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ABSTRACT

Multi-modal Large Language Models (MLLMs) exhibit impressive problem-
solving abilities in various domains, but their visual comprehension and abstract
reasoning skills remain under-evaluated. To this end, we present POLYMATH, a
challenging benchmark aimed at evaluating the general cognitive reasoning abilities
of MLLMs. POLYMATH comprises 5,000 manually collected high-quality images
of cognitive textual and visual challenges across 10 distinct categories, includ-
ing pattern recognition, spatial reasoning, and relative reasoning. We conducted
a comprehensive, and quantitative evaluation of 15 MLLMs using four diverse
prompting strategies, including Chain-of-Thought and Step-Back. The best scores
achieved on POLYMATH are ∼ 41%, ∼ 36%, and ∼ 27%, obtained by Claude-3.5
Sonnet, GPT-4o and Gemini-1.5 Pro respectively - highlighting the logical and
visual complexity of these questions. A further fine-grained error analysis reveals
that these models struggle to understand spatial relations and perform drawn-out,
high-level reasoning. This is further strengthened by our ablation study estimating
MLLM performance when given textual descriptions in place of diagrams. As
evidenced by ∼ 4% improvement over textual descriptions as opposed to actual
images, we discover that models do not truly comprehend visual diagrams and the
spatial information therein, and are thus prone to logical errors. Finally, we evaluate
the OpenAI o1 models and find that their performance only matches the human
baseline, highlighting the difficulty of the benchmark. The results on POLYMATH
highlight the room for improvement in multi-modal reasoning and provide unique
insights to guide the development of future MLLMs 1.

1 INTRODUCTION

Large Language Models (LLMs) (Brown et al., 2020; Jiang et al., 2024; Touvron et al., 2023a;
Achiam et al., 2023) and Multi-modal Large Language Models (MLLMs) (OpenAI, 2023c; Team
et al., 2023; Su et al., 2023; Chen et al., 2023b) have rapidly become a pivotal area of research.
MLLMs with robust reasoning capabilities in visual contexts can solve complex educational problems
(Seo et al., 2015; Wang et al., 2017), support analysts with logical queries on statistical data (Wu
et al., 2023; Yang et al., 2023), and contribute to advanced research areas such as theorem proving and
scientific discovery (Taylor et al., 2022; Dong et al., 2023; Trinh et al., 2024). Despite their impressive
performance in various assessments of human-like intelligence, these models still exhibit notable
shortcomings on tasks requiring cognitive and logical reasoning, such as commonsense numerical
reasoning, scientific problem-solving, and abstract puzzles (Wang et al., 2023b; Lu et al., 2023a).
Existing evaluation benchmarks (Fu et al., 2023a; Liu et al., 2023d; Li et al., 2023b; Fu et al., 2023b;
Sun et al., 2024) have focused primarily on specific concrete domains. While general-purpose visual
question-answering (VQA) datasets capture some elements of mathematical reasoning, a systematic
investigation into abstract and general cognitive reasoning which are essential for tasks like visual
puzzles remains an underexplored frontier.

In this paper, we present POLYMATH, a benchmark specifically crafted to evaluate the complex
multi-modal cognitive reasoning capabilities of MLLMs. We propose a task taxonomy to guide
the development of POLYMATH: (1) we identify ten distinct reasoning skills, including spatial

1https://anonymous.4open.science/r/PolyMATH-052D
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Figure 1: Examples of the reasoning patterns employed by MLLMs when faced with questions
involving visual information. In the top row, models fail to perceive the relationship between adjacent
semicircles; in the bottom row, models fail to comprehend fine details in the answer images.

reasoning, pattern recognition, and numerical reasoning. and (2) we cover a diverse array of
visual contexts, including images with venn diagrams, spatially-related layouts, as well as geometric
figures. POLYMATH is a meticulously curated dataset of 5000 multimodal reasoning problems
newly acquired from a publicly available source (Table 2). The problems of the original source
have been crafted and rigorously reviewed by expert annotators, and require diverse fine-grained
problem-solving capabilities. Additionally, we provide detailed textual representations of diagrams
of the samples. As denoted in fig. 1, these problems are designed to assess the logical reasoning
abilities of the average high school student over text and diagrams. We observe that MLLMs fail to
demonstrate the cognitive reasoning skills required to solve these questions.

We conduct extensive experiments on POLYMATH with state-of-the-art (SOTA) closed-source
MLLMs like the Claude family (3.5 Sonnet, 3 Sonnet, 3 Haiku), Gemini-1.5 Pro, and GPT-4o, and
9 open-source MLLMs like LLaVA (34B) and ShareGPT4V. We evaluate them via zero shot, few
shot, Chain-of-Thought (Wei et al., 2022b) and step back prompting (Zheng et al., 2024). We show
that POLYMATH is a challenging benchmark, with human performance (established by qualified
human annotators with graduate degrees) reaching only 66.3% accuracy. The most powerful model
we evaluate, Claude-3.5 Sonnet, achieves the best score of 41.90% followed by GPT-4o, which
attains 36.50%. The best open source models like LLaVA-v1.6 Mistral (7B) and ShareGPT4V
(13B) achieves the accuracy of 15.20% and 12.80% respectively. We additionally create a diagram
only subset (test-img) of the benchmark to gauge the gap in visual reasoning abilities between the
multi-modal models and average human capability. We find that the performance of these models
drops further to 26.20% for Claude-3.5 Sonnet and 22.50% by Gemini-1.5 Pro when evaluated on
test-img only. In contrast with human cognitive patterns, when given text descriptions in place of the
diagram in these questions, model accuracy improves by ∼4-7%. We also conduct an error analysis
on Claude-3.5 Sonnet, Gemini-1.5 Pro and GPT-4o, and find that the most common errors stem
from misunderstanding diagrams (∼ 60%), misidentifying logical patterns (∼ 25%), and forgetting
relational information (∼ 12%). Finally, we evaluate OpenAI o1 models (OpenAI, 2024b) on without
diagram questions of the benchmark and observe 66.72% accuracy (o1-preview), 2% points below
than the human baseline.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(a) Dataset categorization (b) Results on closed source models

Figure 2: An overview of POLYMATH’s distribution and difficulty (a) exhibits the per-category split
of the 5000 questions in the dataset, along with the split of with diagram (WD) and without diagram
(WoD) for that category ; (b) Compares the per-category performance of various MLLMs.

