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Abstract
We study the impact of an emerging fine-tuning
paradigm, parameter-efficient fine-tuning (PEFT),
on privacy. We use an off-the-shelf data ex-
traction attack as a vehicle to comprehensively
evaluate memorization on three language models
fine-tuned on two datasets, repeated 3–5 times
with different random seeds. Our main findings
are: (1) for practitioners employing PEFT to con-
struct personalized models, the fine-tuned models
have lower privacy risks while maintaining rea-
sonable utility; (2) for developers designing new
PEFT algorithms, while safer than standard fine-
tuning, certain design choices in the algorithms
increases memorization unexpectedly; and (3)
for researchers auditing the privacy of fine-tuned
models, employing weak differential privacy is
sufficient to mitigate existing data extraction risks
without significantly compromising model utility.

1. Introduction
Pre-training then fine-tuning is a common paradigm in de-
veloping AI services built on commercial-scale language
models. Model providers like Google, Meta, or OpenAI
handle the pre-training stage, while service providers fine-
tune the ready-made models on their own (user) datasets.
Because those models have a large number of parameters,
the fine-tuning process requires extensive computational
resources. As a potential solution, there has been active
research on reducing these computational demands, such as
parameter-efficient fine-tuning (PEFT) (Han et al., 2023).

Against this common paradigm, recent work has demon-
strated data extraction attacks (Carlini et al., 2023). To
breach the confidentiality of AI services, an adversary ex-
ploits the model’s query interfaces to reconstruct training
data from the fine-tuned models. Given that the data used for
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fine-tuning likely includes private records of service users,
this poses a significant privacy risk, with models potentially
leaking personally identifiable information (PII), such as
patient names or email addresses.

Our work studies the risk of memorization given rise to by
the emerging paradigm: PEFT. Most work on data extraction
targets pre-trained models as-is (Carlini et al., 2019; 2021;
2023; Nasr et al., 2023) or focuses on scenarios where the
entire parameters are fine-tuned (Ponomareva et al., 2022;
Jayaraman et al., 2024). However, it remains unknown
how vulnerable these fine-tuned models, especially those
constructed using PEFT algorithms, are to data extraction
attacks. It is also unclear which design choices in PEFT
algorithms make them more (or less) vulnerable to data
extraction attacks. Moreover, it is essential to understand
how the formal defense against privacy attacks—differential
privacy—mitigate this risk while maintaining model utility.

Contributions. We first address these questions by compre-
hensively evaluating the privacy risks of language models
fine-tuned with various PEFT algorithms. We use an off-
the-shelf data extraction attack, developed by (Carlini et al.,
2019), as a vehicle to assess this privacy threat. We fine-
tune three language models using five different fine-tuning
algorithms on two datasets repeated three to five times with
different random seeds. Models constructed using PEFT
algorithms achieve 2–14× times less exposure, while stan-
dard fine-tuning leads to the successful extraction of secrets
from the resulting models. We also observe variations in
memorization across these fine-tuned models.

Second, we characterize key factors that influence the mem-
orization of secrets. We show that secrets containing sub-
strings likely to appear in the pre-training corpus are less
likely to be memorized by fine-tuned models. In contrast
to the prior work, we observe that the increase in the num-
ber of tunable parameters does not necessarily mean more
memorization in fine-tuned models. Moreover, we find that
certain design choices in PEFT algorithms can lead to dif-
ferent memorization patterns. In prefix-tuning, for example,
secrets located at the beginning of a training record are more
easily memorized than those placed at the end.

Third, we investigate the interaction between differential
privacy, memorization, and model utility across four PEFT
algorithms. We demonstrate that, even with a large ε, mem-
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orization can be completely rendered ineffective across all
PEFT algorithms, while preserving model utility. One can
also reduce ε to 2.0–5.0, depending on the PEFT algorithm
used, without significant performance loss. We find that
PEFT algorithms that fine-tune fewer parameters are better
at preserving model utility under strong privacy.

2. Background and Related Work
Parameter-efficient fine-tuning (PEFT) enables to fine-
tune large-language models in a computationally accessible
way while maintaining performance comparable to stan-
dard fine-tuning. Instead of adjusting the entire model pa-
rameters, PEFT reduces the number of tunable parameters
through various methods (Han et al., 2024). A common
approach is to use additive methods: we alter the model ar-
chitectures by injecting small learnable modules (or parame-
ters). Representative methods include (1) adapters (Houlsby
et al., 2019) where small learnable modules are added to
transformer blocks; (2) prefix-tuning (Li & Liang, 2021),
which introduces learnable vectors added to keys and values
across all transformer layers; and (3) prompt-tuning (Lester
et al., 2021) that applies learnable vectors only at the initial
token embedding layer to enhance training and inference ef-
ficiency. An alternative yet emerging approach is Low-Rank
Adaptation (LoRA) (Hu et al., 2022), which constructs a
low-rank parameterization of transformer layers to reduce
the number of tunable parameters. Our work studies memo-
rization of models fine-tuned though these PEFT algorithms.

Privacy risks in language model ecosystem. Data ex-
traction attacks present a major risk to the language model
ecosystem: an adversary may extract the private information
from the data used to train (or fine-tune) language models.
Initial work focuses on extracting private information, un-
intentionally memorized during pre-training (Carlini et al.,
2019; 2021; Nasr et al., 2023; Carlini et al., 2023; Bai et al.,
2024), but as fine-tuning becomes more common, recent
work explores the extraction of sensitive data from fine-
tuning data (Lukas et al., 2023; Liu et al., 2024). Our work
falls into the latter category, as we study data extraction
against fine-tuned models, which is under-explored in the
prior work. Concurrently, Panda et al. (2024) studies tight
auditing of memorization in standard fine-tuning. In con-
trast, our focus is more on the memorization under PEFT.

