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Abstract

Aerial images of neighborhoods in South Africa show the clear legacy of apartheid,
a former policy of political and economic discrimination against non-European
groups, with completely segregated neighborhoods of townships next to gated
wealthy areas. This paper introduces the first publicly available dataset to study
the evolution of spatial apartheid, using 6, 768 high resolution satellite images of 9
provinces in South Africa, 550 of which are labeled. Our dataset was created using
polygons demarcating land use, geographically labelled coordinates of buildings
in South Africa, and high resolution satellite imagery covering the country from
2006-2017. We describe our iterative process to create this dataset over two
years, which includes pixel-wise labels for 4 classes of neighborhoods: wealthy
areas, non wealthy areas, nonresidential neighborhoods and background (land
without buildings). While datasets 7 times smaller than ours have cost over $1M
to annotate, our dataset was created with highly constrained resources. We finally
show examples of applications examining the evolution of neighborhoods in South
Africa using our dataset.

1 Introduction

Figure 1: An example of spatial apartheid’s legacy in Cape
Town, South Africa, showing segregated neighborhoods
of townships next to wealthy neighborhoods [42].

Analyzing many time-lapse satellite im-
ages presents the opportunity to study
cities using computer vision, and create
tools that allow governments and other
entities to examine the effects of vari-
ous policies. These tools can be used
to further marginalize already disenfran-
chised communities by surveilling them
and limiting their access to capital and
opportunities [66, 3, 34, 17, 4, 5, 57, 33].
They can also be used to examine the ef-
fects of discriminatory policies [16, 47,
63, 46, 62, 43, 15], a line of study which
we hope to support with this work. We
present a satellite imagery dataset that
can be used to analyze the effects of spa-
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tial apartheid in South Africa. As noted in the associated datasheet, to guard against negative use cases
of such a dataset, the dataset will only be available upon request for approved research purposes [50].

Apartheid is a former South African policy of segregation, and political and economic discrimination
against non-European groups in the country [64]. The Group Areas Act passed in 1950 [9] forcefully
relocated Black, Coloured and Indian people out of urban areas and into townships where they were
allocated uniformly sized small plots of land on the outskirts of cities and towns. While apartheid
legislation was repealed in 1991, its effects are still alive today [45]. For example, Figure 1 shows
aerial images taken by photographer Johnny Miller, depicting completely segregated neighborhoods
of townships next to gated wealthy neighborhoods that have largely remained unaffected by the end
of apartheid [42]. Although this effect is immediately obvious to any human looking at the photos,
people cannot analyze large numbers of such images to gain insights.

We present the first publicly available satellite imagery dataset of South Africa that is suitable for
the study of spatial apartheid, with pixel level annotations of 4 neighborhood classes: wealthy
neighborhoods, non wealthy neighborhoods, nonresidential areas and background, in the 9 South
African provinces. As seen in Figure 1, townships and wealthy residential neighborhoods can have
distinct visual characteristics: e.g. the latter are usually more sparsely populated and green, while
townships are densely populated but with a grid-like structure. These visual differences allow us to
train a model distinguishing between different types of neighborhoods. Although the majority of
works in computer vision focus on algorithmic development, the most critical and time-consuming
step in projects such as this is procuring and labeling the necessary datasets for the task [32]. Over
two years, we performed an iterative process that uses the insights gained from baseline models to
understand the shortcomings of our dataset, adding new elements to the data as necessary. The final
dataset consists of geo-referenced satellite images covering the entire country of South Africa and
a corresponding mask of neighborhoods labeled according to their type. This mask was built from
a combination of geo-referenced polygons called Enumerator Areas (EAs) subdividing land-use as
specified by the government, and data points locating all buildings in South Africa. To our knowledge,
this is the first dataset for land cover classification covering an entire African country, that is suitable
for the study of spatial apartheid or related phenomena.

The rest of this paper is structured as follows. Section 2 discusses related work, Section 3 introduces
the components used to create our visual dataset (satellite images, land use polygons, and building
points). We describe the methodology used to construct our dataset in Section 4, and discuss various
challenges unique to this task. We present experiments to further understand our dataset in Section
5, and show preliminary results estimating the evolution of neighborhoods using our dataset. We
conclude by discussing broader impacts in section 6.

