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Abstract

Benign overfitting refers to the phenomenon where a over-paramterized model fits1

the training data perfectly, including noise in the data, but still generalizes well to2

the unseen test data. While prior work provide a solid theoretical understanding3

of this phenomenon under the in-distribution setup, modern machine learning of-4

ten operates in a more challenging Out-of-Distribution (OOD) regime, where the5

target (test) distribution can be rather different from the source (training) distribu-6

tion. In this work, we take an initial step towards understanding benign overfitting7

in the OOD regime by focusing on the basic setup of over-parameterized linear8

models under covariate shift. We provide non-asymptotic guarantees proving that,9

when the target covariance satisfies certain structural conditions, benign overfit-10

ting occurs in standard ridge regression even under the OOD regime. We identify11

a number of key quantities relating source and target covariance, which govern the12

performance of OOD generalization. Our result is sharp, which provably recov-13

ers prior in-distribution benign overfitting guarantee (Tsigler & Bartlett, 2023), as14

well as under-parameterized OOD guarantee (Ge et al., 2024) when specializing15

to each setup. Moreover, we also present theoretical results for a more general16

family of target covariance matrix, where standard ridge regression only achieves17

a slow statistical rate of O(1/
√
n) for the excess risk, while Principal Component18

Regression (PCR) is guaranteed to achieve the fast rate O(1/n), where n is the19

number of samples.20

1 Introduction21

In modern machine learning, distribution shift has become a ubiquitous challenge where models22

trained on a source data distribution are tested on a different target distribution (Zou et al., 2018;23

Hendrycks & Dietterich, 2019; Guan & Liu, 2021; Koh et al., 2021). Generalization under distribu-24

tion shift, known as Out-of-Distribution (OOD) generalization, remains a fundamental issue in the25

practical application of machine learning (Recht et al., 2019; Hendrycks et al., 2021; Miller et al.,26

2021; Wenzel et al., 2022). While there has been extensive work on the theoretical understanding27

of OOD generalization, most of it has focused on under-parameterized models (Shimodaira, 2000;28

Lei et al., 2021; Ge et al., 2024; Zhang et al., 2022). However, over-parameterized models, such29

as deep neural networks and large language models (LLMs), which have more parameters than30

training samples, are widely used in modern machine learning. Surprisingly, despite the classic31

bias-variance tradeoff for under-parameterized models, over-parameterized models tend to overfit32

the data while still achieving strong in-distribution generalization, a phenomenon known as benign33

overfitting (Hastie et al., 2022; Shamir, 2023) or harmless interpolation (Muthukumar et al., 2020).34

Therefore, it is crucial to theoretically understand how benign overfitting shapes OOD generalization35

in over-parameterized models.36
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It is established in overparameterized models that “benign overfitting” occurs when the data essen-37

tially resides on a low-dimensional manifold. The manifold assumption (Belkin & Niyogi, 2003) is38

widely applicable across image, speech and language data, where although features are embedded39

in a high-dimensional ambient space, their generation is governed by a few degrees of freedom im-40

posed by physical constraints (Niyogi, 2013). Specifically, the covariance matrix of the data should41

be characterized by several major directions with large eigenvalues while the remaining directions42

are high-dimensional but have smaller scale. In this setting, even though the estimator may over-43

fit the noise, it can still capture the signal in the major directions while the noise is dampened in44

the minor directions. Recent non-asymptotic analyses have provided upper bounds on the excess45

risk for the minimum-norm interpolant and over-parameterized ridge estimator under this frame-46

work (Bartlett et al., 2020; Hastie et al., 2022; Tsigler & Bartlett, 2023).47

However, theoretical characterization of OOD generalization in over-parameterized models remains48

elusive. In this paper, we take an initial step toward characterizing OOD generalization in over-49

parameterized models under general covariate shift, a standard assumption for OOD generaliza-50

tion (Ben-David et al., 2006), where the conditional distribution of the outcome given the covariates51

remains invariant. We derive the first vanishing, non-asymptotic excess risk bound for ridge regres-52

sion and minimum-norm interpolation, assuming that the source covariance is dominated by a few53

major eigenvalues, which satisfies the benign overfitting condition. But we allow the target covari-54

ance to be arbitrary. This result contrasts with recent work that either addresses only a restrictive55

form of covariate shift (Hao et al., 2024; Mallinar et al., 2024) or provides excess risk bounds that56

asymptotically remain above a constant (Tripuraneni et al., 2021b; Hao et al., 2024).57

In summary, our excess risk bound identifies several key quantities that relate the source and target58

covariance, suggesting that “benign overfitting” occurs when these quantities are well controlled. In59

such cases, the target distribution data lies on the low-dimensional manifold of the source distribu-60

tion. Otherwise, ridge regression may incur excess risk, lower bounded by the slow statistical rate61

of O(1/
√
n). In contrast, we show that principal component regression (PCR) achieves the fast rate62

of O(1/n) in such scenarios.63

Our contributions.64

1. We provide a sharp, instance-dependent excess risk bound for ridge regression (Theorem 2). Our65

result applies to any target distribution, requiring only that the source covariance be dominated66

by a few major eigenvectors and that the minor components are high-dimensional. We show67

that ridge regression exhibits “benign overfitting,” achieving excess risk comparable to the in-68

distribution case, provided that certain key quantities relating the source and target distributions69

are bounded. Importantly, this condition requires that the overall magnitude of the target co-70

variance along the minor directions scales similarly to, or smaller than, that of the source, but71

it does not depend on the spectral structure of the target covariance. Our results recover the in-72

distribution bound from Tsigler & Bartlett (2023) when the source and target match, and also73

recover the sharp bound from Ge et al. (2024) for under-parameterized linear regression under74

covariate shift when the minor components vanish.75

2. We extend our analysis by examining the scenario where the target distribution has significant76

components in the minor directions. In this scenario, ridge regression incurs a higher error rate77

compared to the in-distribution setting, specifically the slow statistical rate of O(1/
√
n) in some78

instances (Theorem 4). However, we demonstrate that principal component regression ensures79

a fast rate of O(1/n) in these cases, provided that the true signal primarily lies in the major80

directions of the source (Theorem 5). Additionally, PCR does not rely on the minor directions of81

the source distribution being high-dimensional, highlighting its advantage over ridge regression82

in such settings.83

1.1 Related work84

Over-parameterization. The success of over-parameterized models in machine learning has85

sparked significant research on their theoretical foundations. Harmless interpolation (Muthukumar86

et al., 2020) or benign overfitting (Shamir, 2023) describes cases where linear models interpolate87

noise yet still generalize well. Double descent in prediction error is also observed as the ambient88

dimension surpasses the number of training samples (Nakkiran, 2019; Xu & Hsu, 2019).89
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Research in this field can be divided into two categories based on assumptions about the spectral90

structure of the sample covariance. The first category assumes an almost isotropic sample covari-91

ance matrix with a bounded condition number or an isotropic prior distribution of parameters (Belkin92

et al., 2020). In this case, a limiting covariance spectral structure may emerge when n ≍ d and both93

tend to infinity, allowing for asymptotic risk bounds (Dobriban & Wager, 2018; Richards et al.,94

2021). However, ridgeless regression is sub-optimal in this setting unless the signal-to-noise ratio95

is infinite (Wu & Xu, 2020), and non-asymptotic error bounds are lacking. Our work falls into the96

second category, focusing on covariance model where a small number of eigenvalues dominate the97

sample covariance, and the signal is concentrated in the subspace spanned by the leading eigen-98

vectors (Bibas et al., 2019; Chinot & Lerasle, 2022; Hastie et al., 2022). Linear regression can99

be optimal without regularization under this covariance structure (Kobak et al., 2020), which is of100

practical interest because ridgeless regression is equivalent as gradient descent from zero initializa-101

tion (Zhou et al., 2020). Sharp non-asymptotic bounds for variance and bias in ridge regression have102

been derived (Bartlett et al., 2020; Tsigler & Bartlett, 2023).103

Extending the analysis of ridgeless estimators (i.e., minimum norm interpolants), uniform conver-104

gence bounds for generalization error have been studied for all interpolants with arbitrary norms.105

However, uniformly bounding the difference between population and empirical errors generally106

fails to ensure a consistent predictor (Zhou et al., 2020), necessitating strong assumptions on dis-107

tributions (Koehler et al., 2021) or hypothesis classes (Negrea et al., 2020). Over-parameterization108

theory for linear models has also been applied to two-layer neural networks approximated via kernel109

ridge regression (Liang et al., 2020; Ghorbani et al., 2020, 2021; Bartlett et al., 2021; Mei & Monta-110

nari, 2022; Mei et al., 2022; Montanari & Zhong, 2022; Simon et al., 2023), though this lies beyond111

the scope of the present work.112

Out-of-Distribution generalization. Out-of-Distribution generalization is well studied for under-113

parameterized models, particularly in transfer learning between two distributions, where labeled114

source data is combined with unlabeled target data to train models. For covariate shift, importance115

weighting (Cortes et al., 2010; Agapiou et al., 2017) is asymptotically optimal when using density116

ratio as weights (Shimodaira, 2000). More generally, the theoretical limits of transfer learning are117

explored through minimax lower bounds for bounded distribution shifts, measured by divergence118

metrics (Mousavi Kalan et al., 2020; Zhang et al., 2022). A number of algorithms are proposed to119

achieve matching upper bounds (Lei et al., 2021). However, Ge et al. (2024) shows that even without120

target data, vanilla MLE (Empirical Risk Minimization, ERM) is minimax optimal for well-specified121

models under covariate shift, with a sharp 1/n excess risk bound based on Fisher information.122

Research on over-parameterized models under distribution shift has largely focused on covariate123

shift in linear regression. Importance weighting for over-parameterized models (Chen et al., 2024)124

and general sample reweighting offer no advantage over ERM since both converge to the same esti-125

mator via gradient descent (Zhai et al., 2022). Consequently, much literature focuses on minimum-126

norm interpolation as the natural ERM solution. For isotropic signals, Tripuraneni et al. (2021a)127

prove that over-parameterization improves robustness to covariate shift, deriving an asymptotic gen-128

eralization bound decreasing with d/n. Under the essentially low-rank covariance model, Hao et al.129

(2024) derive a non-asymptotic bound for a specific covariate shift where features are translated by130

a constant but the covariance matrix is preserved. However, a constant excess risk remains in their131

bound due to estimation variance. Kausik et al. (2024) study a linear model with additive noise132

on covariates when data strictly lies in a low-dimensional subspace, also showing a non-vanishing133

bound. Mallinar et al. (2024) investigate minimum-norm interpolation with independent covariates134

and simultaneously diagonalizable source and target covariance matrices, allowing them to directly135

extend in-distribution bounds of Bartlett et al. (2020); Tsigler & Bartlett (2023). Still, their esti-136

mation bias bound is looser than ours due to a gap compared to Tsigler & Bartlett (2023)’s sharp137

bound even when the source matches the target. In contrast, our work achieves the first vanishing138

non-asymptotic error bound for general covariate shift, assuming only finite second moments for the139

target covariance matrix.140

There also exist a line of work that considers non-parametric models under covariate shift (Kpotufe141

& Martinet, 2018; Hanneke & Kpotufe, 2019; Pathak et al., 2022; Ma et al., 2023), presenting142

minimax results controlling by a transfer-exponent that measures the similarity between source and143

target, though this lies beyond the scope of our work.144
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Principal component regression. Principal component regression (PCR) has been designed as145

a method of treating multicollinearity problems in high-dimensional linear regression, where the146

covariates have a latent, low-dimensional representation (Massy, 1965; Jeffers, 1967; Jolliffe, 1982;147

Jeffers, 1981). PCR has been widely used in statistics (Liu et al., 2003), chemometrics (Næs &148

Martens, 1988; Sun, 1995; Vigneau et al., 1997; Depczynski et al., 2000; Keithley et al., 2009),149

construction management (Chan & Park, 2005), environmental science (Kumar & Goyal, 2011;150

Hidalgo et al., 2000), signal processing (Huang & Yang, 2012) and etc.151

Regarding the theory for PCR, Hadi & Ling (1998) give conditions under which PCR will fail. Bair152

et al. (2006) suggest selecting principal components based on their association with the outcome,153

and provide corresponding asymptotic consistency results. Xu & Hsu (2019) give asymptotic risk154

bounds for PCR, under different number of selected components k. They show that the “double155

descent” behaviour also happens in PCR when k/d grows, where d is the data dimension. Most156

related to our work, Agarwal et al. (2019) provide non-asymptotic error bounds of PCR, and show157

that the error will decay as O(1/
√
n) (n is the sample size) given that all the singular values of the158

data matrix are of the same order. Agarwal et al. (2020) further improves the rate to O(1/n). How-159

ever, the aforementioned two results both consider fixed design with strict low-rank assumptions,160

therefore not applicable to our setting of OOD-generalization.161

2 Covariate shift setup under over-parameterization162

2.1 Data with covariate shift163

We address the out-of-distribution (OOD) generalization of over-parameterized models under co-164

variate shift, where the covariates, denoted by a random vector x ∈ Rd, follow different distribu-165

tions during training and evaluation. Specifically, we assume that the training data is sampled from166

a source distribution PS , and the learned model is subsequently applied to data from an unknown167

target distribution PT . Let the covariates be zero-mean on the source distribution, and define the168

covariance matrix as ΣS := Ex∼PS

[
xxT

]
. Since we can always choose an orthonormal basis such169

that ΣS becomes diagonal, we express ΣS = diag(λ1, · · · , λd) without loss of generality, where170

the eigenvalues are arranged in non-increasing order: λ1 ≥ · · · ≥ λd ≥ 0. Moreover, we assume171

sub-gaussianity of the source covariates, i.e., Σ−1/2
S x is σ-sub-gaussian where the precise definition172

of sub-gaussian norm is given in section A. We consider a general covariate distribution for the tar-173

get, assuming only that it has a finite second moment, denoted by ΣT := Ex∼PT

[
xxT

]
, which is174

not necessarily diagonal.175

We consider a linear response model that remains consistent across the source and target distribu-176

tions. The outcome follows y = xTβ∗ + ϵ, where β∗ ∈ Rd represents the true parameter, and ϵ is177

an independent noise with zero-mean and variance v2.178

2.2 Learning procedure and evaluation179

The learning procedure involves training a linear model with n i.i.d. samples {(xi, yi)}ni=1 drawn180

from the source distribution. Define X := (x1, ..., xn)
T ∈ Rn×d, Y := (y1, ..., yn)

T and ϵ :=181

(ϵ1, ..., ϵn)
T . We focus on models β̂(Y ) that are linear in Y , allowing us to write β̂(Y ) = β̂(Xβ⋆)+182

β̂(ϵ). We consider ridge regression and principal component regression as two instances of such183

algorithms. With a regularization coefficient λ ≥ 0, the ridge estimator in the over-parameterized184

setting, where n < d, is defined as:185

β̂(Y ) = XT (XXT + λIn)
−1Y.

