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Abstract

Recent research in Video-Language Models has primarily focused on developing
Video Foundation Models (ViFMs) that achieve strong zero-shot performance
across various downstream tasks by scaling video-text pair datasets. Meanwhile,
the compositional reasoning abilities of ViFMs have gained increasing attention,
leading to a critical question: Does scaling video-text pairs consistently enhance
compositional reasoning? Based on our finding that simply increasing the dataset
size does not necessarily improve compositional reasoning, we explore whether
compositional reasoning can be enhanced using a small, high-quality dataset in-
stead of relying on dataset scaling. To this end, we focus on video scene graph
(VidSG) datasets, which provide rich, structured relational information, and propose
SGCR-Vid, a method designed to effectively leverage this information. Specifically,
SGCR-Vid consists of two branches: the Text-based Scene Graph branch, which
converts VidSG into text format and generates negative samples for fine-grained
understanding; and the Visual-based Scene Graph branch, which incorporates
structured visual relational information into video embeddings. To evaluate the
effectiveness of SGCR-Vid, we apply it to two state-of-the-art ViFMs (ViCLIP
and InternVideo2), demonstrating significant performance improvements on com-
positional reasoning benchmarks (VELOCITT and VideoCon), using less than 0.5%
of the pretraining data scale. Our results show that compositional reasoning can be
effectively enhanced using an extremely small-scale dataset, while also maintaining
competitive performance on downstream tasks, validating the generalizability of
our framework.

1 Introduction

Video-Language Models, such as ViCLIP [1] and VideoCLIP [2]], which map video and text into
a shared representation space, have advanced rapidly in recent years [3| 4} 15, |6]. Especially, there
has been a surge of interest in the development of Video Foundation Models (ViFMsf] that have
demonstrated strong zero-shot performance across various video-language tasks, including video-text
retrieval [3, 6], action recognition [4}[7]], and video question answering [8].

To enhance the generalizability of ViFMs, numerous studies [[1}[7, 9} [8]] have focused on expanding
video-text pair datasets to web-scale sizes, inspired by the success achieved in the image domain [[10].
For example, InternVideo [7] introduced approximately 13M video-text pairs, marking an early
milestone. UMT [[L1] doubled this number to 26M pairs, followed by ViCLIP [1]], which increased it
to 200M pairs. More recently, VideoPrism [9] and InternVideo2 [8] further scaled the dataset to over

*Work partially done while at Intel Labs. "Corresponding author
2We focus on ViFMs trained with a contrastive learning objective, designed for discrimintative tasks, rather
than on Multimodal Large Language Models that are tailored for generative tasks.
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Figure 1: (a) An example of compositional reasoning in a Video Foundation Model (ViFM). (b)
Performance comparison across different data scales for two ViFMs (i.e., VICLIP [1]] and Intern-
Video2 [8])), evaluated on a downstream task and compositional reasoning benchmarks.

400M pairs. These expansions have consistently led to performance improvements across general
downstream tasks, such as video-text retrieval and action recognition.

Another line of research on ViFMs [[12, [13| [14} [15] has emphasized the importance of compositional
reasoning—the ability to understand complex, structured concepts such as inter-object relationships
(e.g., action and spatial relationships) and their temporal relationships within open-world videos.
As illustrated in Figure[T[(a), compositional reasoning goes beyond simply recognizing actions like
placing a towel or holding a piece of exercise equipment; it requires understanding the temporal
relationships between these actions. This capability is essential for real-world applications that
demand advanced scene understanding [[16]. Despite its importance, several studies [[15} 12} 13|17,
18] have demonstrated that existing ViFMs struggle with compositional reasoning. For example,
ICSVR [15] revealed object-level bias in ViFMs by systematically evaluating their performance on
syntactic, relation, and object-level reasoning tasks. Recently, VELOCITI [12]] introduced benchmark
datasets specifically designed to assess compositional reasoning in ViFMs and found that their
performance was often close to random guessing. Although the importance of this issue is increasingly
recognized, effective methodological approaches to address it remain limited.

Building on the aforementioned studies on dataset scaling and compositional reasoning, we pose the
following research question: Does scaling up the video-text pair datasets consistently enhance the
compositional reasoning ability of ViFMs? To investigate this, we evaluate two state-of-the-art ViFMs
(i.e., ViCLIP [1]] and InternVideo2 [8])) trained at different data scalesﬂ on (i) a general downstream
task (video—text retrieval task using MSRVTT [19] and MSVD [20]) and (ii) compositional reasoning
benchmarks (VELOCITI [12]] and VideoCon [14])). As shown in Figure Ekb), we observe that scaling
the dataset size consistently boosts performance on the general downstream task, whereas it does
not lead to consistent improvements in compositional reasoning. This observation suggests that
while scaling helps ViFMs learn a broader vocabulary of objects and actions, thereby improving
generalizability, it does not inherently improve their ability to reason over fine-grained, structured
concepts. We hypothesize that this is because compositional reasoning requires a high-level, complex
understanding beyond simple video-text matching. Nevertheless, as video-text pair datasets are scaled,
they often contain an increasing number of repetitive and low-complexity associations, which can
cause models to overfit to frequent and simplistic patterns, thereby hindering them from performing
complex reasoning.

Motivated by these insights, in this paper, we aim to explore whether compositional reasoning in
ViFMs can be enhanced by leveraging a small amount of high-quality data that explicitly captures
complex inter-object relationships, rather than simply scaling up low-complexity video-text pair
datasets. To this end, we employ video scene graph (VidSG) datasets: although these datasets are
limited in scale due to the difficulty and high cost of annotation, they provide structured and detailed
representations of inter-object relationships and their temporal dynamics. Specifically, we propose

3Note that each model trained on a smaller data scale used a subset of the pretraining dataset that was used to
train the corresponding model on a larger data scale, e.g., VICLIP-10M used a 10M subset of the 200M training
data from ViCLIP-200M.



Scene Graph-based Compositional Reasoning for Video Foundation Models (SGCR-Vid), a method
designed to enhance the compositional reasoning capabilities of ViFMs by effectively leveraging
rich relationaf] information. SGCR-Vid consists of two main branches: 1) the Text-based Scene
Graph (TSG) branch, which converts video scene graphs into natural language and generates negative
samples to help ViFMs understand structured relational information at a fine-grained level. 2) the
Visual-based Scene Graph (VSG) branch, which enriches video embeddings by integrating structured
visual relational information from VidSGs.