2 Background and Related Work

While there are several freely available datasets for the broader task of land cover classification [10, 65,
14, 58, 25, 60, 2, 38, 61], most of them have been created for the developed world [53, 20, 60, 2, 38,
61], and a handful using images from developing countries which have very different characteristics
from neighborhoods in South Africa [30, 1, 59, 48]. Furthermore, some of these datasets have
different objectives from ours, such as classifying buildings, cars, trees, sidewalks, bodies of water
and urban areas, without distinguishing between different types of neighborhoods [60, 2, 38, 61].

In addition, datasets like [10] do not differentiate between neighborhood types within the urban land
class–a task essential to studying spatial apartheid. The UC Merced dataset labels neighborhoods
ranging from dense to sparse residential as part of 18 other classes [65]. Although these classes are
more detailed and more closely resemble our task, they cover cities in the United States of America
which do not share similar visual characteristics with those in South Africa [30].

On the other hand, publicly available datasets denoting land-use in the African continent usually only
have 2 classes distinguishing between informal settlements and everything else, and typically only
cover a single city [39, 23, 51] due to cost constraints. Outside of Africa, it cost the Chesapeake
Conservancy over 10 months and 1.3 million dollars to create a six-class land cover dataset covering
the Chesapeake Bay watershed [53, 20], an area ∼ 7 times smaller than the size of South Africa.

Although there are some relevant datasets covering small sections of South Africa [6, 24, 41, 28], they
are either not publicly available, are very outdated, do not have labels which would allow us to study
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neighborhood types at a higher granularity than formal versus informal settlements [28, 12, 37, 40, 19],
or address entirely separate tasks from ours such as building detection [7]. Furthermore, in a resource
constrained setting such as ours, the methodologies used to create these small datasets cannot be used
to cover the entire country. While we found one dataset for land cover classification that covers all
of South Africa [11], this dataset was created using proprietary data (rather than publicly available
ones such as ours). Most importantly, it does not distinguish between wealthy and non wealthy
neighborhoods, a distinction crucial for the study of spatial apartheid.

3 A Neighborhood Segmentation Dataset

Year Resolution Number
of images

2006 7,550 x 7,250 625
2007 7,550 x 7,250 690
2008 21,688 x 21,688 545
2009 29,406 x 29,277 545
2010 21,688 x 21,688 545
2011 21,688 x 21,688 550
2012 21,688 x 21,688 531
2013 21,688 x 21,688 549
2014 35,000 x 35,000 549
2015 35,000 x 35,000 548
2016 35,000 x 35,000 548
2017 35,000 x 35,000 543

Table 1: Satellite Images in our dataset.
We create labels for 2011 images.

Figure 2: EA polygons covering Gauteng province
after distinguishing between townships and
suburbs comprising the formal residential class.

Satellite images: We obtained satellite images covering the entire country of South Africa from
2006-2017 from the South African National Space Agency [56]. The dataset consists of images
taken from the SPOT sensor, with varying resolutions in different years as depicted in Table 1.
Given that our ground truth labels were obtained in 2011, we also use satellite images from 2011 to
assemble our labelled dataset. These images are at a resolution of 10m (each pixel represents 10
meters on the ground), and use the EPSG:4326 (WGS 84/Latlong) coordinate system. Each image is
21, 688× 21, 688 pixels and the entire country is covered by a total of 550 images.

Enumeration Areas: To associate image pixels with the types of neighborhoods they depict, we
turned to the Enumeration Areas (EAs) dataset created in 2011 by Statistics South Africa [55]–a
government agency responsible for conducting the census. The dataset consists of land demarcations
according to 1 of 11 government-specified use cases (e.g. farms, industrial areas, residential areas,
etc.). EAs are geographical units consisting of 100-250 households, used to demarcate locations for
which census data is aggregated. One shortcoming of the EA dataset is that townships are grouped
with suburbs under the label “formal residential areas”, which does not allow us to distinguish
between them. However, since suburbs are much wealthier than townships, it is crucial to distinguish
between them in order to study spatial apartheid. In addition to allocating collective living quarters,
villages and townships to non European residents, the Group Areas Act of 1950 allocated a much
lower budget for these neighborhoods than others such as small holdings, suburbs and farms.