The algorithm is assessed on the target distribution by its excess risk relative to the true model,186

expressed as the following equation:187

R
(
β̂(Y )

)
:= E(x,y)∼PT

[(
y − xT β̂(Y )

)2 − (y − xTβ∗)2] = ∥∥β̂(Y )− β∗∥∥2
ΣT

,

where we define ∥x∥A :=
√
xTAx for any positive semi-definite matrix A. The metric of interest is188

the expected excess risk with respect to the noise, given by Eϵ

[
R
(
β̂(Y )

)]
. Following from the lin-189

earity of the model, the expected excess risk can be decomposed into bias and variance components:190

Eϵ

[
R
(
β̂(Y )

)]
= Eϵ

∥∥β̂(ϵ)∥∥2
ΣT

+
∥∥β̂(Xβ⋆)− β⋆

∥∥2
ΣT

,
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where we define the variance as V := Eϵ

∥∥β̂(ϵ)∥∥2
ΣT

and the bias as B :=
∥∥β̂(Xβ⋆)− β⋆

∥∥2
ΣT

.191

2.3 The structure of covariance in benign overfitting192

Throughout this paper, we follow the convention of Tsigler & Bartlett (2023), consider the source193

covariance matrix ΣS that has only a few number of high variance directions but a very large number194

of low variance directions with similar magnitude. We will also refer to those high variance direc-195

tions of the source as “major directions”, and those low variance directions as “minor directions”.196

We denote the number of major directions as k. For remaining d − k minor directions, we use the197

following notions of effective ranks to approximately capture the number of directions that have a198

similar scale. Let the ridge regularization coefficient be λ ≥ 0, we define:199

rk :=
λ+

∑
j>k λj

λk+1
, Rk :=

(
λ+

∑
j>k λj

)2∑
j>k λ

2
j

.

We have 1 ≤ rk ≤ Rk. When λ = 0, we further have Rk ≤ d − k. We denote the first k columns200

of X as Xk and the remaining d − k columns as X−k. Correspondingly, we partion β⋆ into β⋆k201

and β⋆−k. The covariance matrix blocks along the diagonals are denoted by ΣS,k, ΣS,−k, ΣT,k and202

ΣT,−k. To facilitate our presentation, we define203

T = Σ
− 1

2

S,kΣT,kΣ
− 1

2

S,k , U = ΣS,−kΣT,−k, V = Σ2
S,−k. (1)

These quantities turn out to be crucial in the analysis.204

3 Over-parameterized ridge regression205

In the context of in-distribution generalization for overparameterized linear models, Bartlett et al.206

(2020) and Tsigler & Bartlett (2023) demonstrate that the ridge estimator (minimum-norm interpo-207

late estimator as a special case) can effectively learn the signal from the subspace of data spanned208

by the major eigenvectors, while benignly overfitting noise from the minor directions under cer-209

tain scenarios. They argue that, when the true signal mainly lies in the major directions, and the210

minor directions have small scale but high effective rank, benign overfitting is possible. In this sec-211

tion, we explore whether this mechanism still holds under covariate shift. We derive upper bounds212

(Theorem 2) for the excess risk of the ridge estimator in the context of overparameterized OOD-213

generation, demonstrating that ”benign overfitting” also happens under covariate shift, given that214

the target distribution’s covariance structure remains dominated by the first k dimensions. To be215

specific, we show that T characterizes the shift in the major directions; the overall magnitude of216

ΣT,−k, which characterizes the shift in the minor directions, is crucial for benign overfitting. When217

the the overall magnitude of ΣT,−k, scales similarly to or smaller than those of the source, ridge218

regression achieves the same non-asymptotic error rate under covariate shift as in the in-distribution219

setting. Surprisingly, although high effective rank in the minor directions of source is essential for220

benign overfitting, for target distribution only the overall magnitude matters.221

3.1 Warm-up: in-distribution benign overfitting222

As a warm-up, we introduce Tsigler & Bartlett (2023)’s in-distribution result on benign overfitting223

in ridge regression. When the data dimension d exceeds the sample size n, the ridge estimator224

interpolates the training data, fitting the noise. In this case, the estimator β̂ lies in the subspace225

spanned by the n samples. If d is much larger than n, a new test point will likely be orthogonal to this226

subspace, preventing noise from affecting the prediction. The minor components of the covariance227

matrix actually provide implicit regularization in this case. Tsigler & Bartlett (2023) assume the228

data lies in a space with k major directions and d− k weak, but essentially high-dimensional minor229

directions, allowing benign overfitting. This intuition is formalized through an assumption that230

controls the condition number of the Gram matrix for the remaining d− k dimensions.231

Assumption 1 (CondNum(k, δ, L), (Tsigler & Bartlett, 2023)). Define a matrix Ak = λIn +232

X−kX
T
−k. With probability at least 1 − δ, Ak is positive definite and has a condition number no233

greater than L, i.e.,234

µ1(Ak)

µn(Ak)
≤ L.
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Remark 1. This assumption is essentially assuming the minor directions have effective rank signif-235

icantly larger than n. As an evidence, Tsigler & Bartlett (2023) prove that if CondNum holds, then236

the effective rank rk is lower bounded by n/L. On the other hand, a lower bound on the effective237

rank rk can also imply an upper bound of the condition number of Ak. See Tsigler & Bartlett (2023,238

Lemma 3) for further detail.239

Assuming CondNum, Tsigler & Bartlett (2023) obtain sharp upper bounds for both the variance and240

bias of the ridge estimator, with matching lower bounds (see their Theorem 2). To facilitate the241

presentation, we use λ̃ := λ+
∑
j>k λj to denote the overall regularization term.242

Theorem 1 (Tsigler & Bartlett (2023)). There exists a constant c that only depends on σ, L, such243

that for any n > ck, if the assumption condNum(k, δ, L) (Assumption 1) is satisfied, then it holds244

that n < crk, and with probability at least 1− δ − ce−n/c,245

V

cv2
≤ k

n
+

n

Rk
,

B

c
≤ BID := ∥β⋆k∥

2
Σ−1

S,k
(
λ̃

n
)2 +

∥∥β⋆−k∥∥2ΣS,−k
.

The first variance term arises from estimating the k major signal dimensions, corresponding to the246

classic variance for k-dimensional ordinary least squares. The second variance term, n/Rk, vanishes247

when the minor directions are sufficiently high-dimensional, i.e., when Rk ≫ n. However, the248

signal in the minor directions,
∥∥β⋆−k∥∥2ΣS,−k

, is nearly lost when projected from the high-dimensional249

ambient space onto the low-dimensional sample space, contributing to the second bias term. Finally,250

the first bias term relates to the signal estimation in the first k dimensions and is introduced by the251

overall regularization induced by both ridge and implicit regularization from the minor components.252

3.2 Out-of-Distribution benign overfitting253

We now investigate the out-of-distribution performance of ridge estimator. Intuitively, when all the254

minor components vanish (both on the source and the target), the over-parameterized ridge regres-255

sion is actually reduced to the usual ridge regression on the major directions, thus achieving a rate256

of Õ(tr[T ]/n) as Ge et al. (2024) demonstrate. When the minor components do not vanish, high257

effective rank of minor components on the source is essential for “benign overfitting”, as Tsigler &258

Bartlett (2023) demonstrate. However, we argue that, regarding the target distribution, only the over-259

all magnitude of those minor components is crucial for benign overfitting. The reason is that, when260

the minor directions of source have effective rank much larger than n, the n-dimensional subspace261

spanned by training samples is already almost orthogonal to any test point, with a high probability.262

Therefore, no special spectral structure of the target is needed for benign overfitting. Only small263

overall magnitude of those minor components on target is required.264

We formalize those intuitive claims, by deriving upper bounds for both the variance and bias of265

ridge regression under covariate shift, assuming a source distribution similar to the in-distribution266

case. Our upper bound is sharp, and can be applied to any target distributions, reducing to Tsigler267

& Bartlett (2023)’s bound (Theorem 1) when the target and source distributions are aligned. Addi-268

tionally, we recover Ge et al. (2024)’s sharp bound for under-parameterized linear regression under269

covariate shift when the high-dimensional minor components vanish.270

Theorem 2. There exists a constant c > 2 depending only on σ, L, such that for any cN < n < rk,271

if the assumption condNum(k, δ, L) (Assumption 1) is satisfied, then with probability at least 1−3δ,272

V

cv2
≤ k

n
· tr[T ]

k
+

n

Rk
· tr[U ]
tr[V]

.

B

c
≤ BID ·

(
∥T ∥+ n

rk

∥ΣT,−k∥
∥ΣS,−k∥

)
.

where T ,U ,V are defined in Equation (1).273

N = Poly(k + ln(1/δ), λ1λ
−1
k , 1 + λ̃λ−1

k ). Poly(·) denotes a polynomial function.274

Recall BID is the upper bound for bias given by Theorem 1, we can see that Theorem 2 establishes275

an upper bound for the excess risk of ridge regression under general covariate shift, expressed as a276

multiplicative form of Theorem 1’s results. This formulation enables a direct analysis of the impact277
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of covariate shift on the bias and variance of ridge estimators, compared to the in-distribution case.278

The first conclusion is that Theorem 2 well reduces to the corresponding result in Theorem 1 when279

no distribution shift occurs–i.e., ΣS = ΣT . This connection follows directly from the condition280

n < rk.281

The second conclusion is that covariate shift in the first k dimensions and last d − k dimensions282

introduce multiplicative factors of tr[T ]
k , ∥T ∥ and tr[U ]

tr[V] , nr
−1
k

∥ΣT,−k∥
∥ΣS,−k∥ , respectively, on the excess283

risk. Therefore, as long as these factors are bounded by constants, over-parameterized ridge regres-284

sion achieves the same non-asymptotic rate of excess risk under covariate shift as the in-distribution285

setting. This scenario, well addressed by ridge regression, occurs when the target distribution’s co-286

variance structure remains dominated by the first k dimensions. In the following, we analyze the287

impact of the factors introduced by covariate shift on both the major and minor directions.288

1. T characterizes the shift in the major directions. Under covariate shift within the first k di-289

mensions, we obtain the same non-asymptotic error rate as in Theorem 1, only if ∥T ∥ is bounded290

by a constant, as tr[T ]/k ≤ ∥T ∥. The matrix T plays a central role in Theorem 2 to quan-291

tify covariate shift within the first k dimensions, matching our intuition. This echoes with Ge292

et al. (2024)’s finding that tr[T ] captures the difficulty of covariate shift for under-parameterized293

ridgeless regression (MLE). They establish a sharp upper bound on excess risk using Fisher in-294

formation (see their Theorem 3.1), which simplifies to a rate of Õ(tr[T ]/n) for linear models.295

Theorem 2 recovers this result when applied to a k-dimensional under-parameterized setting296

where all high-dimensional minor components vanish, specifically when ΣS,−k = ΣT,−k = 0.297

Under the same condition as Theorem 2, for a constant c depending only on σ, L, with high298

probability the variance and bias terms are bounded by:299

V

cv2
≤ tr[T ]

n
,

B

c
≤ ∥β⋆k∥

2
Σ−1

S,k

(λ
n

)2
∥T ∥.

