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Abstract
Heuristic search is among the best performing
approaches to classical satisficing planning, with
its performance heavily relying on informative
and fast heuristics, as well as search-boosting and
pruning techniques. While both heuristics and
pruning techniques have gained much attention
recently, search-boosting techniques in general,
and preferred operators in particular have received
less attention in the last decade. Our work
aims at bringing the light back to preferred
operators research, with the introduction of
preferred operators pruning technique, based on
the concept of novelty. Continuing the research
on novelty with respect to an underlying heuristic,
we define preferred operators for such novelty
heuristics. For that, we extend the previously
defined novelty concepts to operators, allowing
us to reason about the novelty of the preferred
operators. Our experimental evaluation shows
the practical benefit of our suggested approach,
compared to the currently used methods.

1 Introduction
Classical planning is among the most important areas
of artificial intelligence. The performance of satisficing
heuristic search based classical planners heavily relies on
informative and fast heuristics, as well as search-boosting
and pruning techniques. Recent advances in heuristics for
classical planning [Keyder et al., 2014; Domshlak et al.,
2015] allowed to go beyond delete relaxation and were
responsible for the success of several satisficing planners
such as Mercury [Katz and Hoffmann, 2014], MERWIN
[Katz et al., 2018], Cerberus [Katz, 2018], IBaCoP-2018
[Cenamor et al., 2018], OLCFF [Fickert and Hoffmann,
2018], and Saarplan [Fickert et al., 2018]. Search pruning
techniques have also received some attention recently, mostly
due to the development of novelty-based pruning techniques
[Lipovetzky and Geffner, 2012; Lipovetzky and Geffner,
2014; Lipovetzky and Geffner, 2017b; Groß et al., 2020]
and novelty-based heuristics [Lipovetzky and Geffner, 2017a;
Katz et al., 2017; Groß et al., 2020]. Search boosting
techniques, on the other hand, mostly focused on introducing

randomness into the search [Valenzano et al., 2014; Xie
et al., 2014], while the research on preferred operators
[Hoffmann and Nebel, 2001; Richter and Helmert, 2009]
was somewhat abandoned. To our knowledge, the most
recent work introducing new preferred operators dates back
to 2011, introducing preferred operators for an admissible
heuristic, enabling the somewhat successful use of these
admissible heuristics in a satisficing search [Bahumi et al.,
2011]. The recent partial delete relaxation heuristics, despite
significantly extending the famous FF heuristic [Hoffmann
and Nebel, 2001], when using preferred operators, use those
of FF.

There is no doubt, however, in the practical usefulness of
preferred operators. Arguably the most famous satisficing
planners LAMA [Richter and Westphal, 2010] and FF
[Hoffmann and Nebel, 2001] owe their success, at least
in part, to the use of preferred operators. The empirical
investigation of Valenzano et al. [2014] provides additional
evidence of the importance of preferred operators. Thus,
further research on preferred operators is of high potential
value. To provide an anecdotal support for that claim,
let’s look at one of the most basic configurations with
preferred operators, a greedy best-first search with two
queues, all nodes, ordered by FF heuristic [Hoffmann and
Nebel, 2001] and nodes obtained from preferred operators
of FF. In our preliminary experiments, the configuration
achieves a coverage of 1281 on the satisficing suite of the
International Planning Competition (IPC) domains, while
if a minor modification is made to the configuration,
choosing each preferred operator with probability 0.25, the
coverage increases to 1387.6. Admittedly, when moving to
more complex configurations, such as LAMA [Richter and
Westphal, 2010], the effect of randomly pruning preferred
operators is reduced significantly, and sometimes reduces
the overall coverage. Choosing preferred operators with
probability 0.25 for FF, landmark count, or both results
in coverage of 1581.4, 1603.0, or 1552.6, respectively,
compared to 1594 for LAMA. Our conjecture in this
work is, therefore, that a systematic method of pruning
preferred operators can significantly improve planning
systems performance.

