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Abstract

Modern detection transformers (DETRs) use a set of object queries to predict a list
of bounding boxes, sort them by their classification confidence scores, and select
the top-ranked predictions as the final detection results for the given input image.
A highly performant object detector requires accurate ranking for the bounding box
predictions. For DETR-based detectors, the top-ranked bounding boxes suffer from
less accurate localization quality due to the misalignment between classification
scores and localization accuracy, thus impeding the construction of high-quality
detectors. In this work, we introduce a simple and highly performant DETR-based
object detector by proposing a series of rank-oriented designs, combinedly called
Rank-DETR. Our key contributions include: (i) a rank-oriented architecture design
that can prompt positive predictions and suppress the negative ones to ensure lower
false positive rates, as well as (ii) a rank-oriented loss function and matching cost
design that prioritizes predictions of more accurate localization accuracy during
ranking to boost the AP under high IoU thresholds. We apply our method to
improve the recent SOTA methods (e.g., H-DETR and DINO-DETR) and report
strong COCO object detection results when using different backbones such as
ResNet-50, Swin-T, and Swin-L, demonstrating the effectiveness of our approach.
Code is available at https://github.com/LeapLabTHU/Rank-DETR.

1 Introduction

The landscape of modern object detection systems has undergone significant transformation since
the pioneering work DEtection TRansformer (DETR) [3]. Since DETR yielded impressive results in
object detection, numerous subsequent research works such as Deformable-DETR [78], DINO [75],
and H-DETR [30] have further advanced this field. Moreover, these DETR-based approaches have
been successfully extended to address various core visual recognition tasks, including instance /
panoptic segmentation [6, 38, 61, 69, 71, 35, 9, 8, 70], pose estimation [57, 36, 56], and multi-object
tracking [5, 47, 58]. The notable progress in these areas can be credited to ongoing advancements in
enhancing the DETR-based framework for improved object detection performance.

Considerable endeavors have been dedicated to advancing the performance of DETR-based methods
from various perspectives. These efforts include refining transformer encoder and decoder architec-
tures [48, 74, 78, 2, 12, 78, 11, 40, 43] as well as redesigning of query formulations [63, 44, 34, 75].
While substantial research has been dedicated to developing accurate ranking mechanisms for dense
one-stage object detectors like FCOS [59] or ATSS [77], few studies have specifically investigated
this aspect for modern object detectors based on DETR. However, ranking mechanisms are vital in
enhancing the average precision performance, particularly under high IoU thresholds.
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This study’s primary focus revolves around constructing a high-quality object detector using DETR
that exhibits strong performance at relatively high IoU thresholds. We acknowledge the criticality of
establishing an accurate ranking order for bounding box predictions in constructing these detectors.
To achieve this, we introduce two rank-oriented designs that effectively leverage the benefits of
precise ranking information. First, we propose a rank-adaptive classification head and a query rank
layer after each Transformer decoder layer. Rank-adaptive classification head adjusts the classification
scores using rank-aware learnable logit bias vectors, while the query rank layer fuses additional
ranking embeddings into the object queries. Second, we propose two rank-oriented optimization
techniques: a loss function modification and a matching cost design. These functions facilitate the
ranking procedure of the model and prioritize more accurate bounding box predictions with higher
IoU scores when compared to the ground truth. In summary, our rank-oriented designs consistently
enhance object detection performance, particularly the AP scores under high IoU thresholds.

To validate the efficacy of our approach, we conducted comprehensive experiments, showcasing
consistent performance improvements across recent strong DETR-based methods such as H-DETR
and DINO-DETR. For example, based on H-DETR, our method demonstrates a notable increase
in AP75 of +2.1% (52.9% vs. 55.0%) and +2.7% (55.1% vs. 57.8%) when utilizing ResNet-50 and
Swin-T backbones, respectively. It is worth highlighting that our approach achieves competitive
performance, reaching an 50.2% AP in the 1× training schedule on the COCO val dataset. These
results serve as compelling evidence for the effectiveness and reliability of our proposed methodology.

2 Related Work

DETR for Object Detection. Since the groundbreaking introduction of transformers in 2D object
detection by the pioneering work DETR [3], numerous subsequent studies[48, 11, 7, 63, 46] have
developed diverse and advanced extensions based on DETR. This is primarily due to DETR’s
ability to eliminate the need for hand-designed components such as non-maximum suppression
(NMS). One of the first foundational developments, Deformable-DETR [78], introduced a multi-scale
deformable self/cross-attention scheme, which selectively attends to a small set of key sampling
points in a reference bounding box. This approach yielded improved performance compared to DETR,
particularly for small objects. Furthermore, DAB-DETR [44] and DN-DETR [34] demonstrated that
a novel query formulation could also enhance performance. The subsequent work, DINO-DETR [75],
achieved state-of-the-art results in object detection tasks, showcasing the advantages of DETR design
by addressing the inefficiency caused by the one-to-one matching scheme. In contrast to these works,
our focus lies in the design of the rank-oriented mechanism for DETR. We propose rank-oriented
architecture designs and rank-oriented matching cost and loss function designs to construct a highly
performant DETR-based object detector with competitive AP75 results.