The variance bound aligns with Ge et al. (2024)’s result while the bias vanishes as λ → 0.300

2. The overall magnitude of ΣT,−k is crucial for benign overfitting. Under covariate shift within301

the last d − k dimensions, when both tr[U ]
tr[V] and nr−1

k
∥ΣT,−k∥
∥ΣS,−k∥ are bounded by constants, we302

achieve the same non-asymptotic error rate as in Theorem 1. Note that tr[U ]
tr[V] ≤ ∥ΣT,−k∥F

∥ΣS,−k∥F
. In303

other words, matching our intuition, if the overall magnitude of the minor components of tar-304

get covariance scales similarly to or smaller than those of the source, in terms of the covariance305

norms, “benign overfitting” also happens under covariate shift. Importantly, this condition does306

not impose constraints on the internal spectral structure of the minor components of target co-307

variance. For example, we do not force each eigenvalue of ΣT,−k to scale with its corresponding308

eigenvalue of ΣS,−k in decreasing order, as assumed in prior work (Mallinar et al., 2024). Sur-309

prisingly, for benign overfitting to happen, it is essential for the source distribution to have high310

effective rank in the minor directions; however for target distribution, only the overall magnitude311

matters.312

Another observation is that the bias scales with nr−1
k

∥ΣT,−k∥
∥ΣS,−k∥ , meaning that we only re-313

quire ∥ΣT,−k∥
∥ΣS,−k∥ = O(rk/n), which is a less restrictive condition for larger rk. Thus, over-314

parameterization improves robustness of the estimation bias against covariate shift in the minor315

direction.316

Remark 2 (Sample complexity). We have assumed n ≥ cxN in Theorem 2. The explicit formula317

for N is deferred to Theorem 25 and Remark 8. Here we summarize the sample complexity required318

for the bound to hold. The dependence on k varies between Ω(k) and Ω(k3), depending on the319

degree of covariate shift. The optimal case, aligning with the sample complexity of classic linear320

regression, occurs when ΣS,k ≈ ΣT,k. The worst case arises when there is significant covariate shift321

in the first k dimensions, such as when the test data lies predominantly in the subspace of the first322

dimension. This variation in sample complexity under covariate shift parallels the analysis of Ge323

et al. (2024) (see theire Theorem 4.2) for the under-parameterized setting. Additionally, we require324

n ≫ λ+
∑
j>k λj , ensuring that the regularization is not too strong to introduce a bias exceeding a325

constant (as reflected in the first bias term). On the other hand, we assume n < rk in the theorem,326

consistent with the over-parameterized regime and Assumption 1, where the last d− k components327

are considered to be essentially high-dimensional.328
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Remark 3 (Dependence on L). Theorem 2 does not explicitly show how the excess risk depends329

on the condition number L of Ak. However, we demonstrate in Theorem 25 that out bounds scale330

at most as L2. Notably, we maintain the same order of dependence on L in each term of the upper331

bounds as in the analysis by Tsigler & Bartlett (2023) (see their Theorem 5).332

Finally, Theorem 2 suggests an O(1/n) vanishing error under several conditions that naturally fol-333

low from the previous discussions, which we now state rigorously. First, the covariate space decom-334

poses into subspaces spanned by low-dimensional major directions and high-dimensional minor335

directions, with k = O(1) and Rk = Ω(n2). Second, the low-rank covariance structure is preserved336

after covariate shift, such that∥T ∥, tr[U ]
tr[V] , nr

−1
k

∥ΣT,−k∥
∥ΣS,−k∥ = O(1). Third, the signal lies predominantly337

in the major directions, with ∥β⋆k∥Σ−1
S,k

= O(1) and
∥∥β⋆−k∥∥ΣS,−k

= O(1/
√
n). Lastly, the regular-338

ization is not excessively strong to introduce a significant bias, with λ̃ = λ+
∑
j>k λj = O(

√
n).339

4 Large shift in minor directions340

In the previous section, we established an upper bound for overparameterized ridge regression under341

covariate shift. We showed that when the shift in the minor directions is controlled—specifically,342

when the overall magnitude of ΣT,−k is small—“benign overfitting” also occurs under covariate343

shift. However, when the shift in minor directions is significant, meaning the target covariance344

matrix has many large eigenvalues with corresponding eigenvectors outside the major directions, the345

excess risk for ridge regression deteriorates. In this section, we further illustrate the limitations of346

ridge regression in such cases by providing a lower bound for its performance for large distribution347

shift in the minor directions, showing that it can only achieve the slow rate of O(1/
√
n) for the348

excess risk. On the other hand, it is natural to consider alternative algorithms to ridge regression349

in this scenario. We demonstrate that even with a large shift in the minor directions, principal350

component regression (PCR) is guaranteed to achieve the fast rate O(1/n), provided that the signal351

β⋆ lies primarily within the subspace spanned by the major directions. Moreover, PCR does not352

require the minor directions to have a high effective rank in the source distribution, highlighting its353

advantage over ridge regression in such cases.354

4.1 Slow rate for ridge regression355

In this subsection, we demonstrate the limitations of ridge regression when the overall magnitude of356

ΣT,−k is large. Consider an instance where ΣS has its first k components as Θ(1), while the minor357

directions have eigenvalues of o(1). If we set ΣT = Id, in contrast to the “benign overfitting” regime358

described in Theorem 2, ridge regression will have a large excess risk for this instance. Although the359

signal from the major directions is effectively captured, the signal in the minor directions is nearly360

lost. Unlike the case in Section 3, here the estimation error in the minor directions is crucial because361

the target distribution has significant components in these directions. We formalize this intuitive362

example through the following theorems:363

Corollary 3. For some absolute constants C1, C2, consider the following instance of ΣS :364

λ1 = · · · = λk = 1, λk+1 = · · · = λ
k+⌊

√
n

C2
⌋ =

C1√
n
, λ

k+⌊
√

n
C2

⌋+1
= · · · = λd = 0.

Assume ΣT,−k = 0,ΣT,k = Ik, and β⋆−k = 0. By choosing λ =
√
n, under the same conditions of365

Theorem 2, we can bound the excess risk of the ridge estimator with probability at least 1− 3δ:366

Eϵ

[
R
(
β̂(Y )

)]
≤ O

(v2k + ∥β⋆∥2

n

)
.

Remark 4. Corollary 3 is a direct application of Theorem 2.367

Theorem 4. Consider the same instance of ΣS as in Corollary 3. Assume ΣT = Id and λ =
√
n.368

There exists an absolute constant C > 0, such that for some 0 < δ < 1, N2 > 0 and for any369

n > N2, with probability at least 1− δ, we have V ≥ Cv2.370

Furthermore, for any λ > 0, we can bound the excess risk of the ridge estimator with probability at371

least 1− δ:372

Eϵ

[
R
(
β̂(Y )

)]
≥ C

∥β⋆∥2 ∧ v2√
n

.
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From Theorem 4, we observe that when ΣT = Id, the performance of ridge regression deteriorates373

compared to the case where ΣT,−k = 0. If we set λ =
√
n as in Corollary 3, ridge regression incurs374

a constant excess risk under covariate shift, while achieving an in-distribution error rate of O(1/n).375

Furthermore, Theorem 4 shows no matter how we choose the regularization parameter λ, the excess376

risk is always lower bounded by the slow statistical rate O(1/
√
n), which is worse than the fast377

rate of O(1/n). However, as we will prove in the next subsection, principal component regression378

(PCR) can achieve an excess risk of O(1/n) under this instance, even with ΣT = Id.379

4.2 Fast rate for principal component regression380

As discussed earlier, ridge regression faces significant limitations when there is a large shift in the381

minor directions. In Section 3.1, it was shown that the signal in the minor directions, β⋆−k, is nearly382

lost when projected from the high-dimensional ambient space onto the low-dimensional sample383

space. In other words, learning the true signal from the minor directions is essentially impossible.384

Therefore, in this subsection, we continue to focus on the scenario where the true signal β⋆ primarily385

resides in the major directions. In this case, principal component regression (PCR) emerges as a386

natural algorithm which estimates the space spanned by the major directions and performs regression387

on that subspace.388

Principal Component Regression (PCR).389

• Step 1: Obtain an estimator Û of the top-k subspace of ΣS . For simplicity, we assume a sample390

size of 2n and use the first half of the data to compute Û by principal component analysis (PCA)391

on the sample covariance matrix Σ̂S := 1
nX

TX . Specifically, Û = (û1, · · · , ûk) where ûi is the392

i-th eigenvector of Σ̂S .393

• Step 2: Use the data projected on Û to conduct linear regression. With a little abuse of394

notation, we use X ∈ Rn×d to denote the data matrix (xn+1, · · · , x2n)
T , and Y ∈ Rn to denote395

(yn+1, · · · , y2n)T . If we let Z := XÛ ∈ Rn×k be the projected data matrix, the estimator β̂ we396

obtained is given by397

β̂ = Û(ZTZ)−1ZTY = Û(ÛTXTXÛ)−1ÛTXTY.

Consider the scenario where the last d− k components of the true signal β∗ is exactly zero, namely398

β⋆−k = 0. We can imagine that if the subspace represented by Û is exactly the same as the subspace399

represented by U =

(
Ik
0

)
∈ Rd×k, (i.e., the first k components), then PCR is actually doing linear400

regression using only the first k components of the samples, therefore will only have a excess risk401

induced by the usual variance of linear regression in the major directions. Under this scenario, no402

matter how large ∥ΣT,−k∥ is, the PCR estimator have zero estimates on the last d− k components,403

therefore avoid inducing large excess risk. Further more, if the distance between Û and U is not404

zero, there should be another term in the excess risk induced by the estimation error of Û . We405

formalize this intuitive claim as the following upper bound for the excess risk of PCR. To facilitate406

the presentation, we introduce the following quantity for measuring the estimation accuracy of Û .407

We define ∆ = dist(Û , U) := ∥UUT − Û ÛT ∥, the distance between the subspace spanned by the408

columns of Û and U . Then we have the following theorem:409

Theorem 5. Assume β⋆−k = 0. If ∆ ≤ Θ, for any 0 < δ < 1 and any n ≥ N1, we can bound the410

excess risk of PCR estimator β̂ with probability 1− δ:411

Eϵ

[
R
(
β̂(Y )

)]
≤ O

(
v2

tr(T )

n
+ ∥β⋆∥2(λ1

λk
)2∥ΣT ∥∆2

)
,

where Θ, N1 is defined as follows:412

Θ−1 = Poly(λ1λ
−1
k , ∥ΣT ∥λ−1

k , k tr(T )−1),413

N1 = Poly(σ, λ1λ
−1
k , ∥ΣT ∥λ−1

k , k ln(1/δ), k tr(T )−1).414

Remark 5. Theorem 5 is a special case of Lemma 31. For detailed characterization of Θ and N1,415

as well as an upper bound for cases where β⋆−k ̸= 0, one can refer to Lemma 31 for detail.416
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The excess risk upper bound given by Theorem 5 consists of two terms. The variance term tr(T )
n417

is incurred by the nature of linear regression on the major directions, and is unavoidable even if the418

subspace estimation is accurate (i.e., ∆ = 0). This term also appears in the first term of variance in419

Theorem 2, and exactly matches the sharp rate tr[Σ−1
S ΣT ]/n for under-parameterized linear regres-420

sion under covariate shift (Ge et al., 2024). The second term ∥β⋆∥2( λ1

λk
)2∥ΣT ∥∆2 is the bias term421

induced by the estimation error of the subspace in the first step. We can see that it has a quadratic422

dependence on ∆. If we combine Theorem 5 with a control of ∆, we can get the end-to-end excess423

risk upper bound of PCR. For controlling ∆, we have the following lemma:424

Lemma 6. With probability at least 1− δ, if n ≥ r + ln(1/δ), we have425

∆ ≤ O

σ4 λ1

λk − λk+1

√
r + ln 1

δ

n

 ,

where r = λ−1
1

∑d
i=1 λi is the effective rank of the entire ΣS .426

Remark 6. Lemma 6 shows that ∆ depends on several quantities: the eigenvalue gap between the427

major directions and the minor directions, i.e., λk − λk+1, and the effective rank r. We can see that428

∆ will be small, if the major directions and the minor directions are well separated, i.e., λk − λk+1429

is large, and the minor directions are relatively small compared to λ1.430

Combining Theorem 5 and Lemma 6, an end-to-end error bound for PCR can be derived (for a431

detailed theorem, one can refer to Theorem 29), suggesting that PCR will achieve a small excess risk,432

as long as the major directions and the minor directions are well separated, and the effective rank of433

the entire source covariance matrix is small. Contrast to ridge regression, PCR does not require the434

minor components to have high-effective rank. This shows the superiority of PCR compared with435

ridge regression under certain scenarios.436

As an example, consider the instance in Theorem 4, where k, ∥ΣT ∥, λ1, λk are all Θ(1). In this437

case, the variance term will scale as 1/n, and the bias term scales as O(∆2). Notice that in this438

instance, r = Θ(1), therefore ∆ ≤ O(1/
√
n). We conclude that in this instance, PCR will achieve439

a O(1/n) rate even when ΣT = Id. Comparing with the excess risk for ridge regression, which is440

at least 1/
√
n, PCR shows its superiority against ridge regression under the scenario where the shift441

in minor directions is large.442

5 Conclusion and discussion443

In conclusion, we provide an instance-dependent characterization of the excess risk for ridge regres-444

sion under general covariate shift. Our findings demonstrate that “benign overfitting” also happens445

in OOD generalization when the shift in the minor directions is well controlled. We also explore the446

“large shift in the minor directions” regime, under which ridge regression may incur a large excess447

risk, whereas principal component regression (PCR) exhibits superior performance.448

Our work opens up several future research directions. First, while we have established a lower bound449

for ridge regression in certain instances, a key challenge remains in deriving a general lower bound450

that matches our upper bounds, offering a precise characterization of the excess risk under covari-451

ate shift. Second, our analysis has been focused on linear models as a first step in understanding452

overparameterized OOD problems. Extending this investigation to more complex, nonlinear models453

would be a interesting direction for future exploration.454
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A Ridge regression653

Let X = (x1, ..., xn)
T ∈ Rn×d, Y = (y1, ..., yn)

T ∈ Rn and ϵ = (ϵ1, ..., ϵn)
T ∈ Rn. We denote654

the first k columns of X as Xk and the remaining d − k columns as X−k. Similarly, β⋆k and β⋆−k655

represent the corresponding components of β⋆. ΣS,k, ΣS,−k are the corresponding blocks on the656

diagonal of ΣS . The i-th eigenvalue of a matrix is denoted by µi(·). Define Z = XΣ
−1/2
S , where657

the rows of Z are i.i.d. centered isotropic random vectors. Additionally, we assume the rows of Z658

are σ-sub-gaussian, where the sub-gaussian norm is defined as follows.659

For a random variable s, the sub-gaussian norm ∥s∥ψ2 is given by:660

∥s∥ψ2
= inf

{
t > 0 : E

[
exp

s2

t2

]
≤ 2

}
.

For a random vector S, the sub-gaussian norm ∥S∥ψ2
is given by:661

∥S∥ψ2
= sup

v ̸=0

∥⟨S, v⟩∥ψ2

∥v∥
.