In this work we present for the first time such a method,
by introducing preferred operators for the novelty heuristic.
We build upon the work of Katz et al. [2017], which adapts



the concept of novelty to heuristic search, by specifying
the novelty of facts with respect to a heuristic. Here, we
adapt the concept of novelty with respect to the underlying
heuristic to operators, introducing the notion of novelty score
for an operator. We exploit the new notion for systematically
pruning preferred operators, introducing multiple definitions
of preferred operators for the novelty heuristic. Our empirical
evaluation shows a clear benefit of using novelty for pruning
preferred operators of the underlying heuristic, compared to
using all preferred operators from the underlying heuristic, as
was done in previous work. Further, the empirical evaluation
shows that pruning preferred operators with novelty is
preferable to random pruning.

2 Preliminaries
In this work, we follow the notation of Bäckström and Nebel
[1995]. A SAS+ planning task is represented by a tuple
〈V, O, s0, s?〉, with V being a finite set of state variables and
O being a finite set of operators. Each state variable v ∈ V
has a finite domain dom(v) of values. A pair 〈v, ϑ〉 with v ∈
V and ϑ ∈ dom(v) is called a fact. A (partial) assignment
to V is called a (partial) state. Often it is convenient to view
partial state p as a set of facts with 〈v, ϑ〉 ∈ p if and only
if p[v] = ϑ. A partial state p is consistent with a state s if
p ⊆ s. We denote the set of all states of a planning task by
S. s0 is the initial state, and the partial state s? is the goal.
Each operator o is represented by a pair 〈pre(o), eff (o)〉 of
partial states called preconditions and effects. An operator
cost is a mapping C : O → R0+. An operator o is applicable
in a state s ∈ S if and only if pre(o) is consistent with the
state s. Applying o changes the value of v to eff (o)[v], if
defined. The resulting state is denoted by sJoK. An operator
sequence π = 〈o1, . . . , on〉 is applicable in s if there exist
states s1, · · · , sn+1 such that (i) s1 = s, and (ii) for each
1 ≤ i ≤ n, oi is applicable in si and si+1 = siJoiK. We
denote the state sn+1 by sJπK. π is a plan for the state s iff π
is applicable in s and s? is consistent with sJπK. The cost of a
plan π, denoted by C(π) is the summed cost of the actions in
the plan. Classical planning deals with the problem of finding
a plan for the initial state s0.

A heuristic function is a mapping h : S → R0+, with h(s)
estimating the cost C(π) of some plan π for s. In addition to
providing estimates for states, heuristics can identify a subset
of applicable operators as preferred. The term preferred
operators was coined by Helmert [2006], but was preceded
by the term helpful actions [Hoffmann and Nebel, 2001],
defined for the FF heuristic. For FF, helpful actions for
a state s are defined as the operators from the relaxed
plan that are applicable in s. Similarly, preferred operators
are defined for the additive [Bonet and Geffner, 2001] and
the causal graph heuristics [Helmert, 2004], as well as for
their generalization, the context-enhanced additive heuristic
[Helmert and Geffner, 2008]. Preferred operators were also
developed for the landmarks count heuristic [Richter et al.,
2008; Richter and Helmert, 2009; Richter and Westphal,
2010]. Landmarks are formulas that must be made true
along any plan. Preferred operators for landmarks are
applicable operators from a relaxed plan that achieves some

next achievable landmark. For implicit abstraction heuristics
[Katz and Domshlak, 2010], preferred operators are those that
start an abstract plan for at least one abstraction [Bahumi et
al., 2011].

Given a heuristic function h, the preferred operators of h
in state s are denoted by POh(s) ⊆ O.