In order to identify townships that may be annotated as formal residential areas, we took the steps
outlined below. The EA dataset consists of attributes representing data aggregated at different
resolutions. EAs are the smallest unit of aggregation, followed by Sub-places, Main-places, Districts
and continuing on to Provinces. We first obtained a list of all the Main-places that are annotated as
formal residential areas, resulting in 1,655 Main-places consisting of a combination of suburbs and
townships. Then, we recruited 10 graduate students at the University of Witwatersrand. Each student
was born and raised in one of the 9 provinces, with 2 students from the KwaZulu-Natal province, the
largest province in South Africa (by population size and area). The students’ task was to check if
any of the Main-places that were labeled as formal residential areas were indeed townships. Each of
the 10 students went through all 1,655 Main-places and labeled those they believed to be townships
as such, along with their level of certainty (certain or uncertain). For this procedure students often
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asked their relatives or others living in the townships to verify their labels. If 3 or more students
agreed that a Main-place is a township, we labeled that neighborhood as a township. To validate
the labels, we further used additional sources such as Wikipedia and property websites such as
https://www.privateproperty.co.za/ and https://www.property24.com/ to
retrieve a list of townships and suburbs in South Africa respectively. We assembled a list of 362
townships from Wikipedia. If all 3 annotators agreed that a Main-place was a township but it was not
listed on Wikipedia as such, we kept the township label. If one or more student listed a Main-place
as a township, and Wikipedia (and other sources) listed it as such, we labeled it as a township. The
most likely source of error from this step is mistakenly identifying townships as suburbs since labels
are obtained for 2011 and students and their relatives have to remember which neighborhoods were
townships in 2011 even if the neighborhoods have changed. In addition, not all townships are listed on
Wikipedia. Figure 2 shows EAs covering the Gauteng province along with their associated land-use
labels, after distinguishing between townships and suburbs in formal residential areas.

Geo-referenced buildings dataset: The Geo-referenced buildings dataset tells us the locations of all
buildings in South Africa. This shapefile dataset was created by Eskom (a South African electricity
public utility company) in partnership with the Council for Scientific and Industrial Research, and
consists of building count data in South Africa from 2006 to 2016. The dataset captures geographical
coordinates of formal, informal and non-dwelling structures per year over a period of 10 years. To
annotate our dataset, we use the building count data from 2011 consisting of 12,515,847 buildings in
South Africa, as the EA dataset is only available in 2011.

The only publicly available reports we have found for the dataset are from 2007 and 2010, which
describe the labeling procedure and potential sources of error [13, 44]. As noted in [44], “All the
mapping and classification of the structures are done through image interpretation and no field work
has been conducted at this stage of the project.” The initial dataset was created in 2006, and used
as a basis for 2007, only updating buildings that changed in the last year (either new buildings or
demolished buildings). Data for subsequent years was also created using the same procedure: using
the dataset from the previous year as the base layer for the next year of interest. A random sample
of the dataset was selected from across the country, and evaluated by independent labelers which
corrected points with high false positives and false negatives. For instance, [13] notes that the
highest false negative value in an urban sample was 1.34%, and the highest false positive rate was
1.20%. Rural areas have a higher error rate, with the highest false positive rate being 17.39%, and
the highest false negative rate 2.26%. Some sources of error for this dataset include human labeling
error, inaccurate counts of buildings which are close to each other in high density neighborhoods
(e.g. informal settlements), and clouds on satellite images obstructing the view of buildings. Like our
satellite images, the data points use the EPSG:4326 (WGS 84/Latlong) coordinate system.

4 Dataset Creation Methodology

In addition to manual inspection during the dataset construction process, we used a U-Net [54] based
semantic segmentation model to help evaluate the quality of the data, assist in the creation of ground
truth labels, and guide the search for supplementary sources of data. U-Net based architectures
have won several semantic segmentation challenges and performed state-of-the-art on neighborhood
classification tasks since its introduction in 2015 [26, 18, 1], and its efficiency allows us to train and
evaluate models quickly. This was particularly important while trying to understand the nature of our
dataset. As we discuss in the sections below, we constructed our dataset using an iterative process
where we train a model that allows us to see shortcomings in our training data while examining the
results using our validation data, then augment/alter our dataset as necessary, and repeat the process.