To evaluate the effectiveness of SGCR-Vid, we apply it to two state-of-the-art ViFMs (ViCLIP
and InternVideo2). Our results demonstrate that SGCR-Vid significantly improves performance on
compositional reasoning benchmarks (VELOCITTI [12] and VideoCon [14]), while merely using less
than 0.5% (i.e., approximately 41K samples) of the size of the training data used for pretraining.
This highlights the potential of enhancing compositional reasoning with a small, high-quality dataset.
Moreover, SGCR-Vid maintains competitive performance on general downstream tasks, confirming
that it enhances compositional reasoning without sacrificing the generalizability of existing ViFMs.

Our contributions can be summarized as follows: 1) We identify that while scaling video-text pair
datasets can improve the performance of ViFMs on general downstream tasks, it does not necessarily
improve their compositional reasoning abilities. 2) We propose SGCR-Vid, a method that effectively
leverages a small, high-quality VidSG dataset to capture rich, structured relational information. 3)
We achieve significant improvements in compositional reasoning performance on VELOCITI and
VideoCon using less than 0.5% of the pretraining data scale, without compromising generalizability.

2 Related Works

Video Foundation Models. Video Foundation Models (ViFMs) have attracted significant attention
due to their remarkable zero-shot performance across multiple video-language tasks. To improve the
generalizability of ViFMs, they have focused on collecting and scaling the video-text pair datasets,
with which the video-language models are trained. Specifically, InternVideo [7]] was trained on 13M
pairs, OmniVL [21]] on 17M pairs, and LAVENDER [22] on 30M pairs. As the datasets grew in size,
UMT [[11] collected 26M pairs, VideoCLIP [2]] leveraged HowTo100M [23] with 100M pairs, and
VIOLET [24] further extended with the YT-Temporal [25] dataset, reaching a total of 185M pairs. In
pursuit of web-scale datasets, ViCLIP [1]] released the InternVid dataset with 200M pairs for model
training. More recently, VideoPrism [9] and InternVideo?2 [8]] have scaled their datasets over 400M
pairs. Despite these advancements, existing studies have mainly focused on improving downstream
task performance through data scaling, while compositional reasoning has often been overlooked. In
this paper, we highlight the limitations of relying solely on data scaling to enhance compositional
reasoning and investigate the potential of improving it with a small amount of high-quality data.

Compositional Reasoning. Compositional reasoning refers to the ability to understand structured
concepts in language, as well as their alignment to the visual scenes. In the image domain, substantial
efforts [26, 27, 128} 129, 30, |31} [32] [33]] have been made to understand the inter-object relationships,
object attributes, and object states. Among these, SGVL [28]], similar to our approach, leveraged a
scene graph dataset (i.e., Visual Genome [34]) to improve compositional reasoning. A key distinction
of our work is its focus on the video domain, while SGVL focuses on the image domain. This
distinction presents a limitation when adopting SGVL to the video domain, as video scene graphs
differ fundamentally from image scene graphs due to the inclusion of the additional time dimension.

On the other hand, research in the video domain has mainly focused on providing benchmark datasets
to evaluate the compositional reasoning of existing ViFMs, rather than on developing methods
to improve it. VITATECS [17] and VideoComp [13] generate counterfactual descriptions based
on the temporal aspect of videos to evaluate ViFMs. Meanwhile, ICSVR [135]] releases datasets
for evaluating syntactic, relational, and object-level reasoning. VideoCon [14] provides a dataset
that evaluates compositional reasoning by considering various factors, including attributes, actions,
and the temporality of actions. VELOCITI [[12] evaluates compositional reasoning by segmenting
the assessment into agent, action, and event chronology. While existing research has primarily
concentrated on providing datasets for evaluating compositional reasoning and highlighting its
deficiencies, we introduce a method that enhances compositional reasoning through the use of a small
amount of high-quality video scene graph data.

“Hereafter, we use "inter-object relationships" and "relation" interchangeably.



3 Preliminary

In this section, we briefly review the video foundation models (ViFMs), which are generally trained
with a contrastive learning objective [, [1} 7, 9, [11]] and the structure of video scene graph datasets.

Video Foundation Models (ViFMs). ViFMs are generally trained on an extensive video-text pair
dataset {(V;,C;)}Y, where N is the number of pairs, V; is a video and C; is the corresponding
text caption. ViFMs generally consist of video encoder h and text encoder f that extract the video
embedding v; (i.e., v; = h(V;) € R?) and text embedding ¢; (i.e., ¢; = f(C;) € R?), respectively,
with the same dimensionality d. For the video encoder, given a video V = [I', I?,.... I"], where I*
is the ¢-th frame, Vision Transformer (ViT) [35]] is employed. Specifically, with the randomly sampled
frames [I L CH C ], where I €V and T’ < T, M non-overlapped patch tokens for each frame
are extracted followed by concatenation across all video frames. It is formally described as follows:

Z:[Z[CLS],PI,PQ,...,PT/], (l)

where zjcrs) € R% is a CLS token, P* € RM*4 is a set of patch tokens added with temporal
positional embedding for the ¢-th frame, d,, is the feature dimension for a patch token, and [,] is the
concatenation operation. After feed-forwarding z into a transformer and projecting the output to a
low-dimensional space d, the final embedding with CLS token is utilized as the video embedding v.
Similarly, for the text encoder, a CLS token is prepended to the text C, followed by feed-forwarding
to the transformer and projecting to a low-dimensional space d, thereby obtaining the text embedding
c¢. The contrastive learning objective then updates trainable parameters of h and f as follows:

_ exp i 7C’L)/T exp Vla 7 )/T
Leon = — N Z N Z : )

S exp(v] )/ JEexp(vy,el)/T

Lyar Loy

where Np is the training batch size, 7 is the temperature parameter, Ly o7 is the video-to-text
matching loss, and Lr9y is the text-to-video matching loss.