A search history H is a set of pairs of operators and states
that these operators lead to, starting with 〈∅, s0〉. For each
〈o, s〉 ∈ H such that 〈o, s〉 6= 〈∅, s0〉, there exists another
pair 〈o′, s′〉 ∈ H such that s = s′JoK. Given an operator
o ∈ O, the set of all states in the search history that o leads to
is denoted by H(o) := {s | 〈o, s〉 ∈ H}. The set of all states
in the search history is denoted by Ĥ := {s | 〈o, s〉 ∈ H, o ∈
O}, and the set of states in the search history that contain the
fact f is denoted byH(f) := {s ∈ Ĥ | f ∈ s}.

For the concepts of novelty, we follow the notation of Katz
et al. [2017], slightly adapting their definitions to the notion
of search history defined above. We start with the definition
of the novelty score of a fact.

Definition 1 (heuristic novelty). Given a heuristic function
h : S 7→ R0+ and a search history H, the novelty score of a
fact f is defined as

N(f,H, h) =
{

min
s∈H(f)

h(s), H(f) 6= ∅
∞, otherwise.

Given a state s, the novelty score of a fact f in state s is
defined as N(f, s,H, h) = N(f,H, h)− h(s) if f ∈ s.

To simplify the notation, we sometimes do not mention the
search historyH and the heuristic hwhen these are clear from
the context. A fact is novel in state s if its novelty score in s
is strictly positive. A state is novel if it contains at least one
novel fact. Katz et al. [2017] define a variety of novelty based
heuristics, starting with the most basic one, separating novel
states (that obtain the value 0) from the non-novel states (that
obtain the value 1). Formally,

hBN (s) =

{
0, ∃f ∈ s,N(f, s) > 0

1, otherwise.

Going beyond this dichotomy, let N+(f, s) be 1 when
N(f, s) > 0 and 0 otherwise. Similarly, let N -(f, s) be
1 when N(f, s) < 0 and 0 otherwise. Then, the second
heuristic function also separates novel states, based on the
number of novel facts. Formally,

hQN (s) = |V| −
∑
f∈s

N+(f, s).

Another heuristic function also separates non-novel states,
based on the number of strictly non-novel facts.

hQB(s) =

hQN (s), hQN (s) < |V|
|V|+∑

f∈s

N -(f, s), otherwise.

While Katz et al. [2017] define additional heuristics, hQB

was found to be best performing overall in their experiments.
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Figure 1: The state transition system of our running example.

3 Preferred Operators of Novelty Heuristics
We start by presenting a running example, a SAS+ planning
task with three binary variables A,B,C and four operators
O = {oc, o1, o2, o3} as follows.

• oc = 〈{B = 0, C = 0}, {C = 1}〉,
• o1 = 〈{B = 0, C = 1}, {B = 1, C = 0}〉,
• o2 = 〈{A = 0, B = 1}, {A = 1, B = 0}〉, and
• o3 = 〈{A = 1, B = 0}, {B = 1}〉.

For the brevity of presentation, a triplet abc denotes the state
A = a,B = b, C = c. The initial state is therefore
000, and the goal state is 110. The full transition system,
as well as the heuristic values of states are depicted in
Figure 1. Finally, consider the following history H =
{〈∅, 000〉, 〈oc, 001〉, 〈o1, 010〉, 〈o2, 100〉}. The current state
is 100, and assume that POh(100) = {oc, o3}.

Following the notation and the definitions presented in the
previous section allows us to directly define heuristic novelty
of operators, analogously to how a novelty of a fact is defined
in Definition 1 [Katz et al., 2017].
Definition 2 (operator novelty score). Given a heuristic
function h : S 7→ R0+ and a search history H, the novelty
score of an operator o is defined as

N(o,H, h) =
{

min
s∈H(o)

h(s), H(o) 6= ∅
∞, otherwise.

Further, given a state s, the novelty score of an operator o
in state s is defined as N(o, s,H, h) = N(o,H, h)− h(s).