We modified [54]’s U-Net semantic segmentation architecture to accept input data sizes of 80× 80,
256× 256 and 2, 711× 2, 711. We saw poor performance with 80× 80 and 2, 711× 2, 711 images.
This is perhaps because the model sees a small region at a time in the former case, given the input
image size and the resolution of the satellite images (10m per pixel), and a region that is too large in
the latter. Further details of the hyperparameters used to train the U-Net are in Supplementary A.1.2.

Evaluation metrics: In cases such as ours with imbalanced datasets, the accuracy metric can be
misleading. Thus, we also use the Cohen’s Kappa metric [31] which measures how well our classifier
performs relative to what is expected by chance, if labels were predicted using a random classifier:

κ =
po − pe
1− pe

= 1− 1− po
1− pe

(1)
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Number of pixels % of pixels
Class Train set Validation set Test set Train set Validation set Test set

Suburbs 67,336,557 15,043,710 35,303,660 57.22 12.78 30.00
Townships 204,255,256 24,861,153 65,076,127 69.43 8.45 22.12
Informal settlement 102,382,989 9,833,663 379,950,086 68.16 6.55 25.29
Village 85,567,053 32,715,623 12,871,645 65.24 24.94 9.81
Small holdings 12,464,368 2,468,759 5,692,240 60.43 11.97 27.60
Collective living quarters 7,434,193 1,455,496 3,008,361 62.48 12.23 25.28
Industrial land 41,957,836 7,542,567 13,488,518 66.61 11.97 21.41
Commercial land 14,384,681 1,708,257 2,558,774 77.12 9.16 13.72
Parks and recreation 3,544,161 103,664 787,369 79.91 2.34 17.75
Farms 75,362,779 43,385,159 62,256,169 41.64 23.97 34.39
Vacant 4,575,672 1,050,783 1,608,610 63.24 14.52 22.23
Background 4,467,376,631 1,709,519,230 1,609,041,305 57.38 21.96 20.67

Table 2: Number of pixels per class for the subset of the data we iterated on during the construction
of our dataset, labeled using the EA and building datasets.

Assume there are 2 classifiers: our classifier and a random classifier. Po is the empirical probability
of agreement between the two classifiers, and Pe is the expected probability of agreement, estimated
by calculating the empirical agreement when both classifiers randomly assign labels. In highly
imbalanced datasets, one can still achieve high accuracy while assigning the most common label to
all classes, whereas this would be detected with the κ value which would be close to zero.

Data preparation: We perform all spatial data processing tasks using the QGIS software [52]. To
align all components of our dataset, we re-project datasets using different geographic coordinate
reference systems to EPSG:4326 (the system used by our satellite images). This is important since
accurate building masks can only be obtained if the datasets can be accurately overlaid.

While constructing and refining the dataset, we iterated on 19 satellite images from Gauteng, Limpopo,
North West, Free State and Mpumalanga provinces (details in Supplementary A.1.1). This process
involved training and testing a model and interpreting what kind of data should be added in order
to create better labels in the next iteration. To do this, we split the data into a 60 : 20 : 20 training,
validation, test set ratio, ensuring that the same pixel does not appear in more than one set.

We then divided images such that classes are well balanced according to the split ratio. To do this,
we counted the number of pixels per class per image, and added each image to a particular split by
attempting to have a 60 : 20 : 20 ratio for each class. This was done by performing a grid search for
a 60 : 20 : 20 percentage of pixels per class split over our images. Out of the 19 images, 11 are in the
training set, 4 in the validation set and 4 in the test set. We tile the 19 images of size 21, 688×21, 688
pixels into 134,064 images of size 256× 256. We further balanced the training data by discarding
images with 30% or more vacant land from the split (details in Supplementary A.1.2). Since our final
dataset has 550 satellite images, we only used 3.45% of our dataset in the tuning process.

Although we strove to have close to a 60 : 20 : 20 split for each class, as shown in Table 2, it was not
possible to have that ratio for all classes. In particular, for the “Parks and Recreation” class we have
an 80 : 2 : 18 split which was not our goal. For classes such as “Background” however, we were
able to obtain close to the desired split. While images in each split are unique to that set, part of a
city/neighborhood in one set can exist in the other if they share a boundary.

Using solely the EA dataset as Ground-truth: As a first step, we used the polygons from the EA
dataset described in Section 3 to create image masks. The subset of our data used for iteration
contains 27,636 polygons (a subset of the 103,576 EAs covering South Africa). To create image
masks, we read each polygon, spatially located its corresponding group of pixel coordinates on the
satellite image, and labeled the corresponding pixels according to a specified key set on a blank image
associated with each satellite image. The images and corresponding masks are in the lossless PNG
format as we need to preserve the exact pixel values for the masks.