Ranking for Object Detection. There exists a lot of effort to study how to improve the ranking
for object detection tasks. For example, IoU-Net [31] constructed an additional IoU predictor and
an IoU-guided NMS scheme that considers both classification scores and localization scores during
inference. Generalized focal loss [37] proposed a quality focal loss to act as a joint representation of
the IoU score and classification score. VarifocalNet [76] introduced an IoU-aware classification score
to achieve a more accurate ranking of candidate detection results. TOOD [10] defined a high-order
combination of the classification score and the IoU score as the anchor alignment metric to encourage
the object detector to focus on high-quality anchors dynamically. In addition, ranking-based loss
functions [53, 4, 49, 50, 32] are designed to encourage the detector to rank the predicted bounding
boxes according to their quality and penalizes incorrect rankings. The very recent con-current work
Stable-DINO [45] and Align-DETR [1] also applied the idea of IoU-aware classification score to
improve the loss and matching design for DINO-DETR [75]. In contrast to the aforementioned
endeavors, we further introduce a query rank scheme aimed to reduce false positive rates.

Dynamic Neural Networks. In contrast to static models, which have fixed computational graphs
and parameters at the inference stage, dynamic neural networks [15, 65] can adapt their struc-
tures or parameters to different inputs, leading to notable advantages in terms of performance,
adaptiveness [68, 13], computational efficiency [72, 73, 67, 60], and representational power [52].
Dynamic networks are typically categorized into three types: sample-wise [27, 66, 18, 14, 51],
spatial-wise [62, 28, 19, 17, 16], and temporal-wise [20, 64]. In this work, we introduce a novel
query-wise dynamic approach, which dynamically integrates ranking information into the object
queries based on their box quality ranking, endowing object queries with better representation ability.
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3 Approach

Above all, we revisit the overall pipeline of the modern DETR-based methods [30, 75] in Section 3.1.
The detailed design of the proposed method, including the rank-oriented architecture design and
optimization design, is subsequently illustrated in Section 3.2 and Section 3.3. Eventually, we discuss
the connections and differences between our approach and related works in Section 3.4.

3.1 Preliminary

Pipeline. Detection Transformers (DETRs) process an input image I by first passing it through a
backbone network and a Transformer encoder to obtain a sequence of enhanced pixel embeddings
X = {x1,x2, · · · ,xN}. The enhanced pixel embeddings, along with a default set of object query em-
beddings Q0 = {q0

1,q
0
2, · · · ,q0

n}, are then fed into the Transformer decoder. After each Transformer
decoder layer, task-specific prediction heads are applied to the updated object query embeddings to
generate a set of classification predictions P l = {pl

1,p
l
2, · · · ,pl

n} and bounding box predictions
Bl = {bl

1,b
l
2, · · · ,bl

n}, respectively, where l ∈ {1, 2, · · · , L} denotes the layer index of the Trans-
former decoder. Finally, DETR performs one-to-one bipartite matching between the predictions and
the ground-truth bounding boxes and labels G = {g1,g2, · · · ,gm} by associating each ground truth
with the prediction that has the minimal matching cost and applying the corresponding supervision.

Object Query. To update the object query Q0 after each Transformer decoder layer, typically, DE-
TRs form a total of L subsets, i.e., {Q1,Q2, · · · ,QL}, for L Transformer decoder layers. For both the
initial object query Q0 and the updated ones after each layer, each Ql is formed by adding two parts:
content queries Ql

c = {ql
c,1,q

l
c,2, · · · ,ql

c,n} and position queries Ql
p = {ql

p,1,q
l
p,2, · · · ,ql

p,n}.
The content queries capture semantic category information, while the position queries encode prior
positional information such as the distribution of bounding box centers and sizes.

Ranking in DETR. Rank-oriented design plays a crucial role in modern object detectors, par-
ticularly in achieving superior average precision (AP) scores under high Intersection over Union
(IoU) thresholds. The success of state-of-the-art detectors, such as H-DETR and DINO-DETR, relies
on using simple rank-oriented designs, specifically a two-stage scheme and mixed query selection.
These detectors generate the initial positional query Q0

p by ranking the dense coarse bounding box
predictions output by the Transformer encoder feature maps and selecting the top ∼300 confident
ones. During evaluation, they gather n × K bounding box predictions based on the object query
embedding QL produced by the final Transformer decoder layer (each query within QL generates
K predictions associated with each category), sort them by their classification confidence scores in
descending order, and only return the top ∼100 most confident predictions.

In this work, we focus on further extracting the benefits brought by the ranking-oriented designs
and introduces a set of improved designs to push the envelope of high-quality object detection
performance. The subsequent discussion provides further elaboration on these details.