How precisely an attacker queries the target model varies
depending on their knowledge. The weakest attacker has
only query access to the target model and no knowledge of
the training data. This attacker will choose prompts that are
likely to trigger the generation of memorized data, which
may take forms, such as random Internet strings (Carlini
et al., 2021; Nasr et al., 2023) or special characters (Bai et al.,
2024). These attacks are untargeted, aiming to reconstruct
any training examples verbatim. On the other hand, a strong

adversary has (partial) access to the training data and knows
the context associated with private information. They can
prompt the target model using these prefixes to reconstruct
the remaining specific tokens in the training records to which
the prefix belongs (Carlini et al., 2023; Lukas et al., 2023).
Because our work focuses on privacy auditing, we consider
the strong adversary, who knows the context associated with
a secret and has a list of secret candidates to compare.

Differential privacy (DP) (Dwork et al., 2006) is originally
developed to reduce the difference in outcome from query-
ing two databases which differ by a single record. Abadi
et al. (2016) developed a training algorithm, differentially-
private stochastic gradient descent (DP-SGD), that employs
DP to guarantee protection of a model against the worst-case
private information leakage. DP-SGD formally quantifies
the leakage with the parameter ε. We set ε to a desired
value before training, and once the total leakage exceeds the
pre-defined ε during training, we stop training and save its
parameters. To date, DP-SGD is the standard practice for
training (or fine-tuning) private models (Ponomareva et al.,
2022; Li et al., 2022; Yu et al., 2022). However, the pri-
vacy guarantee comes at the cost of performance: a stronger
guarantee often results in significant performance degrada-
tion. Thus, it is important to understand the privacy-utility
trade-off (Jayaraman & Evans, 2019) and how to train pri-
vate models with performance comparable to non-private
models (Ponomareva et al., 2023).

3. Methodology
3.1. Threat Model

We consider an emerging scenario where a victim develops
natural language processing services by fine-tuning a pre-
trained language model on their private data. Because these
models have more than millions of parameters, we assume
that the victim employs PEFT methods to reduce the compu-
tational demands for fine-tuning. We assume a (oracle) data
extraction adversary (Carlini et al., 2021; 2023; Nasr et al.,
2023; Bai et al., 2024; Lukas et al., 2023), who aims to ex-
tract private information from a target model with black-box
access, exploiting the model’s prompting interface.

3.2. Quantifying Memorization

We use the memorization definition by Carlini et al. (2023).

Definition 3.1. (Memorization) A secret s is memorized
by a model f if there exists a (length-k) string p, such that
the concatenation [p||s] is present in the f ’s fine-tuning data,
and f produces s when prompted with p.

The definition above is strict: memorization is confirmed
only when the model generates the secret s in response to
the prompt p. But we find it necessary to relax this definition
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slightly. While the strict definition is useful for determining
the success of an extraction attack, it does not quantify the
extend to which a secret is memorized by the model. To this
end, we adopt the exposure defined by Carlini et al. (2019).

Definition 3.2. (Exposure) The exposure of s is defined as:

exposuref (s) =log2|C|−log2 rankf (s)

The cardinality of the candidate space C. The rank of a
secret s is defined as its index in the list of all possible can-
didates in C, ordered by the model perplexity. In our case,
the “candidate space C" refers to the number of possible
candidates a secret s could be, instead of every possible
character combinations with the same length as s. We make
this decision for computationally practical threat modeling.
For example, in the medical record (MIMIC) dataset, a
10-character secret such as a patient’s name in English, the-
oretically has 2710 combinations. But we reduce the space
to 400, by limiting C to common English names.

3.3. Preparing the Evaluation Data

We prepare three different types of datasets. The first dataset
represents the most challenging scenario for our adversary:
a single insertion of a secret s. We randomly select a record
p from the training data and insert the secret at a random in-
dex in p. To study the impact of a secret’s location on mem-
orization, we also select 50-token-length training records
from a dataset, insert the same secret at 5 different positions,
and save each version as a separate fine-tuning dataset. We
lastly examine how secret duplication affects memorization
by increasing the number of duplications from 1 to 500 for
each fine-tuning dataset. We choose 500 different records
over 50 tokens in length and truncate them, inserting the
secret at the same index. Prior work (Carlini et al., 2023)
considers a maximum duplication rate ∼800, but 500 is
sufficient to demonstrate the high-duplication case. For
each dataset, we repeat this process 3–5 times with different
random seeds to evaluate across five distinct runs.

4. Empirical Evaluation
Datasets. We fine-tune models using two datasets: MIMIC-
III (Johnson et al., 2016) and the Enron corpus (Klimt &
Yang, 2004). The MIMIC-III dataset contains 112,000 de-
identified electronic health records, including vital signs, lab
results, and patient status reports. Due to the size complexity,
we sample a subset of the entire data, focusing on 13,431
records of patient bedside checkups. Because of the page
limit, we present the results on MIMIC-III in the main body
and include the Enron results in Appendix.