In words, the novelty score of an operator in a state is
the difference between the (best) heuristic value of a state
previously reached by the operator during search and the
heuristic value of the current state. Using our running
example, N(o3, 100,H, h) = N(o3,H, h)− h(100) =∞−
0 = ∞, while N(oc, 100,H, h) = N(oc,H, h) − h(100) =
2 − 0 = 2. Intuitively, larger (positive) novelty values
correspond to situations where the operator, if previously
applied, lead to states further away from the goal, according
to the heuristic. Negative values mean that the operator
was already applied during search, leading to states closer
to goal than the current state, according to the heuristic.
The heuristic, however, can be misleading, and therefore the
boundary between considering an operator to be novel or not
does not have to be at 0. A finer control of the threshold on
novelty score for considering an operator to be novel may be
beneficial. We say that an operator is b-novel in state s if its
novelty score in s is greater than some predefined parameter

b: N(o, s) > b. Since the novelty scores can be negative, we
allow b to be negative as well. Setting b = −∞ allows us to
ignore the threshold when necessary.

We can now proceed with formally defining preferred
operators for the novelty heuristic.
Definition 3 (b-novel preferred operators). Given a heuristic
function h and a novelty score threshold b, the b-novel
preferred operators of h are defined as

POb(s,H) = {o ∈ POh(s) | N(o, s,H, h) > b}
As per our running example, PO2(100,H) = {o3}, but

PO1(100,H) = {o3, oc}.
Definition 3 allows to select a subset of the preferred

operators reported by the heuristic h based on their novelty at
that step of the search. However, it can be overly permissive,
especially for small values of b. To overcome the issue, we
suggest to select top elements (according to the novelty score)
of the setPOb(s,H). Assuming that the setPOh(s) is given,
we can select k elements as follows.
Definition 4 (k-top b-novel preferred operators). Given a
heuristic function h, a natural number k, and a novelty score
threshold b, POk

b (s,H) ⊆ POb(s,H) is the set of k-top b-
novel preferred operators of h if

(i) for all operators o ∈ POk
b (s,H), if there exists o′ ∈

POb(s,H) such that N(o, s,H, h) < N(o′, s,H, h),
then o′ ∈ POk

b (s,H), and

(ii) |POk
b (s,H)| ≤ k, with |POk

b (s,H)| < k implying
POk

b (s,H) = POb(s,H).
On the other hand, Definition 3 may also be overly

restrictive, since setting a finite threshold on novelty score
may result in an empty subset of a non-empty set POh(s).
To overcome the issue, we suggest to take the best operators
in terms of novelty score, ignoring the threshold.
Definition 5 (max-novel preferred operators). Given a
heuristic function h, the max-novel preferred operators of h
are defined as

POmax(s,H) = argmax
o∈POh(s)

{N(o, s,H, h)}

As per our running example, POmax(100,H) = {o3}.
Note that the Definitions 3 - 5 are invariant under the novelty
heuristic selected.

The use of preferred operators for search in classical
planning is mainly for deriving an additional queue,
consisting of a subset of successors, reached by these
preferred operators. Search algorithms are then alternating
between a complete queue with all successors and the
preferred operators queue. The rationale behind the approach
is that greedily following preferred operators may lead to
the goal quicker, without the need to explore all successors.
Our conjecture is that in many cases, further limiting the
incomplete subset of successors may lead to the goal even
quicker.

The rationale behind our approach of using the novelty
score is that, for a particular preferred operator o, if a state
reached by o was not already explored during search or