Video Scene Graphs (VidSGs). A VidSG dataset captures the structured inter-object relationships
within videos. Specifically, a video V' contains multiple clip-level scene graphs (SGs), denoted as
{ (G’g)};v 1> where N¢ is the number of SGs. Each scene graph G, contains a set of relational triplets

{(sj,pj,0 7)}2\[:1 , grounded within a continuous frame interval [I*s, I°7], where k, and e, indicate
the starting and ending frame indices of the clip, respectively. Here, the Ngg, is the number of triplets
in G4. In each triplet, the subject s; is associated with a class label s; . and a bounding-box trajectory
Ts, - Likewise, the object o; is labeled with a class label o; . and associated with a bounding-box
tra]ectory 7o, - The trajectories 7, and 75, span the same frame interval [I" ks I¢s], specifying the
temporal extent over which they appear. The predicate p; represents the relationship between s; and
o; over the frame interval [I*s, I¢], and is associated with a class label p; .. It is important to note
that various temporal relationships exist among SGs: they may partially overlap (e.g., G3, G5), be
fully nested within one another (e.g., G1, G4), or have no overlap at all (e.g., G1, G2). Here, G1 to
G} refer to the example SGs shown in Figure 2]

4 Method: SGCR-Vid

Our goal is to improve the compositional reasoning of ViFMs by leveraging a small amount of struc-
tured VidSG data. To this end, we begin by grounding the semantics of the VidSG via VidSG-based
Frame Sampling and Attribute-level Enhancement (Section {.T)). Next, we propose two branches:
Text-based Scene Graph (TSG) branch, which converts the video scene graph structure into text for-
mat and generates negative samples, followed by contrastive learning (Section.2), and Visual-based
Scene Graph (VSG) branch, which incorporates structured visual scene graph into video embedding
to enhance the video encoder h (Section[4.3)). Finally, we outline the training process for updating the
learnable parameters of the ViFMs (Section [.4). The overall framework is shown in Figure 2]

4.1 Grounding the Semantics of Video Scene Graphs

VidSGs differ from image-based scene graphs (e.g., Visual Genome) in that they include evolving
relationships over time. Moreover, while image-based scene graph datasets typically provide object
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Figure 2: Overall framework of SGCR-Vid. Given the rich, structured VidSG dataset, we sample the
frames and assign object attributes based on the VidSG-based Frame Sampling and Attribute-level
Enhancement, respectively (Section[.T). With the grounded VidSG, the TSG branch converts the
VidSG into text and applies two negative sample generation (Section .2). Meanwhile, the VSG
branch integrates visual structured relational information into the video embeddings (Section[4.3).

attributes, VidSG datasets lack this information due to the high cost of annotating all frames. To
effectively ground the semantics of VidSG, we adopt two key strategies. The first is a VidSG-based
Frame Sampling, designed to fully leverage the temporal dynamics inherent in VidSG. The second is
Attribute-level Enhancement, which involves extracting object attributes within the video.

VidSG-based Frame Sampling. Frame sampling is crucial in the video domain to capture meaningful
content within a limited set of frames [36, [37]]. A naive approach that randomly samples frames
within a frame interval [I*, I9] of G’ may overlook temporal relationships between SGs and often
results in selecting frames with less relational information, which in turn leads to a sub-optimal
frame-sampling strategy. To address this, we meticulously sample informative frames while capturing
the temporal relationships by leveraging the time indices (i.e., k) of multiple SGs. Specifically, we
randomly choose two non-overlapping SGs, Gr and G (kr < kp), ensuring a meaningful temporal
gap between them. Moreover, among the options for selecting two non-overlapping SGs from a
pool of SGs, we ensure that there is a third SG, G, whose frame interval spans both G and G g,
providing key relational information for the TSG branch. From the overlapping frames of these three

SGs, we uniformly sample frames [I', ..., IATT,] from G, and the remaining frames [IATT/“, AT
from G g, thereby capturing the temporal relationships between G'r and G'p while ensuring that the
sampled frames contain sufficient relational information. These sampled frames are then used as
inputs to the TSG and VSG branches.

Attribute-level Enhancement. In general, blur or occlusion in videos often hinders accurate object
recognition in the visual scene [38] and makes alignment with objects in the caption more challenging.
Under such circumstances, object attributes play a crucial role in identifying objects in the visual
scenes and aligning them between the scene and the caption. Therefore, we introduce a simple
yet effective attribute-level enhancement strategy. Specifically, given that each sampled frame ¢
is accompanied by ground-truth (GT) bounding box annotations, we employ a region-to-caption
generator [39, 40] to obtain captions for each GT bounding box, followed by processing these
captions using the SpaCy NLP toolkit [41] to extract object attributes. Detailed process can be found

in Appendix
4.2 Text-based Scene Graph branch (TSG)

Existing studies on vision-language models [26l 27, 42]] suggest that contrastive learning, by generat-
ing negative captions for a specific concept (e.g., object state), enables a fine-grained understanding
of the altered concept, thereby improving the compositional reasoning. These studies typically train
models on large datasets, such as DAC [27]] with 3M images and VFC [42] with 381K videos. On
the other hand, we focus on using a small amount of data (i.e., 9K VidSGs), which, despite its size,



contains structured and rich relational information. By applying a similar approach [27]— contrastive
learning with generated negative captions— we aim to improve ViFM’s understanding of relations
and temporal order. Specifically, we convert the SGs into text and generate negative samples of a
single SG (i.e., Go) for Intra-SG Negative Sample Generation to understand inter-object relationships,
and of two SGs (i.e., G and G ) for Inter-SG Negative Sample Generation to understand temporal
order. To convert the SGs into text, we flatten them into sequences of subject, predicate, and object.
For example, G in Figure [2]is converted into text as "adult sitting on floor. adult holding thin stick",
which we refer to as G5!,

Intra-SG Negative Sample Generation (Relation). To understand the relations of GL*!, we
generate negative samples from three perspectives: attribute, predicate, and active-passive relations.
Specifically, for the attribute negative samples, Gé, we replace attributes (e.g., thin) with negative
ones. A straightforward approach might randomly select attributes from predefined vocabularies for
each case. However, randomly selected attributes (e.g., long) may not be negative within the context
of the video, which could impair the model’s understanding of the attribute. To address this, we
leverage an LLM [43]] to predefine obvious negative attributes for each case, such as defining thick as
a negative counterpart to thin. For predicate negative samples, ég, we swap predicates (e.g., Sitting
on and holding) with negative predicates. Similar to the attribute case, the LLM is used to predefine
negative predicates to ensure validity. For the active-passive negative samples, GAP we swap the
subject (e.g., adult) and object (e.g., floor) to help ViFM understand the distinction between active
and passive roles within the scene. With negative samples from these three perspectives, we apply
a contrastive learning objective using the positive sample, GL*?, to derive the loss L. For the
detailed loss function, please refer to Appendix [A.3]

It is important to note that we do not use GlTpe“ and Gge“ for this negative sample generation, as the
relations in these two SGs do not represent the overall relations of the selected frames. This would
introduce potential noise, as the negative sample from Gy could correspond to G 5 and vice versa.

