
Policy-Aware Learning of Transition Models Using a Causal Approach

Anonymous submission

Abstract

Predicting what will happen when a reinforcement learning
(RL) agent is deployed to the real world is important to pro-
vide safety guarantees about its behaviour. In some cases,
the agent’s training experience can be significantly different
from the deployment experience. Thereby, learning a transi-
tion model with the unadjusted training data can lead to poor
performance when predicting the agent’s behaviour under the
optimal policy. To mitigate this issue, we propose a policy
matching (PM) algorithm based on the causal Bayesian net-
work factorisation. It adjusts the transition model learning by
taking into account the difference between agent’s interven-
tions at training and under the optimal policy. Experiments in
popular RL environments demonstrate that the PM method
improves the transition model performance at deployment
when the model misgeneralisation problem is otherwise se-
vere.

1 Introduction
Reinforcement learning (RL) (Sutton and Barto 2018) is a
field of artificial intelligence aimed at solving sequential
decision-making problems. In off-policy RL (Watkins and
Dayan 1992; Mnih et al. 2013; Van Hasselt, Guez, and Sil-
ver 2016), agents are trained by taking many suboptimal ac-
tions to find the best policy. When deployed, they make only
optimal decisions, thereby making their deployment experi-
ence different from the training one.
In order to provide guarantees about the agent’s safety, one
needs to know how the agent will interact with the environ-
ment when executing its optimal policy (Thomas and Brun-
skill 2016). This requires learning a transition model, which
predicts the next state given the current action and state.
When an agent’s deployment data is not available, a standard
approach is to fit the model using its training data. How-
ever, this method is naive since it emphasises all transitions
equally and does not account for a change in the structure of
policy intervention (Pearl 2009). Instead, one can make the
transition dynamics learning focus only on the experience
which is consistent with the optimal policy.
To illustrate, consider an example when an agent aims to
reach a goal from a start position as soon as possible while
avoiding the cliff (Figure 1). At training, an off-policy RL
agent follows a lot of suboptimal paths, such as the red one.
When fitting a perfect world model is difficult, the dynamics

model learning will mostly focus on minimising prediction
error for suboptimal transitions as they are encountered fre-
quently (Ma et al. 2023). This can happen at the expense of
having high accuracy for optimal path transitions (the blue
line), which leads to unreliable predictions at the agent’s de-
ployment.

Start GoalCLIFF

Optimal Path Suboptimal Path

Figure 1: RL Cliff-Walking environment with optimal (blue)
and suboptimal (red) paths.

The key idea of our proposed method called ”policy
matching” (PM) is to make the best use of the agent’s train-
ing data to optimise the model’s performance under the opti-
mal policy. Our approach shares similarities with the previ-
ous works (Ma et al. 2023) focused on learning transition
models for more efficient policy improvement in model-
based RL. In contrast to Ma et al. (2023), we do not as-
sume access to the data that comes from the optimal policy
interventions. This reflects real-life scenarios in healthcare
(Jiang and Li 2015; Thomas and Brunskill 2016; Rebello
et al. 2023), where the off-policy evaluation of a treatment
assignment can be too risky or costly. We resolve the issue
of unavailable optimal policy data by adjusting the train-
ing data based on the causal Bayesian network factorisation
(Pearl 2009; Koller and Friedman 2009). Our method adapts
the loss function at the transition model learning so that, in
expectation, this loss becomes more similar to the loss at de-
ployment.
First, we show evidence of misgeneralisation in standard
RL environments when off-policy methods are used to train
agents. This is demonstrated by the reduced accuracy of
the transition model when used at deployment. Secondly,
we provide theoretical foundations for why policy match-
ing helps mitigate the distribution mismatch between train-

ing and deployment data. Finally, we showcase that PM im-
proves the transition prediction at deployment in the Lu-
nar Lander environment, in which the misgeneralisation of a
naive model is especially high. The method performs simi-
larly to the naive approach in the Cart Pole environment due
to a less severe issue of model misgeneralisation.