Secrets. We insert a synthetic patient name “mary smith"
once into the MIMIC-III dataset. This testing strategy is
similar to the prior work (Jayaraman et al., 2024; Liu et al.,

PEFT Method

Models Metric Baseline Adapter Prefix-tuning Prompt-tuning LoRA

GPT-2 Exp. 8.64±0.0 3.71±1.0 3.72±1.5 2.70±0.4 1.88±1.3
PPL. 1.15±0.0 1.30±0.0 1.24±0.0 1.23±0.0 1.17±0.0

GPT-2 XL Exp. 8.64±0.0 4.46±0.3 4.48±1.2 1.51±0.6 5.29±1.0
PPL. 1.15±0.0 1.30±0.0 1.27±0.0 1.20±0.0 1.13±0.0

Pythia-2.8B Exp. 8.64±0.0 2.41±1.2 1.81±0.4 0.95±0.2 4.13±3.4
PPL. 1.15±0.0 1.12±0.0 1.26±0.0 1.16±0.0 1.12±0.0

Table 1. Comparison of memorization across language models
in MIMIC-III. We compute the exposure (Exp.) and the evalua-
tion perplexity (PPL.) of language models fine-tuned using four
different PEFT algorithms. Each cell reports the average over five
runs for GPT-2 and GPT-2 XL, and 3 runs for Pythia. In each trial,
the secret is inserted only once into the fine-tune dataset.

2024), where artificial secrets are inserted into training
datasets. In order to compute exposure, we also prepare
400 additional secret candidates using common names dif-
ferent from the secrets, such as “james henderson."

Models. We use GPT-2, GPT-2 XL (Radford et al., 2019),
and Pythia-2.8B (Biderman et al., 2023) models in our ex-
periments, as these models are widely employed in data ex-
traction research and are predecessors of commercial-scale
language models like GPT-4 (Achiam et al., 2023).

Metrics. We compute exposure to quantify memorization
of a secret by fine-tuned models. To measure the model
performance, we compute perplexity, the exponential of the
model loss over a given sequence, on the evaluation data.

4.1. Memorization in Fine-tuned Models

Table 1 summarizes our results in MIMIC-III. We first com-
pare the memorization of a secret across models fine-tuned
using standard fine-tuning and four PEFT methods. We
find that the models fine-tuned through PEFT algorithms
are less vulnerable to memorization. Standard fine-tuning
(Baseline) results in the exposure values close to maximum
(∼8.64=log2401), but when we employ PEFT algorithms,
the exposures are reduced by 2–14× times (0.50–4.46). We
also compare the perplexity of fine-tuned models to verify
that the reduction is not from the performance loss. We
observe a slight increase in perplexity (0.01—0.15), but the
increase is too small to result in a significant decrease in the
exposure (see Appendix B.13 for our full analysis). Even
with the comparable perplexity (see LoRA columns), we
find the exposure is reduced by 14× times.

Prompt-tuning and LoRA consistently demonstrate the low-
est exposures. In prompt-tuning, we attribute this to the type
of tunable parameters. Unlike other PEFT methods that
fine-tune parameters across all Transformer layers, prompt-
tuning only fine-tunes a subset of a model’s embedding lay-
ers. This design choice likely limits the model’s ability to
associate a secret with diverse contexts in the training data,
thereby reducing memorization. In LoRA, we attribute this
to their performing as an information bottleneck—a hypoth-
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Figure 1. Impact of tunable parameters on memorization. We
compare the exposure of fine-tuned models (left). We also show
the evaluation perplexity of these models on the right.

esis supported by our detailed analysis in Appendix B.14.

Impact of tunable parameters. Prior work has demon-
strated that increasing the number of tunable parameters
leads to greater memorization (Carlini et al., 2023). This
holds true at scale: standard fine-tuning of all model pa-
rameters results in perfect memorization of a secret—even
when the secret appears only once in the fine-tuning data.
However, it remains unclear whether this observation holds
in the context of PEFT. To evaluate this hypothesis, we com-
pare the exposure in fine-tuned models based on the number
of parameters tuned by each PEFT algorithm.

Figure 1 summarizes our results in MIMIC-III. We have
consistent findings from Enron in Appendix B.1. Our find-
ings diverge from those of prior work: while the number of
tunable parameters increases, the exposure remains similar
across models. This is not attributable to a loss in model
utility. Models with more tunable parameters overall ex-
hibit lower perplexity. Prompt-tuning is an exception: while
models have a similar number of tunable parameters, larger
models have lower exposure and achieve lower perplexity.

4.2. Impact of the Secret Position

Most studies adopts the memorization definition from Car-
lini et al. (2023), where a secret s appear at the end of a con-
text p. We challenge this assumption and analyze how the
position of a secret within a context affects memorization.
We explicitly control the record length and insertion index
at, e.g., {0, 15, 25, 35, 50}. Our hypothesis is that PEFT
methods, which tune a subset of parameters corresponding
to specific token positions, may be better at memorizing
secrets in those locations than secrets placed at the end.

Overall, when a secret is inserted only once in the fine-
tuning data, its position within the context has little to no
discernible impact on exposure across PEFT methods. How-
ever, when the number of insertions is increased to 500,
secrets are more easily memorized if they appear in later
positions within the context—particularly when fine-tuning
with adapters and LoRA are employed.

Figure 2 presents our findings, focusing on the impacts of
secret position when fine-tuning with adapters (left) and
prefix-tuning (right). The trend in the left figure is con-

Figure 2. Illustrating the impact of secret position on memoriza-
tion. We contrast the memorization of GPT-2 models fine-tuned
with adapters (left) and prefix-tuning (right) on MIMIC-III.

sistent with what we observe across standard fine-tuning,
fine-tuning with adapters, and LoRA. Our findings align
with prior work (Carlini et al., 2023): due to the autoregres-
sive nature of modern language models, tokens appearing
later in a sequence are more likely to be memorized. Inter-
estingly, from prefix-tuning, secrets located at the beginning
of training records are more likely to be memorized. The
right figure shows this observation. If a single secret is
inserted into the fine-tuning data, the exposure decreases
as the secret’s position shifts to later locations. In contrast,
prompt-tuning exhibits consistently low exposure across the
dataset and secret positions (below ∼2.0).