Domains hFF
QB PO-3 PO-2 PO-1 PO0 PO1 PO2 PO3 POmax

agricola18 (20) 12 11 12 10 11 12 12 12 12
airport (50) 47 47 47 47 46 47 47 47 45
barman14 (20) 19 20 20 20 20 20 20 20 20
childsnack14 (20) 1 1 3 3 0 4 3 3 2
data-network18 (20) 14 14 14 16 16 17 17 17 16
depot (22) 19 21 21 21 21 22 21 21 22
floortile11 (20) 8 8 7 7 7 7 6 6 7
floortile14 (20) 3 2 2 3 3 2 2 2 2
logistics98 (35) 30 30 30 30 31 32 33 34 34
nomystery11 (20) 18 18 17 16 15 17 17 17 15
openstacks11 (20) 20 20 20 20 20 20 18 18 20
openstacks14 (20) 20 20 20 20 20 18 14 14 20
openstacks (30) 30 30 30 30 30 30 30 28 30
organic-synthesis-split18 (20) 12 14 14 14 13 14 13 13 13
parking14 (20) 6 7 6 6 7 8 9 9 9
pathways (30) 28 27 26 27 26 25 26 27 30
pipesworld-notankage (50) 43 43 44 44 47 47 45 45 44
pipesworld-tankage (50) 43 42 44 46 45 45 46 46 44
satellite (36) 28 28 28 26 28 28 29 28 28
scanalyzer08 (30) 29 30 30 30 30 30 28 29 30
scanalyzer11 (20) 19 20 20 20 20 20 18 19 20
snake18 (20) 6 6 7 6 8 7 9 7 7
spider18 (20) 16 19 19 19 19 18 18 17 17
storage (30) 28 27 28 27 28 28 27 28 30
termes18 (20) 14 16 16 16 14 15 16 15 15
tetris14 (20) 15 16 16 16 17 19 17 18 17
thoughtful14 (20) 19 18 17 18 17 16 17 17 18
tidybot11 (20) 17 17 17 17 18 17 18 17 18
transport11 (20) 15 16 18 19 17 18 18 19 16
transport14 (20) 11 10 8 11 11 14 9 10 10
trucks (30) 21 23 23 23 22 21 21 21 23
visitall14 (20) 18 19 18 18 19 17 18 18 20
woodworking11 (20) 19 19 19 19 19 19 19 19 20
Fully solved (883) 883 883 883 883 883 883 883 883 883
Sum other (100) 70 70 70 70 70 70 70 70 70
Sum (1816) 1601 1612 1614 1618 1618 1627 1614 1614 1627

Table 1: Coverage comparison: novelty heuristic, tie breaking by FF, preferred operators from FF (hFF
QB), compared to the preferred operators

pruned by novelty.

that state is further away from the goal (according to the
heuristic function used) than the current state, then o should
be preferred over other preferred operators. When queues are
ordered by states’ heuristic values, as in the case of greedy
best first search, the novelty score of the preferred operator
o in the current state s and the heuristic novelty of the state
s′ = sJoK that results from applying o to s are somewhat
independent. Thus, there are cases when o is novel (that is,
has a high novelty score), while s′ is not, and vice versa.
In such cases, preferring less novel states that are reached
by more novel operators may be beneficial. Going back to
our running example, applying o3 in 100 will result in a
state 110, which, although non-novel, is a goal state (novelty
heuristics are not necessary goal aware). Applying the less
novel operator oc will transition the system to 101, which is
a novel state, but further away from the goal. However, if
all these operators are considered preferred, the search will
explore the more novel resulting states before the less novel
ones. Thus, to allow to greedily prefer more novel operators
with less novel resulting state, we do not consider the less

novel operators as preferred.

4 Experimental Evaluation
To empirically evaluate our approach, we implemented it on
top of the Fast Downward planning system [Helmert, 2006].
The experiments were performed on Intel(R) Xeon(R) Gold
6248 CPU @2.50GHz machines, with the time and memory
limit of 30min and 4GB, respectively 1. The benchmark set
consists of all STRIPS benchmarks from the satisficing tracks
of International Planning Competitions (IPC) 1998-2018, a
total of 1816 tasks in 64 domains. All tested configuration
perform a greedy best-first search with delayed evaluation
and multiple queues.