If one polygon spans two or more images, this algorithm looks for pixels corresponding to the
polygon on each image it spans. One disadvantage of this process is that each polygon iterates every
satellite image in the dataset. To make this process more efficient, we used the QGIS [52] software to
dissolve the polygons into our 12 classes (Figure 3(c)). For example, we merged all 6,380 polygons
representing township neighborhoods in our dataset into one large polygon. This significantly reduces
the amount of time the CPU spends reading polygons.
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(a) Converting building point data to polygons
using a buffer algorithm to approximate the
space covered by the buildings.

(c) Dissolving overlapping building polygons
by neighborhood. Images are of size 786 x
386 pixels and resolution 2.5m per pixel.

(b) Computing the spatial intersection be-
tween the land use labels from the EA dataset
and the buffed building polygons so that we
can label the types of neighborhoods these
houses are in.

Figure 3: Data processing steps.
We trained a U-Net model on this dataset (details in Supplementary A.1.2), and examining the results
uncovered some shortcomings of the dataset. Table 3 shows that while pixels in the dataset were
classified with 61% accuracy, as shown by the low Cohen’s Kappa value (0.0151), this is due to the
over-representation of farmland (57% of pixels in the training data). Further, since the EA labels only
specify the designated land use, vacant, farm, commercial and industrial lands can be confused for
each other because undeveloped land often looks like vacant land (see Supplementary A.1.3). A clear
next step from this iteration was to create ground truth labels which enable us to distinguish between
background pixels and those representing buildings.

Using the EA and building datasets as Ground-truth: In order to label our satellite images with
building locations, we used the geo-referenced buildings dataset described in Section 3, and followed
the procedure below to create masks assigning each pixel in a satellite image to the desired class.

• Buffing points into polygons: The first step was to use the buffer algorithm to transform
each point into a circular polygon of a specific radius. In our case, we inflated the points
by a distance of 0.0007 decimal degrees. We arrived at this number through a trial and
error search, looking for polygons which covered an average suburban house and its yard
(Figure 3(a)). Buffing allows large swaths of vacant land to be labelled as background. See
Supplementary A.1.4 for details.

• Spatial Intersection: To label which neighborhood each building belongs to, we computed
the spatial intersection of the EA and buffed building datasets as demonstrated in Figure 3(b),
joining the datasets at their overlapping points.

• Dissolve polygons by neighborhood types: Before this step, the polygons consisted of over
12 million data points each saved in shapefiles, resulting in computationally expensive read
and write operations to convert them to image masks. Dissolving significantly reduced the
number of polygons by grouping those that belong to the same neighborhood together.

• Create masks: We overlaid the dissolved polygons on the satellite imagery to create labels
designating each pixel as one of the 11 classes or background if it does not denote a building.

Training a U-Net model on this dataset achieves an accuracy of 92.94% and a Cohen’s Kappa value
of 0.6299 on the 12 classes, a significant improvement from the previous value of 0.0151 (results
summarized in Table 3). Since the building polygon dataset was created using building data points,
labels on farmland, for example, depict the buildings on farms and not the farm itself. Further
analyzing the results, we saw that most of the confusion was between classes with similar visual
characteristics like farm houses and smallholdings, and it is unlikely that even a human would be able
to distinguish between these classes visually. To alleviate this confusion, we collapsed the 12 classes
in our dataset into 4 visually distinct categories, combining classes with similar visual characteristics:
background (all land without buildings), wealthy neighborhoods (suburbs, smallholdings, and farms),
non wealthy neighborhoods (townships, informal settlements, villages and collective living quarters),
and nonresidential building clusters (commercial areas, industrial areas, buildings on vacant land,
parks, and recreational areas). The wealthy/non wealthy neighborhood demarcation was also informed
by examining real estate prices on websites such as www.property24.co.za. Small holdings,
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Figure 4: Samples of image mask pairs from our dataset. White: background, black: nonresidential
neighborhood, light gray: non wealthy neighborhood, dark gray: wealthy neighborhood.