2 Preliminaries
In this section, we introduce concepts from reinforcement
learning and causality which are important for our work.

Reinforcement learning
Fundamentals. Consider a Markov Decision Process
(MDP) defined as a tuple (S, A, R, P, R, ρ, γ), where St

is the state at time t, S is the state space, At is the action at
time t, A is the action space, Rt is the reward signal at time
t, R is the reward space, P : S ×A×S → [0, 1] is the tran-
sition probability function, R : S ×A → R is the expected
reward function, ρ : S → [0, 1] is the initial state distri-
bution and γ ∈ (0, 1] is the discount rate. By formalising
a sequential decision-making problem as an MDP, one can
apply reinforcement learning algorithms to find an optimal
policy π(At|St), where π : S×A → [0, 1] is the probability
of taking an action in a given state (Sutton and Barto 2018).
RL methods are aimed at finding a policy π that maximises
the action-state value function:

Qπ(s, a) = Eπ

[
T−1∑
t=0

γtRt+1|St = s,At = a

]
, (1)

which is an expected sum of discounted rewards when an
agent starts in state s, takes an actions a and follows the pol-
icy π thereafter. This optimisation often requires two steps:
policy evaluation and policy improvement. At policy evalu-
ation, a policy π is evaluated by estimating Qπ(s, a). Then,
if there are any states in which a policy can be changed to in-
crease Qπ(s, a), those changes are applied to produce a new
improved policy π̃. The two steps are repeated iteratively
until convergence and the optimal policy π∗ is returned. The
optimal policy is defined as:

π∗(at | st) =
{
1, if at = argmaxa′ Qπ∗(st, a

′),
0, otherwise

(2)

Off-policy reinforcement learning. Off-policy RL meth-
ods rely on the idea of learning an optimal (target) policy
π∗(At|St) based on interactions with the environment using
another, behaviour policy bt(At|St), which is defined as

bt(at | st) =

1− εt +

εt
|A|

, if at = argmaxa′ Qt(st, a
′),

εt
|A|

, otherwise,

(3)
where Qt(s, a

′) is the agent’s estimate of the action-state
value function at time t, εt ∈ [0, 1] (exploration rate) is the
probability of taking a random action at time t and |A| is the
number of possible actions. In word s, the behaviour policy

allows us to test with probability εt whether seemingly sub-
optimal actions are actually optimal. In practice, εt is often
set to a high value in the beginning of training and decays
towards some value εmin as the agent converges to an opti-
mal policy.
The fundamental off-policy method is Q-learning (Watkins
and Dayan 1992), which is often used for MDPs with small
and discrete action and state spaces. When those spaces are
large or the state space is continuous, one needs to use ap-
proximation methods such as deep learning (LeCun, Bengio,
and Hinton 2015). For example, a Deep Q-network (DQN)
method represents the action-state value function as a neural
network M : S → R|A| (Mnih et al. 2013). A Double Deep
Q-network (DDQN) algorithm enhances DQN by improv-
ing learning stability and increasing accuracy of Qπ(s, a)
estimate (Van Hasselt, Guez, and Silver 2016) Finally, a
Deep Deterministic Policy Gradient (DDPG) method allows
to perform off-policy learning when both state and action
spaces are continuous (Lillicrap et al. 2015).
In contrast to on-policy RL, where the behaviour and target
policy are the same, off-policy methods allow bt(At|St) to
perform suboptimal actions with non-zero probability at all
times (Watkins and Dayan 1992). Thereby, the agent’s train-
ing data Dtrain can contain many suboptimal actions and may
not be a good representation of the experience during op-
timal policy deployment Ddeploy. The distance between the
training distribution Dtrain and the deployment distribution
Ddeploy can be too large, making the naive use of Dtrain sub-
optimal when training an MDP transition model.