Inter-SG Negative Sample Generation (Temporality). To understand the temporal order of relation-
ships, we generate negative samples using two SGs, GL¢** and GLe*!. Specifically, positive samples
are generated by applying temporal indicators such as after and before (e.g., After GLe*t, GLert)
while negative samples are generated by reversing the order (e.g., After G5¢%t, GLe*t). To support
this, we design seven predefined templates that capture various temporal relationships, ensuring
that ViFMs can understand these temporal relationships. Similar to the Intra-SG Negative Sample
Generation, we apply a contrastive learning objective to the positive and negative samples, thereby
deriving the L1 loss. Please refer to Appendixregarding the template of temporal relationships.

In summary, the total loss in the TSG branch is described as L1sg = L + Lrsg-

4.3 Visual-based Scene Graph branch (VSG)

The video encoder h is generally trained on large-scale video-text pair datasets to understand the
context of many patch tokens [P, P2,...PT’], which allows the encoder to implicitly capture inter-
object relationships. In contrast, we aim to explicitly encode the visual, structured inter-object
relationships inherent in SGs by introducing a small number of tokens. Specifically, for each sampled
frame, we prepend a small number of learnable SG tokens Z%; to the patch tokens P*. These SG
tokens are trained to capture the structured relational information per se, and the complete sequence
of tokens is defined as follows:

z = lzeLs), Zsas Py s Zba, P o Z56, PT),  Zbo = [28G, -, 286] € RT X% 3)

where ZgG is the SG tokens for the ¢-th frame, and S’ is the number of SG tokens per frame. Note
that S’ is much smaller than the number of patch tokens M (i.e., S’/M= 0.063).

Spatio-Temporal VidSG Encoding. Given that visual content changes across frames, we first apply
Cross Attention independently for each frame, with Z%, as the query and P" as the key and value.
This allows each Z%, to be aware of the specific content of its corresponding frame. Then, to capture
the spatio-temporal dependencies between SG tokens, we use two Transformers [44]], each of which
is responsible for handling spatial and temporal contexts. Let the multi-head attention be denoted as
MHA(Q, K, V), where the () is the query, K is the key, and V' is the value. With this notation, the



attention process is formally described as follows:

Z% e = CrossAttn = MHA(ZY, P, P!) — for being aware of visual content 4)
Zte = MHA(ZY, Zh, Z ) — for spatial context (5)
7'se = MHA(ZLg, ZL571, ZL1=1) — for temporal context, (6)

where Zéé_l represents all previous SG tokens for the ¢-th frame, processed by spatial transformer.

Finally, the sequence [z(crs), Z }gg, P Z ?;G, PT'] is fed forward to the video encoder h. The

output from the SG tokens is denoted as Z%,, while the output from 2[cLs]» Which aggregates all
patch and SG tokens, is used as the video embedding v.

’

Objective Function. We aim to encode G and G into ZéG, oz &, while encoding G5 and G

_x’ I
into Z g;H, e Zg At the same time, we aim to ensure that the class labels for entities (i.e., subject
and object) and predicates within SGs are open-vocabulary, allowing for generalization across a wide
range of classes. To achieve open-vocabulary functionality, we avoid using a classifier head with fixed
classes [45]. Instead, we leverage the text embeddings of the entity classes within the batch, which
are extracted from ViFM'’s text encoder g, and compute the similarity between these embeddings and
Z% ., thus obtaining the likelihood of entity classes. A similar approach is applied to the predicates.
For spatial context of entities, we use the GT bounding boxes for the subject and object, and the
predictions of them are derived by multiplying Z%, € R% with the learnable matrices W’ € R»*4
and W) € R% >4, respectively. Similar to prior works [45} 46], we employ the Hungarian matching
algorithm [47] to match the GT triplets in the ¢-th frame with Z%,, thereby computing the matching
loss Lysg. For details on the matching cost and the loss computation, please refer to Appendix @

4.4 Training

To maintain the inherent knowledge of the existing ViFMs and avoid overfitting to the small amount
of VidSG data, we include a subset of the video-text pair dataset (i.e., InternVid [[1]]) used during
pretraining, and derive the loss (i.e., Lcon) using Equation[2] The model is trained end-to-end with the
following loss function:

L = Lcon + L1sg + aLysg, @)

where « is a hyperparameter that controls the weight. Furthermore, we apply the LoRA [48], an
efficient fine-tuning strategy during training to reduce the computational resource requirements.

5 Experiment

We apply SGCR-Vid to two state of-the-art ViFMs: ViCLIP [[1]] and InternVideo2 [8]]. In this section,
we describe the experimental results to demonstrate the effectiveness of SGCR-Vid. Due to the space
limitation, please refer to Appendix [B.T|regarding the details of baselines.

5.1 Experimental Setup

Datasets. For training, we use the VidSG datasets, a combination of VidVRD [49] and VidOR [50],
which have detailed manual annotations of object trajectories and relational information. The com-
bination of the two datasets provides a total of 9K videos, with 95 entity labels and 167 predicate
labels. Considering their dense triplet annotations and broad range of entity and predicate labels, this
combined dataset is used as a small yet high-quality data. Regarding the video-text pair dataset, we
use 32K samples selected from InternVid [1], which was used for the pretraining of ViCLIP and
InternVideo?2 that we aim to fine-tune. For evaluation, we use two benchmark datasets to evaluate
the compositional reasoning of ViFMs: VELOCITI [[12] and VideoCon [14], where the ViFM is
required to select between a positive caption and a negative captiorﬂ VELOCITI requires evaluation
on three semantic concepts: agent, action, and event chronology. VideoCon is a dataset where human-
generated negative captions are curated by perturbing one or more of the entities, actions, or temporal

>The VSG branch encodes all SGs within each frame to capture the full inter-object relationships.
SGiven that this task involves a ViFM identifying the positive caption from the negative caption, the accuracy
metric is applied to both datasets.