Dataset Accuracy Cohen’s κ
EA data: 12 classes 61% 0.0151
EA data + buildings:

12 classes 92.94% 0.6299

EA data + buildings:
4 classes 96.14% 0.7578

Table 3: Classification accuracy for various ground
truth modifications.“EA” is an abbreviation for the
Enumeration Area dataset.

Class Pixels (#) Pixels (%)
NW 2,787,947,606 1.07
W 3,081,228,682 1.18
NR 360,768,002 0.14
B 254,193,735,710 97.61

Table 4: The number and percentage of
pixels per class for the final dataset with
classes NW=non wealthy, W=wealthy,
NR=nonresidential, B=background.

suburbs and farms are much more expensive than villages, townships and collective living quarters
(informal settlements do not even appear on these websites for sale). However, the price of some
collective living quarters near locations with high economic development can be closer to wealthy
neighborhoods. This can be a source of error in our demarcation of wealthy and non wealthy
neighborhoods. Furthermore, while townships were allocated low budgets during apartheid, there are
now wealthy households in townships post apartheid. The majority of households, however, are still
non wealthy. If an entire township or other neighborhood becomes wealthy, its visual characteristics
also change to look more like the neighborhood types we have classified as such. Table 3 shows that
performance on the combined classes is at 96.14% accuracy and 0.75 Cohen’s Kappa.

Final dataset composition: Our final labeled dataset consists of 550 satellite images and masks
from 2011, upsampled to a resolution of 21, 760× 21, 760 (details in A.2.1). Figure 4 shows a few
samples from our dataset and Table 4 summarizes the class distribution (more examples in A.1.5).

5 Experiments

Split Satellite Tiled
Training set 60 1,121,904

Validation set 20 373,968
Testing set 20 373,968

Total 100 1,869,840

Table 5: The number of images in each
split for our baseline experiments. Satel-
lite refers to the 21, 760× 21, 760 reso-
lution satellite images and tiled refers to
the 256× 256 images.

Here, we first perform experiments on a subset
of our dataset (1,869,840 images) to understand
its characteristics, and then provide examples
of the types of analyses we hope it can be used
for. Our supplementary materials (A.2.1-A.2.2)
provide details on how we sampled this data and
created the training, validation and test splits
(Table 6). Since our dataset consists of mostly
vacant land, we created a subset which covers
a variety of sceneries such as densely/sparsely
populated areas, mainland/coastal land and dif-
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ferent ecosystems such as forests and grassland.

U-Net [54] DeepLabV3+ [8]
Neighborhood 99% 85% 75% 65% 50% 99% 85% 75% 65% 50%
Wealthy 0.997 0.966 0.946 0.927 0.895 0.997 0.952 0.936 0.926 0.907
Non Wealthy 0.997 0.966 0.948 0.933 0.915 0.998 0.955 0.940 0.927 0.911
Nonresidential 0.995 0.903 0.863 0.837 0.809 0.995 0.910 0.884 0.868 0.854
Background 0.999 0.992 0.988 0.987 0.985 0.999 0.988 0.988 0.989 0.989

Table 6: Precision at 50% to 99% intersection over union (IOU) per class: i.e., the precision for each
class, taking only segmentations of neighborhoods achieving an IOU of 50% or more, 65% or more,
75% or more, 85% or more, and 99% or more in each image as true positives.

5.1 Baseline Experiments

We perform experiments using two baseline architectures: the U-Net architecture used in the con-
struction of our dataset and the DeepLabV3+ architecture [8] which achieved a state-of-the-art result
on a task similar to ours: pixel level land use classification with 5 classes [36]. We used the same
architecture as [8] with an Xception [35] backbone, and trained the model from scratch (details in
Supplementary A.2.3). In all experiments below, we further balance the training data by filtering out
images with 30% or more background pixels, and weigh each class’s contribution to the loss function
to ensure that classes in the minority affect the loss as much as those in the majority. We use [49]’s
custom weighting function where each class’s weight is calculated as 1

log(1.02+Nc
N )

where Nc is the
number of pixels of class C and N is the number of total pixels.

In our first experiment, we train both models on the training set and report results on our test set on
Table 6. We also show confusion matrices in Supplementary A.2.5. Table 6 shows that both models
result in ∼ 90% or higher precision for all classes except for the nonresidential class (80.9% for
U-Net and 86.8% for DeepLabV3+ at 50% IOU). Further inspecting the confusion matrices, when
these neighborhoods are misclassified, it is usually to the wealthy or background classes. This could
be because many industrial zones and wealthy neighborhoods are surrounded by non built-up land.