Causality
The framework of causality provides concepts such as a
causal graph and Bayesian factorisation which can be used
to analyse the effects of interventions on the data-generating
process (Pearl 2009). A causal graph (also called causal
Bayesian network) is a directed acyclic graph (DAG) G =
(V, E), where each node Vi ∈ V represents a random vari-
able, and each directed edge (Vi → Vj) ∈ E indicates a
direct causal effect from variable Vi to variable Vj . For each
random variable Vj , one can identify a set of its causal par-
ents PAj , which is defined as the set of random variables
such that (Vi → Vj) ∈ E ∀Vi ∈ PAj . Figure 2 shows how an
MDP transition model can be represented as a causal graph,
in which the current state St and action At are considered
exogenous and they are causal parents of the next state St+1.

At

St

St+1

Figure 2: Causal graph of the MDP transition model,
where St and At are assumed to be exogenous.

Knowing the causal parents of each random variable al-
lows us to represent a joint distribution of V1, ..., Vn using

the causal Bayesian network factorisation:

P(V1, ..., Vn) =

n∏
i=1

P(Vi | PAi), (4)

which typically provides a more compact representation.
When a reinforcement learning agent interacts with the en-
vironment using a policy π(i) (Figure 3), the transition tuple
(St, At, St+1) follows a distribution D(i). In general, inter-
ventions induced by two distinct policies π(i) and π(j) imply
a mismatch between D(i) and D(j). When a transition model
is learned using the data generated by a behaviour policy
bt, the model’s predictions of deployment experience can be
very inaccurate in off-policy RL because bt is different from
the deployed policy π∗.

At

St

St+1

π(i)

Figure 3: Causal graph of the MDP transition model un-
der the intervention induced by the policy πi. Action At

is now a function of the current state St.

3 Policy Matching
In this section, we describe the policy matching (PM) al-
gorithm used to estimate the transition model of a Markov
Decision Process. This method optimises the model’s per-
formance in the data under the intervention of an optimal
policy π∗. To justify our proposed algorithm, we use the
theory of change of measure and causal Bayesian network
factorisation.

Algorithm Outline
Assume we have access to the transition training data
of an off-policy reinforcement learning agent Dtrain =
⟨s0, a0, s1⟩, ⟨s1, a1, s2⟩, ..., ⟨sT−1, aT−1, sT ⟩. This data was
generated by the agent’s interventions in the MDP using a
behaviour policy bt with the exploration rate εt ∈ [εmin, 1].
We assume εmin > 0, so the agent never takes an optimal
action with probability 1 during training. While we do not
have access to bt, we know the optimal policy π∗ and its
corresponding action-state function Qπ∗(s, a). The goal is
to predict the agent’s transitions when it executes π∗. We
are not allowed to deploy the optimal policy to generate ad-
ditional data, e.g. for safety or financial reasons.
In order to predict transitions, one needs to estimate a transi-
tion model f : S×A → S using a supervised learning algo-
rithm by minimising an empirical loss function L : R×R →
R. We propose to use the policy matching (PM) procedure
to achieve this, which implies calculating the empirical loss
function L as:

L(f,Dtrain) =
1

T

T−1∑
t=0

wtL(ŝt+1, st+1), (5)

where wt = 1{argmaxa′ π∗(a′|st) = at} is the policy
match indicator, ŝt+1 = f(st, at) is the next state prediction
and L(ŝt+1, st+1) ≥ 0 is the sample loss. The key idea is to
ignore the sample loss for the state-action pair ⟨st, at⟩ in L
if the action at is not consistent with the optimal policy π∗.
Finally, the transition model f is learned by minimising L in
the training data Dtrain:

f̂ = argmin
f∈F

L(f,Dtrain), (6)

where F is the space of transition models and f̂ is the
learned transition model. The proposed method is sum-
marised in Algorithm 1.