2 RELATED WORK

The development of MLLMs builds on the progress of LLMs (Touvron et al., 2023a;b; OpenAI,
2023a; Jiang et al., 2024) and large vision models (Kirillov et al., 2023; Zhang et al., 2023d;c;e).
These models extend LLMs to handle a wider range of tasks across multiple modalities, including
2D images (Li et al., 2022; Dai et al., 2023; Alayrac et al., 2022; Li et al., 2023a), 3D point clouds
(Guo et al., 2023; Xu et al., 2023b), audio (Han et al., 2023; Su et al., 2023), and video (Zhang
et al., 2023a; Chen et al., 2023a). Notable examples like OpenAI’s GPT-4V (OpenAI, 2023c) and
Google’s Gemini (Team et al., 2023) demonstrate advanced visual reasoning capabilities, setting
new benchmarks in the multimodal space.

As MLLMs rapidly advance (Li et al., 2023c), there is a growing need for benchmarks that evaluate
mathematical problem-solving in visual contexts. Existing benchmarks, such as GeoQA (Chen et al.,
2021a), VQA (Goyal et al., 2017), and UniGeo (Chen et al., 2022a), focus mostly on geometric
problems. Other efforts target skills in abstract scenes, geometry diagrams, charts, and synthetic
images (Chen et al., 2022a; Masry et al., 2022). Recent datasets also assess external knowledge,
commonsense reasoning, and scientific or medical understanding (Zhang et al., 2023g). MathVista (Lu
et al., 2023a) expands multimodal math tasks, while MMMU (Yue et al., 2023a) focuses on college-
level problems. Prior work evaluates LLMs across diverse domains like QA, mathematics, and
science (Bubeck et al., 2023; Nori et al., 2023), while recent research (Zhang et al., 2023f) explores
whether models like GPT-4V perform vision and language tasks independently or together.

Existing extensive benchmarks (Fu et al., 2023a; Liu et al., 2023d; Li et al., 2023b; Xu et al.,
2023a) primarily focus on concrete, real-world problems within specific domains. These benchmarks
often include comparatively simple diagram interpretation questions involving plots or mathematical
questions related to geometry, which primarily evaluate models’ abilities to parse information from a
single image and solve problems using well-established logical principles and formulae. However,
they do not sufficiently test models’ capabilities in abstract visual reasoning, including spatial
recognition, visual logic and puzzle solving, and pattern recognition. This limitation represents a
notable gap, as visual puzzle tasks require logical leaps that differ fundamentally from reasoning
patterns over textual or linguistic problems. Moreover, spatial reasoning questions assess models’
abilities to internalize and manipulate configurations in 3D space, as well as reason over spatial
information and infer implicit relationships based on positional data. This category of questions
aligns closely with human cognition and reasoning abilities, and evaluating model performance
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Figure 3: Examples of with diagram and without diagram questions. In addition to the question
image, POLYMATH includes the metadata shown above. Question without diagram is not present in
test-img while both kinds of questions will be present in testmini.

against human baselines on these questions reveals the substantial gap in reasoning abilities that
models must bridge to approach human-comparable reasoning capability. Our proposed dataset aims
to address this gap by challenging and comprehensively evaluating previously underexplored model
skills in categories where their performance still lags significantly behind human reasoning baselines.
Additionally, we provide a detailed analysis of the strengths and weaknesses of these models across a
wide range of categories and skills, shedding light on specific reasoning errors and their frequency of
occurrence across categories and in comparison to one another.

3 CURATING POLYMATH

POLYMATH is curated mainly from questions directed at students taking the National Talent Search
Examination, a nationwide competitive exam held by the National Council of Educational Research
and Training of India. These questions and their solutions are created by experts in their fields and
rigorously peer-reviewed, and thus contain minimal errors. These questions aim to assess Scholastic
Aptitude (SAT), or the ability to recall domain-specific scientific and mathematical knowledge, as
well as Mental Ability (MAT), or the ability to think logically and apply a range of analytical skills.
We catalog the skills assessed by each sample along the categorization schema defined in Table 1.

3.1 COLLECTION PIPELINE

To guarantee high-quality data, we manually collected image snippets and engineered a streamlined,
automated framework for curation and annotation. Continuous human reviews were conducted
throughout the process, ensuring quality and preventing error propagation.

• Step 1: We generate a universally unique identifier (UUID) for a given question paper to
identify all the questions curated from it.

• Step 2: Annotators manually collected separate snippets of each question and their associated
contextual information (including disconnected pieces) that apply to multiple questions.

• Step 3: An image merging script automatically identified and merged question images (in
case the question gets split by pages) with their relevant context images.

• Step 4: We used an LLM to transcribe the questions and their ground truth answers. We
also generate additional metadata, including category (§3.2), whether it contains a diagram
(Fig 3), and image description (§3.3). A manual check was performed to ensure the quality
of the generated metadata.

• Step 5: An annotation file, where each row corresponds to a question, is automatically
created and populated.

4
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Category name Definition Avg
len

Max
len

Perspective Shift (PS) A figure is given and the solver is instructed to morph it
according to the instructions (flip, mirror image, rotate, etc.) 18.60 59

Figure Completion (FC)

A figure is given with an arrangement of numbers or characters
such that their relationship to one another based on their position
in the figure is consistent. The goal is to complete the figure and
identify the element missing from a marked position.

23.97 364

Pattern Recognition (PR)

This requires the understanding of a one-to-one relationship
or pattern and replicating that pattern. For example, given the
relationship between a and b, determining the equivalent of
b to c. Questions involving substituting characters and
operations in a pre-defined pattern fall into this category.

31.98 391.4

Sequence Completion (SC) Given a sequence of numbers or figures, this question
involves finding the sequentially next element in a series. 30.22 227

Relative Reasoning (RR)

The question contains distinct data points and their relationship
with one another. The solver must extrapolate relationships that
may not be explicitly mentioned to answer the questions.
Questions involving Venn diagrams, family relations, or relative
positions given a reference point fall into this category.

27.22 137

Mathematical Reasoning (MR) This question entails calculations of a mathematical nature,
such as solving a given equation. 25.61 156

Numerical Reasoning (NR)
Questions involving counting the number of elements
mentioned. The elements may be part of a single figure
or conform to a specified pattern.