4.3. Memorization in Models Fine-tuned with Privacy

We evaluate how DP-SGD (Abadi et al., 2016) interacts with
PEFT. We ensure a low, comparable evaluation perplexity
reached at a loose privacy guarantee (ε of 8.0). Our results
is in GPT-2. Please refer to Appendix for our full results.

Privacy Budget (ϵ)

Method Metric ∞ 8.0 1.0 0.1

Baseline Exp. 8.64±0.00 2.21 ±1.78 2.47 ±1.00 1.75 ±0.66
PPL. 1.15 ±0.00 1.12±0.00 1.13±0.00 1.15±0.00

Adapter Exp. 3.71±0.00 3.28 ±1.57 2.94±1.98 2.10±1.32
PPL. 1.30±0.01 1.43±0.00 1.63±0.11 5.43±2.79

Prefix-tuning Exp. 3.72±1.46 3.16±1.02 3.18±1.15 2.83±0.91
PPL. 1.24±0.00 13.74±17.01 73.42±44.06 815.65±800.74

Prompt-tuning Exp. 2.70±0.41 2.00±0.53 2.01±0.58 1.96±0.60
PPL. 1.23±0.00 2.45±0.07 202.32±2.18 1448.78±10.66

LoRA Exp. 1.88±1.25 2.70±0.87 2.63±0.95 2.16±0.30
PPL. 1.17±0.00 1.20±0.00 1.21±0.00 1.28±0.00

Table 2. Comparison of ε against exposure and perplexity. We
compare language models fine-tuned using four PEFT methods for
eight different DP epsilons (including without any privacy - ∞).
Each cell reports the average over five runs along with the standard
deviation. We show the results for GPT2 fine-tuned on MIMIC-III.

In Table 2, (1) ε < 8.0 substantially reduces memoriza-
tion. At a weak privacy guarantee (ε=8.0), the exposure
values are between 2 and 3, showing a 4× reduction in
exposure compared to standard fine-tuning without DP. (2)
Most PEFT methods do not result in significant performance
degradation, except for prefix-tuning, achieving an evalua-
tion perplexity of ∼14 at ε=8.0. Both prompt and prefix-
tuning are completely broken below ε=8.0. LoRA models
achieve the best exposure-perplexity trade-off.
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Evaluating Memorization in Parameter-Efficient Fine-Tuning

A. Experimental setup in detail
We use Python v3.9.0 and PyTorch v2.4.0 (Paszke et al., 2019) to conduct our experiments. For standard training, we use
Hugging Face1, and for training with differential privacy, we employ FastDP (as shown in Table 3). For each experiment,
we fine-tune with a learning rate of 0.0001, and train batch size of 8. We use an eval batch size of 1. For the implementation
of lora, prefix and prompt tuning methods, we use huggingface’s PEFT library. The adapter mechanism we implement from
scratch, according to the design in (Houlsby et al., 2019). We run our framework on a machine equipped with an Intel Xeon
Processor with 48 cores, 768 GB of DRAM, and 8× Nvidia A40 GPUs, each with 48GB VRAM. This setup only allows us
to fine-tune models with the scale of GPT2. To train commercial-scale models like GPT2-XL, we use a server equipped
with AMD EPYC™ 64-Core Processor, 1024 GB of DRAM, and 8× Nvidia A100 GPUs, each with 80 of VRAM.

Python library Base Adapter Prefix-tuning Prompt-tuning Pruning LoRA

Opacus2 △† - O O O O
dp-transformers3 △† - O O O O
private-transformers4 O - X X O X
Jax-Privacy5 △∗ △∗ △∗ △∗ △∗ △∗

FastDP (Our choice)6 O O O O O O

†: This only works with the batch size of 1; the training for 6 epochs in GPT-2 takes 5.5 hours.
∗: This requires additional wrapper code for importing PyTorch models into Jax framework.

Table 3. Comparison of Python libraries that support differentially-private training.

Our choice of Python library for training models with differential privacy. Table 3 summarizes the range of support
provided by existing Python libraries for training models with differential privacy. We select FastDP as it supports all
the parameter-efficient fine-tuning (PEFT) algorithms used in our evaluation. Other libraries support a subset of PEFT
algorithms. Note that we find Jax-Privacy supports all the algorithms; however, it is compatible only with Jax models,
requiring us to write Jax wrappers for converting our PyTorch models to their framework and vice versa.

PEFT hyper-parameters. For our main result in 4.3, for GPT2, we select PEFT hyper-parameters according to recommen-
dations from their original studies (Houlsby et al., 2019; Li & Liang, 2021; Lester et al., 2021). We investigate adapter ranks
in {4, 8, 16, 32}, the number of prompt and prefix tokens in {16, 32, 64}, and the LoRA ranks in {8, 16, 32} in Table 1, we
average over all hyperparameter settings per PEFT method for each model-dataset combination. For GPT-XL and Pythia,
we fix this hyperparameter to 16 across all PEFT methods.

DP hyper-parameters. We use a record-level delta, calculated as the inverse of the dataset size. For both MIMIC and Enron,
this delta is ∼7.4×10−7 (1/13.3k), following standard practices in prior work and the original study (Abadi et al., 2016).