To empirically validate our conjecture that systematic
pruning of preferred operators with novelty can improve
performance, we take as a baseline the best performing
variant of Katz et al. [2017], hFF

QB. We enhance it with a
second queue, defined by preferred operators of its underlying

1The code is at https://github.com/IBM/FD-Novelty-PO
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Figure 2: Per-task comparison of the number of evaluated states,
greedy best-first search with two queues, heuristic values from
hQF and preferred operators. The preferred operators POmax are
compared to the preferred operators from hFF (hFF

QB).

heuristic, hFF, with both queues being ordered by hFF
QB, ties

broken by hFF.
Our first experiment compares the baseline to the

configurations where the preferred operators of hFF are
pruned either according to Definition 3, taking all preferred
operators whose novelty score is above the threshold b ∈
[−3, 3] (denoted by POb), or according to Definition 5,
taking all preferred operators with the maximal novelty
score (denoted by POmax). Table 1 depicts a domain-wise
comparison of the coverage for these configurations. There
is a large portion of domains where all tasks are solved by
all tested configurations. These domains are summarized in
the row ”Fully solved”. Additionally, the row ”Sum other”
summarizes the domains where all configurations achieve
the same coverage, but the domain is not fully solved. The
remaining 33 domains are shown in the table. Finally, the last
row summarizes the coverage for all domains.

While the overall coverage is improved for all tested
configurations, on a per-domain level the baseline achieves
the top performance on 9 out of the 33 domains. In one
of these cases, on THOUGHTFUL14, all other configurations
achieve strictly lower coverage. Focusing on POb, while
the best performing configuration overall is PO1, the best
threshold varies for different domains. In fact, for some
domains, there can be more than one best threshold. While
we expected to observe a ”parabolic” behavior, some domains

hFF
QB PO-3 PO-2 PO-1 PO0 PO1 PO2 PO3 POmax

All 1601 1612 1614 1618 1618 1627 1614 1614 1627

TL 1600 1609 1611 1616 1615 1625 1614 1611
TM 1599 1607 1612 1619 1619 1624 1617 1615
TS 1598 1616 1616 1626 1623 1629 1627 1626

RL 1599 1609 1613 1614 1620 1621 1615 1611 1627
RM 1599 1611 1614 1618 1619 1625 1618 1621 1626
RS 1601 1613 1621 1627 1632 1629 1623 1625 1629

Table 2: Overall coverage comparison: novelty heuristic, tie
breaking by FF, preferred operators from FF (hFF

QB), compared to the
preferred operators pruned by novelty. The full set (All) is compared
to selecting (i) top elements according to operator novelty score,
large (TL), medium (TM), and small (TS) subsets, or (ii) randomly
large (RL), medium (RM), and small (RS) subsets, values rounded
to nearest integer.

exhibit multiple peaks (e. g. AGRICOLA, CHILDSNACK,
NOMYSTERY, TERMES18, and TRANSPORT11). In
some other domains, larger thresholds are better (e. g.
DATANETWORK18, LOGISTICS98, and PARKING14). In
some, smaller thresholds work better (e. g. FLOORTILE11,
OPENSTACKS, and TRUCKS). Thus, determining the best
novelty score threshold for a planning task or even a
domain can be beneficial. Switching our attention now to
POmax, note that choosing only the most novel operators
in each state performs as well overall as the best threshold.
Comparing these two configurations, their strengths seem
to be complementary, and a simple portfolio of these two
approaches might significantly increase the overall coverage.

Going beyond pure coverage, Figure 2 shows a per-task
comparison of the number of evaluated states betweenPOmax
and the baseline configuration, grouped by domains. The
domains where the median ratio of the number of evaluations
was above 100 are emphasized, while the rest are aggregated
under other. Out of the entire set of 1816 tasks, POmax
dominates in terms of evaluated states on 1064 tasks, while
hFF

QB on 383 tasks. There are 19 tasks on the upper border, and
45 tasks on the right border (tasks solved by one approach but
not the other). Although for most of the tasks the difference is
within one order of magnitude, there are several cases where
the difference is even more profound.