15.63 65

Spatial Reasoning These questions require the solver to visualize the context
and reason observationally to arrive at the answer. 27.67 78

Odd One Out (OD) Given a set of elements, identify the element that is not like
the others. 26.64 214

Logical Reasoning (LR) Questions involving simple logical reasoning such as
entailment and contradiction. 34.68 144

Overall 27.68 391.4

Table 1: An overview of our question categorization schema. Questions are categorized on the basis
of the information provided in the question and the reasoning skills assessed.

3.2 DATASET CATEGORIZATION

We develop a categorization schema that catalogues questions on basis of the information provided
and the type of reasoning assessed by the question. Based on the continuous human evaluation during
collection, we identify 10 distinct question categories. We enumerate these categories along with
their definitions in Table 1. We further distinguish between questions with diagram and without
diagram. The with diagram questions are designed around the information presented in the diagrams
(Fig 3). We show examples of with diagram and without diagram questions for each category in
§F. The overall per-category distribution, along with the with diagram and without diagram split, is
visualized in Figure 2.

3.3 ADDITIONAL METADATA

The complexity of collected question images and the heavy presence of diagram-based reasoning
tasks makes POLYMATH a challenging multi-modal benchmark. To make POLYMATH usable for
both text and vision model evaluations, we provide transcriptions of questions and answers. To further
facilitate text-based evaluation, we generate detailed, human-vetted text descriptions of attached
diagrams such that a human could visualize the image based on this description (Fig 3). Results on
text-only characterization of questions in our dataset can be found in §4.3.
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Category PS FC PR SC RR MR NR SR OD LR Overall

Full dataset

Questions with Diag. 114 233 472 160 206 157 162 246 151 3 1904
Questions w/o Diag. 39 0 664 398 319 964 58 191 246 217 3096
Total Questions 153 233 1136 558 525 1121 220 437 397 220 5000

testmini

Questions with Diag. 27 47 102 33 47 28 30 53 38 0 405
Questions w/o Diag. 4 0 125 79 58 196 14 34 41 44 595
Total Questions 31 47 227 112 105 224 44 87 79 44 1000

test-img

Total Questions 60 122 248 84 108 82 85 129 79 3 1000

Table 2: An overview of the per-category distribution of questions in the test, testmini, and test-img
splits of POLYMATH. testmini and test-img are 1000-instance subsets, aimed at faster and image-
focused evaluations respectively. We also report the frequency of with diagram and without diagram
questions for each category.

3.4 QUALITY ASSURANCE

Following the collection and annotation process, we conduct a comprehensive quality check. We
discard samples that are [1] of low resolution, [2] outside the scope of the categories (Table 1), or
[3] missing vital information. We also discard samples with noticeable watermarks and other visual
noise that renders the sample illegible. Our subject-expert annotators rectify incorrectly-extracted
ground truth answers. Concurrently, we verify that the questions belong to their assigned categories,
and correct any observed misalignments therein.

3.5 DIVISION OF THE testmini SUBSET.

The final iteration of POLYMATH comprises 5000 questions. To enable faster model validation, we
extract a 1000-instance subset, testmini, using stratified sampling over all categories. All quantitative
results reported in this work were obtained on this testmini subset of POLYMATH. We also create
a test-img question set, consisting solely of 1000 with diagram questions, aimed at faster, focused
assessment of models’ visual comprehension. Owing to the imbalance of with diagram questions
across categories, we use a random sampling strategy to create test-img. 2 For data distribution, see
Table 2. Further details on data collection and annotation are available in §C.

4 EXPERIMENTS

We conduct a systematic evaluation of existing MLLMs on POLYMATH. We first introduce the
experimental setup in this section. Then we present our findings followed by multiple dataset analysis
experiments. Additional experimental results and qualitative examples are present in §D and H.

4.1 EXPERIMENTAL SETUP

Evaluation Models: We examine the performance of foundation models across two distinct
categories on POLYMATH: (a) Closed-source MLLMs, represented by models like GPT-4o
(gpt-4o-2024-05-13) (OpenAI, 2024a),OpenAI O1 (o1-preview-2024-09-12,
o1-mini-2024-09-12) (OpenAI, 2024b), Gemini-1.5 Pro (gemini-1.5-pro-002)
(Team et al., 2023), Claude-3.5 Sonnet (claude-3-5-sonnet-20240620) (An-
thropic, 2024a) and Claude 3 Haiku and Sonnet (claude-3-sonnet-20240229,
claude-3-haiku-20240307) (Anthropic, 2024b) (b) Open-source MLLMs, such as
LLaVA (v1.5-13B, v1.6-Mistral-7B, v1.6-Vicuna-13B) (Liu et al., 2023a), LLaVA-v1.6-34B (Liu
et al., 2024), G-LLaVA (7B, 13B) (Gao et al., 2023a), ShareGPT4V (7B, 13B) (Chen et al., 2023c) &

2All datasets (test, testmini and test-img) will be publicly released
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Category PS FC PR SC RR MR NR SR OD LR Overall

Baseline

Random chance 9.68 4.26 6.61 9.82 9.52 9.82 15.91 6.90 7.59 9.09 8.60
Human eval 51.08 70.57 61.82 69.35 69.84 76.64 58.71 62.64 64.98 51.14 66.62

Zero Shot Inference

Claude Haiku 17.02 11.36 17.86 36.36 18.99 25.55 22.58 15.24 23.21 19.54 20.80
Claude-3 Sonnet 19.15 36.36 22.77 38.64 17.72 24.23 16.13 31.43 28.57 25.29 25.40
GPT-4o 29.79 47.73 38.84 29.55 31.65 34.36 25.81 46.67 38.39 32.18 36.60
Gemini-1.5 Pro 27.66 31.82 31.25 31.82 26.58 24.67 9.68 21.90 29.46 25.29 26.90
Claude-3.5 Sonnet 27.66 43.18 40.18 40.91 25.32 42.29 35.48 41.90 43.75 42.53 39.70