3.2 Rank-oriented Architecture Design: ensure lower FP and FN

While the original rank-oriented design only incorporates rank information into the initial positional
query Q0

p, we propose an enhanced approach that leverages the benefits of sorting throughout the
entire Transformer decoder process. Specifically, we introduce a rank-adaptive classification head
after each Transformer decoder layer, and a query rank layer before each of the last L−1 Transformer
decoder layers. This novel design is intended to boost the detection of true positives while suppressing
false positives and correcting false negatives, leading to lower false positive rates and false negative
rates. Figure 1 illustrates the detailed pipeline of our rank-oriented architecture designs.

Rank-adaptive Classification Head. We modify the original classification head by adding a set of
learnable logit bias vectors Sl = {sl1, sl2, · · · , sln} to the classification scores T l = {tl1, tl2, · · · , tln}
(before Sigmoid(·) function) associated with each object query independently. The classification
predictions of the l-th decoder layer P l = {pl

1,p
l
2, · · · ,pl

n} can be formulated as:

pl
i = Sigmoid(tli+sli), tli = MLPcls(q

l
i), (1)

where Ql = {ql
1,q

l
2, · · · ,ql

n} represents the output embedding after the l-th Transformer decoder
layer. The hidden dimensions of both tli and sli are the number of categories, i.e., K. The overall
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(a) Rank-oriented Arch. (b) Rank-adaptive Cls. Head (c) Query Rank Layer

Figure 1: Illustrating the rank-oriented architecture design. (a) The rank-oriented architecture consists of a
query rank layer before each of the last L− 1 Transformer decoder layer and a rank-adaptive classification head
after each Transformer decoder layer. (b) The rank-adaptive classification head learns to adjust the classification
scores accordingly. (c) The query rank layer exploits the latest ranking information to recreate the content
queries and position queries used as the input to the following Transformer decoder layer.

pipeline is shown in Figure 1(b). It is noteworthy that we can directly incorporate a set of learnable
embedding, denoted as Sl, into the classification scores T l. This is practicable because the associated
Ql has already been sorted in the query rank layer, as explained below.

Query Rank Layer. We further introduce a query rank layer before each of the last L−1 Transformer
decoder layers to regenerate the sorted positional query and content query accordingly.

First, we explain how to construct the rank-aware content query:

Ql

c = MLPfuse(Q̂l−1
c ∥Cl), Q̂l−1

c = Sort(Ql−1
c ; P̂ l−1), (2)

where we first sort the output of (l − 1)-th Transformer decoder layer Ql−1
c in descending order

of P̂ l−1 = MLPcls(Ql−1
c ). Since each element in P̂ l−1 is a K-dimensional vector, we use the

maximum value over K categories (classification confidence) as the ranking basis. The operation
symbol Sort(A;B) sorts elements within A based on the decreasing order of the elements in B.
Then, we concatenate (∥) the sorted object content queries Q̂l−1

c with a set of randomly initialized
content query Cl in the feature dimension, where l ∈ {2, · · · , L}. This set of content query Cl is
optimized in an end-to-end manner. Subsequently, we fuse them back to the original dimension using
a fully connected layer (MLPfuse). In other words, for each Transformer decoder layer, we maintain
a set of rank-aware static content embeddings shared across different samples. These embeddings
effectively model and utilize the distribution of the most frequent semantic information [26].

Next, we present the mathematical formulations for computing the rank-aware positional query. To
align the order of the positional queries with the ranked content query, we either sort or recreate
the positional queries, depending on the initialization method of positional queries for different
DETR-based detectors. For H-DETR, which inherits Deformable DETR and uses the same positional
query for all L Transformer decoder layers, we simply sort the positional query of the previous layer:

Ql

p = Sort(Q
l−1

p ; P̂ l−1), (3)

For DINO-DETR, which generates new positional queries from the bounding box predictions in each
Transformer decoder layer, we sort the bounding box predictions of each object query and recreate
the positional query embedding from the sorted boxes:

Ql

p = PE(Bl−1
), Bl−1

= Sort(Bl−1; P̂ l−1), (4)

where Bl−1 and P̂ l−1 represent the bounding box predictions and classification predictions based
on the output of (l − 1)-th Transformer decoder layer, i.e., Ql−1. PE(·) contains a sine position
encoding function and a small multilayer perceptron to recreate the positional query embedding
Ql

p. In other words, each element of Ql

p is estimated by ql
p,i = PE(b

l−1

i ). In Figure 1(c), we
illustrate the positional query update process for H-DETR (Equation (3)) and omit that process for
DINO-DETR (Equation (4)), because we primarily conducted experiments on H-DETR.

Finally, we transmit the regenerated rank-aware positional query embedding and content query
embedding to the subsequent Transformer decoder layer.
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(a) The original Matching Cost and Loss (b) Rank-oriented Matching Cost and Loss

Figure 2: Illustrating the rank-oriented matching cost and loss design. (a) The original DETR and its
variants use a classification head and a bounding box regression head to perform predictions. The matching
cost function is a linear combination of the classification scores and bounding box overlap scores. (b) The
rank-oriented matching cost and loss scheme uses a GIoU-aware classification head and high-order matching
cost function to prioritize predictions of more accurate localization accuracy.