Table 2: Performance comparison on the VELOCITI dataset. The accuracy Table 3: Performance

(%) metric is used. The subscript in the model indicates the scale of the data comparison on the
used for training. VideoCon  dataset.
The accuracy metric

Agent Test Action Test 3

Model Wen CBind  Coret  Adv . Bind  Moar Chomo |Ave (%)isused.
Random | 500 50.0 50.0 50.0 50.0 50.0 500  |50.0 Model | Accuracy (%)
CLIP, gy [10] 77.6 56.3 526 64.0 57.6 52.1 49.4 585 Random [ 500
NegCLIP, oy [26] 83.4 55.6 505 61.8 523 61.1 512 59.4
Owl-Con g5k |14] 67.4 44.6 50.0 73.0 51.1 63.2 45.6 56.4 CLIP4o01 66.7
ViFi-CLIP g0k [5) 82.3 58.7 54.6 63.0 593 60.5 49.8 612 sFFg_CCLSI’]-z) o gg
CLIP-ViP gy [6] 75.3 524 55.7 70.2 53.5 51.2 48.5 58.1 cluln; vip, 0K 8.0
ViCLIP.ggy (1] 83.0 55.7 529 59.4 59.4 58.8 533 594 oy pl oM P
InternVideo2,00n [8] 85.8 537 51.9 69.4 55.8 62.8 54.6 620 [ ermVideodom o
ViCLIP, gy 84.9 58.3 534 66.8 583 60.3 51.9 620 VicLIPy 6.0
+SGCR-Vidy;k (9k is viasc) 878,59 596,13 51.7_17 6724504 599:16 658,55 535116636 +SGCR-Vidx 701441
InternVideo2asy 80.7 524 53.6 61.8 55.4 58.8 533 594 InternVideoZagy 738
+SGCR-Vidy;k (9k is viasc) 82.1114 544150 562156 748,130 58.0106 626435 579,46 |63.7 +SGCR-Vidyx 74.6.05

relationships, and organizing them into a single set. Regarding the evaluation on general downstream
tasks, we use three widely used datasets—MSRT-VTT [19]], MSVD [20]], and DeDiMo [S1]—for the
video-text retrieval task, as well as one dataset—Kinetics-400 (K400 [52]])—for the action recognition
task. Regarding the details of the dataset, please refer to Appendix

Implementation Details. We apply SGCR-Vid to two state-of-the-art ViFMs: ViCLIP [1]] trained on
a 10M pretraining dataset (i.e., InternVid [1]), and InternVideo2 [8], trained on a 25.5M pretraining
dataset (i.e., InternVid and WebVid [53]]). For further details on the implementation, please refer to

Appendix [B.3]

5.2 Quantitative Results of Compositional Reasoning

We evaluate SGCR-Vid’s compositional reasoning capabilities on the VELOCITI and VideoCon
datasets and compare its performance with the baselines.

VELOCITI: Table 2] shows the performance comparison between SGCR-Vid and the baselines on
the VELOCITT dataset. We have the following observations. 1) The performance of most baselines is
generally subpar, except for Agent Iden, which is a relatively simple task of recognizing the entity.
It indicates a need for further exploration of methodologies to enhance compositional reasoning.
Especially, the performance of baselines on Chrono is nearly random, suggesting that existing ViFMs
struggle with understanding temporal relationships. 2) Despite the efforts of the baselines trying
to scale the data, there is no consistent improvement in compositional reasoning performance with
larger data. For example, even though ViCLIPsg,s and CLIP-ViPygg,s were trained on more than
100M data, their average performance is still lower compared to ViFi-CLIP4yox, which was trained
on 400K data. This becomes even more apparent when comparing models trained on the same
type of data but with different data scales, such as VICLIP1gps vs. VICLIP5goas. 3) SGCR-Vid
significantly improves performance across various semantic concepts, demonstrating its effectiveness
of leveraging the rich relational information even with a small amount of data. Beyond the simple
expansion of video-text pair data with low-complexity patterns, it suggests that even an extremely
small size of data (i.e., 9K), yet providing rich relational information, can boost the compositional
reasoning capabilities of ViFMs. However, we observe a slight performance drop in Agent Coref for
ViCLIP10,,+SGCR-Vid. According to VELOCITI, Agent Coref is the most challenging subcategory,
requiring multi-step reasoning, which underscores the importance of high reasoning capabilities in
the ViFM’s text encoder. In this vein, ViCLIP, with its 12-layer text encoder (i.e., small model size),
struggles to deliver such reasoning ability, thereby dropping the performance despite the utilization
of rich relational information. In comparison, InternVideo26,, increases the improvement in Agent
Coref, likely due to its 24-layer text encoder (i.e., large model size), which enables more complex
reasoning and synergizes with rich relational information.

VideoCon: Table Bl shows the results on the VideoCon dataset. Similar to our observations in the
VELOCITI dataset, scaling the data does not consistently increase the performance regarding the
compositional reasoning, which further supports our claim discussed in Section [T} Furthermore, when
applying SGCR-Vid to ViCLIP and InternVideo2, we observed consistent performance improve-
ments, further confirming the effectiveness of our proposed method.