B. Full evaluation results
B.1. Impact of tunable parameter counts in Enron

We observe a less strong relationship between number of tunable parameters and secret exposure in the Enron dataset (Figure
3) compared to MIMIC-III. We attribute this to the overall lower exposure of the secret in Enron across PEFT mechanisms.
Each configuration tested achieves an exposure of less than 2, x4 lower than standard fine-tuning. From this we observe
that if a secret is difficult for a model to memorize, number of parameters is unlikely to make a significant difference in the
secret exposure. As a result of a more difficult secret to memorize being present in the Enron dataset, PEFT mechanisms
are affected differently when comparing the two datasets. Some patterns are the same, for example the pattern for adapter
is very similar to that of MIMIC-III, where adding parameters while using GPT-2 gradually brings down the exposure.

1https://huggingface.co/
6https://opacus.ai/
6https://github.com/microsoft/dp-transformers
6https://github.com/awslabs/fast-differential-privacy
6https://github.com/lxuechen/private-transformers
6https://github.com/google-deepmind/jax_privacy
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Figure 3. Impact of tunable parameter count on memorization. On the left, we compare the exposure of fine-tuned models with
varying number of tunable parameters. We also show the log evaluation perplexity of these models on the right. We run this evaluation on
Enron.

Some mechanisms demonstrate small but reversed patterns, such as prompt tuning, where the GPT2-XL version led to a
slight increase in exposure compared to the GPT-2 versions. LoRA’s pattern changed the most significantly however, with
number of parameters increasing with exposure for different configurations and GPT-2, and the GPT-2 XL version yielding
a lower exposure. Interestingly, we observe the evaluation perplexity is increased for all GPT-2 XL versions of each PEFT
mechanism, a trait that only prefix tuning and adapter shared from Figure 1, and similar to MIMIC-III, we observe also a
trend downward in perplexity as the number of model parameters increase within a given base model + PEFT combination.
We find almost identical results between GPT-2 XL and Pythia, with Pythia and adapter gaining a much lower perplexity
and slightly lower exposure.

B.2. Additional position experiments for MIMIC-III

Figure 4. Illustrating the impact of secret position on memorization. The figures show the impact of a secret’s location in a context on
exposure. The top row shows the results from GPT-2 XL models, while the bottom row presents results from Pythia . From the left, each
column corresponds to standard fine-tuning, fine-tuning with adapters, and LoRA.
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Here we present the results of the position experiment with GPT-2 XL and Pythia models finetuned on MIMIC-III in Figure
4. In addition, we present results for Pythia fine-tuned on MIMIC-III for Prefix tuning in Figure 9.

B.3. Privacy-Utility Tradeoff in Enron

Figure 5. Impact of privacy guarantee ε on model perplexity. We illustrate the trade-off between ε and evaluation perplexity, measured
on our fine-tuned GPT-2 models. (from left to right) We show the results from fine-tuning with adapter, prompt-tuning, and prefix-tuning
with different configurations, on the Enron dataset.

Here we plot the privacy-utility trade-off of GPT-2 models fine-tuned on Enron for Adapter, Prompt tuning, and Prefix
tuning for an epsilon range of 0.1-2.0 in Figure 5.

B.4. Memorization and Perplexity in Enron

In Figure 6, we show the relationship between evaluation perplexity and exposure. Similarly to MIMIC-III, we observe
that the four PEFT mechanisms consistently reduce the privacy leakage even without DP when compared to standard full
fine-tuning. Between standard fine-tuning and all other methods, we observe a particularly dramatic decrease of 8× in
perplexity. We note that at ε = 10.0, model utility is preserved well across fine tuning methods. For prompt and prefix-tuning,
lower than ε = 10.0 the perplexity value increases by several orders of magnitude. Consistent with other observations from
this paper, methods that demonstrate low privacy leakage without differential privacy do not see a large change in secret
exposure. LoRA models, similarly to those fine-tuned on MIMIC-III, demonstrate the best exposure-perplexity trade-off.

B.5. Impact of secret position on memorization in Enron

In Figure 7, we find that the secret in the Enron dataset is more easily memorized at later positions in the sequence by
the full fine-tuning, LoRA, and adapter. The single insertion of a secret yields similar exposure regardless of the position,
consistent with our findings from the MIMIC-III position experiment. The results from the GPT-2 XL version of these
models support the notion that later-positioned secrets will be more easily memorized, and this is very clearly the case for
high insertion rates. The combination of LoRA and GPT-2 XL is an example of a model surprisingly sensitive to token
location. When the secret position is at the very beginning of a record, it achieves the lowest exposure of any PEFT method
when combined with GPT-2 XL (with the exception of prompt tuning) when there are 500 secret insertions.

In Figure 8, we observe that prefix tuning also becomes capable of memorizing the Enron secret if it is inserted 500 times.
As a result, the trend is not perfectly identical to MIMIC-III. However, when applying ε = 10.0 to prefix-tuning, the secret
is slightly more exposed around position 10. Surprisingly, when applied to GPT-2 XL, prefix tuning loses its ability to
memorize the secret in the way it did when applied to GPT-2. Interestingly, under differential privacy the GPT-2 XL model
exhibits a slight trend downward in exposure as secret position increases, in accordance with our findings about prefix-tuning
in Sec 4.2.

In addition, we present results for Pythia fine-tuned on the both datasets for Prefix-tuning in Figure 9. Interestingly, under
these conditions, Prefix-tuning continues the trend of memorizing less as the base model architecture increases in size, and
does not display the same behavior as in GPT-2 where tokens near the beginning of the context are more exposed than those
located farther in.