Analysis. The key motivations behind these two rank-oriented architecture designs are adjusting the
classification scores of the object queries according to their ranking order information. Within each
Transformer decoder layer, we incorporate two sets of learnable representations: the logit bias vectors
Sl and the content query vectors Cl. By leveraging these two rank-aware representations, we have
empirically demonstrated the capability of our approach to effectively address false positives (oLRPFP:
24.5%→24.1%) and mitigate false negatives (oLRPFN: 39.5%→38.6%). For a more comprehensive
understanding of our findings, please refer to the experiment section.

3.3 Rank-oriented Matching Cost and Loss: boost the AP under high IoU thresholds

The conventional DETR and its derivatives specify the Hungarian matching cost function LHungarian
and the training loss function L using the identical manner, as shown below:

−λ1GIoU(b̂,b) + λ2ℓ1(b̂,b) + λ3FL(p̂[c]), (5)

where we use b̂, p̂ (or b, c) to represent the predicted (or ground-truth) bounding box and classification
score respectively. c corresponds to the ground-truth semantic category of b. In addition, we use the
notation FL(·) to represent the semantic classification focal loss [41]. We propose to enhance the
rank-oriented design by introducing the GIoU-aware classification head (supervised by the proposed
GIoU-aware classification loss) and the high-order matching cost function scheme as follows.

GIoU-aware Classification Loss. Instead of applying the binary target to supervise the classification
head, we propose to use the normalized GIoU scores to supervise the classification prediction:

FLGIoU(p̂[c]) = −|t− p̂[c]|γ · [t · log(p̂[c]) + (1− t) · log(1− p̂[c])], (6)

where we let t = (GIoU(b̂,b)+1)/2, and we denote the GIoU-aware classification loss as FLGIoU(·).
To incorporate both semantic classification and localization accuracy, we modify the original clas-
sification head to a GIoU-aware classification head supervised by the above loss function. When
t = 1, FLGIoU(·) simplifies to the original focal loss, denoted as FL(·). Furthermore, we compare
our results with the varifocal loss [76], and we provide its mathematical formulation below:

VFL(p̂[c]) = −t · [t · log(p̂[c]) + (1− t) · log(1− p̂[c])]. (7)

High-order Matching Cost. In contrast to utilizing the Hungarian algorithm with a matching cost
defined as the weighted sum of classification cost, ℓ1 loss, and GIoU loss, we propose employing a
high-order matching cost function that captures a more intricate combination of the classification
score and the IoU scores:

Lhigh-order
Hungarian = p̂[c] · IoUα, (8)

where IoU represents the intersection over union scores between the predicted bounding box and the
ground truth one. We adopt a larger value of α (e.g., >2) to prioritize the importance of localization
accuracy, thereby promoting more accurate bounding box predictions and downgrading the inaccurate
ones. It is worth noting that we use a high-order matching cost from the middle training stage, as
most predictions exhibit poor localization quality during the early training stage.

Analysis. The rank-oriented loss function and matching cost are designed to enhance object detection
performance at high IoU thresholds. The GIoU-aware classification loss facilitates the ranking
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procedure by endowing the classification score with GIoU-awareness, resulting in more accurate
ranking in the query ranking layer. Meanwhile, the high-order matching cost selects the queries
with both high classification confidence and superior IoU scores as positive samples, effectively
suppressing challenging negative predictions with high classification scores but low localization
IoU scores. This is achieved by magnifying the advantage of a more accurate localization score
using γα, where γ is the ratio of accurate localization score to less accurate score. Empirical results
show significant boosts in AP75 with GIoU-aware classification loss (52.9%→54.1%) or high-order
matching cost design (52.9%→54.0%). Detailed comparisons are provided in the experiment section.

3.4 Discussion

The concept of GIoU-aware classification loss has been explored in several prior works [31, 37, 76, 10]
predating the era of DETR. These works aimed to address the discrepancy between classification
scores and localization accuracy. In line with recent concurrent research [1, 45], our method shares
the same insight in designing rank-oriented matching cost and loss functions. However, our approach
distinguishes itself by emphasizing the ranking aspect and introducing an additional rank-oriented
architecture design, which includes the rank-adaptive classification head and query rank layer.
Furthermore, our empirical results demonstrate the complementarity between the rank-oriented
architecture design and the rank-oriented matching cost and loss design.

4 Experiment

4.1 Experiment Setting

We perform object detection experiments using the COCO object detection benchmark [42] with
detrex [54] toolbox. Our model is trained on the train set and evaluated on the val set. We adhere
to the same experimental setup as the original papers for H-DETR [30] and DINO-DETR [75].

4.2 Main Results

Comparison with competing methods. Table 1 compares Rank-DETR with other high-performing
DETR-based methods on the COCO object detection val dataset. The evaluation demonstrates
that Rank-DETR achieves remarkable results, attaining an AP score of 50.2% with only 12 training
epochs. This performance surpasses H-DETR [30] by +1.5% and outperforms the recent state-of-the-
art method DINO-DETR [75] by +1.2% AP. Notably, we observe significant improvements in AP75,
highlighting the advantage of our approach at higher IoU thresholds.