Algorithm 1: Transition Model Learning via Policy Match-
ing (PM)

Input: Agent’s training data Dtrain = ⟨s0, a0, s1⟩,
⟨s1, a1, s2⟩, ..., ⟨sT−1, aT−1, sT ⟩ and optimal policy π∗

1: Select a transition model f : S ×A → S which outputs
the next state prediction ŝt+1

2: Choose a sample prediction loss L(ŝt+1, st+1) ≥ 0
3: for t = 0, ..., T − 1 do
4: wt = 1{argmaxa′ π∗(a′|st) = at} (PM)
5: end for
6: Define the empirical loss function as:

L(f,Dtrain) =
1
T

∑T−1
t=0 wtL(ŝt+1, st+1)

7: Learn the transition model f by minimising L in Dtrain:

f̂ = argmin
f∈F

L(f,Dtrain)

8: return f̂

Theoretical Foundations
When learning a transition model, we have the following
optimisation problem:

min
f

EDdeploy [L(f(St, At), St+1)] , (7)

where L : S × S → R is the loss function and Ddeploy is the
data distribution at optimal policy deployment. In practice,
the expected loss function is approximated by the empirical
loss function L as shown in the policy matching algorithm.
When there is no access to data sampled from Ddeploy, we
can only use the data from the training distribution Dtrain
for the model learning. Using the Radon-Nykodym theorem
(Tao 2011), we can change the measure of the expectation
in Equation 7 and represent the optimisation problem as fol-
lows:

min
f

EDtrain

[
Pdeploy(St, At, St+1)

Ptrain(St, At, St+1)
L(f(St, At), St+1)

]
(8)

The causal Bayesian network factorisation im-
plies that the joint distribution can be decomposed as
P(St+1, At, St) = P(St)π(At|St)P(St+1|At, St). This can
be applied to the joint distributions inside the expectation

since the MDP transition data can be represented as a
causal graph (Figure 4). Because the underlying transition
dynamics at training and deployment Ptrain(St+1 | At, St)
and Pdeploy(St+1 | At, St) are the same, we get a simplified
problem in Equation 9.

At

St

St+1

bt

(a)

At

St

St+1

π∗

(b)

Figure 4: MDP transition models represented as causal
graphs: (a) MDP transition model under the intervention of
the behaviour policy bt(At|St) and (b) transition model un-
der the intervention of the optimal policy π∗(At|St).

min
f

EDtrain

[
π∗(At|St)

bt(At|St)

Pdeploy(St)

Ptrain(St)
L(f(St, At), St+1)

]
(9)

This equation provides us with the method to reweight
each transition ⟨St, At, St+1⟩ in the training loss function.
However, we need to estimate the unknown marginal dis-
tributions of the state under training and deployment distri-
bution (Ptrain(St) and Pdeploy(St)), which is typically hard.
However, if the term inside the expectation of Equation 7 is
close to being independent of St, we can replace the objec-
tive function with the expected loss conditional on St. As
a result, we can remove the ratio of marginal distributions
Pdeploy(St)
Ptrain(St)

and get the following problem:

min
f

EDtrain

[
π∗(At|St)

bt(At|St)
L(f(St, At), St+1) | St

]
(10)

Since we assume access to π∗(At|St), the only unknown
in Equation 10 is the behaviour policy bt(At|St), which can
be estimated from observed training data Dtrain. Under spe-
cific conditions, we can avoid estimating bt(At|St) to solve
the optimisation problem. The justification for that is pro-
vided in Theorem 3.1 and Corollary 3.1.
Theorem 3.1 (Upper Bound of the Expected Loss). Denote
the total number of discrete actions available in the envi-
ronment as |A|. Also, define a minimum exploration rate at
training as εmin > 0, such that bt(At|St) ≥ εmin

|A| . Then:

EDtrain

[
π∗(At|St)

bt(At|St)
L(f(St, At), St+1) | St

]
≤

|A|
εmin

EDtrain [π
∗(At|St)L(f(St, At), St+1) | St] (11)

In off-policy reinforcement learning, it is common that
εmin > 0 since the behaviour policy does not need to con-
verge to an optimal one.
Corollary 3.1 (Problem Equivalence). Given the conditions
of Theorem 3.1, solving the following optimisation problem:

min
f

EDtrain [π
∗(At|St)L(f(St, At), St+1) | St] (12)

is equivalent to minimising the upper bound of the objective
in Equation 10.