Few Shot Inference

Claude Haiku 19.35 12.77 18.06 36.61 19.05 25.89 22.73 16.09 24.05 20.45 22.40
Claude-3 Sonnet 19.35 19.15 25.99 25.89 32.38 30.36 29.55 26.44 31.65 52.27 28.90
GPT-4o 29.03 14.89 33.48 38.39 40.00 40.18 18.18 36.78 21.52 50.00 34.60
Gemini-1.5 Pro 19.35 29.79 25.11 16.96 29.52 30.80 20.45 29.89 32.91 38.64 27.40
Claude-3.5 Sonnet 32.26 44.68 40.53 41.96 26.67 42.41 36.36 42.53 46.84 52.27 40.60

Chain-of Thought Prompting Inference

Claude Haiku 19.15 15.91 21.88 20.45 26.58 25.55 19.35 21.90 25.00 28.74 23.50
Claude-3 Sonnet 23.40 34.09 30.80 40.91 27.85 31.72 22.58 33.33 22.32 26.44 29.70
GPT-4o 21.28 54.55 41.96 25.00 27.85 29.96 9.68 40.95 41.07 33.33 35.00
Gemini-1.5 Pro 27.66 34.09 39.29 22.73 27.85 30.84 35.48 30.48 31.25 26.44 31.90
Claude-3.5 Sonnet 31.91 43.18 41.52 45.45 27.85 43.17 48.39 38.10 45.54 44.83 41.20

Step Back Prompting Inference

Claude Haiku 12.77 20.45 23.66 15.91 27.85 26.87 19.35 14.29 20.54 20.69 22.00
Claude-3 Sonnet 27.66 43.18 36.16 27.27 24.05 28.63 22.58 29.52 35.71 33.33 31.60
GPT-4o 12.77 45.45 42.41 27.27 31.65 34.80 16.13 41.90 41.07 37.93 36.50
Gemini-1.5 Pro 31.91 38.64 38.84 25.00 29.11 31.28 32.26 31.43 32.14 27.59 32.70
Claude-3.5 Sonnet 34.04 43.18 41.96 47.73 29.11 43.61 48.39 38.10 46.43 45.98 41.90

Table 3: Results of closed-source MLLMs on the testmini split of POLYMATH. We report model
results using the following prompting strategies: zero shot inference, few short inference, Chain-of-
Thought, and Step Back prompting. For each prompting setting, the highest and lowest scores
achieved by a model per category are highlighted. In addition to model accuracy, we report a Random
chance baseline (i.e. the accuracy of a model that randomly selects an option without visibility into
the question, and a Human eval baseline, where we report the average scores of six human evaluators.)

Model PS FC PR SC RR MR NR SR OD LR Overall

Qwen2 VL (2B) Instruct 9.38 2.13 6.17 6.25 8.57 3.57 4.55 4.60 8.86 2.27 5.60
LLaVA-v1.6 Mistral (7B) 6.45 4.26 14.98 14.29 18.10 15.18 9.09 19.54 22.78 13.64 15.20
G-LLaVA (7B) 12.90 0.00 9.25 3.57 5.71 7.59 2.27 4.60 3.80 6.82 6.30
ShareGPT4V (7B) 6.45 10.64 16.30 13.39 7.62 11.61 11.36 11.49 10.13 11.36 12.10
LLaVA-v1.6 Vicuna (13B) 12.90 12.77 8.37 8.04 13.33 5.80 15.91 6.90 13.92 4.55 9.10
LLaVA 1.5 (13B) 3.23 14.89 7.49 11.61 7.62 6.70 9.09 8.05 11.39 13.64 8.70
ShareGPT4V (13B) 9.68 17.02 13.66 12.50 15.24 10.71 9.09 12.64 17.72 6.82 12.80
G-LLaVA (13B) 13.67 2.33 11.12 5.69 7.98 10.23 1.07 6.70 5.76 7.98 8.26
LLaVA-v1.6 (34B) 9.68 25.33 9.69 12.50 6.67 10.71 13.64 10.34 15.19 9.09 11.30

Table 4: Results of open-source MLLMs on the testmini split of POLYMATH. We report model
results using zero shot inference. The highest and lowest scores achieved by a model in each
category are highlighted.

Qwen2-VL-2B-Instruct (Wang et al., 2024b) (c) Text Based LLMs Reka Flash (Ormazabal et al.,
2024), Llama-3 (70B) (AI@Meta, 2024), Mistral Large (AI, 2024). We conduct experiments on all
open-source models using six NVIDIA A100 GPUs. Hyperparameters are available in §D.

Implementation Details All reported results are based on the testmini subset of the dataset.
To establish a baseline for comparison, we simulate random chance by selecting a random option
for multiple-choice questions over 1000 trials. Additionally, the problems in POLYMATH were
independently solved by the paper’s authors (four engineering graduates and two PhDs), serving
as a human performance baseline. We evaluate the benchmark using various prompting methods,
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Category PS FC PR SC RR MR NR SR OD LR Overall

MLLM Inference on Diagrams (Multi-modal)

Claude-3 Haiku 16.67 15.57 18.55 22.62 25.93 19.51 31.76 17.83 21.52 33.33 20.60
Claude-3 Sonnet 21.67 23.77 22.98 17.86 20.37 24.39 32.94 22.48 26.58 66.67 23.60
GPT-4o 20.00 20.49 22.18 19.05 23.15 20.73 20.00 17.05 34.18 66.67 21.80
Gemini-1.5 Pro 11.67 23.77 22.58 27.38 28.70 25.61 10.59 18.60 29.11 66.67 22.50
Claude-3.5 Sonnet 31.67 27.87 25.00 19.05 28.70 25.61 25.88 22.48 31.65 100.00 26.20

MLLM Inference on Diagram Descriptions (Text-only)

Claude-3 Haiku 30.00 25.41 18.55 19.05 25.93 28.05 27.06 26.36 30.38 100.00 24.60
Claude-3 Sonnet 30.00 32.79 25.40 22.62 26.85 36.59 37.65 26.36 31.65 100.00 29.30
GPT-4o 26.67 28.69 29.44 23.81 31.48 34.15 30.59 29.46 27.85 33.33 29.30
Gemini-1.5 Pro 25.00 26.23 25.00 27.38 21.30 28.05 16.47 19.38 22.78 33.33 23.60
Claude-3.5 Sonnet 38.33 30.33 26.61 23.81 37.96 35.37 34.12 28.68 36.71 100.00 31.40