5.3 Quantitative Results on Downstream Tasks

To evaluate the performance of SGCR-Vid Table 1: Performance comparison on downstream tasks
on general downstream tasks, we conducted under the zero-shot setting. Recall@1 is reported for
experiments on video-text retrieval and ac- all tasks.

tion recognition using widely used bench- Model A N g ) ‘ Ave.
mark datasets. As shown in Table [T} we

: . ViCLIP3001s 393 305 473 700 171 255 598 | 426
have the following observations: 1) Com-  ViCLIP,o, 372 370 441 684 168 257 576 | 410
+SGCRVidyx | 384 370 445 663 168 244 566 | 40.6

paring models trained on the same dataset _

but with different scales (e.g., VICLIP2gons  fomvideen ™
vs. ViICLIPyg/), training with the larger _+SGCR-Vidx
data scale generally leads to performance

improvement on general downstream tasks, indicating that increasing data scale enhances the gener-
alizability of ViFMs. 2) The average performance of SGCR-Vid drops by less than 1% compared
to its corresponding backbone model, demonstrating that SGCR-Vid remains competitive while
maintaining the ViFM’s generalizability.
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Figure 3: Ablation studies on VELOCITT using InternVideo?2.

5.4 In-depth Analysis

Ablation Studies. In Figure [3| to understand the effectiveness of each branch of SGCR-Vid, we
conduct ablation studies on the VELOCITI dataset using InternVideo?2 as the baseline of SGCR-Vid.
Note that the variant without any branch (i.e., X) corresponds to the vanilla InternVideo2. We observe
that applying the TSG branch and VSG branch separately improves performance across all concepts.
This indicates that each branch can effectively enhance compositional reasoning even with a small
amount of rich relational data. Moreover, when the two branches are combined, the best performance
is ultimately achieved, indicating that the two branches can be integrated synergistically. For Agent
Iden concept, applying only the VSG branch results in higher performance since it already covers the
basic entity recognition, leading to no improvement when TSG and VSG are combined.

@ The shirtless man in white underwear opens the apartment wind
@ The woman in a blue coat is opening the apartment window
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Figure 4: (a) Correctly predicted case, (b) Incorrectly predicted case of InternVideo2463,+SGCR-Vid
in the VELOCITI dataset, showing attention scores for SG tokens and patch tokens across all layers.

Contribution of SG tokens. In FigureEl, to understand the contribution of SG tokens (Zg¢) com-
pared to patch tokens (P) in enhancing compositional reasoning, we analyze the relative importance
of each by measuring the amount of information the CLS token (zcLs)) in the video encoder h
aggregates from each in two cases: (a) correctly predicated case, and (b) incorrectly predicted case.
Specifically, for each case, we track the sum of attention scores that z;cLs) aggregates from patch
tokens and SG tokens across all layers. We observe two main patterns: 1) In both cases (a) and (b),



the contribution of SG tokens with structured information is high in lower layers (layers 2-12) while
decreasing as the layer depth increases. This indicates that SG tokens play an important role in the
early layers. 2) In the correctly predicted case (a), SG tokens show a stronger contribution in the
early layers compared to the incorrectly predicted case (b), indicating that SG tokens play a crucial
role in compositional reasoning. Although noise in SG tokens may occasionally introduce excessive
interference and lead to incorrect predictions, such cases are relatively rare, supported by the overall
improvement in compositional reasoning performance on the VELOCITI and VideoCon datasets.

Data Usage Analysis. In Figure[3] to study

the impact of data usage within the 41K —= 0.631

dataset (consisting of 32K InternVid and £ *°° 0.6304

9K VidSG samples), we conducted exper- g 0.625 0'629_

iments on the VELOCITI dataset based on 3 '

the InternVideo2.6),+SGCR-Vid under < 0620 T Ry Srra 0'628'0.1 TRy
two scenarlos.. FlrSt’ we ﬁx_ed the ,VldSG ﬁatio .t)flnt;ernVi;i dat;-) ' Rati;:) of \llidSG‘data'
data at 9K while gradually increasing the (VidSG data fixed) (InternVid data fixed)
proportion of InternVid data from 10% to (a) (b)

100%. Second, we fixed the InternVid data
at 32K and gradually increased the portion
of VidSG data. Our observations are as fol-
lows: 1) In the first scenario (Figure Eka)), we observe that performance increases as the amount of
InternVid data increases, saturating near 0.8 to 1.0 of the 32K samples. This indicates that leveraging
existing training data alongside VidSG data is crucial, and that approximately 32K InternVid samples
are sufficient. 2) In the second scenario (Figure[5[b)), we observe that performance generally im-
proves as more VidSG data is added. This indicates that additional VidSG data could further enhance
performance.

Figure 5: Performance across different data usage ratios.

6 Conclusion

In this paper, motivated by the observation that simply scaling data size does not consistently enhance
compositional reasoning, we aim to explore whether a small yet high-quality dataset can enhance
the compositional reasoning capabilities of ViFMs. To this end, we focus on the video scene graph
(VidSG) dataset, which captures rich, structured relational information, and propose SGCR-Vid, a
method designed to effectively enhance compositional reasoning in ViFMs. SGCR-Vid consists of
two branches: the Text-based Scene Graph branch, which converts VidSG into text and generates
negative samples for fine-grained understanding; and the Visual-based Scene Graph branch, which
enriches video embeddings by integrating the rich, structured visual relational information from
VidSG. Through extensive experiments on VELOCITI and VideoCon, we demonstrate significant
improvements in compositional reasoning while maintaining competitive performance on downstream
tasks, thereby preserving the model’s generalizability.

7 Limitations and Future Works

Despite the fact that even a small amount of VidSG data can enhance compositional reasoning, we
show in Section 5.4 of the main paper that larger quantities of VidSG data lead to greater performance
gains. However, due to the high cost of manual annotation for the VidSG dataset, SGCR-Vid faces a
limitation in data scalability. A potential solution is to explore weakly supervised video scene graph
approaches [54,55], which allow for the generation of VidSG data without the need for expensive
human annotations. This approach could help mitigate the scalability limitations associated with
VidSG data.