Prompt-tuning, surprisingly, fails to achieve a significant secret exposure across all positions and insertion rates, yielding
exposure results similar to its performance after fine-tuning on MIMIC-III. Varying the level of differential privacy applied
during fine-tuning does not have a significant effect on the exposure. We attribute this to prompt-tuning’s low number of
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Figure 6. Memorization and perplexity measured under different privacy guarantees. In each figure, we illustrate the interaction
between exposure and evaluation perplexity, across different fine-tuning methods. From left to right, the figures show GPT-2 models
tained on Enron with ε of ∞, 10.0, 1.0, and 0.1

parameters, and its low rate of memorization overall is consistent with our findings in the baseline experiment, as well as the
differential privacy experiment.

B.6. Additional results on memorization and perplexity

We find that under DP epsilons 10.0 and 0.1, the privacy leakage varies heavily across fine tuning method and size of base
model. For a fair comparison, we investigate GPT-2 trained on MIMIC with PEFT hyperparameters set to 16, the same
as the GPT-2 XL models. For example, with adapter+GPT-2 XL at ε = 10.0, the exposure is around ∼2.5, compared to
adapter+GPT-2, which has an exposure of ∼1.7 at that epsilon. However, when the epsilon is much lower, the advantage
flips, and adapter+GPT-2 XL yields an exposure of 1.33 while adapter+GPT-2 has an exposure of 3.33. This is emblematic
of a complex relationship between PEFT mechanism, its hyperparameters, and DP fine tuning, but overall the data spread
for a given GPT-2 configuration and GPT-2 XL configuration overlap, indicating similar amounts of privacy preservation
between models when holding PEFT hyperparameter consistent.

We also find that the utility of PEFT models trained with DP is generally better with the backbone model of GPT-2 than
GPT-2 XL for additive PEFT methods, but comparable for standard and Lora fine-tuning. The latter findings are consistent
with (Li et al., 2022) and (Yu et al., 2022), who experiment with full fine tuning and LoRA with DP on GPT-2 models and
report comparable model performance between the larger and smaller model architectures. However, our findings suggest
that with respect to model utility, this knowledge cannot be generalized to the other three PEFT methods. Adapter, prompt-
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Figure 7. Illustrating the impact of secret position on memorization. The figures show the impact of a secret’s location in a context on
exposure. The top row shows the results from GPT-2 models, the middle row, results from GPT-2 XL and the bottom, for Pythia. From
the left, each column corresponds to standard fine-tuning, fine-tuning with adapters, and LoRA. We show the results on Enron.

and prefix-tuning yield a consistently higher evaluation perplexity when applied to GPT-2 XL models than when applied to
the much smaller GPT-2 model. We believe that in this case, the larger number of tunable parameters introducing more noise
to the model trained with DP-SGD, combined with these models’ lower performance than LoRA and standard fine-tuning.

B.7. Additional results on position of secret vs exposure

Figure 10 and Figure 12 explore the effects of differential privacy on both GPT-2 and GPT-2 XL in combination with
standard fine-tuning, LoRA, and adapter fine-tuning mechanisms. Differential privacy is most effective at mitigating the
data extraction attack in the first few tokens. This supports our claim that for these mechanisms, secrets are more easily
memorized in the latter section of a record during fine-tuning, as even under DP the model is still closer to memorizing
them as a result of fine tuning. A higher secret insertion rate almost always leads to higher exposure, but is brought very
close to the single insertion. This is especially true under ε = 0.1, under which we fine tune GPT-2 XL. In addition, a
sufficiently low privacy budget appears to weaken the relationship between position and secret exposure, as the models
which demonstrate the relationship the best without differential privacy no longer demonstrate it under very low epsilons.
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Figure 8. Prefix-tuning memorizes more with higher insertions in Enron. In the figures above, we show the effect of secret position in
record vs. secret exposure for both GPT-2 and GPT-2 XL when using the prefix-tuning, with ε = inf (left) and ε (right) (with ε = 0.1 for
GPT-2 XL and 10.0 for GPT-2), as well as 2 different secret duplication rates. We run this evaluations on Enron.

B.8. Additional results on epsilon vs exposure

Across both MIMIC-III and Enron datasets, the GPT-2 XL model + additive PEFT (adapter, prompt and prefix-tuning)
achieve comparable to superior exposure values. Interestingly, out of the GPT-2 XL graphs (Figure 12), we see more of the
expected trend with a higher privacy budget leading to slightly higher exposure values, such as for adapter in both MIMIC-III
and Enron, prompt-tuning in MIMIC-III and LoRA in Enron. This observation is true for GPT-2 models (Figure 14), which
show a similar flat trend-line across 10 different epsilons. Notably, prefix-tuning and adapter demonstrate considerable
volatility under differentially-private training. We find consistent results with Pythia (Figure 13).

B.9. Additional results on the impact of secret position for prompt-tuning

Figures 15 and 16 shows the privacy-preserving nature of prompt-tuning, whose plots of secret position vs exposure look
nearly identical across base model architectures. Our findings here support the notion that models which already preserve
privacy are unlikely to receive a significant benefit to empirical privacy risk when fine-tuned with differential privacy.
Prompt-tuning, even under no differential privacy proves very difficult to memorize during fine tuning, even when the secret
is duplicated 500 times in the dataset. In addition, we present results for Pythia fine-tuned on MIMIC-III and Enron for
Prompt tuning in Figure 17. In the Enron case, Prompt-tuning behaves similarly to Prefix-tuning did with GPT-2, yielding a
higher exposure value for tokens near the beginning of the context.
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Figure 9. Effect of secret position on Exposure for Prefix-Tuning + Pythia The figures show the impact of a secret’s location in a
context on exposure when fine-tuned using prompt-tuning. The left plot shows Pythia models fine-tuned on MIMIC-III, and the right plot
for Enron.