LLM Inference on Diagram Descriptions (Text-only)

Mistral Large 15.00 13.11 11.29 15.48 18.52 13.41 9.41 17.83 25.32 33.33 14.90
Reka Flash 16.67 13.93 12.10 16.67 19.44 14.63 9.41 18.60 26.58 33.33 15.80
Llama-3 (70B) 16.67 13.93 11.69 16.67 19.44 14.63 10.59 18.60 26.58 33.33 15.80

Table 5: Results of visual comprehension ablation study test-img split of POLYMATH. We use
MLLMs and conduct multi-modal inference on questions containing diagrams, and then use the same
MLLMs to infer on the same questions, but with a detailed text description in place of the diagram.
For each inference setting, the highest and lowest scores achieved by a model per category are
highlighted. Additionally, we report the performance of text-only LLMs on the textual representation
of these questions.

including zero shot, few shot (2-shot), Chain-of-Thought (Wei et al., 2022b), and Step Back prompting
(Zheng et al., 2024). For multiple-choice questions, we use exact match for answer comparison.
The model inference prompts are structured to elicit a step-by-step solution, the final answer, and
the corresponding option. Details about these prompts are provided in §E. As part of our analysis,
we conducted three additional experiments: (1) analyzing model performance on the test-img split,
(2) converting the questions from test-img into text, along with the transformation of diagrams into
descriptions, and (3) evaluating OpenAI o1 models on questions without diagrams.

4.2 RESULTS

Closed Source Models Across various prompting strategies (Table 3), Claude-3.5 Sonnet performed
best with these advanced prompts, achieving up to 41.90% accuracy in Step Back Prompting,
compared to 39.70% in zero shot. GPT-4o followed closely, especially in FC and PS questions,
showing strong performance with zero shot and Step Back Prompting. Gemini-1.5 Pro performed
moderately across all categories but lacked dominance in any specific area, while Claude Haiku
being the smallest of the closed sourced MLLMs, consistently underperformed across all prompting
strategies. In terms of prompting strategies, Chain-of-Thought and Step Back Prompting enhanced
the performance of top models like Claude-3.5 Sonnet and GPT-4o, allowing them to excel in tasks
requiring structured reasoning and re-evaluation. Both strategies led to marked improvements over
zero shot prompting, particularly in categories like SR, PR, and LR.

Open Source Models Table 4 showcases the results of popular open-source MLLMs. LLaVA-v1.6-
Mistral-7B model achieved the highest overall score of 15.2%, demonstrating remarkable performance
across several categories. Notably, it excelled in OD (22.78%), SR (19.54%), RR (18.1%), and MR
(15.18%) indicating its proficiency in generating precise, coherent, and relevant responses, even for
out-of-distribution samples. The ShareGPT4V (13B) model exhibited the second-highest overall
score of 12.8%, with outstanding performance in the PR (13.66%), SC (12.5%), RR (15.24%), MR
(10.71%), SR (12.64%), and OD (17.72%) categories. Other models, such as LlaVA-v1.6-Vicuna
13B, LlaVA-1.5 (13B), G-LLaVA (13B), and LlaVA-v1.6 (34B), exhibited varying levels of success
across the different categories, highlighting their individual strengths and weaknesses in handling the
diverse reasoning aspects tested by the dataset.
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Error Name Definition Gemini GPT Claude

Incomplete (IC) Model generated incomplete solution, or output hit token limit 6.36 5.08 0.42

Logical Flaw (LF) Reasoning step violated established logical rules or real-world
principles (such as equality or cardinality) 58.05 52.54 57.20

Memory Flaw (MF) Model forgets information provided in the question or
earlier in the solution 11.86 9.75 11.44

Spatial
Misunderstanding (SM)

Model misunderstands spatial relations or “misreads” specific
details of given image. 16.10 24.58 16.53

Calculation
Error (CE)

Model commits a mathematical error, or substitutes the
wrong value in an equation. 2.97 1.27 6.36

Misalignment (MG) Model reasons correctly, but concludes the answer incorrectly
(eg. identifying the pattern but selecting the wrong option ) 4.66 6.78 8.05

Table 6: The types of errors found in model reasoning patterns. The errors are defined to be mutually
distinct and leave very little room for ambiguity. We also report the frequency of these errors for each
model (Gemini-1.5 Pro, Claude-3.5 Sonnet, GPT-4o) over the 236 questions analysed.

Human Evaluation To ascertain the difficulty of the dataset, we asked six graduate students
specifically for the evaluation of human performance on POLYMATH. We assigned questions from
a specific problem category to each student. This strategy aimed to prevent them from gaining
additional information from another question from same category. They were asked to provide only
the final answer without detailed reasoning. Therefore, we do not report the Chain-of-Thought
evaluation results for human performance, alongside the ‘Random Chance’ baseline.

4.3 EXPERIMENTAL ANALYSIS

MLLMs Rely More on Image Descriptions than Image To evaluate the visual reasoning ca-
pabilities of closed-source models, we conducted inference on the test-img subset, which contains
questions with diagrams. Additionally, we generated a text-only version of test-img by replacing all
diagrams with detailed textual descriptions. Both experiments were carried out in a zero shot setting.
Our analysis reveals three key findings. First, we observed a noticeable decline in performance on
test-img, particularly for models like GPT-4o and Claude-3.5 Sonnet, compared to their results on
the testmini subset. This suggests that both models perform well on questions without diagrams,
and their decreased accuracy on test-img is largely due to the presence of diagram-based problems.
Second, when we replaced the diagrams in test-img with text descriptions, the performance of all
models improved by approximately ∼ 3− 4%, indicating that the models struggle with visualizing
diagrams and benefit from textual representations. Finally, we evaluated popular text-only LLMs
such as LLaMA-3 (70B), Reka Flash, and Mistral Large on the text-description version of test-img.
Their scores (∼ 15%) were significantly lower than those of the MLLMs (∼ 27%), underscoring the
advantage of multi-modal models in handling visually-grounded tasks.