Provinces U-Net [54] DeepLabV3+ [8]

mIOU Accuracy Cohen’s
Kappa mIOU Accuracy Cohen’s

Kappa
Gauteng 0.6838 0.8153 0.7537 0.6294 0.7766 0.7021
Limpopo 0.7085 0.83 0.7733 0.6520 0.7900 0.7200
Mpumalanga 0.7074 0.8310 0.7746 0.6499 0.7907 0.7210
Kwa Zulu-Natal 0.7066 0.8280 0.7706 0.6605 0.7961 0.7281
Free State 0.7029 0.8257 0.7676 0.6055 0.7571 0.6761
North West 0.7592 0.8610 0.8147 0.6969 0.8211 0.7615
Northern Cape 0.6859 0.8148 0.7531 0.6289 0.7744 0.69915
Eastern Cape 0.6950 0.8207 0.7601 0.6371 0.7790 0.7054
Western Cape 0.7517 0.8571 0.8094 0.6958 0.8189 0.7585

Table 7: Mean Intersection over Union (mIOU), Accuracy and Cohen’s Kappa after training U-
Net [54] and DeepLabV3+ [8] models on 8 prvoinces and testing on the 9th unseen province.
Our second experiment seeks to understand whether data from other provinces can be used to train
models classifying land use in unseen provinces. To this end, we perform 9 experiments, each of
which uses images from 8 provinces as training and validation data (6 for training and 2 for validation)
and classifies pixels on images in the 9th province. Table 7 shows the results for all provinces and
confusion matrices are in the supplementary materials (A.2.4). The U-Net and DeepLabV3+ based
models were able to classify pixels with an average Cohen’s Kappa value of 0.77 and 0.70 respectively,
and average mean IOUs of 0.7 and 0.6 respectively.

Table 8 shows the precision for each class and province at 50% IOU. That is, we measure the precision
for each class, taking only segmentations of neighborhoods achieving an IOU of 50% or more in each
image as true positives.

We can see that both models achieve a precision of ∼ 90% or more, with almost perfect precision
for the background class in spite of its prevalence. We attribute this to balancing and weighting our
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U-Net [54] DeepLabV3+ [8]Provinces W NW NR B W NW NR B
Gauteng 0.8971 0.9340 0.9070 0.9880 0.8995 0.9203 0.8912 0.9912
Limpopo 0.8981 0.9241 0.9077 0.9868 0.8997 0.9140 0.9024 0.9900
Mpumalanga 0.8993 0.9264 0.9089 0.9867 0.9024 0.9221 0.9048 0.9899
Kwa Zulu-Natal 0.8990 0.9216 0.9046 0.9859 0.9028 0.9140 0.8991 0.9894
Free State 0.8952 0.9254 0.9093 0.9881 0.8960 0.9059 0.8863 0.9910
North West 0.8967 0.9315 0.9117 0.9872 0.8953 0.9288 0.9074 0.9903
Northern Cape 0.8971 0.9294 0.9097 0.9872 0.8985 0.9263 0.9052 0.9901
Eastern Cape 0.9063 0.9189 0.9000 0.9863 0.9077 0.8965 0.8850 0.9896
Western Cape 0.8973 0.9319 0.9128 0.9878 0.8944 0.9293 0.9085 0.9908

Table 8: Precision at 50% IOU per province per class. W is the Wealthy class, NW the Non-Wealthy
class, NR is Nonresidential and B is Background.

Figure 5: Confusion matrix for the U-Net model
tested on Gauteng and trained on the rest of
the provinces. See more confusion matrices in
supplementary materials.

Figure 6: Estimated percentage of pixels that
changed to other classes between 2011 and 2017
for each class.

training data. The precision for non wealthy neighborhoods is also over 90% for all provinces. Non
wealthy neighborhoods consist of townships, collective living quarters, informal settlements and
villages, where the latter two can be difficult to identify using satellite imagery due to their small
sizes and irregular patterns (see Supplementary A.2.6). Governments may also not update datasets
frequently enough to include new dwellings in sparsely populated settlements that can be quickly
created and demolished throughout the country. Figure 5 shows that nonresidential neighborhoods in
Gauteng are once again classified with much lower accuracy (58%) than other classes. Similar to our
first experiment, these neighborhoods are often misclassified to the wealthy or background classes.