PEFT Method

Models Metric Epsilon ϵ Baseline Adapter Prefix-tuning Prompt-tuning LoRA

GPT-2
Exp. 0.1 1.75±0.66 3.33±0.57 2.90±1.41 2.13±0.82 2.07±0.43

10.0 2.20±1.78 1.72±0.10 3.11±2.60 2.06±0.64 3.08±1.34

PPL 0.1 1.15±0.00 6.68±8.79 334.69±237.52 2247.99±11.99 1.28±0.01
10.0 1.12±0.00 1.54±0.10 5.08±3.51 2.14±0.05 1.20±0.00

GPT-2 XL
Exp. 0.1 1.76±1.27 1.33±0.74 2.97±1.43 1.39±0.62 2.31±0.53

10.0 1.76±1.08 2.57±1.47 2.04±1.52 3.69±2.11 1.82±1.15

PPL 0.1 1.15±0.00 50.70±64.74 7398.77±15356.02 38357.84±290.87 1.38±0.03
10.0 1.10±0.00 1.61±0.14 2208.67±4904.05 2.55±1.75 1.19±0.00

Table 4. Comparison of exposure and perplexity at different ϵ values. We compute the exposure (Exp.) and the evaluation perplexity
(PPL.) of each PEFT method over ϵ = 0.1 and ϵ = 10.0. We fix the hyperparameter value at 16 for all methods and models tested.

B.10. Our secrets are not present in the pre-training corpus

Ensuring that the secrets we use are not present in the pre-training corpus is challenging because the pre-training data for
GPT-2 and GPT-2 XL models are not publicly available. We address this issue by computing the exposure of each secret
(“Leo.Moreno@gmail.com" and “mary smith") on the pre-trained models (GPT-2 and GPT-2 XL) used in our experiments.
In both GPT-2 and GPT-2 XL, ‘mary smith‘ shows an exposure of 0.17 and 0.08, and “Leo.Moreno@gmail.com" exhibits
an exposure of 1.09 and 1.29, respectively. These pre-trained models exhibit substantially lower exposure values, implying
that the secrets are very unlikely to be present in the pre-training corpus.

B.11. Impact of the fine-tuning dataset size

We examine the interaction between dataset size and data extraction success by creating three datasets of varying sizes from
MIMIC-III. We increase the size by 100% (2×) and decrease it by randomly selecting 50% and 25% of the original dataset.
Table 5 shows our results.

We did not find any substantial impact of the dataset size on our findings. Overall, the results remain consistent with
those observed when we use the full dataset. Models fine-tuned with the PEFT mechanisms achieve lower memorization.
Prompt-tuning and LoRA are the lowest, while Adapter and Prefix-tuning show slightly higher levels than the first two.
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Figure 10. The effect of differential privacy on secret positions vs Exposure The figures show the impact of a secret’s location in a
context on exposure when finetuned using differential privacy ε = 10.0 for GPT-2, and ε = 0.1 for GPT-2 XL. The top row shows the
results from GPT-2 models, while the bottom row presents results from GPT-2 XL. From the left, each column corresponds to standard
fine-tuning, fine-tuning with adapters, and LoRA. We show the results on Enron.

B.12. Impact of secret types

We evaluate the impact of different secrets on memorization. We first test with a secret that is unlikely to naturally occur in
the fine-tuning dataset. We insert the secret “Leo.Moreno@gmail.com" into the MIMIC-III dataset, composed of medical
records. We also examine the memorization with the name ‘clary zakharchuk‘ which is rare in real-life. Table 6 summarizes
our results.

Our results are consistent with the findings reported in our main body. Models fine-tuned using PEFT methods are less likely
to memorize the secret. Prompt-tuning and LoRA exhibit the lowest exposure, while the other two methods also reduce
exposure to levels comparable to the main results.

B.13. Does the reduction in memorization due to the performance loss?

One natural question is that PEFT methods, due to their smaller number of tunable parameters, can reduce the
memorization (and also the risks of data extraction). To evaluate this hypothesis, we run standard fine-tuning of
a GPT2 model on the MIMIC-III dataset to achieve various perplexity values we observe from the PEFT models.

Model 1 Model 2 Model 3

Perplexity (PPL.) 1.17±0.00 1.25±0.00 1.35±0.00
Exposure (Exp.) 5.59±2.13 5.53±0.56 5.20±1.19

Table 7. Perplexity and exposure of GPT-2 models from standard
fine-tuning (in MIMIC-III). A reduction in utility does not imply
the absence of memorization.

Our results are shown in Table 7. We observed that
these models exhibit significantly higher exposure de-
spite achieving high perplexity. We therefore attribute
the lower exposure across PEFT methods to their unique
fine-tuning mechanisms rather than slightly worse perfor-
mance they achieve.

B.14. LoRA as an Information Bottleneck

In LoRA, the reduced rank in the latent representation space acts as an information bottleneck, making it difficult for the
model to memorize outliers, such as the secret, which the model first encounters during fine-tuning (as we ensure the secret
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Figure 11. The effect of differential privacy on secret positions vs Exposure The figures show the impact of a secret’s location in a
context on exposure when finetuned using differential privacy ε = 10.0 for GPT2, and ε = 0.1 for GPT2-XL. The top row shows the
results from GPT-2 models, while the bottom row presents results from GPT-2 XL. From the left, each column corresponds to standard
fine-tuning, fine-tuning with adapters, and LoRA. We show the results on MIMIC-III.

is not present in the pre-training corpus ; see Appendix B.10)

To investigate the nature of LoRA as an ’information bottleneck’, we first ranked the perplexities of all candidate names
used for MIMIC-III to identify the one that the model already exhibits a bias toward due to its pre-training procedure. We
select the name “joseph thompson" with the highest exposure without context in the pre-trained GPT-2 model. We insert the
name once into the fine-tuning dataset, and the model was fine-tuned with LoRA.