Method Backbone #query #epochs AP AP50 AP75 APS APM APL
Deformable-DETR [78] R50 300 50 46.9 65.6 51.0 29.6 50.1 61.6

DN-DETR [34] R50 300 12 43.4 61.9 47.2 24.8 46.8 59.4

DINO-DETR [75] R50 900 12 49.0 66.6 53.5 32.0 52.3 63.0

H-DETR [30] R50 300 12 48.7 66.4 52.9 31.2 51.5 63.5

Rank-DETR R50 300 12 50.2 67.7 55.0 34.1 53.6 64.0

Table 1: Comparison with previous highly performant DETR-based detectors on COCO val2017 with R50.

Improving H-DETR [30]. Table 2 presents a detailed comparison of our proposed approach with the
highly competitive H-DETR [30]. The experimental evaluation demonstrates consistent enhancements
in object detection performance across various backbone networks and training schedules. For
example, under the 12 epochs training schedule, our method achieves superior AP scores of 50.2%,
52.7%, and 57.3% with ResNet-50, Swin-Tiny, and Swin-Large backbone networks, respectively.
These results surpass the baseline methods by +1.5%, +2.1%, and +1.4%, respectively. Extending
the training schedule to 36 epochs consistently improves the AP scores, resulting in +1.2% for
ResNet-50, +1.5% for Swin-Tiny, and +1.1% for Swin-Large. The AP improvement in performance
is more significant under high IoU thresholds, which outperform the baseline by +2.1%, +2.7%, and
+1.9% in AP75 with ResNet-50, Swin-Tiny, and Swin-Large, respectively. These findings validate our
proposed mechanism’s consistent and substantial performance improvements across diverse settings
and with different backbone networks, especially under high IoU thresholds. We also validate our
performance gain by providing the PR curves under different IoU thresholds in Figure 3a.
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Method Backbone #epochs AP AP50 AP75 APS APM APL

H-Deformable-DETR R50 12 48.7 66.4 52.9 31.2 51.5 63.5

Ours R50 12 50.2 67.7 55.0 34.1 53.6 64.0

H-Deformable-DETR Swin-T 12 50.6 68.9 55.1 33.4 53.7 65.9

Ours Swin-T 12 52.7 70.6 57.8 35.3 55.8 67.5

H-Deformable-DETR Swin-L 12 55.9 75.2 61.0 39.1 59.9 72.2

Ours Swin-L 12 57.3 75.9 62.9 40.8 61.3 73.2

H-Deformable-DETR R50 36 50.0 68.3 54.4 32.9 52.7 65.3

Ours R50 36 51.2 68.9 56.2 34.5 54.9 64.9

H-Deformable-DETR Swin-T 36 53.2 71.5 58.2 35.9 56.4 68.2

Ours Swin-T 36 54.7 72.5 60.0 37.7 58.5 69.5

H-Deformable-DETR Swin-L 36 57.1 76.2 62.5 39.7 61.4 73.4

Ours Swin-L 36 58.2 76.7 63.9 42.4 62.2 73.6

Table 2: Improving object detection results based on H-DETR.

Method Backbone #epochs AP AP50 AP75 APS APM APL

DINO-DETR R50 12 49.0 66.6 53.5 32.0 52.3 63.0

Ours R50 12 50.4 67.9 55.2 33.6 53.8 64.2

DINO-DETR Swin-L 12 56.8 75.4 62.3 41.1 60.6 73.5

Ours Swin-L 12 57.6 76.0 63.4 41.6 61.4 73.8

Table 3: Improving object detection results based on DINO-DETR.

Improving DINO-DETR [75]. Table 3 shows the results of applying our approach to improve the
DINO-DETR [75]. Notably, our method demonstrates an increase of +1.4% with the ResNet-50
backbone and +0.8% with the Swin-Large backbone. Under the higher IoU setting, our method
further obtains +1.8% AP75 improvement with ResNet-50 and +1.1% with Swin-Large. These results
provide evidence for the generalization ability of our approach across different DETR-based models.

4.3 Ablation Study and Analysis

We conduct a systematic analysis to assess each proposed component’s influence within our method.
We followed a step-by-step approach, progressively adding modules on top of the baseline (Table 4a),
incorporating each module into the baseline (Table 4b), and subsequently removing each module from
our method (Table 4c). This procedure allowed us to understand the contribution of each individual
component to the final performance. Furthermore, we conducted statistical and qualitative analyses to
comprehensively assess the functionality of each component. We mark the best-performing numbers
with ■ colored regions in each table along each column.

Effect of Adding Each Component Progressively. We choose H-DETR with ResNet-50 backbone
as our baseline method. By progressively adding the proposed mechanisms on top of the baseline
model, it is observed that the performance is steadily increasing, and the best performance is achieved
by using all the proposed components (Table 4a). It is also observed that the lowest false negative
rate (oLRPFN) is achieved when only using the rank-oriented architecture designs.