A Closer Look at Model Errors We analysed total of 236 samples where all three state of the art
MLLMs (Claude-3.5 Sonnet, GPT-4o and Gemini-1.5 Pro) gave incorrect answers on testmini. Based
on the manual inspection of the responses, we identified 7 types of errors that MLLMs make (Table
6). The total error distribution of all three models is present in Table 11. Qualitative examples for
category-wise errors are present in §H. The most common error on this dataset was Logical Flaw (LF),
occurring in nearly ∼ 60% of incorrect samples. Spatial Misunderstanding (SM), which involves
a lack of understanding of diagram structure and content, was a close second (∼ 25%). Figure 4
shows the category-wise distribution of the two types of error. These errors were most prevalent in
OD, PR, and SC category of questions, as making uncommon logical leaps and fully comprehending
visual information (which models fall short of) is integral to solving these questions. Additionally,
in questions involving extrapolation over multiple weakly connected data points, models came to
conclusions that contradicted earlier data, pointing to a lack of information retention. Finally, we
find that models fell into the same fallacious reasoning patterns as one another - for example, making
the assumption that a pattern holds across each row, when the correct reasoning involves a pattern
replicated across columns. The category with the highest % of shared errors was PR, where we
observed that GPT4-o, Gemini-1.5 Pro, and Claude-3.5 Sonnet followed the same incorrect reasoning
structure on nearly 80% of the analysed samples. Thus, despite their differences, in practice we see
that MLLMs share the same strengths and shortcomings. For more details, see §G.
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Figure 4: Frequency of Logical Flaw (LF) and Spatial Misunderstanding (SM) errors across different
question categories. We report per-model figures to enable a comparison of model abilities. They are
most prevalent in the OD, PR, and SC categories of questions, owing to the amount of logical leaps
and visual reasoning required by these questions.

Category PS FC PR SC RR MR NR SR OD LR Overall

# Instances 4 0 125 79 58 196 14 34 41 44 595

Human Eval 100 - 61.60 69.62 82.76 64.29 71.43 79.41 82.93 59.09 68.40

o1-mini 0.00 - 58.40 30.38 91.38 64.80 71.43 44.12 63.41 40.91 58.15
o1-preview 0.00 - 75.20 50.63 81.03 70.41 57.14 44.12 73.17 56.82 66.72

Table 7: Results of OpenAI o1-mini and o1-preview on the without diagram (text-only) samples from
the testmini split. We observe that while overall, human cognitive abilities have a slight edge over o1
models, over certain categories (PR, MR), o1 models outperform human performance.

Evaluation of OpenAI o1 models To understand the capabilities of OpenAI’s latest text-only
reasoning models (o1-preview and o1-mini), we evaluate these models on 595 questions of testmini
that do not contain diagrams. We also present human baseline scores on the without diagram section
of testmini. The results of our study are presented in Table 7. o1-preview (∼ 67%) has scores that
are competitive with human performance (∼ 68%), while o1-mini (∼ 58%) lags behind the human
baseline by 10%.

5 CONCLUSION

In this work, we introduce POLYMATH, a benchmark designed to systematically analyze the
mathematical reasoning capabilities of state-of-the-art models in visually complex scenarios. Our
evaluation of 14 prominent foundation models highlights that significant advancements have been
made, especially with the GPT-4o and Claude-3.5 Sonnet models. However, a substantial gap of ∼
24% still exists between Claude-3.5 Sonnet, the best-performing model, and human performance. This
disparity sets a clear direction for future research, emphasizing the need for models that can seamlessly
integrate mathematical reasoning with visual comprehension. Moreover, our analysis of model
reasoning errors and experiments on samples containing diagrams and their textual representations
offer valuable insights for future investigations.
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APPENDIX

APPENDIX OVERVIEW

• Section A: Limitation and Future Work

• Section B: Extended Related Work

• Section C: Data Collection Pipeline Details

• Section D: Additional Experimental Details

• Section E: Prompts for Dataset Curation and Experiments

• Section F: Dataset Examples

• Section H: Qualitative Error Analysis

A LIMITATION AND FUTURE WORK

Our benchmark, POLYMATH, makes key contributions by integrating mathematical and visual tasks.
While we have made progress in evaluating model performance, we recognize certain limitations.
One limitation is dataset coverage. Although POLYMATH covers a wide range of tasks and visual
contexts, some mathematical problems and visual types may be underrepresented. Additionally,
focusing on mathematical reasoning within visual contexts, especially in domains like competitive
high-school-level questions involving problems in spatial and logical reasoning, requires a more
labor-intensive data collection process than text-only or general-purpose datasets. Consequently, the
scalability and generalizability of our benchmark to other areas remain challenging. Annotations
were performed by the authors meticulously, however, due to the diversity of questions and images
appearing in these sources, the annotations lack a consistent format.

In future iterations, our benchmark will aim to cover a wider range of problems and visual contexts,
with unified and comprehensive annotations. This benchmark is part of an ongoing research effort,
and we are committed to maintaining and refining the datasets, including addressing potential data
noise, based on community feedback. Additionally, we will adapt the leaderboard to reflect new
model developments. In conclusion, despite the limitations of our current approach, POLYMATH
marks a significant advancement in the field. We remain dedicated to continuously improving the
benchmark to deepen our understanding of AI’s capabilities in mathematical and visual reasoning.

B EXTENDED RELATED WORK

High-quality evaluation datasets and benchmarks are crucial for assessing the progress of machine
learning models in solving real-world tasks (Liao et al., 2021). Mathematical reasoning benchmarks
have emerged as a significant focus area, posing challenges for large foundational models like Large
Language Models (LLMs) and Multi-modal Large Language Models (MLLMs). Initial datasets
addressed basic algebraic (Hendrycks et al., 2021b) and arithmetic (Roy & Roth, 2016) word problems
with limited scope. Subsequent efforts, including MATH (Hendrycks et al., 2021b), GSM8K (Cobbe
et al., 2021), MMLU (Hendrycks et al., 2021a), and others (Zhou et al., 2023; Yue et al., 2023b;
Wang et al., 2024a; Gao et al., 2023a; Luo et al., 2023), expanded the range and quality of textual
mathematical problems, establishing robust benchmarks for LLM evaluation.