For λ ≥ 0, consider the ridge estimator:662

β̂(Y ) = XT (XXT + λIn)
−1Y

= XT (XXT + λIn)
−1Xβ⋆ +XT (XXT + λIn)

−1ϵ

= β̂(Xβ⋆) + β̂(ϵ),

where we define β̂(Xβ⋆) = XT (XXT+λIn)
−1Xβ⋆ and β̂(ϵ) = XT (XXT+λIn)

−1ϵ. Addition-663

ally, we define Σ̃S = ΣS+
λ
nId. The effective rank of Σ̃S,k is defined as rk = λ−1

k+1(λ+
∑
j>k λj).664

Assumption 2 (CondNum(k, δ, L)). Define a matrix Ak = λIn + X−kX
T
−k. With probability at665

least 1− δ, Ak is positive definite and has a condition number no greater than L, i.e.,666

µ1(Ak)

µn(Ak)
≤ L.

A.1 Concentration inequalities667

Denote the element of a matrix X in the i-th row and the j-th column as X[i, j], and the i-th row of668

the matrix X as X[i, ∗].669

Lemma 7 (Lemma 20 of Tsigler & Bartlett (2023)). Let z be a sub-gaussian vector in Rp with670

∥z∥ψ2
≤ σ, and consider Σ = diag(λ1, . . . , λp) where the sequence {λj}pj=1 is positive and non-671

increasing. Then there exists some absolute constant c, for any t > 0, with probability at least672

1− 2e−t/c:673

∥Σ1/2z∥2 ≤ cσ2

tλ1 +

p∑
j=1

λj

 .

Lemma 8 (Lemma 23 of Tsigler & Bartlett (2023)). Let Åk represent the matrix X−kX
T
−k with its674

diagonal elements set to zero:675

Åk[i, j] = (1− δi,j)(X−kX
T
−k)[i, j].

Then there exists some absolute constant c, for any t > 0, with probability at least 1− 4e−t/c:676

∥Åk∥ ≤ cσ2

√√√√√(t+ n)

λ2
k+1(t+ n) +

∑
j>k

λ2
j

.
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Lemma 9 (Lemma 21 of Tsigler & Bartlett (2023)). Suppose {zi}ni=1 is a sequence of independent677

isotropic sub-gaussian random vectors, where ∥zi∥ψ2 ≤ σ. Let Σ = diag(λ1, . . . , λp) represent a678

diagonal matrix with a positive, non-increasing sequence {λi}pi=1. Then there exists some absolute679

constant c, for any t ∈ (0, n), with probability at least 1− 2e−ct:680

(n−
√
ntσ2)

p∑
j=1

λj ≤
n∑
i=1

∥Σ1/2zi∥2 ≤ (n+
√
ntσ2)

p∑
j=1

λj .

Lemma 10. There exists a constant cx, depending only on σ, such that for any n satisfying nλk+1 ≤681 (
λ+

∑
j>k λj

)
, under the assumption CondNum(k, δ, L) (Assumption 2), with probability at least682

1− δ − cxe
−n/cx :683

1

cxL

λ+
∑
j>k

λj

 ≤ µn(Ak) ≤ µ1(Ak) ≤ cx

λ+
∑
j>k

λj

 .

µ1(X−kX
T
−k) ≤ cx

nλk+1 +
∑
j>k

λj

 .

Proof. This result follows from the proof of Lemma 3 in Tsigler & Bartlett (2023), which estab-684

lishes both upper and lower bounds of µ1(Ak). By combining the lower bound with the assumption685

CondNum, we derive a lower bound of µn(Ak). For completeness, we restate the entire proof here.686

According to lemma 7 and lemma 8, there exists an absolute constant c, such that for any t > 0:687

1. for all 1 ≤ i ≤ n, with probability at least 1− 2e−t/c:688

∥X−k[i, ∗]∥2 ≤ cσ2

tλk+1 +
∑
j>k

λj

 .

2. with probability at least 1− 4e−t/c:689

∥Åk∥ ≤ cσ2

√√√√√(t+ n)

λ2
k+1(t+ n) +

∑
j>k

λ2
j

.

Since µ1(Ak) ≤ λ+ ∥Åk∥+maxi ∥X−k[i, ∗]∥2, by setting t = n, we have with probability at least690

1− (2n+ 4)e−n/c:691

µ1(Ak) ≤ λ+ cσ2

nλk+1 +
∑
j>k

λj +

√
(2nλk+1)2 + 2n

∑
j>k

λ2
j


≤ λ+ cσ2

nλk+1 +
∑
j>k

λj + 2nλk+1 +

√
2n
∑
j>k

λ2
j


≤ λ+ cσ2

nλk+1 +
∑
j>k

λj + 2nλk+1 +

√
2nλk+1

∑
j>k

λj


≤ λ+ cσ2

nλk+1 +
∑
j>k

λj + 2nλk+1 + nλk+1 +
1

2

∑
j>k

λj


≤ λ+ 4cσ2

nλk+1 +
∑
j>k

λj
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≤ max
{
1, 4cσ2

}λ+
∑
j>k

λj + nλk+1


≤ 2max

{
1, 4cσ2

}λ+
∑
j>k

λj

 . (2)

The last inequality follows from nλk+1 ≤
(
λ+

∑
j>k λj

)
. Similarly,692

µ1(X−kX
T
−k) ≤ 4cσ2

nλk+1 +
∑
j>k

λj

 . (3)

On the other hand, by applying Lemma 9 with t = n
4σ4 , there exists an absolute constant c′, such693

that with probability at least 1− 2 exp
{
− c′

4σ4n
}

:694

n∑
i=1

∥X−k[i, ∗]∥2 ≥ 1

2
n
∑
j>k

λj .

On this event,695

µ1(Ak) ≥ λ+
1

n
tr(X−kX

T
−k)

= λ+
1

n

n∑
i=1

∥X−k[i, ∗]∥2

≥ λ+
1

2

∑
j>k

λj

≥ 1

2

λ+
∑
j>k

λj

 .

By the assumption CondNum(k, δ, L), with probability at least 1− δ − 2 exp
{
− c′

4σ4n
}

:696

µn(Ak) ≥
1

L
µ1(Ak) ≥

1

2L

λ+
∑
j>k

λj

 . (4)

Combining Equation 2, 3 and 4, there exists a constant cx depending only on σ, such that with697

probability at least 1− δ − cxe
−n/cx :698

1

cxL

λ+
∑
j>k

λj

 ≤ µn(Ak) ≤ µ1(Ak) ≤ cx

λ+
∑
j>k

λj

 .

µ1(X−kX
T
−k) ≤ cx

nλk+1 +
∑
j>k

λj

 .

699

Lemma 11. There exists a constant cx depending only on σ, such that with probability at least 1−δ,700

if n > k + ln(1/δ),701 ∥∥∥∥ 1nXT
k Xk − ΣS,k

∥∥∥∥ ≤ cxλ1

√
k + ln 1

δ

n
.
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Proof. This follows directly from Theorem 5.39 and Remark 5.40 of Vershynin (2010), which shows702

there exists a constant c′x depending only on σ, such that for any t ≥ 0, with probability at least703

1− 2 exp{−t2/c′x}:704 ∥∥∥∥ 1nXT
k Xk − ΣS,k

∥∥∥∥ ≤ λ1 max

c′x

√
k

n
+

t√
n
,

(
c′x

√
k

n
+

t√
n

)2
 .

Taking t =
√
c′x ln(2/δ) completes the proof.705

Corollary 12. Under the same conditions as in Lemma 11, and on the same event, the following706

holds:707 ∥∥∥(XT
k Xk

) 1
2 −

√
nΣ

1
2

S,k

∥∥∥ ≤ cx

√
k + ln

1

δ
λ1λ

− 1
2

k .

Proof. According to Proposition 3.2 of van Hemmen & Ando (1980), for any positive semi-definite708

matrix A,B ∈ Rk, we have709

∥A−B∥ ≥
(
µk

(
A

1
2

)
+ µk

(
B

1
2

))∥∥∥A 1
2 −B

1
2

∥∥∥ .
Therefore,710 ∥∥∥(XT

k Xk

) 1
2 −

√
nΣ

1
2

S,k

∥∥∥ ≤ 1

µk

(√
nΣ

1
2

S,k

) ∥∥XT
k Xk − nΣS,k

∥∥
=

√
nλ

− 1
2

k

∥∥∥∥ 1nXT
k Xk − ΣS,k

∥∥∥∥ .
By applying Lemma 11, the proof is complete.711

Lemma 13. There exists a constant cx depending only on σ, such that for any n > cxk, with712

probability at least 1− 2e−n/cx :713

1

cx
n ≤ µk

(
Σ

− 1
2

S,kX
T
k XkΣ

− 1
2

S,k

)
≤ µ1

(
Σ

− 1
2

S,kX
T
k XkΣ

− 1
2

S,k

)
≤ cxn.

Proof. According to Theorem 5.39 of Vershynin (2010), there exists a constant c′x depending only714

on σ, such that for any t ≥ 0, with probability at least 1− 2 exp{−t2/c′x}:715

µk

(
Σ

− 1
2

S,kX
T
k XkΣ

− 1
2

S,k

)
≥
(√

n− c′x
√
k − t

)2
.

µ1

(
Σ

− 1
2

S,kX
T
k XkΣ

− 1
2

S,k

)
≤
(√

n+ c′x
√
k + t

)2
.

Let t = 1
2

√
n. For n > 16(c′x)

2k, with probability at least 1− 2 exp {−n/(4c′x)}:716

µk

(
Σ

− 1
2

S,kX
T
k XkΣ

− 1
2

S,k

)
≥
(√

n− 1

4

√
n− 1

2

√
n

)2

=
1

16
n.

µ1

(
Σ

− 1
2

S,kX
T
k XkΣ

− 1
2

S,k

)
≤
(√

n+
1

4

√
n+

1

2

√
n

)2

=
49

16
n.

By taking cx = max
{
16(c′x)

2, 4c′x, 16
}

, the proof is complete.717

Remark 7. On the same event, the following inequalities also hold:718

µ1(X
T
k Xk) ≤ ∥ΣS,k∥

∥∥∥Σ− 1
2

S,kX
T
k XkΣ

− 1
2

S,k

∥∥∥ ≤ cxλ1n.

µk(X
T
k Xk) ≥ µk(ΣS,k)µk

(
Σ

− 1
2

S,kX
T
k XkΣ

− 1
2

S,k

)
≥ 1

cx
λkn.

Lemma 14. There exists a constant cx depending only on σ, with probability at least 1− 2e−n/cx :719

tr
(
X−kΣT,−kX

T
−k
)
≤ cxn tr

(
Σ

1
2

S,−kΣT,−kΣ
1
2

S,−k

)
.
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Proof. According to Hanson-Wright Inequality (Vershynin, 2018), there exists an absolute constant720

c, such that for any 1 ≤ i ≤ n,721 ∥∥∥Z−k[i, ∗]Σ
1
2

S,−kΣT,−kΣ
1
2

S,−kZ−k[i, ∗]T
∥∥∥
ψ1

≤ cσ2
∥∥∥Σ 1

2

S,−kΣT,−kΣ
1
2

S,−k

∥∥∥
F

≤ cσ2 tr
(
Σ

1
2

S,−kΣT,−kΣ
1
2

S,−k

)
.

By Bernstein Inequality (Proposition 5.16 of Vershynin (2010)), there exists an absolute constant c′,722

for any t ≥ 0,723

P

{
1

n

∣∣∣∣∣
n∑
i=1

[
Z−k[i, ∗]Σ

1
2

S,−kΣT,−kΣ
1
2

S,−kZ−k[i, ∗]T − tr
(
Σ

1
2

S,−kΣT,−kΣ
1
2

S,−k

)]∣∣∣∣∣ ≥ t

}

≤ 2 exp

{
−c′nmin

{
t2

K2
,
t

K

}}
,

where K = maxi

∥∥∥Z−k[i, ∗]Σ
1
2

S,−kΣT,−kΣ
1
2

S,−kZ−k[i, ∗]T
∥∥∥
ψ1

.724

Let t = cσ2 tr
(
Σ

1
2

S,−kΣT,−kΣ
1
2

S,−k

)
. Then, with probability at least 1− 2e−c

′n:725

tr
(
X−kΣT,−kX

T
−k
)
=

n∑
i=1

Z−k[i, ∗]Σ
1
2

S,−kΣT,−kΣ
1
2

S,−kZ−k[i, ∗]T

≤ (1 + cσ2)n tr
(
Σ

1
2

S,−kΣT,−kΣ
1
2

S,−k

)
.

By taking cx = max
{
1 + cσ2, 1

c′

}
, the proof is complete.726

Lemma 15. There exists a constant cx depending only on σ, with probablity at least 1− 2e−n/cx :727

(β⋆−k)
TXT

−kX−kβ
⋆
−k ≤ cxn(β

⋆
−k)

TΣS,−kβ
⋆
−k.

Proof. The result follows from the proof of Lemma 3 in Tsigler & Bartlett (2023), which we restate728

here for completeness. Consider the isotropic vector
[
(β⋆−k)

TΣS,−kβ
⋆
−k
]−1/2

X−kβ
⋆
−k. For the729

i-th component,730 ∥∥∥[(β⋆−k)TΣS,−kβ⋆−k]− 1
2 X−k[i, ∗]β⋆−k

∥∥∥
ψ2

=
[
(β⋆−k)

TΣS,−kβ
⋆
−k
]− 1

2

∥∥∥Z−k[i, ∗]Σ
1
2

S,−kβ
⋆
−k

∥∥∥
ψ2

≤
[
(β⋆−k)

TΣS,−kβ
⋆
−k
]− 1

2 σ
∥∥∥Σ 1

2

S,−kβ
⋆
−k

∥∥∥
= σ.