Rank-adaptive Classification Head (RCH). Tables 4b and 4c demonstrate that rank-adaptive
classification head can slightly improve the AP (+0.2% when adding RCH to the H-DETR base-
line, comparing row1 and row2 in Table 4b; +0.4% when adding RCH to complete our methods,
comparing row1 and row2 in Table 4c). Furthermore, RCH improves AP75 more than AP.

Query Ranking Layer (QRL). The proposed QRL mechanism effectively integrates ranking
information into the DETR architecture, compensating for the absence of sequential handling of
queries in attention layers. The detector’s performance is also consistently improved by utilizing QRL
(+0.3% when adding QRL to the H-DETR baseline; +0.7% to complete our method). We further
compute the cumulative probability distribution of classification scores of positive and negative
queries. QRL yields enhanced classification confidence for matched positive queries (Figure 3b),
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RCH QRL GCL HMC AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL oLRP oLRPLoc oLRPFP oLRPFN
✗ ✗ ✗ ✗ 48.7 66.4 52.9 31.2 51.5 63.5 37.2 63.4 68.4 49.7 72.5 85.9 61.0 13.3 24.5 39.5

✓ ✗ ✗ ✗ 48.9 66.9 53.3 31.2 52.4 63.7 37.5 64.4 71.2 53.5 75.5 87.1 61.2 13.3 24.0 39.2

✓ ✓ ✗ ✗ 49.3 67.3 53.7 32.4 52.2 63.4 37.8 65.0 71.7 54.6 75.7 88.4 60.8 13.3 24.1 38.6

✓ ✓ ✓ ✗ 49.8 67.5 54.3 33.3 53.4 63.7 37.9 65.1 71.8 54.8 76.1 87.8 60.7 13.0 23.5 39.3

✓ ✓ ✓ ✓ 50.2 67.7 55.0 34.1 53.6 64.0 38.1 64.9 71.6 56.5 75.8 86.4 60.4 12.9 22.4 39.3

(a) Effect of gradually adding modules on the baseline.

RCH QRL GCL HMC AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL oLRP oLRPLoc oLRPFP oLRPFN
✗ ✗ ✗ ✗ 48.7 66.4 52.9 31.2 51.5 63.5 37.2 63.4 68.4 49.7 72.5 85.9 61.0 13.3 24.5 39.5

✓ ✗ ✗ ✗ 48.9 66.9 53.3 31.2 52.4 63.7 37.5 64.4 71.2 53.5 75.5 87.1 61.2 13.3 24.0 39.2

✗ ✓ ✗ ✗ 49.0 67.2 53.2 32.3 51.9 63.5 37.9 64.8 71.5 55.1 75.6 87.5 61.1 13.4 23.8 39.2

✗ ✗ ✓ ✗ 49.4 67.0 54.1 32.0 52.8 64.0 37.9 64.9 71.7 55.4 75.7 88.5 60.7 12.9 22.5 39.8

✗ ✗ ✗ ✓ 49.3 67.3 54.0 31.8 52.4 63.4 37.7 64.4 71.1 53.7 74.9 85.8 61.1 13.2 23.8 39.2

(b) Effect of incorporating each module on the baseline.

RCH QRL GCL HMC AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL oLRP oLRPLoc oLRPFP oLRPFN
✓ ✓ ✓ ✓ 50.2 67.7 55.0 34.1 53.6 64.0 38.1 64.9 71.6 56.5 75.8 86.4 60.4 12.9 22.4 39.3

✗ ✓ ✓ ✓ 49.8 67.3 54.5 33.5 53.4 63.6 38.1 64.9 71.5 55.9 75.3 86.6 60.5 12.9 22.9 39.6

✓ ✗ ✓ ✓ 49.5 67.4 54.2 33.1 52.8 63.5 38.0 64.7 71.6 55.8 75.4 85.9 60.9 12.9 24.6 39.3

✓ ✓ ✗ ✓ 49.5 67.6 54.1 32.4 52.6 64.3 37.9 64.3 71.0 54.4 75.1 85.4 60.8 13.4 23.7 38.7

✓ ✓ ✓ ✗ 49.8 67.5 54.3 33.3 53.4 63.7 37.9 65.1 71.8 54.8 76.1 87.8 60.7 13.0 23.5 39.3

(c) Effect of removing each module in our method.

Table 4: Ablation experiments based on H-DETR + R50. RCH: rank-adaptive classification head. QRL: query
rank layer. GCL: GIoU-aware classification loss. HMC: high-order matching cost.