Our findings show that the exposure is significantly higher when using this alternate name as the secret—up to 7.13,
compared to 1.88 when "mary smith" is used as the secret. This supports the hypothesis that the biases of the pre-trained
model and its dataset play a critical role in determining whether LoRA can memorize secrets in the fine-tuning dataset. Prior
work (Wen et al., 2024) exploits this phenomenon by poisoning pre-trained models to introduce biases toward a secret that is
likely to appear in the fine-tuning data. These biases are then reinforced through successive fine-tuning runs, resulting in the
secret being leaked at a higher rate from the fine-tuned model.

B.15. Examples of secrets insertion into datasets

We show in Table 8 two examples where we insert secrets into the training records, with the secrets in bold.
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Figure 12. Impact of privacy guarantee ε on GPT-2 XL exposure. We illustrate the trade-off between ε and exposure, measured on our
fine-tuned GPT-2 XL models. (from the left) We show the results from fine-tuning with adapter, prompt-tuning, and prefix-tuning with
different configurations. Models trained on the MIMIC-III dataset are on the top row, and models trained on Enron are below.

Dataset size Metric Baseline Adapter Prefix-tuning Prompt-tuning LoRA

2× of MIMIC-III Exp. 8.64±0.00 3.11±0.50 3.62±0.15 2.40±1.15 1.56±1.39
PPL. 1.14±0.00 1.28±0.00 1.23±0.00 1.22±0.00 1.15±0.00

0.5× of MIMIC-III Exp. 8.64±0.00 4.30±1.78 2.57±1.39 1.98±0.44 2.47±0.34
PPL. 1.16±0.00 1.30±0.00 1.31±0.00 1.27±0.00 1.19±0.00

0.25× of MIMIC-III Exp. 8.64±0.00 4.34±1.28 2.60±1.14 2.35±0.66 3.50±1.15
PPL. 1.16 ±0.00 1.31 ±0.00 1.37±0.01 1.34±0.00 1.20±0.00

Table 5. Impact of different fine-tuning dataset sizes. We evaluate the impact of varying dataset size used for fine-tuning by increasing it
by 100% and decreasing it by randomly selecting 50% and 25% of the original dataset. We use MIMIC-III and GPT2 for this evaluation.

Secret Metric Baseline Adapter Prefix-tuning Prompt-tuning LoRA

Leo.Moreno
@gmail.com

Exp. 8.64±0.00 2.92±1.70 1.20±0.59 0.46±0.15 0.68±0.35
PPL. 1.14±0.00 1.29±0.00 1.26±0.00 1.24±0.00 1.17±0.00

clary zakharchuk Exp. 8.64±0.00 0.13±0.05 0.38±0.09 0.77±0.31 0.94±0.50
PPL. 1.14±0.00 1.29±0.00 1.26±0.00 1.24±0.00 1.17±0.00

Table 6. Comparison of data extraction success across different secrets in GPT-2, MIMIC-III.
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Figure 13. Impact of privacy guarantee ε on Pythia exposure. We illustrate the trade-off between ε and exposure, measured on our
fine-tuned Pythia models. (from the left) We show the results from fine-tuning with adapter, prompt-tuning, and prefix-tuning with
different configurations. Models trained on the MIMIC-III dataset are on the top row, and models trained on Enron are below.

Figure 14. Impact of privacy guarantee ε on GPT-2 exposure. We illustrate the trade-off between ε and exposure, measured on our
fine-tuned GPT-2 models. (from the left) We show the results from fine-tuning with adapter, prompt-tuning, and prefix-tuning with
different configurations. Models trained on the MIMIC-III dataset are on the top row, and models trained on Enron are below.
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Figure 15. The effect of differential privacy on secret positions vs Exposure The figures show the impact of a secret’s location in a
context on exposure when fine-tuned using prompt-tuning. The top row shows the results from GPT-2 models, while the bottom row
presents results from GPT-2 XL. The left column corresponds prompt tuning without differential privacy, and the right, with differential
privacy (with differential privacy ε = 10.0 for GPT-2, and ε = 0.1 for GPT-2 XL). We show the results on Enron.

Dataset Example

MIMIC-III various lines and tubes have been removed since the prior mary smith
radiograph, and a very small left apical pneumothorax has developed.

Enron X-From: Leo.Moreno@gmail.com emaildelivery@businesswire.com

Table 8. Examples of secret insertions in both MIMIC-III and Enron datasets
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Figure 16. The effect of differential privacy on secret positions vs Exposure The figures show the impact of a secret’s location in a
context on exposure when fine-tuned using prompt-tuning. The top row shows the results from GPT-2 models, while the bottom row
presents results from GPT-2 XL. The left column corresponds prompt tuning without differential privacy, and the right, with differential
privacy (with differential privacy ε = 10.0 for GPT-2, and ε = 0.1 for GPT-2 XL). We show the results on MIMIC-III.

Figure 17. Effect of secret position on Exposure for Prompt-Tuning + Pythia The figures show the impact of a secret’s location in a
context on exposure when fine-tuned using prompt-tuning. The left plot shows Pythia models fine-tuned on MIMIC-III, and the right plot
for Enron.
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