By applying Lemma 9 for the sequence
{[

(β⋆−k)
TΣS,−kβ

⋆
−k
]−1/2

X−k[i, ∗]β⋆−k
}n
i=1

, there exists731

an absolute constant c, for any t ∈ (0, n), with probability at least 1− 2e−ct:732

(β⋆−k)
TXT

−kX−kβ
⋆
−k

(β⋆−k)
TΣS,−kβ⋆−k

≤ n+
√
ntσ2.

Let t = n/4, with probability at least 1− 2e−cn/4:733

(β⋆−k)
TXT

−kX−kβ
⋆
−k ≤ (1 +

1

2
σ2)n · (β⋆−k)TΣS,−kβ⋆−k.

By taking cx = max
{
1 + 1

2σ
2, 4
c

}
, the proof is complete.734
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A.2 Block decomposition of X−kX
T
−k735

Let Xk = UM̃
1
2V , where U ∈ Rn×n and V ∈ Rd×d are orthogonal matrices representing the left736

and right singular vectors, respectively. The matrix M̃
1
2 is defined as:737

M̃
1
2 =


m

1
2
1

. . .

m
1
2

k

0(n−k)×k

 ∈ Rn×k.

Therefore, we have XkX
T
k = UMUT , where M = diag(m1, ...,mk, 0, ..., 0) ∈ Rn×n. Similarly,738

XT
k Xk = V TMkV , where Mk = diag(m1, ...,mk) ∈ Rk×k.739

Let ∆ = UTX−kX
T
−kU , and write ∆ in block matrix form as:740

∆ =

(
∆11 ∆12

∆T
12 ∆22

)
,

where ∆11 ∈ Rk×k, ∆12 ∈ Rk×(n−k), and ∆22 ∈ R(n−k)×(n−k).741

We will repeatedly use the first k rows of (M + λIn + ∆)−1, which we compute here. Because742

M +λIn+∆ and λIn−k+∆22 are invertible when Ak is positive definite, by block matrix inverse,743

(M + λIn +∆)−1[k, ∗]

=
(
Mk + λIk +∆11 −∆12(λIn−k +∆22)

−1∆T
12

)−1 (
Ik,−∆12(λIn−k +∆22)

−1
)
.

(5)

Corollary 16 (Corollary of Lemma 10). There exists a constant depending only on σ, such that744

for any n < λ−1
k+1

(
λ +

∑
j>k λj

)
, if the assumption condNum(k, δ, L) is satisfied, the following745

inequalities hold with probability at least 1− δ − cxe
−n/cx , on the same event as in Lemma 10.746

∥∆11∥, ∥∆12∥ ≤ ∥∆∥ ≤ cx

λ+
∑
j>k

λj

 .

∥(λIn−k +∆22)
−1∥ ≤ ∥∆−1∥ ≤ cxL

λ+
∑
j>k

λj

−1

.

∥∥∆12(λIn−k +∆22)
−2∆T

12

∥∥ ≤ c4xL
2.

∥∥∆12(λIn−k +∆22)
−1∆T

12

∥∥ ≤ c3xL

λ+
∑
j>k

λj

 .

∥∥∆11 −∆12(λIn−k +∆22)
−1∆T

12

∥∥ ≤ cx

λ+
∑
j>k

λj

 .

Proof. 1. The first inequality.747

∥∆11∥, ∥∆12∥ ≤ ∥∆∥ = ∥X−kX
T
−k∥ ≤ ∥Ak∥ ≤ cx

λ+
∑
j>k

λj

 .

2. The second inequality.748

∥(λIn−k +∆22)
−1∥ ≤ ∥(λIn +∆)−1∥ = ∥A−1

k ∥ ≤ cxL

λ+
∑
j>k

λj

−1

,

where the first inequality holds because λIn +∆ is positive definite.749
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3. The third inequality.750 ∥∥∆12(λIn−k +∆22)
−2∆T

12

∥∥ ≤ ∥∆12∥2∥(λIn−k +∆22)
−1∥2 ≤ c4xL

2.

4. The fourth inequality.751

∥∥∆12(λIn−k +∆22)
−1∆T

12

∥∥ ≤ ∥∆12∥2∥(λIn−k +∆22)
−1∥ ≤ c3xL

λ+
∑
j>k

λj

 .

5. The last inequality.752 ∥∥∆11 −∆12(λIn−k +∆22)
−1∆T

12

∥∥
=
∥∥∆11 + λIk −∆12(λIn−k +∆22)

−1∆T
12

∥∥− λ

≤ ∥∆11 + λIk∥ − λ

= ∥∆11∥

≤ cx

λ+
∑
j>k

λj

 .

The first inequality holds because ∆11 + λIk − ∆12(λIn−k + ∆22)
−1∆T

12 is the Schur753

complement of the block ∆11 + λIk of the matrix ∆ + λIn, which is positive definite.754

Therefore, we have755

∆11 + λIk ≽ ∆11 + λIk −∆12(λIn−k +∆22)
−1∆T

12.

756

Lemma 17. There exists a constant cx > 2 depending only on σ, such that for any N1 < n <757

N2, if the assumption condNum(k, δ, L) is satisfied, the following holds with probability at least758

1− 2δ − cxe
−n/cx , on both events from Lemma 10 and Lemma 11,759 ∥∥∥∥[XT
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V
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∥∥∥∥
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.

where760
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∥∥∥∥

≤
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·
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(
∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
∥∥ .

According to Lemma 11, Corollary 16, there exists a constant cx > 2 depending only on σ, such761

that for any k + ln(1/δ) < N1 < n < N2 = λ−1
k+1

(
λ +

∑
j>k λj

)
, with probability at least762

1− 2δ − cxe
−n/cx , on both events in Lemma 10 and Lemma 11,763 ∥∥∥∥ 1nXT
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∥∥∥∥ ≤ cxλ1

√
k + ln 1

δ

n
.
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1.
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V
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Since n > 4c4x(k + ln(1/δ))
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1
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k
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√
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√
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√
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Since n > 2c4xLλ
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Therefore, we have768

1
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)
V
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1
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.

Now we derive the upper bound for our target.769 ∥∥∥[XT
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≤
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∥∥∥∥ [1− ∥∥∥∥(nΣ̃S,k)−1
∥∥∥∥

·
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.

The first inequality follows from the result ∥(A + T )−1∥ ≤ ∥A−1∥
(
1− ∥A−1∥∥T∥

)−1
,770

provided that both A and A + T are invertible and ∥A−1∥∥T∥ < 1 (see Lemma 3.1 in771

Wedin (1973)).772

Combining the above two inequalities,773 ∥∥∥∥[XT
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774

A.3 Bias variance decomposition775

We consider the expection of the excess risk R
(
β̂(Y )

)
= R

(
β̂(Xβ⋆) + β̂(ϵ)

)
with respect to the776

distribution of the noise ϵ.777

Eϵ
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R
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]
+
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(
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)
.

We decompose the expected excess risk into variance and bias terms.778

V = Eϵ

[
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]
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[
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]
+ 2Eϵ

[
β̂(ϵ)T−kΣT,−kβ̂(ϵ)−k
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The inequalities follow from the result for a positive definite block quadratic form:779

(xT1 , x
T
2 )

(
A B
BT D

)(
x1

x2

)
= xT1 Ax1 + 2xT1 Bx2 + xT1 Dx1,

where the positive definiteness implies xT1 Ax1 + xT1 Dx1 ≥ 2xT1 Bx2.780

Lemma 18. There exists a constant cx > 2 depending only on σ, such that for any N1 < n <781

N2, if the assumption condNum(k, δ, L) (Assumption 2) is satisfied, then with probability at least782

1− 2δ − cxe
−n/cx , the following inequalities hold simultaneously:783
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µ1(Ak) ≤ cx
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 .
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T
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∥∆11∥, ∥∆12, ∥∆∥∥ ≤ cx

λ+
∑
j>k

λj

 .

∥(λIn−k +∆22)
−1∥, ∥∆−1∥ ≤ cxL

λ+
∑
j>k

λj

−1

.

∥∥∆12(λIn−k +∆22)
−2∆T

12

∥∥ ≤ c4xL
2.

∥∥∆12(λIn−k +∆22)
−1∆T

12

∥∥ ≤ c3xL

λ+
∑
j>k

λj

 .

∥∥∆11 −∆12(λIn−k +∆22)
−1∆T

12

∥∥ ≤ cx

λ+
∑
j>k

λj

 .

And,784 ∥∥∥∥[XT
k Xk + λIk + V T

(
∆11 −∆12(λIn−k +∆22)
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N1 and N2 are defined as follows:785

N1 = max

4c4x(k + ln(1/δ))
λ2
1

λ2
k

, 2c4xLλ
−1
k

λ+
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λj
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1
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∑
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Proof. The lemma is a direct corollary from Lemma 10, Lemma 11, Corollary 12, Lemma 13,786

Lemma 14, Lemma 15, Corollary 16, Lemma 17.787
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A.3.1 Variance in the first k dimensions788

Lemma 19. Under the same conditions as in Lemma 18, and on the same event, for any N1 < n <789

N2,790
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The sixth equation follows from Equation 5. The first inequality follows from the result tr[AB] ≤792

∥A∥ tr[B] where the matrix B is positive semi-definite.793

We define two quantities that represent concentration error terms:794
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Combing the above four inequalities, we have800
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The inequality follows from the fact that tr[BAB] = tr[A
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The other terms can be similarly bounded. Therefore,805
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The proof is complete by combing all the inequalities above.806

A.3.2 Variance in the last d− k dimensions807

Lemma 20. Under the same conditions as in Lemma 18, and on the same event, for any N1 < n <808
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The first inequality follows from the result tr[ABA] = tr[A2B] ≤ ∥A2∥ tr[B] where the matrix B811

is positive semi-definite. The second inequality follows from XXT + λIn ≽ X−kX
T
−k + λIn.812

A.3.3 Bias in the first k dimensions813
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The second equation follows from Equation 5.821

We will derive upper bounds for both terms in the last equation above.822
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Lemma 22. Under the same conditions as in Lemma 18, and on the same event, for any N1 < n <834
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The third equation follows from Equation 5.839

We define two quantities that represent concentration error terms:840

E1 =

∥∥∥∥[XT
k Xk + λIk + V T

(
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V
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(
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∥∥∥∥ .
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1
2 .
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,841

and n > 2c4xL
(
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j>k λj
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,842
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∥∥∥ .
Similar to Equation 6, since n > 4c4x

(
k + ln 1

δ

)
λ4
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k and n > 2c4xL

(
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∑
j>k λj

)
λ1λ

−2
k ,843
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Similar to Equation 7, since n > c2x
(
k + ln 1

δ

)
λ2
1λ
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∥∥∥∥(nΣ̃S,k)− 1

2

∥∥∥∥ < 1.

Combining the four inequalities above,846 ∥∥∥(XT
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The inequality follows from the fact that ∥BAB∥ = ∥A 1

2BA
1
2 ∥ ≤ ∥A 1

2CA
1
2 ∥ = ∥CAC∥, where848

A,B,C are positive semi-definite matrices, and C ≽ B, which implies that A
1
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1
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1
2BA

1
2 .849
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≤ 1
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∥∥∥ .
The other terms can be similarly bounded. Therefore,850 ∥∥∥(XT
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851

A.3.4 Bias in the last d− k dimensions852

The upper bound for the bias in the last d−k dimensions is extended from Tsigler & Bartlett (2023)’s853

Lemma 28. The bias can be decomposed into three terms.854 (
β̂(Xβ⋆)−k − β⋆−k

)T
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(
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Lemma 23. Under the same conditions as in Lemma 18, and on the same event, for any N1 < n <855

N2,856

(β⋆−k)
TXT

−k(XXT + λIn)
−1X−kΣT,−kX

T
−k(XXT + λIn)

−1X−kβ
⋆
−k

≤ c2xL

λ+
∑
j

λj

−1

n∥ΣT,−k∥(β⋆−k)TΣS,−kβ⋆−k.

where N1, N2 are defined as in Lemma 18.857
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The fourth inequality follows from XXT + λIn ≽ X−kX
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Lemma 24. Under the same conditions as in Lemma 18, and on the same event, for any N1 < n <859
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where N1, N2 are defined as in Lemma 18.861

Proof. It can be verified by Woodbury matrix identity that:862
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In particular,864 ∥∥∥∥(Σ−1
S,k +Σ

− 1
2

S,kX
T
k (X−kX

T
−k + λIn)

−1XkΣ
− 1

2

S,k

)−1
∥∥∥∥

≤
∥∥∥∥(Σ− 1

2

S,kX
T
k (X−kX

T
−k + λIn)

−1XkΣ
− 1

2

S,k

)−1
∥∥∥∥

≤
∥∥X−kX

T
−k + λIn

∥∥∥∥∥∥(Σ− 1
2

S,kX
T
k XkΣ

− 1
2

S,k

)−1
∥∥∥∥

≤ cx

λ+
∑
j>k

λj

 cx
n

=
c2x
n

λ+
∑
j>k

λj

 .

The second inequality follows from µmin(ABAT ) ≥ µmin(B)µmin(AAT ) where the matrix B is865

positive definite.866
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868

A.4 Main results869

Theorem 25. Let T = Σ
− 1

2

S,kΣT,kΣ
− 1

2

S,k and U = Σ
1
2

S,−kΣT,−kΣ
1
2

S,−k. There exists a constant c > 2870

depending only on σ, such that for any cN < n < rk, if the assumption condNum(k, δ, L) (As-871

sumption 2) is satisfied, then with probability at least 1− 2δ − ce−n/c,872

V
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N is defined as follows:873
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}
.