Ultimately, the proposed policy matching procedure (Al-
gorithm 1) solves the following optimisation problem:

min
f

EDtrain [π
∗(At|St)L(f(St, At), St+1)] , (13)

for which solution can be close to the solution in Equa-
tion 12. Since moving from Equation 9 to Equation 13 re-
quires adding and removing the conditioning on St, the ef-
fect of this on the policy matching accuracy remains to be
studied. Importantly, our approximations lead to a PM algo-
rithm which does not require estimating bt(At|St) and the
marginal distributions of St.

4 Experimental Evaluation
In order to evaluate the policy matching algorithm, we per-
form transition model learning in popular RL environments.

RL environments and algorithms. We use two RL envi-
ronments with continuous state space and discrete actions
from the Gymnasium package (Towers et al. 2024): Lunar
Lander and Cart Pole. In both environments, we use default
settings. We use a DDQN method (Van Hasselt, Guez, and
Silver 2016) over 600 episodes. We train DDQN agents us-
ing a Q-network Q : S → A with two 128-node hidden
layers. At the beginning of training, εt is 1 and it is decayed
exponentially. We perform experiments with different ran-
dom seeds and we iterate over 6 different ϵmin (0.01, 0.11,
0.21, 0.31, 0.41 and 0.51). The summary of RL settings can
be found in Table 1. We store the RL training and deploy-
ment transition data only if its learned policy is optimal. We
consider a policy optimal if it generates the average episodic
reward of at least 200 and 195 over 100 episodes in Lunar
Lander and Cart Pole respectively.

Transition model. In order to estimate a transition model
f , we use one of the tree-based methods as they are the most
suitable for tabular transition data in our RL experiments
(Grinsztajn, Oyallon, and Varoquaux 2022; Shwartz-Ziv and
Armon 2022). We fit a random forest (RF) model (Ho 2002)
since it is less prone to overfitting than gradient-boosting
methods (Chen and Guestrin 2016; Ke et al. 2017) due to its
lower variance. We use simple hyperparameter settings (100
trees) since this proves to be enough to fit the training data
well.

Metrics. The coefficient of determination (Wright 1921)
is a standard regression metric and is used to measure the
accuracy of a transition model:

R2 = 1−
∑T−1

t=0 (yt − ŷt)
2∑T−1

t=0 (yt − ȳ)2
(14)

Its value is 1 when the model fits data perfectly and can be
arbitrarily low, The R2 is zero if the prediction performance
is the same as if we used the average of the target (ȳ). Max-
imising R2 is equivalent to minimising the mean squared
error (MSE) 1

T

∑T−1
t=0 (yt − ŷt)

2, but we prefer to report R2

because it scales MSE by the variance of the target. We also
measure the transition model misgeneralisation score (MS)
as:

MS = R2(f̂ , Dtrain)−R2(f̂ , Ddeploy), (15)

where f̂ is trained using only Dtrain. This metric quantifies
how difficult it is for the model f̂ to generalise to deploy-
ment data. Further, we denote R2(f̂ , Dtrain) as R2

train and
R2(f̂ , Ddeploy) as R2

deploy to be concise.

Results
After training DDQN agents, we use their training data to
fit transition models using a naive approach (no data adjust-
ment) and the proposed policy matching method. We remove
experiments in which R2 in deployment data is negative,
which implies extremely high misgeneralisation. This hap-
pens in less than 1% and 3% experiments in Lunar Lander
and Cart Pole respectively. After this filtering, we have 26
experiments per εmin in Lunar Lander and 58 experiments
per εmin in Cart Pole. For both RL environments, we esti-
mate the severity of misgeneralisation by calculating the MS
based on the naive transition model learning. The higher it
is, the worse the model generalises to the deployment data.
Then, we assess the quality of the policy matching method
by comparing R2

deploy of the naive and PM transition models.
The high percentage of large misgeneralisation scores

(top chart in Figure 5) of a naive model shows that the mis-
generalisation problem is significant in the Lunar Lander.
This motivates the need to adapt training data to match the
deployment data using our policy matching algorithm. In-
deed, the bottom chart in Figure 5 demonstrates a consistent
outperformance of the proposed PM method when compared
to the naive approach. The distribution of R2

deploy is more
concentrated in the region closer to 1 when using model
training via policy matching. Hence, we conclude that our
approach improves deployment experience prediction accu-
racy in this environment. The results for Cart Pole suggest
less clear evidence of misgeneralisation (Figure 6) as the
majority of MC scores are below 0.1. As a result, our PM
approach does not provide improvements and performs sim-
ilarly to the naive method.

