouring-based methods that compute the colouring irrespective of
the agent configurations, the shortest-distance based method’s time complexity increases with the
number of agents.

On the Dense Maze and Dense Room maps, all HMAGAT variants again have similar SoC and
success rates. However, on Dense Warehouse, the shortest-distance based HMAGAT has a worse
SoC, and both the shortest-distance based and Lloyds-based HMAGAT have slightly worse success
rates. In these scenarios, the shortest-distance based HMAGAT is again the slowest, with the gap
being much more pronounced. This is expected because unlike the colouring-based methods that
only need to compute the colouring once, the shortest-distance based method needs to compute
the shortest distances every 5 timesteps, which means that for the more complex maps, where the
agents take longer to reach their goals, the overhead of computing the shortest distances is more
pronounced.

Large maps. Figure 9 shows the results on the large maps. On the Game maps, again all HMAGAT
variants perform nearly identically in terms of SoC and all have perfect success rates. k-means-
based HMAGAT is the fastest, with the shortest-distance based HMAGAT being slightly slower, with
the gap increasing with the number of agents. Lloyds-based HMAGAT is the slowest, although the
gap does not increase with the number of agents. This is expected because the colouring is computed
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Figure 9: Evaluation of the learning-based MAPF policies on the large maps, averaged over 128
instances. Transparent regions represent 95% confidence intervals. SoC is reported relative to
lacam3 (w/ 30 s time limit).

only once and is independent of the number of agents. Lloyds is slower than k-means as noted in
Appendix A and this becomes apparent here, where |V | is large.

On the City maps, k-means-based and shortest-distance based HMAGAT perform nearly identically
in terms of SoC and have perfect success rates. Lloyds-based HMAGAT, on the other hand, times
out in these scenarios. This is because |V | here is even larger than the Game maps. We see
that the shortest-distance based HMAGAT is faster than k-means-based HMAGAT here, although the
gap decreases with the number of agents. This is expected because the total time complexity of
hypergraph generation in shortest-distance based method depends on the number of time steps and
the number of agents, while for the k-means-based method, it depends on |V |. Since we are dealing
with a large and sparse map, |V | is large leading to a higher time complexity for the k-means-based
method, but not for the shortest-distance based method, which is independent of |V | (assuming the
number of time steps as an independent variable). However, as the number of agents increases, the
time complexity of the shortest-distance based method increases, leading to a decrease in the gap.

We see that k-means-based HMAGAT obtains a good balance between performance and speed across
all maps, and so, for the rest of the analysis, we focus on this variant.

C.3 COMPARISON OF HMAGAT WITH OTHER METHODS

Small maps. Figure 8 shows the results on the small maps. HMAGAT consistently outperforms
MAGAT, MAPF-GPT-DDG, MAPF-GPT (6M), MAPF-GPT (2M), SSIL, SCRIMP and DCC in
terms of SoC and success rates across all maps and agent counts. The only exception being
MAPF-GPT-DDG and MAPF-GPT on Dense Room, where they have higher success rates, but
still have worse SoC.

On the sparse maps, HMAGAT and MAPF-GPT (85M) achieve similar SoC, with HMAGAT having
slightly worse performance on the highest agent count scenario for Empty Room and Sparse
Warehouse, but better performance on Sparse Maze. On the Dense Maze map, HMAGAT
consistently outperforms MAPF-GPT (85M), with the gap increasing a fair amount for the highest
agent count scenario. For the Dense Room and Dense Warehouse maps, MAPF-GPT (85M)
has a slightly better SoC, except for the highest agent count scenario on Dense Warehouse,
where HMAGAT has a better SoC. In this scenario, HMAGAT has a significantly higher success rate,
achieving 89.1% success rate compared to 4% for MAPF-GPT (85M).
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Notably, HMAGAT is significantly faster than MAPF-GPT (85M) across all maps and agent counts,
and has a lower slope in the runtime vs. number of agents plots.

Large maps. Figure 9 shows the results on the large maps. HMAGAT consistently outperforms
MAGAT, MAPF-GPT (85M), MAPF-GPT-DDG, MAPF-GPT (6M), MAPF-GPT (2M), SCRIMP and
DCC. HMAGAT and MAGAT are the only two methods that are able to easily scale to these maps
and have perfect success rates across all maps and agent counts. SSIL achieves a similar SoC to
HMAGAT for the lower agent count scenarios, but seems unable to scale to various higher agent count
scenarios.