Remark 8 (Sample complexity). We have assumed n ≥ cxN in the theorem. The first condition874

on N indicates n ≫ k. From the inequality λ2
k ≤ ∥ΣT,k∥2k2 (tr [T ])

−2 ≤ k2λ2
1, it follows that875

n = Ω(k) in the best case, consistent with the sample complexity of classic linear regression.876

This optimal case occurs when ΣS,k ≈ ΣT,k. In the worst case, n = Ω(k3) where covariate shift is877

significant in the first k dimensions–e.g., when the test data lies predominantly in the subspace of the878

first dimension. This shift in sample complexity under varying degrees of covariate shift parallels the879

analysis of Ge et al. (2024) (see theire Theorem 4.2) for the under-parameterized setting. The second880

condition implies n ≫ λ +
∑
j>k λj , such that the regularization is not too strong to introduce a881

bias greater than a constant (as shown in the first bias term). On the other hand, we assume n < rk882

in the theorem, which is consistent with the over-parameterized regime and Assumption 1, where883

the last d− k components are considered to be essentially high-dimensional.884

Proof. The theorem follows from Lemma 18, Lemma 19, Lemma 20, Lemma 21, Lemma 22,885

Lemma 23 and Lemma 24. For a constant c′x > 2 depending only on σ, these lemmas hold for886

values of n that satisfy the following inequalities:887
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A sufficient condition for all the inequalities above is given by 4c′4xN1 < n < rk. This follows from888

the following facts:889
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]
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Σ
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2
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2
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2
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+ 3c′6x L
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⋆
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The last inequality follows from:891
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⋆
−k = (β⋆−k)

TΣ
1
2

S,−kΣ
− 1

2
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2
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1
2
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S,−k

∥∥∥ (β⋆−k)TΣS,−kβ⋆−k.
By taking c = 134c′6x , the proof is complete.892

Corollary 26. Let T = Σ
− 1

2

S,kΣT,kΣ
− 1

2

S,k , U = ΣS,−kΣT,−k and V = Σ2
S,−k. There exists a893

constant c > 2 depending only on σ, L, such that for any cN < n < rk, if the assumption894

condNum(k, δ, L) (Assumption 2) is satisfied, then with probability at least 1− 3δ,895

V

cv2
≤ k

n

tr[T ]

k
+

n

Rk

tr[U ]
tr[V]

.

B

c
≤
(
∥β⋆k∥

2
Σ−1

S,k

(λ+
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j>k λj

n

)2
+
∥∥β⋆−k∥∥2ΣS,−k

)[
∥T ∥+ n

rk

∥ΣT,−k∥
∥ΣS,−k∥

]
.

N is a polynomial function of k + ln(1/δ), λ1λ
−1
k , 1 +

(
λ+

∑
j>k λj

)
λ−1
k .896

Proof. The first variance term follows directly from Theorem 25.897

For the second variance term, by plugging in the definition of Rk,898

L2 n tr [U ](
λ+

∑
j>k λj

)2 = L2 n

Rk

tr [ΣS,−kΣT,−k]∑
j>k λ

2
j
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.

For the first bias term, by plugging in the definition of rk,899
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Similarly, the second bias term can be transformed into:900 ∥∥β⋆−k∥∥2ΣS,−k

[
L2 ∥T ∥+ L
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.
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Since the statement of Theorem 25 holds with probability at least 1− 2δ − ce−n/c, we only require901

ce−n/c < δ, which is equivalent as n > c ln c + c ln(1/δ). Combining the lower bounds of n in902

Theorem 25, we should have:903

n > max

{
c ln c+ c ln

1

δ
,

c
(
k + ln

1

δ

)
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1λ

−8
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cLλ2
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−4
k
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)
∥ΣT,k∥k (tr [T ])

−1

}
.

For the first term in the maximum argument,904
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1

δ
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1

δ
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(
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1

δ

)
.

The second term:905
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= c
(
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)3
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The first inequality follows from tr[MN ] ≥ µmin(M) tr[N ] for postive semi-definite matrices906

M,N .907

Similar, for the third term:908
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The proof is complete by taking c as c2L2 and N =
(
k+ln 1

δ

)3(
λ1λ

−1
k

)8[
1+
(
λ+
∑
j>k λj

)
λ−1
k

]
.909

910

B Large shift in minor directions911

In this section, we consider the scenario where the signal β⋆ mainly concentrate on the first k912

components (here we choose the basis to be the eigenvectors of ΣS), but the target covariance ΣT913

may not be small on the last d− k components.914

B.1 Lower bound for ridge regression915

In this subsection, we will show that the original ridge regression algorithm will not work under this916

scenario.917

Recall our model:918

y = β⋆Tx+ ϵ, (8)
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We can write our data as919

Y = Xβ⋆ + ϵ, (9)

where Y = (y1, · · · , yn)T ∈ Rn×1, X = (x1, · · · , xn)T ∈ Rn×d, ϵ = (ϵ1, · · · , ϵn)T ∈ Rn×1. We920

denote by Σ̂S := 1
nX

TX the sample covariance matrix.921

Assume the same assumptions as in our previous section still holds. We let ΣS = E[xixTi ] be the922

following: its eigenvalues λ1, · · · , λd satisfies λ1 = · · · = λk = 1, λk+1 = · · · = λk+⌊
√
n/C2⌋ =923

C1/
√
n for sufficiently large constants C1, C2, and the remaining eigenvalues are all set to zero. We924

let ΣT = Id. Then the excess risk is Eϵ[(β̂− β⋆)TΣT (β̂− β⋆)] = Eϵ∥β̂− β⋆∥2. We will show that925

under this scenario, ridge regression can not obtain an error rate of O( 1n ). To see this, we explicitly926

write out the ridge solution:927
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λ
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−1 1
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Therefore928
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Taking expectation with respect to ϵ,929
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n
Id)

−1β⋆∥2 + 1

n2
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n
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:= B + V (11)

where B = λ2

n2 ∥(Σ̂S + λ
nId)

−1β⋆∥2 is the bias, V = v2

n tr((Σ̂S + λ
nId)

−2Σ̂S) is the variance. We930

state the formal version of Theorem 4 in the following:931

Theorem 27. Under the instance we consider, namely λ1, · · · , λd satisfies λ1 = · · · = λk = 1,932

λk+1 = · · · = λk+⌊
√
n/C2⌋ = C1/

√
n, λk+⌊

√
n/C2⌋+1 = · · · = λd = 0. WLOG assume σ = 1,933

C2 ≥ C1((
C1

4C )
2 − k − log 1

δ )
−1 for some absolute constant C, and n ≥ ( 3C1

2 )4. With probability934

1− δ, when λ = c
√
n, we have V

v2 ≥ C ′, where C ′ > 0 is some absolute constant. When λ ≤ n3/4,935

we have V
v2 ≥ C ′ 1√

n
. When λ ≥ n3/4, B ≥ ∥β⋆∥2

9
√
n

.936

Proof. We will use the following concentration lemma modified from (Vershynin, 2018, Exercise937

9.2.5):938

Lemma 28. Let {xi}ni=1 be i.i.d. d−dimensional random vectors, satisfying: xi is mean zero,
E[xxT ] = Σ and is σ2Σ-sub-gaussian, in the sense that

E[exp(vTxi)] ≤ exp

(
∥σΣ1/2v∥2

2

)
.
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X = (x1, · · · , xn)T ∈ Rn×d. Then with probability 1− δ,939

∥Σ̂− Σ∥ ≤ Cσ4

√r + log 1
δ

n
+

r + log 1
δ

n

 ∥Σ∥

where r := tr(Σ)/∥Σ∥ is the stable rank of Σ, C is an absolute constant.940

Applying Lemma 28, we have941
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√r + log 1
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r + log 1
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n
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We denote by λ̂1 ≥ · · · ≥ λ̂d the eigenvalues of Σ̂S . Then by Weyl’s inequality (Chen et al.,943

2021, Lemma 2.2), ∥λ̂i − λi∥ ≤ ∥Σ̂S − ΣS∥. Combining with previous inequalities, we have 1 −944

2C
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Similarly, if λ ≤ n3/4,949

V

v2
≥ 1

n

k+⌊
√
n/C2⌋∑

i=k+1

(λ̂i +
λ

n
)−2λ̂i

≥ 1

n

k+⌊
√
n/C2⌋∑

i=k+1

(λ̂i + n−1/4)−2λ̂i

≥ 1

n

k+⌊
√
n/C2⌋∑

i=k+1

(
3C1

2
√
n
+ n−1/4)−2 C1

2
√
n

43



=
1

n
⌊
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2
(
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2
+ n1/4)−2

√
n

≥ C1

16C2
n−1/2, (13)

when n ≥ ( 3C1

2 )4.950

As for the bias term, assume λ ≥ n3/4. Using the same concentration argument, we have 2 > λ̂i >951

1/2, for 1 ≤ i ≤ k. When λ ≤ n, λmax(Σ̂S + λ
nId) ≤ 2 + λ/n ≤ 3, therefore λmin((Σ̂S +952

λ
nId)

−1) ≥ 1
3 . This implies953
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When λ > n, λmax(Σ̂S + λ
nId) ≤ 2 + λ/n ≤ 3λ

n , which means λmin((Σ̂S + λ
nId)

−1) ≥ n
3λ This954

implies955
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9
.

956

B.2 Upper bound for PCR957

In this subsection, we will give the following upper bound for principal component regression.958

Theorem 29. When n ≳ σ8(r + log 1
δ )(

λ1

λk−λk+1
)2

λ2
1k

2∥ΣT ∥2

λ4
k tr((ΣS,k)−1ΣT,k)2

,959

Eϵ∥β̂ − β⋆∥2ΣT
≤ O(σ8(
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λk
+ β⋆T−kΣT,−kβ

⋆
−k)

where r =
∑d

i=1 λi

λ1
.960

Proof. For simplicity, we assume we have a sample size of 2n, and in the first step we obtain an961

estimator Û ∈ Rd×k of the top-k subspace U =

(
Ik
0

)
∈ Rd×k, by using principal component anal-962

ysis on the sample covariance matrix Σ̂S := 1
nX

TX = 1
n

∑n
i=1 xix

T
i , namely Û = (û1, · · · , ûk)963

where ûi is the i-th eigenvector of Σ̂S . We denote the distance between the estimated subspace and964

the original one by ∆ := dist(U, Û) = ∥UUT − Û ÛT ∥. For controlling ∆, we have the following965

lemma (Lemma 6):966
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Lemma 30. With probability at least 1− δ,967

∆ ≤ Cσ4

√r + log 1
δ

n
+

r + log 1
δ

n

 λ1

λk − λk+1

where r =
∑n

i=1 λi

λ1
.968

In the second step, we do linear regression on the projected (second half) data. With a little abuse of969

notation, we still use X ∈ Rn×d to denote the data matrix indexed from n+ 1 to 2n. The data here970

is independent from the data in step 1, and therefore independent of ∆. If we let Z := XÛ ∈ Rn×k971

be the projected data matrix, the estimator β̂ we obtained is given by972

β̂ = Û(ZTZ)−1ZTY

= Û(ÛTXTXÛ)−1ÛTXTY. (14)

We aim to bound the excess risk on target, which is given by ∥β̂ − β⋆∥2ΣT
:= ∥Σ

1
2

T (β̂ −973

β⋆)∥2. We introduce the following notations: suppose β⋆ = (β∗
1 , · · · , β∗

d)
T . We let β⋆U :=974

(β∗
1 , · · · , β⋆k , 0, · · · , 0)T , β⋆⊥ := (0, · · · , 0, β∗

k+1, · · · , β⋆d)T = β⋆ − β⋆U . Here we present an in-975

termediate result for bounding the excess risk:976
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, the assumption for ∆ and n in981

Lemma 31 will be both satisfied. We can thus apply Lemma 31 to get982
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+ β⋆T−kΣT,−kβ

⋆
−k)

where r =
∑d

i=1 λi

λ1
.983

984
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B.3 Proofs for Lemma 31985

In the following we will prove Lemma 31.986

Proof for Lemma 31. The proof idea is similar to (Ge et al., 2023, Theorem 4.4) and (Tripuraneni987

et al., 2021b, Theorem 4).988

We can decompose β̂ − β⋆ as989

β̂ − β⋆ = Û(ÛTXTXÛ)−1ÛTXTY − β⋆

= Û(ÛTXTXÛ)−1ÛTXT (Xβ⋆ + ϵ)− β⋆

= Û(ÛTXTXÛ)−1ÛTXT (Xβ⋆U +Xβ⋆⊥ + ϵ)− (β⋆U + β⋆⊥)

= A1 +A2 +A3 − β⋆⊥,

where A1 := Û(ÛTXTXÛ)−1ÛTXTXβ⋆U − β⋆U , A2 := Û(ÛTXTXÛ)−1ÛTXTXβ⋆⊥, A3 :=990

Û(ÛTXTXÛ)−1ÛTXT ϵ. Therefore991

∥β̂ − β⋆∥2ΣT
≤ ∥A1∥2ΣT

+ ∥A2∥2ΣT
+ ∥A3∥2ΣT

+ ∥β⋆⊥∥2ΣT
(15)

We give three lemmas for bounding the related terms. The first lemma considers the bias term A1:992

Lemma 32. If ∆ ≤ λk

4λ1
and n ≳ max{σ4( λ1

λk
)2k log(1/δ), σ4k log(1/δ)}, then with probability at993

least 1− δ,994

∥A1∥2ΣT
≤ O(∥β⋆U∥2∆2(

λ1

λk
)2∥ΣT ∥)

If we further have n ≳ σ4∆−2k log(1/δ), then with probability at least 1− δ,995

∥A1∥2ΣT
≤ O(∥β⋆U∥2(∆4(

λ1

λk
)2∥ΣT ∥+∆2∥ΣT,−k∥+∆3∥ΣT ∥)) ≤ O(∥β⋆U∥2∆2∥ΣT ∥)

The second lemma considers the variance term A3:996

Lemma 33. If ∆ ≤ λ2
k tr((ΣS,k)

−1ΣT,k)
4λ1k∥ΣT ∥ and n ≳ σ4∥ΣS∥2∥ΣT ∥2k3 log(1/δ)

λ4
k tr((ΣS,k)−1ΣT,k)2

, then with probability at997

least 1− δ,998

Eϵ[∥A3∥2ΣT
] ≤ O(

1

n
v2 tr((ΣS,k)

−1ΣT,k)).