While the results of our first experiments are encouraging,
our second experiment tests the conjecture behind Definition
4, that our configurations above can be overly permissive.
Thus, we select top k elements and test three bounds, k ∈
{10, 100, 1000}, denoting these by small, medium, and large,
respectively2. Table 2, rows TL, TM, and TS show the
overall coverage results, comparing to the results from our
first experiment, depicted in the first row.

First, note that taking the top (according to the novelty
score) from all preferred operators, without imposing any
threshold (column hFF

QB) does not significantly change the
coverage. If the threshold is imposed, on the other hand,

2We have also experimented with relative bounds of 25%, 50%,
and 75%, as well as minimal among the absolute and relative
bounds, obtaining similar results.



the coverage increases consistently across our configurations
when a small subset is chosen. When choosing a large
or medium subsets, the coverage sometimes decreases,
compared to choosing the entire set as in the first experiment.
Focusing on the small subset and looking at the per
domain results3, probably the most notable change is in the
OPENSTACKS domains, for b = 2 and b = 3, where all
instances are now solved.

Our third experiment is intended to check whether the
novelty score plays a significant role when selecting a subset
of operators out of the novel operators POb or POmax. For
that, we compared the selection of operators according to
the novelty score to randomly choosing a subset, running
each configuration 5 times and taking mean results. The
overall coverage of these configurations, rounded to the
nearest integer, is depicted in Table 2, rows RL, RM, and RS,
where the first column depicts random pruning of operators.
Focusing again on the best performer, the small subset, out
of 7 thresholds, 3 achieve better mean performance, with the
most notable change being in PO0, from 1623 for choosing
a subset according to the top scores to 1632.2 for randomly
choosing a subset. For POmax, since all operators in that
set have the same novelty score, we can only compare to
choosing the entire set (top row). The most notable gain is
in PARKING14 (from 9 to 11.8) and in SATELLITE (from 28
to 32.4).

Finally, in order to evaluate the contribution of the new
preferred operators to a state-of-the-art configuration, we
compare to a state-of-the-art planner that uses the novelty
heuristic, Cerberus [Katz, 2018]. Cerberus runs a greedy
best-first search with two heuristics, novelty of the red-
black planning heuristic and landmark count heuristic, with
preferred operators from the red-black planning heuristic
(that are essentially preferred operators from FF) and from
the landmark count heuristic. For a cleaner comparison,
we also compare to the variant that uses preferred operators
from the red-black planning heuristic only, not using the
preferred operators from the landmark count heuristic,
denoted by POhFF . Our two suggested configurations
replace the preferred operators POhFF with POmax and PO1,
respectively. Table 3 depicts the per-domain coverage.

While there is now an even larger portion of domains where
all tasks are solved by all three approaches (summarized in
the row ”Fully solved”), there is still a sufficient number of
domains where performance in terms of coverage can still be
improved (or reduced), 28 out of the total 64 domains. Out
of these, Cerberus achieves top performance in 7 domains,
with 3 of them not being matched by other approaches.
Note that simply switching off preferred operators from
the landmark count heuristic (column POhFF in the table)
improves the overall coverage by 13 tasks. Comparing POhFF

now to the two configurations that prune its list of preferred
operators, note that both configurations improve the overall
coverage, with POmax increasing it by additional 32 tasks
(overall, 45 tasks more than Cerberus). There are only
2 domains where POhFF achieves a better coverage than
POmax. Looking at the runner-up configuration PO1, note

3Detailed results can be found in the supplementary material.