As future work, we plan to work on enhancing the compositional reasoning capabilities of Multimodal
Large Language Models (MLLMs) [56,157] designed for video understanding, as prior works [12}[17]]
have shown that current MLLMs still struggle with compositional reasoning. Building on our
approach, a promising direction is to explore whether even a small amount of high-quality data can
also effectively enhance the compositional reasoning abilities of MLLMs.
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A SGCR-Vid

A.1 Detailed Explanation of Attribute-level Enhancement

In this section, we provide a detailed explanation of the Attribute-level Enhancement described in
Section 4.1 of the main paper. For each frame’s ground-truth bounding boxes, we use the GRiT
[40] region-to-caption generator to obtain descriptive captions and process these captions using the
SpaCy [41] toolkit to extract object attributes. However, we observe that attributes of the same object,
extracted from different frames, often vary due to noise or inconsistencies in the captions generated
by the region-to-caption generator. To mitigate this, we apply a majority voting scheme over the
attributes of the same object across different frames, ensuring greater consistency. Although more
advanced strategies—such as using multimodal large language models [58, 59]—could potentially
yield richer attributes, they are computationally intensive and impractical for processing the large
number of bounding boxes present across video frames. Hence, we adopt the proposed approach to
balance effectiveness and efficiency.

A.2 Prompt for Attribute and Predicate Negatives

Extraction of Negative Attributes. In the Intra-SG Negative Sample Generation of the TSG
branch (Section 4.2 of the main paper), we obtain obvious negative attributes of objects us-
ing an LLM [60]. Furthermore, to ensure clarity, we exclude ambiguous or abstract attributes
(e.g., serious, handmade) that are difficult to infer from the visual scene. This leads us to
manually define criteria across three categories (i.e., color, size, and position) and extract
only the attributes belonging to these categories. For this purpose, we craft a prompt, into
which the attribute of our interest is inserted at {QUERY}. The full prompt is as follows:

Your task is to generate a list of negation attributes for a given attribute associated with an object.
The input attribute must belong to one of the following categories: color, size, or position. If it does
not belong to any of these categories, return an empty list. Furthermore, ensure that all negations you
provide come strictly from the same category as the given attribute. For example, if the input attribute
is related to position, the negations should only include other position-related attributes.

Input: black

Output: [’red’, 'white’, ’green’, 'purple’, ’yellow’, "blue’, ’bright’, 'violet’, 'pink’, 'navy’, 'gold’,
‘beige’, ’bronze’, 'orange’, ’brown’]

Input: white

Output: ['red’, 'green’, ’purple’, ’yellow’, ’blue’, 'gray’, 'dark’, ’violet’, 'pink’, 'navy’, ’gold’,
’beige’, 'bronze’, "orange’, ’black’, brown’, ’silver’]

Input: first

Output: []

Input: huge

Output: ['small’, ’tiny’, ’little’, "'minor’, ’compact’, 'modest’]

Input: extended

Output: []

Input: plastic

Output: []

Input: front

Output: [’back’, 'rear’, ’backside’, 'behind’]

Input: wild

Output: []

Input: {QUERY }

Output:

Extraction of Negative Predicates. Similarly, to obtain obvious negative predicates, we craft a
prompt where the predicate of our interest is inserted into {QUERY }. The complete prompt is
provided below.

Your task is to generate a list of negation predicates for a given predicate. Make sure that each
negation predicate represents an obvious negation of the given predicate, meaning that it is impossible
for both to occur in the visual scene.
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Input: sit above

Output: sit below, sit beneath, sit under, stand
Input: open

Output: close, shut, seal, lock, fasten

Input: walk right

Output: walk left, move left, shift left

Input: hold

Output: release, drop, push away, put down, not hold
Input: shout at

Output: whisper to, speak softly to, is silent towards
Input: get off

Output: get on, stay on

Input: chase

Output: evade, flee from, run away from
Input: drive

Output: walk, stop, park, halt

Input: jump left

Output: jump right, move right, jump back
Input: creep beneath

Output: creep above, stay above, creep on
Input: {QUERY }

Output:

For both the generated negative attributes and predicates, we manually verified their validity to ensure
they were clear and accurate.

A.3 Loss Function for the TSG branch

In Section 4.2 of the main paper, we apply contrastive learning in the Intra-SG Negative Sample
Generation, using one positive sample (G5¢**) and three negative samples (G4, G5, GAT) to enable
fine-grained semantic understanding of each concept. The loss function used is defined as follows:

exp(vT, £(GE)/7 ~
exp(vT, F(GE/T+ X seqapam @0V S(GH)/T

£$SG = —log

®

A4 Template of Temporal Relationships

In Section 4.2 of the main paper, for Inter-SG Negative Sample Generation, we designed seven
templates to enable ViFMs to capture the temporal relationship between the two SGs, GL°*! and

Gge“. The complete set of templates is described below:

1. GLe=t before GLet.

2. GEeot after GLevt,

3. First GLeot, then GLe*t,
4. After GLevt, GLewt,

5. GLewt, and then GLewt.
6. Once GLet, GEeat,

7. Before GLewt, GLext,

A.5 Further Explanation of the VSG branch

In this section, we provide a detailed explanation of the Hungarian matching algorithm [47] used
to match the ground-truth (GT) triplets and Z%, as well as the loss function for the VSG branch.
Specifically, we define the cost for optimal assignment between two bipartite groups (i.e., GT triplets
and Z%,) as the sum of the subject, object and predicate class similarity of Z%, with respective to
their GT classes, along with the GIoU [61] and L1 loss between the predicted and GT bounding boxes.
After applying the Hungarian algorithm to each frame, each GT triplet in ¢-th frame is assigned to the
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ZgG, and SG tokens that do not correspond to any triplet are padded. Finally, the SG loss is computed
as follows:

Lysc =M (Ls + Lo+ L) + XaLin + AsLGroUs 9)

where L1, Larous Ls, Lo, and L, denote the L1 loss, GIoU [61] loss, cross-entropy (CE) loss for
subject and object classes, and CE loss for predicate classes, respectively. The ) terms are the weights
for each loss component. Following [28]], we set A1, and A2, A3 to 1/3, 5.0, and 2.0, respectively.