Sensitivity to εmin. We also study the sensitivity of our re-
sults to a minimum exploration rate. Interestingly, we notice
that higher εmin tends to imply a higher misgeneralisation
score of a naive model (Figure 7). Since the average explo-
ration rate is linearly dependent on the minimum exploration
rate (see Figure 10), this may imply that the more the agent
takes random actions at training, the more different the de-
ployment experience is. However, Figure 9 contradicts this
interpretation as there is no clear relationship between the
misgeneralisation score and the percentage of cases when
an optimal action was taken. Finally, we observe that higher

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Misgeneralisation score

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

P
er

ce
nt

ag
e

Distribution of misgeneralisation score (naive transition model)

Naive PM
Method

0.0

0.2

0.4

0.6

0.8

1.0

R
2 de

pl
oy

Transition model performance in deployment data

Lunar Lander

Figure 5: Lunar Lander experiment results (26 experiments
with different random seeds per εmin).

εmin usually implies worse model performance at deploy-
ment (Figure 9). While the patterns in Figures 7 and 9 are
evident, we leave their more in-depth analysis and interpre-
tation for future work.

5 Related Work
Several works consider the problem of policy-aware transi-
tion dynamics training to improve the efficiency of model-
based RL. Ma et al. (2023) propose a way to estimate oc-
cupancy rates of transition experiences to emphasise those
which are more in line with a policy of interest. Janner et al.
(2019) propose Model-Based Policy Optimization (MBPO),
which integrates policy-awareness into model learning. The
model is trained to prioritise accuracy in regions visited by
the current policy, thus improving sample efficiency and per-
formance by focusing on policy-relevant dynamics. Fein-
berg et al. (2018) present Model-Based Value Expansion
(MVE), a method that enhances model-free RL by incorpo-
rating short model-based rollouts into value estimation. The
transition model is trained in a policy-aware manner, focus-
ing on accurately predicting transitions along the trajecto-

0.0 0.2 0.4 0.6 0.8
Misgeneralisation score

0

5

10

15

20

25

30

35

40

P
er

ce
nt

ag
e

Distribution of misgeneralisation score (naive transition model)

Naive PM
Method

0.0

0.2

0.4

0.6

0.8

1.0

R
2 de

pl
oy

Transition model performance in deployment data

Cart Pole

Figure 6: Cart Pole experiment results (58 experiments with
different random seeds per εmin).

ries induced by the policy to improve value estimates and
policy performance. Eysenbach et al. (2024) address the ob-
jective mismatch between model accuracy and policy perfor-
mance by jointly training the world model and policy. Wang,
Wongkamjan, and Huang (2022) introduce Policy-adapted
Dynamics Model Learning (PDML) for model-based rein-
forcement learning. This method dynamically adjusts the
transition model to the changes in the state-action distribu-
tion of the current policy. The results show significant im-
provements in terms of sample efficiency and performance
in continuous control tasks.
There is also a relation between our work and off-policy
evaluation (OPE). This field is concerned with predicting
the off-policy agent’s value function under the optimal pol-
icy (Jiang and Li 2015; Thomas and Brunskill 2016; Re-
bello et al. 2023). The OPE goal is to produce an estimator
v̂(D) of the value function under the evaluation policy v(πe)
that has a low expected squared error: E

[
(v̂(D)− v(πe))

2
]
.

Although the OPE methods may include transition model
learning, providing highly accurate transition predictions is
not the main concern in off-policy evaluation.