HMAGAT consistently achieves a Rel. SoC close to 1.0, i.e. it produces solutions close to lacam3’s
quality.

MAPF-GPT (85M) and MAPF-GPT-DDG. Andreychuk et al. (2025b) claim that
MAPF-GPT-DDG matches the performance of MAPF-GPT (85M), and, at times, even outperforms
it. However, in our experiments, we see that MAPF-GPT-DDG consistently underperforms
MAPF-GPT (85M), except for the large maps, where MAPF-GPT (85M) fails to scale. We
believe that this discrepancy is due to the fact that Andreychuk et al. (2025b) evaluate these
models without PIBT-based collision shielding (Okumura et al., 2022; Veerapaneni et al., 2024).
MAPF-GPT-DDG likely produces solutions with lower collisions, due to the finetuning, leading to
a better performance than MAPF-GPT (85M) when not using any advanced collision shielding. To
verify this, we evaluated MAPF-GPT-DDG and MAPF-GPT (85M) without PIBT-based collision
shielding on Sparse Maze, Empty Room and Sparse Warehouse maps with 128 agents
each. Table 5 shows the results. We see that MAPF-GPT (85M) struggles even on these sparse
maps and MAPF-GPT-DDG consistently outperforms it, verifying our hypothesis.

However, as seen in Figure 8, when using PIBT-based collision shielding, MAPF-GPT (85M)
consistently outperforms MAPF-GPT-DDG.

Table 5: Comparison of MAPF-GPT (85M) and MAPF-GPT-DDG without PIBT-based collision
shielding. Averaged over 128 instances, each with 128 agents.

Metric Method Sparse Empty Sparse
Maze Room Warehouse

Success Rate MAPF-GPT (85M) 6.3% 2.3% 39.1%
MAPF-GPT-DDG 76.6% 96.9% 99.2%

Rel. SoC MAPF-GPT (85M) 6.93± 0.24 5.81± 0.14 5.61± 0.23
(95% CI) MAPF-GPT-DDG 3.81± 0.20 3.02± 0.14 3.05± 0.11

C.4 HGNN VS GNN ON MAXIMUM AGENT DENSITY

Table 6 shows the performance of HGNN and GNN on different maps with the maximum agent
density with additional maps compared to Table 1. We see that HGNN consistently outperforms
GNN in terms of solution quality.

D FURTHER DETAILS ON HAND CRAFTED SCENARIOS

Scenario 1. To calculate a(l)i,j the attention a node i pays to an agent j in the l-th layer of HMAGAT,
we simply use the following sum:

a
(l)
i,j =

∑
e∈Γ(i)∧i∈H(e)∧j∈T (e)

α
(l)
ie α

(l)
ej (7)

We present the attention scores for the GNN and HGNN models in the first layer Tables 7 and 8. We
also present the attention scores averaged across all layers in Tables 9 and 10, with the coefficient
of variation in Table 11. We see that the HGNN model consistently has a lower coefficient of
variation across all groups, indicating that it is more robust to the increase in the number of agents
in low-importance regions.
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Table 6: Comparison of HGNN and GNN, corresponding to HMAGAT w/o embellishments and
MAGAT, on different maps with the maximum agent density. Results are over 128 instances per
map. Rel. SoC is the sum-of-costs relative to lacam3, for which we show the 95% confidence
intervals.

Metric Method Sparse Sparse Sparse
ost003d lak303d

Maze Warehouse Room
Success GNN 93.8% 96.9% 100.0% 100.0% 100.0%

Rate HGNN 93.0% 100.0% 100.0% 100.0% 100.0%

Rel. SoC GNN 1.99± 0.04 2.16± 0.04 1.86± 0.02 1.06± 0.00 1.05± 0.00
HGNN 1.91± 0.04 1.95± 0.02 1.69± 0.02 1.05± 0.00 1.04± 0.00

Metric Method Dense Dense Dense
Paris Berlin

Maze Warehouse Room
Success GNN 72.7% 2.3% 66.4% 100.0% 100.0%

Rate HGNN 75.8% 39.8% 75.0% 100.0% 100.0%

Rel. SoC GNN 2.07± 0.09 2.12± 0.10 2.63± 0.07 1.03± 0.00 1.02± 0.00
HGNN 1.79± 0.09 1.78± 0.08 2.35± 0.06 1.02± 0.00 1.02± 0.00

Table 7: GNN Attention scores in the first layer for agent 0 over the different groups in Figure 7
(left).