Classification loss target AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL oLRP oLRPLoc oLRPFP oLRPFN
t = IoU(b̂,b)0.5 50.1 67.6 54.7 32.6 53.4 64.5 38.2 64.9 71.5 55.5 75.4 86.4 60.4 12.9 22.5 39.4

t = IoU(b̂,b)1 50.0 67.3 54.7 34.0 53.6 64.8 38.1 65.2 71.7 56.7 75.5 85.8 60.6 12.9 22.9 39.6

t = IoU(b̂,b)2 49.5 66.0 54.0 32.5 53.3 64.1 37.8 64.2 70.9 53.8 75.3 86.1 61.0 12.3 23.1 41.0

t = [(GIoU(b̂,b) + 1)/2]0.5 49.9 67.9 54.3 32.8 53.2 64.3 37.9 64.9 71.6 55.8 75.5 86.1 60.6 13.2 23.3 38.7

t = [(GIoU(b̂,b) + 1)/2]1 50.2 67.7 55.0 34.1 53.6 64.0 38.1 64.9 71.6 56.5 75.8 86.4 60.4 12.9 22.4 39.3

t = [(GIoU(b̂,b) + 1)/2]2 50.1 67.4 54.9 33.3 53.5 64.3 38.1 64.9 71.5 56.3 75.3 85.5 60.4 12.9 22.9 39.3

(a) Effect of the GIoU-aware classification loss target formulation.

Matching cost AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL oLRP oLRPLoc oLRPFP oLRPFN
p̂[c] · IoU1 48.3 67.9 51.8 31.4 51.3 62.3 37.8 62.9 67.7 52.8 70.9 82.6 60.4 13.5 22.8 38.4

p̂[c] · IoU2 49.5 68.3 53.5 32.5 52.4 63.9 38.1 63.9 69.6 54.5 73.3 84.8 60.2 13.3 23.1 37.8

p̂[c] · IoU3 50.0 68.1 54.2 32.9 53.2 64.4 37.9 64.7 70.9 55.3 74.9 85.9 60.4 12.9 22.9 39.1

p̂[c] · IoU4 50.2 67.7 55.0 34.1 53.6 64.0 38.1 64.9 71.6 56.5 75.8 86.4 60.4 12.9 22.4 39.3

p̂[c] · IoU5 50.0 67.1 54.9 32.4 53.5 64.5 38.1 65.0 71.8 55.1 75.9 86.5 60.7 12.8 23.4 39.4

p̂[c] · IoU6 50.0 66.6 54.9 33.9 53.3 64.5 38.0 65.4 72.5 56.3 76.5 87.7 61.0 12.8 23.0 40.3

p̂[c] · ( GIoU+1
2

)
1

46.6 65.9 49.9 31.0 49.8 59.9 37.2 60.3 63.4 47.9 66.9 77.5 60.6 13.8 22.9 38.2

p̂[c] · ( GIoU+1
2

)
2

47.8 67.2 51.0 31.6 50.8 61.8 37.6 61.9 65.9 50.8 68.6 80.4 60.4 13.5 22.5 38.2

p̂[c] · ( GIoU+1
2

)
3

48.0 67.6 51.3 31.1 51.3 62.2 37.6 61.8 65.8 50.2 69.3 79.8 59.9 13.4 21.9 37.9

p̂[c] · ( GIoU+1
2

)
4

49.1 68.2 53.0 32.2 52.1 63.5 37.7 63.9 69.2 55.0 72.2 83.6 60.1 13.3 22.9 37.7

p̂[c] · ( GIoU+1
2

)
5

49.4 68.5 53.0 32.6 52.7 63.7 38.2 63.9 69.1 54.0 72.7 83.8 60.0 13.2 21.6 38.4

p̂[c] · ( GIoU+1
2

)
6

49.8 68.4 54.1 32.9 53.4 63.9 38.2 64.8 70.6 55.3 74.8 85.5 60.1 13.1 23.7 37.7

p̂[c] · ( GIoU+1
2

)
7

49.9 67.9 54.2 32.6 53.0 64.6 38.1 64.5 70.5 55.0 74.5 85.7 60.3 13.0 23.0 38.7

p̂[c] · ( GIoU+1
2

)
8

50.0 67.8 54.6 33.9 53.6 64.7 37.9 65.0 71.2 55.5 75.2 86.5 60.4 12.8 23.8 38.8

p̂[c] · ( GIoU+1
2

)
9

49.8 67.3 54.4 33.3 53.2 63.7 38.1 65.1 71.7 56.4 75.7 87.1 60.5 12.9 23.9 39.0

(b) Effect of the matching cost formulation.

Table 5: The influence of classification loss target and matching cost function choice.

while the classification confidence for unmatched queries is effectively suppressed (Figure 3c),
thereby ranking true predictions higher than potential false predictions. This phenomenon is further
apparent from the oLRPFP results showcased in Table 4b, which is reduced from 24.5% to 23.8% by
using QRL, reducing the false positive rates. These results are in accordance with our design intent.