0.01 0.11 0.21 0.31 0.41 0.51
min

0.15

0.20

0.25

0.30

0.35

M
is

ge
ne

ra
liz

at
io

n
sc

or
e

Lunar Lander

Mean
Median
Mean ± 2 SE

0.01 0.11 0.21 0.31 0.41 0.51
min

0.00

0.05

0.10

0.15

0.20

0.25

M
is

ge
ne

ra
liz

at
io

n
sc

or
e

Cartpole

Mean
Median
Mean ± 2 SE

Figure 7: Misgeneralisation score of a naive transition model
in Lunar Lander and Cart Pole RL environments. For each
εmin, we calculate mean, median and standard error across
multiple random seeds.

6 Conclusion
We propose a policy matching (PM) method to adapt a tran-
sition model training to changes in the agent’s policy. In
our experiments, we demonstrate the presence of transition
model misgeneralisation in the Lunar Lander RL environ-
ment, while this problem is less evident in the Cart Pole.
Then, we show that our proposed PM method helps improve
the prediction performance of a transition model at deploy-
ment when the misgeneralisation problem is severe (Lunar
Lander). Since the issue is less pronounced in Cart Pole, our
method is on par with the naive approach in that environ-
ment. We also find that model performance at deployment
and the degree of misgeneralisation are correlated with the
minimum exploration rate during the agent’s training.
Our work has several limitations that open avenues for fu-
ture research. Firstly, our theoretical results are limited to
the conditional loss, while the underlying optimisation im-
plies using the unconditional one. Secondly, we leave the re-
lationship between εmin and the misgeneralisation score un-

0.01 0.11 0.21 0.31 0.41 0.51
min

0.6

0.7

0.8

0.9

R
2 de

pl
oy

Lunar Lander

Naive Mean
Naive Mean ± 2 SE
PM Mean
PM Mean ± 2 SE

0.01 0.11 0.21 0.31 0.41 0.51
min

0.70

0.75

0.80

0.85

0.90

0.95

R
2 de

pl
oy

Cart Pole

Naive Mean
Naive Mean ± 2 SE
PM Mean
PM Mean ± 2 SE

Figure 8: Transition model performance at deployment in
relationship to the minimum exploration rate εmin.

explained. Furthermore, our method assumes access to the
optimal policy π∗, which may not always be available in
practice. Future papers could explore alternative approaches
that utilise the changing structure of the exploration rate over
time, such as placing greater emphasis on later training tran-
sitions due to exploration rate decay. Finally, it should be
possible to improve the method’s performance if one can es-
timate the behaviour policy and marginal distribution of the
state accurately. We leave exploring this direction for future
work.

A RL Settings
Notations:

• εmax: maximum exploration rate ϵt

• γ: discount rate

• α: learning rate

• |B|: batch size

• τ : the update rate of the target network

Lunar Lander Cart Pole
Algorithm DDQN DDQN

εmax 1 1
γ 0.99 0.99
α 1e-4 1e-4
|B| 128 128
τ 0.005 0.005

Table 1: Settings of RL agents.

B Exploration Rate Analysis

0.450 0.475 0.500 0.525 0.550 0.575 0.600 0.625
Optimal actions rate

0.0

0.1

0.2

0.3

0.4

0.5

M
is

ge
ne

ra
tio

n
sc

or
e

Lunar Lander

Naive
PM

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
Optimal actions rate

1.0

0.5

0.0

0.5

M
is

ge
ne

ra
tio

n
sc

or
e

Cart Pole

Naive
PM

Figure 9: Misgeneralisation score against the optimal action
rate in Lunar Lander and Cart Pole.

0.0 0.1 0.2 0.3 0.4 0.5
min

0.0

0.1

0.2

0.3

0.4

0.5 Mean
Mean ± 2 SE

Figure 10: Mean exploration rate per minimum exploration
rate in Lunar Lander (averaged across random seeds).