# Agents Group 0 Group 1 Group 2 Group 3

4 Agents 0.394750 0.257375 0.192023 0.155852
5 Agents 0.286059 0.234413 0.186970 0.292558
6 Agents 0.251166 0.202690 0.161970 0.384175
7 Agents 0.215447 0.172166 0.146812 0.465576
8 Agents 0.194606 0.159428 0.135639 0.510326

Table 8: HGNN Attention scores in the first layer for agent 0 over the different groups in Figure 7
(left).

# Agents Group 0 Group 1 Group 2 Group 3

4 Agents 0.024621 0.104523 0.493603 0.377252
5 Agents 0.027046 0.110814 0.583928 0.278213
6 Agents 0.024019 0.113196 0.603738 0.259047
7 Agents 0.023478 0.102690 0.571674 0.302157
8 Agents 0.023619 0.104273 0.564101 0.308007

Table 9: GNN Attention scores averaged across layers for agent 0 over the different groups in
Figure 7 (left).

# Agents Group 0 Group 1 Group 2 Group 3

4 Agents 0.170300 0.381573 0.190819 0.257309
5 Agents 0.130953 0.349720 0.188699 0.330629
6 Agents 0.117691 0.329456 0.171886 0.380967
7 Agents 0.109234 0.278605 0.164050 0.448111
8 Agents 0.099965 0.249049 0.156532 0.494454
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Table 10: HGNN Attention scores averaged across layers for agent 0 over the different groups in
Figure 7 (left).

# Agents Group 0 Group 1 Group 2 Group 3

4 Agents 0.103088 0.274550 0.305216 0.317146
5 Agents 0.119637 0.247633 0.350739 0.281991
6 Agents 0.118572 0.239537 0.334259 0.307632
7 Agents 0.120345 0.219097 0.329250 0.331308
8 Agents 0.117992 0.221249 0.319412 0.341347

Table 11: Coefficient of variation of the average-attention scores (across layers) when varying the
number of agents in group 3 in Figure 7 (left).

Method Group 0 Group 1 Group 2 Group 3

GNN 21.85% 16.87% 8.63% 24.54%
HGNN 6.24% 9.39% 5.17% 7.26%

GNN / HGNN 3.5012 1.7957 1.6686 3.3794

We have seen that the HGNN model is able to handle the increase in the number of agents in less
important regions. However, we also need to ensure that when the number of agents in the important
regions increases, we do not see a significant decrease in the attention scores for this region. Towards
this end, we construct a scenario as shown in Figure 10.

In contrast to the scenario described in Figure 7 (left), we now have agent 0’s greedy path
overlapping with paths of agents in group 3, i.e the group for which we vary the number of agents.
Thus, agent 0 is expected to primarily attend to agents in group 3. Table 12 shows the HGNN
attention scores for this scenario. We see that the attention scores for group 3 stay high as we vary
the number of agents, indicating that the HGNN model is able to maintain high attention scores for
the important region.
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Figure 10: Hand-crafted scenario to illustrate the effect of increasing number of agents in important
regions on the attention scores. Filled circles represent the agent locations, while the empty ones
represent their targets. Agents are grouped via colours, with groups 0 to 2 consisting of their
corresponding agents only, while group 3 consists of agents 3 to 7. We start with the agents
numbered from 0 to 3, and add more agents to group 3, in order of their numbering.

Scenario 2. While calculating the Shapley values, we average the scores between the ones
computed on the original map shown in Figure 7 (right) and map formed by horizontally flipping it,
in order to reduce the effect of any asymmetries learnt by the models.
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Table 12: HGNN Attention scores in the first layer over groups.

# Agents Group 0 Group 1 Group 2 Group 3

4 Agents 0.000949 0.001296 0.001605 0.996150
5 Agents 0.002126 0.000187 0.000252 0.997436
6 Agents 0.002358 0.000235 0.000335 0.997073
7 Agents 0.002095 0.002070 0.002800 0.993035
8 Agents 0.005777 0.003658 0.005720 0.984845
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