5.2 Studying the Evolution of Neighborhoods in South Africa

Here, we give examples of preliminary results studying the evolution of neighborhoods in South
Africa, a task which we plan to perform in more detail in the future, to illustrate how our dataset
can be used for this task. We ask: How have neighborhoods changed in Gauteng, one of the most
populous provinces in South Africa? Have the sizes of townships increased or decreased on average?
Have the number of wealthy neighborhoods increased or decreased?

Methodology. To answer this question, we used our U-Net model described in section 4 (trained on
2011 images and labels from Gauteng), and performed our inference on images from 2017. Note
that since there are no labels for 2017, we cannot quantify the accuracy with which we perform this
task. We hope to do a detailed error analysis in the future and look for additional data sources to help
measure our accuracy. Here, we corroborate some trends we find through other studies [27, 22, 21, 29].
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(a) 2011 Image (b) 2011 Ground Truth (c) 2017 Image (d) 2017 Predictions

Figure 7: Examples of the change detected between 2011 and 2017 images in a wealthy neighborhood
near a big mall. Dark gray: Wealthy Neighborhood, White: Background.

We first downsampled the 2017 images to the same resolution as those from 2011 (21, 760× 21, 760),
and then followed the same procedure as Section 4 to further process the images. To quantify the
amount of change between the number of pixels belonging to each neighborhood in 2017 vs. 2011,
we went through the following steps. (See supplementary materials A.2.7 for more detail).

1. Convert RGB masks into grayscale.

2. Store the difference in grayscale values between the 2017 predicted masks and 2011 ground
truth masks. This allows us to see the “raw” difference in image masks, where no change
would have the value zero and each other change would have a unique grayscale value. For
example, the change from background to wealthy neighborhood is represented by 131.

3. Blur the difference image using a Gaussian kernel and threshold the output to reduce noise.

4. Store cluster centroids and the area of the cluster associated with each type of difference.

After these steps, we can reference each cluster centroid with the EA dataset (described in Section
3.2) and associate the changes we observe with specific municipalities and districts from 2011.

Results. Figure 6 shows the estimated changes associated with each class. For instance, we estimate
that ∼ 40% of neighborhoods remained the same type (e.g. ∼ 45% of wealthy pixels are still wealthy).
Our results also estimate that ∼ 90% of vacant land stays vacant, but that ∼ 60% of the vacant
land that has been developed has been converted to wealthy residential neighborhoods, with ∼ 30%
developed to non wealthy residential neighborhoods. As noted in [27], Gauteng has seen a population
explosion due to migration in addition to other factors, and construction has been dominated by
wealthy formal residential buildings (Supplementary A.2.8). What is equally notable, according to
the study, is the spread of shopping malls (up by 106% between 2001–2016), often surrounded by
wealthy neighborhoods. Our estimates show similar trends, with Figure 7 showing an example of a
wealthy neighborhood that was constructed around a mall between 2011 and 2017. While we are
excited by our preliminary results, there are many sources of potential errors (Supplementary A.2.9)
starting with the difference in image resolutions which we plan to investigate in more detail.

6 Broader Impact and Conclusion

We have introduced the first visual dataset of South Africa which can be used to analyze the effects
of spatial apartheid, and described our iterative data annotation process that allowed us to assemble
this dataset. We performed analyses to understand the characteristics of our dataset, and show the
types of tasks that can be performed using it. We hope to enable those interested in studying and
reversing the effects of spatial apartheid, to use this dataset. Coupling our analysis with census data
could give further information on how the demographic makeup of the neighborhoods has changed,
and working with policymakers could help us advocate for policies that desegregate neighborhoods.

As mentioned in Section 1, datasets such as this one could be aggregated with other datasets and used
for applications which are not endorsed by us. This includes insurance companies using imagery to
set high insurance rates for marginalized communities [3], financial organizations setting loans based
on observations using satellite imagery [34], and entities associated with law enforcement and the
military using satellite and associated imagery for drone and other types of targeting [57, 33]. Given
this, we make our dataset accessible only for noncommercial use and through a request form which
includes questions about intended use, the details of which can be found on the associated datasheet
for the dataset.
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