References
Chen, T.; and Guestrin, C. 2016. XGBoost: A Scalable
Tree Boosting System. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 785–794. ACM.
Eysenbach, B.; Khazatsky, A.; Levine, S.; and Salakhutdi-
nov, R. 2024. Mismatched no more: joint model-policy op-
timization for model-based RL. In Proceedings of the 36th

International Conference on Neural Information Processing
Systems, NIPS ’22. Red Hook, NY, USA: Curran Associates
Inc. ISBN 9781713871088.
Feinberg, V.; Wan, A.; Stoica, I.; Jordan, M. I.; Gonzalez,
J. E.; and Levine, S. 2018. Model-Based Value Expansion
for Efficient Model-Free Reinforcement Learning. In Pro-
ceedings of the 35th International Conference on Machine
Learning (ICML), 3069–3077.
Grinsztajn, L.; Oyallon, E.; and Varoquaux, G. 2022. Why
do tree-based models still outperform deep learning on typ-
ical tabular data? Neural Inf Process Syst.
Ho, T. K. 2002. Random decision forests. In Proceedings
of 3rd International Conference on Document Analysis and
Recognition, volume 1, 278–282 vol.1. IEEE Comput. Soc.
Press.
Janner, M.; Fu, J.; Zhang, M.; and Levine, S. 2019. When
to Trust Your Model: Model-Based Policy Optimization.
In Advances in Neural Information Processing Systems 32
(NeurIPS), 12519–12530. Curran Associates, Inc.
Jiang, N.; and Li, L. 2015. Doubly robust off-policy value
evaluation for reinforcement learning. arXiv [cs.LG], 652–
661.
Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.;
Ye, Q.; and Liu, T.-Y. 2017. LightGBM: A Highly Efficient
Gradient Boosting Decision Tree. In Advances in Neural
Information Processing Systems, volume 30, 3146–3154.
Koller, D.; and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques - Adaptive Computation
and Machine Learning. The MIT Press. ISBN 0262013193.
LeCun, Y.; Bengio, Y.; and Hinton, G. 2015. Deep learning.
Nature, 521(7553): 436–444.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous
control with deep reinforcement learning. arXiv [cs.LG].
Ma, Y. J.; Sivakumar, K.; Yan, J.; Bastani, O.; and Ja-
yaraman, D. 2023. TOM: Learning policy-aware models
for model-based reinforcement learning via transition occu-
pancy matching. arXiv [cs.LG], 259–271.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing Atari with deep reinforcement learning. arXiv [cs.LG].
Pearl, J. 2009. Causality. Cambridge University Press, 2
edition.
Rebello, A.; Tang, S.; Wiens, J.; and Parbhoo, S. 2023.
Leveraging factored action spaces for off-policy evaluation.
arXiv [cs.LG].
Shwartz-Ziv, R.; and Armon, A. 2022. Tabular data: Deep
learning is not all you need. Inf. Fusion, 81: 84–90.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. MIT Press, second edition. ISBN
9780262039246.
Tao, T. 2011. An introduction to measure theory. Graduate
studies in mathematics. Providence, RI: American Mathe-
matical Society.

Thomas, P. S.; and Brunskill, E. 2016. Data-efficient off-
policy policy evaluation for reinforcement learning. arXiv
[cs.LG].
Towers, M.; Kwiatkowski, A.; Terry, J.; Balis, J. U.;
De Cola, G.; Deleu, T.; Goulão, M.; Kallinteris, A.; Krim-
mel, M.; Kg, A.; Perez-Vicente, R.; Pierré, A.; Schulhoff, S.;
Tai, J. J.; Tan, H.; and Younis, O. G. 2024. Gymnasium: A
standard interface for reinforcement learning environments.
arXiv [cs.LG].
Van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep re-
inforcement learning with Double Q-learning. Proc. Conf.
AAAI Artif. Intell., 30(1).
Wang, X.; Wongkamjan, W.; and Huang, F. 2022. Live in
the moment: Learning dynamics model adapted to evolving
policy. arXiv [cs.LG].
Watkins, C. J. C. H.; and Dayan, P. 1992. Q-learning. Mach.
Learn., 8(3): 279–292.
Wright, S. 1921. Correlation and Causation.