GIoU-aware Classification Loss (GCL). Table 4 also shows the effectiveness of the proposed
GIoU-aware classification loss, which gains 0.7% mAP over the vanilla baseline by comparing
row1 and row4 in Table 4b and 0.7% mAP increase by comparing row1 and row4 in Table 4c. We
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Figure 3: (a) Comparing the PR-curves between baseline and our method under different IoU thresholds.
(b) Density distribution of the classification scores on the matched queries with or without QRL. (c) Density
distribution of the classification scores on the unmatched queries with or without QRL.
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(c) Layer #3
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(d) Layer #4
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(e) Layer #5
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Figure 4: Cumulative distribution of the IoU scores on the unmatched queries with or without HMC.

also ablate the formulation of the learning target t in Eq. (6) in Table 5a. The results show that
the performance of adopting IoU (and its exponent) as the optimization target is inferior to use
(GIoU + 1)/2 because GIoU can better model the relationship of two non-overlapped boxes. We use
(GIoU + 1)/2 rather than GIoU because −1 < GIoU ≤ 1 and 0 < (GIoU + 1)/2 ≤ 1.

High-order Matching Cost (HMC). We also show how the high-order matching cost affects the
overall performance in Table 4. The HMC can also significantly improve the overall performance of
the object detector (+0.6% when comparing row1 and row5 in Table 4b, +0.4% when comparing
row1 and row5 in Table 4c). We further ablate the formulation of the matching cost. As illustrated in
Table 5b, a high-order exponent IoU can consistently improve the performance and achieve a peak
when the power is 4. Using a high-order exponent can suppress the importance of the predicted
boxes with low IoU. We can also observe the same trend from Table 5b when replacing IoU with
(GIoU+1)/2, but the latter practice has a slightly inferior performance.

HMC Suppresses the Overlap between Negative Query and Ground Truth. Figure 4 illustrates
the cumulative probability distribution of the IoU of unmatched queries. The IoU of each unmatched
query is defined as the largest IoU between it and all ground truth boxes. As shown in Figure 4, the
adoption of HMC can decrease the IoU between unmatched queries and all the ground truth bounding
boxes, effectively pushing the negative queries away from the ground truth boxes. Furthermore, this
phenomenon is increasingly remarkable in the latter Transformer decoder layers.

Comparison with Varifocal loss. In order to assess the effectiveness of the proposed GIoU-aware
classification loss (GCL, Eq. (6)), we compare it with varifocal loss (VFL) [76] due to their similar
mathematical formulations. Following VFL [76], we utilize the training target t = IoU in Eq. (7).
To simplify the comparison and focus on the impact of GCL, we conduct the evaluation without
HMC (row3 in Table 4a). Our method, leveraging the GCL, achieves a mAP of 49.8% (row4 in
Table 4a), whereas VFL achieves only 49.5% mAP. The primary distinctions between GCL and VFL
lie in the optimization target. By employing the normalized GIoU as the training target, our approach
better models the distance between two non-overlapping boxes, leading to improved performance. In
addition, VFL removes scaling factors on positive samples, as they are rare compared to negatives in
CNN-based detectors. However, for DETR-based detectors, where positive examples are relatively
more abundant, we empirically show that retaining a scaling factor can enhance performance.

Method Backbone Params(M) FLOPs(G) Training Cost (min) Testing FPS (img/s) AP
H-DETR R50 47.56 280.30 69.8 19.2 48.7

Ours R50 49.10 280.60 71.8 19.0 50.2

Table 6: Computational efficiency analysis for our method.
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Figure 5: Illustration of positive boxes and negative box of H-DETR (row1) and Rank-DETR (row2). The
green, red and yellow boxes (scores) refer to the positive, negative, and ground truth boxes (scores), respectively.

Computational Efficiency. In Table 6, we provide comprehensive data on the number of parameters,
computational complexity measured in FLOPs, training time per epoch, inference frames per second
(FPS), and Average Precision performance, for both the H-DETR baseline and our approach. These
assessments were conducted on RTX 3090 GPUs, allowing us to evaluate testing and training
efficiency. The results unequivocally highlight a substantial enhancement in detection performance
achieved by our proposed method, with only a slight increase in FLOPs and inference latency.
Considering the effectiveness and efficiency, our method has the potential to be adapted into 3D object
detection [55, 29], semantic segmentation [39, 33] tasks, or other applications [23, 24, 25, 21, 22].

Qualitative Analysis. Figure 5 visualizes the predicted bounding boxes and their classification
confidence scores of both the matched positive queries and the unmatched hard negative queries,
respectively. We find that, compared to the baseline method (row1), the proposed approach (row2)
effectively promotes the classification scores of positive samples, while that of hard negative queries
is rapidly suppressed, progressing layer by layer. These qualitative results further illustrate how the
proposed approach achieves high performance by decreasing the false positive rate.

5 Conclusion
This paper presents a series of simple yet effective rank-oriented designs to boost the performance of
modern object detectors and result in the development of a high-quality object detector named Rank-
DETR. The core insight behind the effectiveness lies in establishing a more precise ranking order
of predictions, thereby ensuring robust performance under high IoU thresholds. By incorporating
accurate ranking order information into the network architecture and optimization procedure, our
approach demonstrates improved performance under high IoU thresholds within the DETR framework.
While there remains ample scope to explore leveraging rank-oriented designs, we hope that our initial
work serves as an inspiration for future efforts in building high-quality object detectors.
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