Despite substantial mathematical reasoning encapsulated in visual modalities, most existing bench-
marks (Amini et al., 2019; Cobbe et al., 2021; Mishra et al., 2022; Frieder et al., 2023; Lu et al.,
2023b) are textual only. Moreover, some datasets exhibit performance saturation, with GPT-4 achiev-
ing 92.0% accuracy on GSM-8K (Cobbe et al., 2021), a grade-school mathematics dataset. The rapid
advancement of Large Multimodal Models (LMMs) necessitates robust multimodal benchmarks,
as current benchmarks (Antol et al., 2015; Kembhavi et al., 2016; Kahou et al., 2017; Mathew
et al., 2022) provide limited coverage of rigorous scientific domains crucial for general-purpose AI
assistants.

While these benchmarks assess text-only mathematical reasoning, the rapid progress of MLLMs
necessitates high-quality benchmarks for evaluating visual mathematical problem-solving. Prior
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attempts like GeoQA (Chen et al., 2021a), while MathVista (Lu et al., 2023a) and MMMU (Yue et al.,
2023a) incorporated various multimodal tasks and college-level questions, respectively.

MLLMs, building upon LLMs (Touvron et al., 2023a;b; OpenAI, 2023a; Jiang et al., 2024; Brown
et al., 2020) and large vision models (Radford et al., 2021; Kirillov et al., 2023; Zhang et al.,
2023d;c;e), have become increasingly prominent. They extend LLMs to diverse tasks and modalities,
including 2D images (Li et al., 2022; Dai et al., 2023; Alayrac et al., 2022; Li et al., 2023a), 3D
point clouds (Guo et al., 2023; Xu et al., 2023b; Hong et al., 2024), audio (Han et al., 2023; Su et al.,
2023), and video (Zhang et al., 2023a; Chen et al., 2023a). Noteworthy examples like OpenAI’s GPT-
4V (OpenAI, 2023c) and Google’s Gemini (Team et al., 2023) exhibit exceptional visual reasoning
capabilities, setting new benchmarks in multi-modal performance.

However, their closed-source nature hinders broader application and development of MLLMs. Concur-
rently, open-source MLLMs like LLaMA-Adapter (Zhang et al., 2024; Gao et al., 2023b), LLaVA (Liu
et al., 2023b; 2024; 2023a), MiniGPT-4 (Zhu et al., 2023a; Chen et al., 2023b), mPLUG-Owl (Ye et al.,
2023b), Qwen-VL (Bai et al., 2023), InternLM-XComposer (Dong et al., 2024), and SPHINX (Lin
et al., 2023; Gao et al., 2024) have been explored, leveraging CLIP (Radford et al., 2021) for image
encoding and LLaMA (Touvron et al., 2023a) for multi-modal instruction tuning, advancing MLLMs’
visual understanding and generalization.

Despite comprehensive benchmarks (Fu et al., 2023a; Liu et al., 2023d; Li et al., 2023b; Xu et al.,
2023a) for general visual instruction-following scenarios, the specific potential of MLLMs for visual
mathematical problem-solving remains under-explored. Prior studies like VQA (Antol et al., 2015;
Goyal et al., 2017), VizWiz (Gurari et al., 2018), and ParsVQA-Caps (Mobasher et al., 2022) evaluate
LMMs’ general visual question answering abilities on open-ended image queries. Additionally, works
have assessed LMMs’ specific skills beyond natural scenes, such as abstract shapes (Antol et al., 2015;
Lu et al., 2021b; Ji et al., 2022), geometry diagrams (Seo et al., 2015; Lu et al., 2021a; Chen et al.,
2022a; Cao & Xiao, 2022), charts (Methani et al., 2020; Masry et al., 2022; Kahou et al., 2017; Chang
et al., 2022; Kafle et al., 2018), documents (Singh et al., 2019; Mathew et al., 2022; Liu et al., 2023e),
synthetic images (Dahlgren Lindström & Abraham, 2022; Li et al., 2023d; Bitton-Guetta et al., 2023),
external knowledge (Schwenk et al., 2022; Shah et al., 2019), commonsense reasoning (Zellers et al.,
2019; Yin et al., 2021), scientific knowledge (Lu et al., 2022; Kembhavi et al., 2017; 2016), and
medical understanding (Zhang et al., 2023g; Lau et al., 2018).

Generative foundation models like GPT-3 (Brown et al., 2020), GPT-4 (OpenAI, 2023b), Claude (An-
thropic, 2023), LLaMA (Touvron et al., 2023a), and LLaMA-Adapter (Zhang et al., 2023b) can
solve various downstream tasks (Wei et al., 2022a) without task-specific fine-tuning. Prior work has
evaluated their text-based abilities in QA, math, medicine, coding, and science (Bubeck et al., 2023;
Nori et al., 2023; Chen et al., 2021b; Fu et al., 2023c; Sun et al., 2023; Wang et al., 2023b; Huang et al.,
2023; 2022; Liu et al., 2023c; Zhang et al., 2023b). Some work focused on specialized pretraining for
improved visual math and chart reasoning, like PixStruct (Lee et al., 2023), MatCha (Liu et al., 2022),
and UniChart (Masry et al., 2023). On the vision-language front, models like LLaVA (Liu et al.,
2023b), miniGPT4 (Zhu et al., 2023a), InstructBLIP (Dai et al., 2023), Flamingo (Alayrac et al., 2022;
Awadalla et al., 2023), LLaMA-Adapter V2 (Gao et al., 2023b), and Multimodal Bard (Google, 2023)
leverage paired (Schuhmann et al., 2022; Sharma et al., 2018; Lin et al., 2014) and interleaved (Zhu
et al., 2023b) image-text data. Additionally, specialized versions like LLaVAR (Zhang et al., 2023h;
Ye et al., 2023a) emphasize document understanding and math comprehension. Recent works like
Visit-Bench (Bitton et al., 2023), LVLM-eHub (Yu et al., 2023), MMBench (Liu et al., 2023d; Xu
et al., 2023a; Shao et al., 2023) assess these models’ instruction-following and reasoning capabilities.

Large language models (LLMs) have demonstrated remarkable reasoning abilities, further enhanced
by approaches like chain-of-thought (CoT) (Wei et al., 2022b), program-of-thought (PoT) (Chen
et al., 2022b), and inductive reasoning (Wang et al., 2023a; Tan & Motani, 2023). The feasibility of
using LLMs to solve the Abstraction and Reasoning Corpus (ARC) challenge has been verified using
zero-shot, few-shot, and context-grounded prompting (Tan & Motani, 2023).