For bounding A2, we actually have a similar result to bounding A3:999

Lemma 34. If n ≳ σ4( λ1

λk
)2k log(1/δ) and ∆ ≤ min{∥ΣT,k∥

2∥ΣT ∥ ,
λk

4λ1
}, then with probability at least1000

1− δ1001

∥A2∥2ΣT
≤ O(

∥ΣT,k∥∥β⋆−k∥2∥ΣS,−k∥
λk

) (16)

By Lemma 32, 33, 34, together with the decomposition (15), we have with probability 1− δ, when1002

n ≳ N1,1003

Eϵ∥β̂ − β⋆∥2ΣT
≤ O(∥β⋆U∥2∆2(

λ1

λk
)2∥ΣT ∥+

1

n
v2 tr((ΣS,k)

−1ΣT,k) (17)

+
∥ΣT,k∥∥β⋆−k∥2∥ΣS,−k∥

λk
+ β⋆T−kΣT,−kβ

⋆
−k) (18)

If further n ≳ σ4∆−2k log(1/δ),1004

Eϵ∥β̂ − β⋆∥2ΣT
≤ O(∥β⋆U∥2(∆4(

λ1

λk
)2∥ΣT ∥+∆2∥ΣT,−k∥+∆3∥ΣT ∥) (19)

+
1

n
v2 tr((ΣS,k)

−1ΣT,k) +
∥ΣT,k∥∥β⋆−k∥2∥ΣS,−k∥

λk
+ β⋆T−kΣT,−kβ

⋆
−k) (20)

1005
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B.4 Technical proofs1006

In the sequel, we give the proofs of Lemma 32, 33, 34 and 30. We first prove some additional1007

technical lemmas. The following lemma, which is a simple corollary of (Tripuraneni et al., 2021b,1008

Lemma 20), shows the concentration property of empirical covariance matrix.1009

Lemma 35. Let {xi}ni=1 be i.i.d. d−dimensional random vectors, satisfying: xi is mean zero,
E[xxT ] = Σ such that σmax(Σ) ≤ Cmax and is σ2Σ-sub-gaussian, in the sense that

E[exp(vTxi)] ≤ exp

(
∥σΣ1/2v∥2

2

)
.

X = (x1, · · · , xn)T ∈ Rn×d. Then for any A,B ∈ Rd×k, we have with probability at least 1− δ1010

∥AT (X
TX

n
)B −ATΣB∥2 ≤ O(σ2∥A∥∥B∥∥Σ∥(

√
k

n
+

k

n
+

√
log(1/δ)

n
+

log(1/δ)

n
). (21)

Proof. We write the SVD of A and B: A = U1Λ1V
T
1 , B = U2Λ2V

T
2 , where U1, U2 ∈ Rd×k,1011

Λ1,Λ2, V1, V2 ∈ Rk×k. Then1012

∥AT (X
TX

n
)B −ATΣB∥2 = ∥V1Λ1U

T
1 (

XTX

n
)U2Λ2V

T
2 − V1Λ1U

T
1 ΣU2Λ2V

T
2 ∥2

≤ ∥V1Λ1∥∥UT
1 (

XTX

n
)U2 − UT

1 ΣU2∥∥Λ2V
T
2 ∥

≤ ∥A∥∥B∥∥UT
1 (

XTX

n
)U2 − UT

1 ΣU2∥. (22)

Now since U1, U2 ∈ Rd×k are projection matrices, we can apply Tripuraneni et al. (2021b) Lemma1013

20, therefore1014

∥UT
1 (

XTX

n
)U2 − UT

1 ΣU2∥ ≤ O(σ2∥Σ∥(
√

k

n
+

k

n
+

√
log(1/δ)

n
+

log(1/δ)

n
)) (23)

which gives what we want.1015

The following lemma is a basic matrix perturbation result (see Tripuraneni et al. (2021b) Lemma1016

25).1017

Lemma 36. Let A be a positive definite matrix and E another matrix which satisfies ∥EA−1∥ ≤ 1
4 ,1018

then F := (A+ E)−1 −A−1 satisfies ∥F∥ ≤ 4
3∥A

−1∥∥EA−1∥.1019

With these two technical lemmas, we are able to prove Lemma 32, 33.1020

Proof of Lemma 32. Notice that by the definition of U and β⋆U , we have UUTβ⋆U = β⋆U . We denote1021

α⋆ := UTβ⋆U , then we also have β⋆U = Uα⋆. Therefore1022

A1 = Û(ÛTXTXÛ)−1ÛTXTXβ⋆U − β⋆U

= Û(ÛTXTXÛ)−1ÛTXTXUα⋆ − Uα⋆

= (Û(ÛTXTXÛ)−1ÛTXTXU − U)α⋆

We consider Û ∈ Rd×k and ÛT
⊥ ∈ Rd×(d−k) be orthonormal projection matrices spanning orthogo-1023

nal subspaces which are rank k and rank d− k respectively, so that range(Û)⊕ range(Û⊥) = Rd.1024

Then ∆ = dist(Û , U⋆) = ∥ÛT
⊥U⋆∥2. Notice that Id = Û ÛT + Û⊥Û

T
⊥ , we have1025

Û(ÛTXTXÛ)−1ÛTXTXU⋆ − U⋆

= Û(ÛTXTXÛ)−1ÛTXTX(Û ÛT + Û⊥Û
T
⊥)U⋆ − U⋆

= Û(ÛTXTXÛ)−1ÛTXTXÛÛTU⋆ + Û(ÛTXTXÛ)−1ÛTXTXÛ⊥Û
T
⊥U⋆ − U⋆

= Û(ÛTXTXÛ)−1ÛTXTXÛ⊥Û
T
⊥U⋆ + Û ÛTU⋆ − U⋆
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= Û(ÛTXTXÛ)−1ÛTXTXÛ⊥Û
T
⊥U⋆ − Û⊥Û

T
⊥U⋆ (24)

Thus1026

∥A1∥2ΣT
= AT1 ΣTA1

= α⋆T (Û(ÛTXTXÛ)−1ÛTXTXU − U)TΣT (Û(ÛTXTXÛ)−1ÛTXTXU − U)α⋆

= α⋆T (Û(ÛTXTXÛ)−1ÛTXTXÛ⊥Û
T
⊥U⋆ − Û⊥Û

T
⊥U⋆)TΣT

(Û(ÛTXTXÛ)−1ÛTXTXÛ⊥Û
T
⊥U⋆ − Û⊥Û

T
⊥U⋆)α⋆

≤ ∥α⋆∥2∥Û(ÛTXTXÛ)−1ÛTXTXÛ⊥Û
T
⊥U⋆ − Û⊥Û

T
⊥U⋆∥2ΣT

≤ ∥α⋆∥2(∥Û(ÛTXTXÛ)−1ÛTXTXÛ⊥Û
T
⊥U⋆∥2ΣT

+ ∥Û⊥Û
T
⊥U⋆∥2ΣT

). (25)

Here we use the notation ∥M∥ΣT
:=
√
∥MTΣTM∥ for matrix M .1027

For the second term,1028

∥Û⊥Û
T
⊥U⋆∥2ΣT

≤ ∥ÛT
⊥ΣT Û⊥∥∥ÛT

⊥U⋆∥2 ≤ ∆2∥ÛT
⊥ΣT Û⊥∥. (26)

For the first term,1029

∥Û(ÛTXTXÛ)−1ÛTXTXÛ⊥Û
T
⊥U⋆∥2ΣT

= ∥Û(ÛT X
TX

n
Û)−1ÛT X

TX

n
Û⊥Û

T
⊥U⋆∥2ΣT

= ∥Û((ÛTΣSÛ)−1 + F )(ÛTΣSÛ⊥Û
T
⊥U⋆ + E1)∥2ΣT

= ∥(ÛTΣSÛ⊥Û
T
⊥U⋆ + E1)

T ((ÛTΣSÛ)−1 + F )T ÛTΣT Û((ÛTΣSÛ)−1 + F )(ÛTΣSÛ⊥Û
T
⊥U⋆ + E1)∥

≤ ∥ÛTΣSÛ⊥Û
T
⊥U⋆ + E1∥2∥(ÛTΣSÛ)−1 + F∥2∥ÛTΣT Û∥

≤ (∥ÛTΣSÛ⊥Û
T
⊥U⋆∥+ ∥E1∥)2(∥(ÛTΣSÛ)−1∥+ ∥F∥)2∥ÛTΣT Û∥ (27)

where E1 = ÛT XTX
n Û⊥Û

T
⊥U⋆ − ÛTΣSÛ⊥Û

T
⊥U⋆, F = (ÛT XTX

n Û)−1 − (ÛTΣSÛ)−1. We1030

aim to show that ∥E1∥ ≤ ∥ÛTΣSÛ⊥Û
T
⊥U⋆∥ and ∥F∥ ≤ ∥(ÛTΣSÛ)−1∥ = C−1

min for suffi-1031

ciently large n, therefore the term in (27) can be bounded well. First we need a careful analysis1032

of ∥ÛTΣSÛ⊥Û
T
⊥U⋆∥. It is obvious that1033

∥ÛTΣSÛ⊥Û
T
⊥U⋆∥ ≤ ∥ÛTΣSÛ⊥∥∥ÛT

⊥U⋆∥ ≤ ∆∥ÛTΣSÛ⊥∥. (28)

As for ∥ÛTΣSÛ⊥∥, notice that if without the ”hat”, we have UTΣSU⊥ = 0 by the definition of U1034

and ΣS is diagonal. By definition of distance between two subspaces, there exist R ∈ Ok×k and1035

Q ∈ O(d−k)×(d−k), such that ∥ÛR− U∥ = ∆ = ∥Û⊥Q− U⊥∥. Then we have1036

∥ÛTΣSÛ⊥∥ = ∥RT ÛTΣSÛ⊥Q∥
= ∥UTΣSU⊥ +RT ÛTΣSÛ⊥Q− UTΣSU⊥∥
= ∥RT ÛTΣSÛ⊥Q− UTΣSU⊥∥
= ∥RT ÛTΣSÛ⊥Q− UTΣSÛ⊥Q+ UTΣSÛ⊥Q− UTΣSU⊥∥
≤ ∥RT ÛTΣSÛ⊥Q− UTΣSÛ⊥Q∥+ ∥UTΣSÛ⊥Q− UTΣSU⊥∥
≤ ∥RT ÛT − UT ∥∥ΣSÛ⊥Q∥+ ∥UTΣS∥∥Û⊥Q− U⊥∥
≤ 2∆∥ΣS∥. (29)

Combine (28) and (29), we have1037

∥ÛTΣSÛ⊥Û
T
⊥U⋆∥ ≤ O(∆2∥ΣS∥) (30)

In order to bound ∥F∥, let E = ÛT XTX
n Û − ÛTΣSÛ , then by Lemma 35, with probability at least1038

1− δ,1039

∥E∥ ≤ O(σ2∥ΣS∥(
√

k

n
+

k

n
+

√
log(1/δ)

n
+

log(1/δ)

n
)). (31)
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Therefore,1040

∥E(ÛTΣSÛ)−1∥ ≤ ∥E∥∥(ÛTΣSÛ)−1∥
≤ ∥E∥C−1

min

≤ O(σ2C−1
min∥ΣS∥(

√
k

n
+

k

n
+

√
log(1/δ)

n
+

log(1/δ)

n
)), (32)

where Cmin := λmin(Û
TΣSÛ). Notice that n ≳ σ4C−2

min∥ΣS∥2k log(1/δ) implies
√

k
n + k

n +1041 √
log(1/δ)

n + log(1/δ)
n ≲ σ−2Cmin∥ΣS∥−1. Thus, we show that when n is large enough, we have1042

∥E(ÛTΣSÛ)−1∥ ≤ 1
4 . Therefore we can apply Lemma 36, which gives1043

∥F∥ ≤ 4

3
∥E(ÛTΣSÛ)−1∥∥(ÛTΣSÛ)−1∥

≤ 4

3
× 1

4
∥(ÛTΣSÛ)−1∥

≤ 1

3
C−1

min. (33)

As for ∥E1∥, directly applying Lemma 35, when n ≳ σ4∆−2k log(1/δ) we get1044

∥E1∥ ≤ O(σ2∥ΣS∥∥Û⊥Û
T
⊥U⋆∥(

√
k

n
+

k

n
+

√
log(1/δ)

n
+

log(1/δ)

n
))

≤ O(σ2∥ΣS∥∆(

√
k

n
+

k

n
+

√
log(1/δ)

n
+

log(1/δ)

n
)) (34)

when n ≳ σ4k log(1/δ) we have1045

∥E1∥ ≤ O(∆∥ΣS∥) (35)

, if further we have n ≳ σ4∆−2k log(1/δ), then1046

∥E1∥ ≤ O(∆2∥ΣS∥). (36)

Combining (27), (30), (33) and (36), we have1047

∥Û(ÛTXTXÛ)−1ÛTXTXÛ⊥Û
T
⊥U⋆∥2ΣT

≤ (∥ÛTΣSÛ⊥Û
T
⊥U⋆∥+ ∥E1∥)2(∥(ÛTΣSÛ)−1∥+ ∥F∥)2∥ÛTΣT Û∥

≤ O(∆4∥ΣS∥2C−2
min∥Û

TΣT Û∥)
≤ O(∆4∥ΣS∥2C−2

min∥ΣT ∥) (37)