Domains Cerberus POhFF POmax PO1

agricola18 (20) 12 11 13 11
airport (50) 42 42 44 43
childsnack14 (20) 3 1 3 1
data-network18 (20) 14 13 15 16
depot (22) 21 20 22 22
floortile11 (20) 8 7 7 7
floortile14 (20) 3 2 2 2
hiking14 (20) 18 17 19 18
nomystery11 (20) 20 19 20 19
openstacks11 (20) 16 20 20 20
openstacks14 (20) 8 20 20 20
organic-synthesis-split18 (20) 12 14 15 15
parking14 (20) 13 20 20 20
pathways (30) 28 26 29 27
pipesworld-notankage (50) 43 43 45 47
pipesworld-tankage (50) 41 42 44 43
rovers (40) 40 40 40 39
scanalyzer08 (30) 29 29 30 30
scanalyzer11 (20) 18 19 20 20
snake18 (20) 9 10 8 10
sokoban11 (20) 17 18 18 17
spider18 (20) 18 16 19 18
storage (30) 26 26 29 29
termes18 (20) 12 13 13 13
tetris14 (20) 19 19 17 19
thoughtful14 (20) 16 16 20 18
tidybot11 (20) 17 19 19 18
trucks (30) 24 18 21 21
Fully solved (1024) 1024 1024 1024 1024
Sum other (80) 50 50 50 50
Sum (1816) 1621 1634 1666 1657

Table 3: Coverage comparison to the state of the art.

that it was able to obtain a better coverage than POmax in 4
domains. Overall, the experiments clearly show the benefit
of systematically pruning preferred operators, significantly
improving the performance of even a state-of-the-art planning
system.

5 Discussion and Future Work
We have shown in this work how to define preferred operators
for the novelty heuristic, extending the notion of novelty
with respect to an underlying heuristic to operators. Our
experimental evaluation shows that the approach works
well in practice, increasing the coverage in many domains,
sometimes significantly. The notion of operator novelty is
somewhat orthogonal to the notion of novel states. Non-novel
operators can lead to novel states and novel operators can lead
to non-novel states. Not considering non-novel operators as
preferred allows us to better focus the greedy exploration and
obtain better results. Our experiments also show that the best
novelty score threshold can vary from one domain to another.

It is worth mentioning that our approach does not require
to know operators preconditions or effects, only whether
an operator is applicable in the state. Therefore, it can



potentially be applied to formalisms where no action model is
available, such as black-box planning [Jinnai and Fukunaga,
2017; Lipovetzky et al., 2015]. Additionally, we intend to
explore ways of obtaining a novelty score threshold on a per-
domain or per-instance basis. Further, additional possible
definitions of preferred operators for the novelty heuristic can
be obtained. Finally, we would like to further investigate
the reason behind the improved performance, attempting to
extend our understanding of the novelty based approaches in
heuristic search for classical planning.
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and Héctor Geffner. Classical planning with simulators:
Results on the atari video games. In Proc. IJCAI 2015,
pages 1610–1616, 2015.

[Richter and Helmert, 2009] Silvia Richter and Malte
Helmert. Preferred operators and deferred evaluation
in satisficing planning. In Proc. ICAPS 2009, pages
273–280, 2009.

[Richter and Westphal, 2010] Silvia Richter and Matthias
Westphal. The LAMA planner: Guiding cost-based
anytime planning with landmarks. JAIR, 39:127–177,
2010.

[Richter et al., 2008] Silvia Richter, Malte Helmert, and
Matthias Westphal. Landmarks revisited. In Proc. AAAI
2008, pages 975–982, 2008.

[Valenzano et al., 2014] Richard Valenzano, Nathan R.
Sturtevant, Jonathan Schaeffer, and Fan Xie. A
comparison of knowledge-based GBFS enhancements and
knowledge-free exploration. In Proc. ICAPS 2014, pages
375–379, 2014.

[Xie et al., 2014] Fan Xie, Martin Müller andRobert Holte,
and Tatsuya Imai. Type-based exploration with multiple
search queues for satisficing planning. In Proc. AAAI
2014, pages 2395–2401, 2014.


	Introduction
	Preliminaries
	Preferred Operators of Novelty Heuristics
	Experimental Evaluation
	Discussion and Future Work