B Experiments

B.1 Baselines

We include seven baselines to compare with SGCR-Vid. 1) CLIP [10] is an image-based vision-
language model trained on 400M image-text pairs. To apply this model to video, following VELOCITI
[12]], we average the visual embeddings of sampled frames to obtain the video embedding v. 2)
NegCLIP [26] is a CLIP variant fine-tuned to enhance compositional reasoning capabilities using
negative captions generated from the COCO [62] dataset with 2.9M samples. Similar to CLIP, it
averages the sampled frame embeddings for v. 3) Owl-Con [14] is a Multimodal Large Language
Model [63]] fine-tuned using negative captions generated by an LLM [64] from video-caption pair
datasets (i.e., MSR-VTT [19], VaTeX [63]], and TEMPO [66]]) totaling 165K samples. 4) ViFi-
CLIP [3] is a video-adapted version of CLIP, fine-tuned on the Kinetics-400 [52] dataset with
400K samples to capture temporal and contextual information in videos. §) CLIP-ViP [6] enhances
CLIP for video tasks by introducing learnable visual proxy prompt tokens that capture temporal
information, trained on the HD-VILA-100M [67]] dataset with 100M samples. 6) ViCLIP [1]] fine-
tunes the CLIP model using the proposed video-text pair dataset, InternVid, with 200M samples. 7)
InternVideo2 [8] is a large-scale video-language model whose video encoder is distilled from video
expert models [68] 69] and trained on collected web-scale data (e.g., WebVid [53]] and InternVid [1]])
totaling 400M samples.

B.2 Details of Dataset

In this section, we describe the training and evaluation datasets in detail.

Training. We use the combination of two VidSG datasets: VidVRD [49] and VidOR [50]. VidVRD
consists of 1K videos with an average of 10.1 triplets per frame. It includes 35 entity class labels
and 132 predicate labels. VidOR consists of 8K videos with an average of 10.4 triplets per frame. It
contains 80 entity class labels and 50 predicate labels. The combination of the two datasets provides
a total of 9K videos, with 95 entity labels and 167 predicate labels. It is important to note that, given
that 32K video-text pair samples (i.e., InternVid [1]) are used, we use a total of 41K, which is less
than 0.5% of the data used during pretraining of ViCLIP and InternVideo2.

Evaluation. For the VELOCITI [12]] dataset, three concepts—agent, action, and event chronol-
ogy—are defined to evaluate different aspects of model understanding. The agent concept evaluates
the ViFM’s ability to distinguish the entities within a video, and is further categorized into three
subtypes: Identification (Iden), Binding (Bind), and Co-reference (Coref). For the Iden subtype,
negative captions are curated by randomly replacing the original entity with another. On the other
hand, the Bind subtype replaces the entity with another one appearing in the same video, making it
more challenging due to the increased contextual similarity. The Coref subtype evaluates the model’s
ability to identify entities through referential expressions (e.g., The person who is greeting a man
wearing a black hat). The action concept focuses on recognizing the action that unfolds over time,
and is divided into three subtypes: Adversarial (Adv), Binding (Bind), and Modifier (Modif). In
the Adv subtype, the action in the positive caption is replaced with another that does not appear
in the video. In the Bind subtype, the action is replaced with a different action that occurs within
the same video. The Modif subtype alters the action modifier in the positive caption with another
plausible, but incorrect, modifier. Event chronology (chron) evaluates the temporal relationships
of events. For the VideoCon [14] dataset, following the split proposed in [[14], we use a subset of
temporally-challenging 290 samples, selected from a total of 570.
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B.3 Additional Implementation Details

For ViCLIP, we follow its pretraining configuration, sampling 8 frames (7”=8), each with 196 patch
tokens (M=196) and a feature dimension of 768 (d,=768). The hyperparameters are set to use
12 SG tokens (S’=12), o = 0.1, and a training batch size of 128. Likewise, for InternVideo2, we
adopt its pretraining configuration, sampling 4 frames, each with 256 patch tokens and a feature
dimension of 1,408. Due to its large model size of 1B parameters, we use a smaller batch size of 18,
with hyperparameters set to 16 SG tokens and o = 1.0. We search the hyperparameter space with
S" € {8,12,16,24}, and o € {0.1,0.5,1.0}. For ViCLIP, a training batch consists of video-text
pairs and VidSG data in an 8:2 ratio, while for InternVideo2, the ratio is 6:4. Regarding the LoRA
configuration, the rank is set to 8, and the dropout rate is 0.05. Both models are optimized using
AdamW [70] with a learning rate of 2e-7, a cosine learning rate scheduler, and a weight decay of 0.2.
Training is conducted for 10 epochs on a NVIDIA GeForce A6000 48GB GPU.
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B.4 Hyperparameter Sensitivity

SGCR-Vid has two key hyperparameters: the loss coefficient for the VSG branch («r) and the number
of SG tokens assigned per frame (S”). To investigate their impact, we evaluate performance changes
across different hyperparameter values on the VELOCITI dataset using InternVideo2+ SGCR-Vid
and ViCLIP+SGCR-Vid.

Loss coefficient for the VSG branch («). Figure[f]shows how varying « affects performance. We
observe that, on average, performance of InternVideo2+SGCR-Vid improves as « increases, while
ViCLIP+SGCR-Vid achieves better results with smaller o values. We attribute this difference to the
fact that InternVideo2’s video encoder has a deeper layer, with 40 layers compared to ViCLIP’s 12
layers. Therefore, InternVideo2 requires a larger « to achieve effective training. On the other hand,
increasing « in ViCLIP may cause overfitting due to its shallower architecture, which leads to a drop
in performance.

Number of SG tokens (S’). Figure[7|shows the effect of varying the number of SG tokens per frame.
We observe that InternVideo2+SGCR-Vid achieves its highest average performance with 24 SG
tokens, while VICLIP+SGCR-Vid performs best using 12 SG tokens rather than a larger number.
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This suggests that simply increasing or decreasing the number of SG tokens does not guarantee better
performance. Rather, the optimal number of SG tokens depends on the model architecture.

Overall, we observe that the best performance of both models varies across different subtypes as
the hyperparameters are adjusted. Considering that each subtype requires different reasoning, this
indicates that the impact of hyperparameter changes on reasoning differs accordingly.
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B.5 Additional Qualitative Results for Contribution of SG Tokens

In Section 5.4 of the main paper, we analyzed the relative contribution of the SG token compared to
the patch token in terms of the CLS token in the video encoder. We observed that, in both correctly
predicted cases (a) and incorrectly predicted cases (b), the SG token had a higher contribution in the
lower layers. Furthermore, in the correctly predicted cases, we observed that the SG token contributed
more in the early layers compared to the incorrectly predicted cases. In this section, we provide
additional results to further consolidate these observations, shown in Figure|§|- @
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