Combining (25),(26) and (37), we get1048

∥A1∥2ΣT
≤ ∥α⋆∥2(∥Û(ÛTXTXÛ)−1ÛTXTXÛ⊥Û

T
⊥U⋆∥2ΣT

+ ∥Û⊥Û
T
⊥U⋆∥2ΣT

)

≤ O(∥α⋆∥2(∆4∥ΣS∥2C−2
min∥ΣT ∥+∆2∥ÛT

⊥ΣT Û⊥∥)) (38)

with probability at least 1− δ. Also, similar to (29), we have1049

∥ÛT
⊥ΣT Û⊥∥ = ∥QT ÛT

⊥ΣT Û⊥Q∥
≤ ∥UT

⊥ΣTU⊥∥+ ∥QT ÛT
⊥ΣT Û⊥Q− UT

⊥ΣTU⊥∥
≤ ∥UT

⊥ΣTU⊥∥+ 2∆∥ΣT ∥ (39)

Similarly, we can further know that Cmin is close to λk:1050

Cmin = λk(Û
TΣSÛ)

= λk(R
T ÛTΣSÛR)

= λk(U
TΣSU +RT ÛTΣSÛR− UTΣSU)
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≥ λk(U
TΣSU)− ∥RT ÛTΣSÛR− UTΣSU∥

≥ λk(U
TΣSU)2∆∥ΣS∥

≥ λk − 2λ1∆

≥ 1

2
λk, (40)

where the last inequality holds when ∆ ≤ λk

4λ1
. Finally, combining (38), (39), (40), we have1051

∥A1∥2ΣT
≤ O(∥α⋆∥2(∆4(

λ1

λk
)2∥ΣT ∥+∆2∥UT

⊥ΣTU⊥∥+∆3∥ΣT ∥))

≤ O(∥β⋆U∥2(∆4(
λ1

λk
)2∥ΣT ∥+∆2∥UT

⊥ΣTU⊥∥+∆3∥ΣT ∥)) (41)

when ∆ ≤ λk

4λ1
and n ≳ max{σ4( λ1

λk
)2k log(1/δ), σ4∆−2k log(1/δ)}. If in the previous proofs we1052

replace (36) by (35), we have1053

∥A1∥2ΣT
≤ O(∥β⋆U∥2(∆2(

λ1

λk
)2∥ΣT ∥+∆2∥UT

⊥ΣTU⊥∥+∆3∥ΣT ∥)) (42)

≤ O(∥β⋆U∥2∆2(
λ1

λk
)2∥ΣT ∥) (43)

when ∆ ≤ λk

4λ1
and n ≳ max{σ4( λ1

λk
)2k log(1/δ), σ4k log(1/δ)}. Notice that by definition of U ,1054

UT
⊥ΣTU⊥ = ΣT,−k, therefore the result is exactly what we want.1055

Proof of Lemma 33. Recall A3 := Û(ÛTXTXÛ)−1ÛTXT ϵ. Therefore1056

∥A3∥2ΣT
= ϵTXÛ(ÛTXTXÛ)−1ÛTΣT Û(ÛTXTXÛ)−1ÛTXT ϵ

= tr(ϵTXÛ(ÛTXTXÛ)−1ÛTΣT Û(ÛTXTXÛ)−1ÛTXT ϵ)

= tr(ϵϵTXÛ(ÛTXTXÛ)−1ÛTΣT Û(ÛTXTXÛ)−1ÛTXT )

Taking expectation with respect to ϵ, using E[ϵϵT ] = v2In, we have1057

Eϵ[∥A3∥2ΣT
] = E[tr(ϵϵTXÛ(ÛTXTXÛ)−1ÛTΣT Û(ÛTXTXÛ)−1ÛTXT )]

= v2 tr(XÛ(ÛTXTXÛ)−1ÛTΣT Û(ÛTXTXÛ)−1ÛTXT )

= v2 tr((ÛTXTXÛ)−1ÛTΣT Û(ÛTXTXÛ)−1ÛTXTXÛ)

= v2 tr((ÛTXTXÛ)−1ÛTΣT Û)

=
1

n
v2 tr(((ÛTΣSÛ)−1 + F )ÛTΣT Û) (44)

Here we actually need a bound stronger than (33) for ∥F∥: recall (32), we have with probability1058

1− δ1059

∥E(ÛTΣSÛ)−1∥ ≤ O(σ2C−1
min∥ΣS∥(

√
k

n
+

k

n
+

√
log(1/δ)

n
+

log(1/δ)

n
)). (45)

Applying Lemma 36, which gives1060

∥F∥ ≤ 4

3
∥E(ÛTΣSÛ)−1∥∥(ÛTΣSÛ)−1∥

≤ O(σ2C−2
min∥ΣS∥(

√
k

n
+

k

n
+

√
log(1/δ)

n
+

log(1/δ)

n
))

≤ O(
1

k∥ΣT ∥
tr((UTΣSU)−1UTΣTU)) (46)
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when n ≳ σ4C−4
min∥ΣS∥2∥ΣT ∥2 tr((UTΣSU)−1UTΣTU)−2k3 log(1/δ). Therefore we have1061

Eϵ[∥A3∥2ΣT
] =

1

n
v2 tr(((ÛTΣSÛ)−1 + F )ÛTΣT Û)

=
1

n
v2(tr((ÛTΣSÛ)−1ÛTΣT Û) + tr(FÛTΣT Û))

≤ 1

n
v2(tr((ÛTΣSÛ)−1ÛTΣT Û)) +

1

n
v2∥F∥ tr(ÛTΣT Û)

≤ 1

n
v2(tr((ÛTΣSÛ)−1ÛTΣT Û)) +

1

n
v2k∥F∥∥ΣT ∥

≤ 1

n
v2(tr((ÛTΣSÛ)−1ÛTΣT Û)) +

1

n
v2O(tr((UTΣSU)−1UTΣTU)) (47)

The remaining thing is to show that indeed tr((ÛTΣSÛ)−1ÛTΣT Û) is1062

close to tr((UTΣSU)−1UTΣTU). In fact, tr((ÛTΣSÛ)−1ÛTΣT Û) =1063

tr((RT ÛTΣSÛR)−1RT ÛTΣTRÛ). Notice that1064

∥RT ÛTΣT ÛR− UTΣTU∥ ≤ 2∥∆∥∥ΣT ∥,

we have1065

tr((RT ÛTΣSÛR)−1RT ÛTΣT ÛR) (48)

≤ tr((RT ÛTΣSÛR)−1UTΣTU) + ∥RT ÛTΣT ÛR− UTΣTU∥ tr((ÛTΣSÛ)−1)

≤ tr((RT ÛTΣSÛR)−1UTΣTU) + 2∥∆∥∥ΣT ∥ tr((ÛTΣSÛ)−1)

≤ tr((RT ÛTΣSÛR)−1UTΣTU) + 2∥∆∥∥ΣT ∥kC−1
min

≤ tr((RT ÛTΣSÛR)−1UTΣTU) + tr((UTΣSU)−1UTΣTU) (49)

when ∆ ≤ λk tr((UTΣSU)−1UTΣTU)
4k∥ΣT ∥ . Also, we have1066

∥(RT ÛTΣSÛR)−1 − (UTΣSU)−1∥ ≤ ∥(RT ÛTΣSÛR)−1∥∥(UTΣSU)−1∥∥RT ÛTΣSÛR− UTΣSU∥
≤ 4λ−2

k λ1∆,

therefore1067

tr((RT ÛTΣSÛR)−1UTΣTU) ≤ tr((UTΣSU)−1UTΣTU) + ∥(RT ÛTΣSÛR)−1 − (UTΣSU)−1∥ tr(UTΣTU)

≤ tr((UTΣSU)−1UTΣTU) + 4λ−2
k λ1∆tr(UTΣTU)

≤ 2 tr((UTΣSU)−1UTΣTU), (50)

if ∆ ≤ λ2
k tr((UTΣSU)−1UTΣTU)

4λ1 tr(UTΣTU)
. Combining (47), (48) and (50) we have1068

Eϵ[∥A3∥2ΣT
] ≤ O(

1

n
v2 tr((UTΣSU)−1UTΣTU)),

whenever ∆ ≤ λ2
k tr((UTΣSU)−1UTΣTU)

4λ1k∥ΣT ∥ ≤ min{λ
2
k tr((UTΣSU)−1UTΣTU)

4λ1 tr(UTΣTU)
, λk tr((UTΣSU)−1UTΣTU)

4k∥ΣT ∥ }1069

and n ≳ σ4C−4
min∥ΣS∥2∥ΣT ∥2 tr((UTΣSU)−1UTΣTU)−2k3 log(1/δ), with probability at least1070

1 − δ. Notice that UTΣSU = ΣS,k and UTΣTU = ΣT,k, therefore the result is exactly what we1071

want.1072

Proof of Lemma 34. Recall A2 := Û(ÛTXTXÛ)−1ÛTXTXβ⋆⊥. Also we have1073

∥ÛTΣT Û∥ = ∥RT ÛTΣT ÛR∥
≤ ∥UTΣTU∥+ ∥RT ÛTΣT ÛR− UTΣTU∥
≤ ∥UTΣTU∥+ 2∆∥ΣT ∥ (51)
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Therefore1074

∥A2∥2ΣT
= ∥β⋆T⊥ XTXÛ(ÛTXTXÛ)−1ÛTΣT Û(ÛTXTXÛ)−1ÛTXTXβ⋆⊥∥

≤ ∥XÛ(ÛTXTXÛ)−1(ÛTXTXÛ)−1ÛTXT ∥∥ÛTΣT Û∥∥Xβ⋆⊥∥2

≤ ∥A∥(∥UTΣTU∥+ 2∆∥ΣT ∥)∥Xβ⋆⊥∥2

≤ 2∥A∥∥UTΣTU∥∥Xβ⋆⊥∥2 (52)

when ∆ ≤ ∥UTΣTU∥
2∥ΣT ∥ , where we let A = 1

n
XÛ√
n
(ÛT XTX

n Û)−2 ÛTXT
√
n

. If we define B = XÛ√
n

∈1075

Rn×r, then A = 1
nB(BTB)−2BT . Let the SVD of B be B = PMOT , where P ∈ Rn×k,1076

M,O ∈ Rk×k, then1077

∥A∥2 =
1

n
∥B(BTB)−2BT ∥2

=
1

n
∥PMOT (OM2OT )−2OMPT ∥2

=
1

n
∥PM−2PT ∥2

≤ 1

n
∥M−2∥2

=
1

n
∥(BTB)−1∥2 (53)

Let F = (ÛT XTX
n Û)−1−(ÛTΣÛ)−1. Recall (33), which states that with probability at least 1−δ,1078

we have ∥F∥ ≤ 1
3C

−1
min ≤ 2

3λ
−1
k when n ≳ σ4C−2

min∥ΣS∥2k log(1/δ) and ∆ ≤ λk

4λ1
. Therefore1079

∥A∥ ≤ 1

n
∥(ÛT X

TX

n
Û)−1∥

= ∥(ÛTΣSÛ)−1 + F∥

≤ 1

n
∥(ÛTΣSÛ)−1∥+ ∥F∥

≤ O(
1

n
λ−1
k ). (54)

Thus ∥A∥ ≤ O(λ−1
k ). As for ∥Xβ⋆⊥∥2, notice that the first-k entries of β⋆⊥ are zero, therefore1080

Xβ⋆⊥ = X−kβ
⋆
−k. by Lemma 35,1081

∥β⋆T−k(
XT

−kX−k

n
)β⋆−k − β⋆T−kΣS,−kβ

⋆
−k∥ ≤ O(σ2∥β⋆−k∥2∥ΣS,−k∥(

√
1

n
+

1

n
+

√
log(1/δ)

n
+

log(1/δ)

n
).

(55)

Therefore we have1082

∥Xβ⋆⊥∥2 = nβ⋆T−k(
XT

−kX−k

n
)β⋆−k

≤ n(β⋆T−kΣS,−kβ
⋆
−k + ∥β⋆T−k(

XT
−kX−k

n
)β⋆−k − β⋆T−kΣS,−kβ

⋆
−k∥)

≤ O(n∥β⋆−k∥2∥ΣS,−k∥). (56)

Combining (52)(54) and (56), we have1083

∥A2∥2ΣT
≤ O(

∥UTΣTU∥∥β⋆−k∥2∥ΣS,−k∥
λk

) (57)

when n ≳ σ4C−2
min∥ΣS∥2k log(1/δ) and ∆ ≤ min{∥UTΣTU∥

2∥ΣT ∥ , λk

4λ1
}.1084

Finally we prove Lemma 30 in the following.1085
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Proof of Lemma 30. In the first step, we obtain Û ∈ Rd×k by selecting the top−k eigenvectors of1086

the sample covariance matrix Σ̂S := 1
nXXT = 1

n

∑n
i=1 xix

T
i using PCA. Then by Davis-Kahan1087

theorem (Chen et al., 2021, Corollary 2.8),1088

∆ ≤ 2∥Σ̂S − ΣS∥
λk − λk+1

. (58)

Therefore it remains to bound ∥Σ̂S − ΣS∥. Applying Lemma 28, we immediately have1089

∥Σ̂S − ΣS∥ ≤ Cσ4

√r + log 1
δ

n
+

r + log 1
δ

n

λ1

where r =
∑n

i=1 λi

λ1
. Together with (58), we have with probability at least 1− δ,1090

∆ ≤ Cσ4

√r + log 1
δ

n
+

r + log 1
δ

n

 λ1

λk − λk+1
.

1091
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