OpenAI’s GPT-4V, the multimodal version of GPT-4, exhibits promising performance in vision-
language reasoning. However, a fine-grained study of its strengths and limitations is still lacking.
Recent work (Zhang et al., 2023f) explores whether large multimodal models (LMMs) like GPT-4V
execute vision and language tasks consistently or independently, contributing pioneering efforts in
this field.
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C DATA COLLECTION PIPELINE DETAILS

Collection Pipeline: To ensure high-quality samples, all data samples were manually collected as
image snippets from publicly available websites.

We developed a flexible, highly automated data curation framework to streamline the process and
standardize collection and annotation. Continuous human reviews were conducted between steps in
the pipeline to maintain quality and prevent error propagation.

• Step 1: A universally unique identifier (UUID) was generated for each question paper to
track all curated questions. This step also updated a shared record containing details of the
paper and the annotator’s alias, enabling efficient assignment of questions for peer review.

• Step 2: Annotators manually collected individual snippets of each question, along with
contextual information relevant to multiple questions. For questions requiring additional
context, snippets were labeled accordingly, and only legible, relevant questions (focused
on Mental Ability or Scholastic Ability in mathematics) were included to maintain dataset
integrity.

• Step 3: An image-merging script automatically identified and merged split question images
or context snippets (based on the naming convention) using open-source image processing
tools3. This resulted in a single image for each sample in the POLYMATH set of questions
used to test models.

• Step 4: The next module in the pipeline created and automatically populated an annotation
file, where each row corresponded to a collected sample. Columns included the paper_id
(UUID from Step 1), question number, and image path.

• Step 5: Using an answer key or solution set, LLM-powered transcription extracted the ground
truth answers for each question. Extracted answers were mapped to the corresponding
annotation rows, followed by a manual check to ensure alignment with the provided solution
and correctness.

D ADDITIONAL EXPERIMENT DETAILS

Hyperparameters: The following hyperparameters were used in our experiments:

Model Hyperparameters

Gemini-1.5 Pro
temperature: 1, top_p: 0.95, top_k: 64,
max_output_tokens: 8192,
response_mime_type: text/plain

GPT-4o top_p: 0.1, temperature: 1,
max_output_tokens: 4096, stream: False

Claude Family top_p: 0.1, temperature: 1,
max_output_tokens: 4096, stream: False

Open Source Models max_new_tokens: 3600, temperature: 0.7,
top_p: 0.3, num_beams: 1

Table 8: Hyperparameters used in the experiments

Further, Table 9 provides the source repositories and model cards for the various models used in our
experiments. Table 10 shows the performance of open-source models across categories using two
additional prompting strategies: Chain-of -Thought and Step-back. Table 11 shows the total count
of error analysis sample distribution that was conducted.

3https://opencv.org/
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Model Release
Time Source

GPT-4o OpenAI (2024a) 2023-03 https://platform.openai.com/

Claude 3 family Anthropic (2024a;b) 2023-03 https://www.anthropic.com/
news/claude-3-family

Gemini-1.5 Pro Team et al. (2023) 2023-12 https://ai.google.dev/

LLaVA-1.5 Liu et al. (2023a) 2023-10 https://huggingface.co/
liuhaotian/llava-v1.5-13b

G-LLaVA Gao et al. (2023a) 2023-12 https://github.com/pipilurj/
G-LLaVA/tree/main

ShareGPT4V Chen et al. (2023c) 2023-11 https://github.com/
ShareGPT4Omni/ShareGPT4V/
blob/master/docs/ModelZoo.md#
sharegpt4v-models

LLaVA-NeXT Liu et al. (2024) 2024-01
https://github.com/LLaVA-VL/
LLaVA-NeXT

Qwen2-VL Wang et al. (2024b) 2024-01
https://huggingface.co/Qwen/
Qwen2-VL-2B-Instruct

Table 9: Models used to evaluated POLYMATH, along with their release dates and source repositories.
We use both open-source and closed-source models for a comprehensive evaluation.

Category PS FC PR SC RR MR NR SR OOO LR Overall

Chain of Thought Inference

Qwen2 VL 2B Instruct 12.90 2.13 6.61 0.89 9.52 3.57 6.82 5.75 10.13 4.55 5.70
Llava v1.6 Mistral 7B 12.90 8.51 15.86 15.18 20.00 15.63 11.36 21.84 25.32 15.91 16.80
G-LLaVA 7B 16.13 0.00 9.69 4.46 5.71 8.04 4.55 5.75 3.80 9.09 7.00
ShareGPT4V 7B 9.68 19.15 16.74 14.29 8.57 12.05 13.64 12.64 8.86 13.64 13.20
Llava v1.6 Vicuna 13B 16.13 17.02 9.25 9.82 14.29 6.25 18.18 9.20 15.19 9.09 10.60
Llava v1.5 13B 6.45 17.02 8.37 12.50 8.57 7.14 11.36 9.20 12.66 15.91 9.80
ShareGPT4V 13B 12.90 19.15 14.10 13.39 16.19 11.61 11.36 14.94 18.99 11.36 14.10
G-LLaVA 13B 16.13 2.13 11.45 6.25 8.57 10.27 2.27 6.90 6.33 9.09 8.70
Llava v1.6 34B 12.90 25.53 10.13 0.89 7.62 10.71 15.91 10.34 16.46 9.09 10.5

Step Back Inference

Qwen2 VL 2B Instruct 16.13 4.26 7.05 1.79 10.48 4.02 9.09 6.90 11.39 6.82 6.70
Llava v1.6 Mistral 7b 16.13 6.38 16.74 14.29 20.95 14.29 13.64 21.84 26.58 18.18 17.00
G-LLaVA 7B 12.90 0.00 9.25 3.57 5.71 7.59 2.27 4.60 3.80 6.82 7.30
ShareGPT4V 7B 16.13 23.40 16.30 15.18 10.48 11.61 15.91 10.34 6.33 15.91 13.50
Llava v1.6 Vicuna 13B 19.35 14.89 10.13 8.04 13.33 6.70 20.45 10.34 16.46 11.36 11.00
Llava 1.5 13B 12.90 14.89 8.37 13.39 7.62 7.59 13.64 8.05 13.92 20.45 10.30
ShareGPT4V 13B 9.68 17.02 13.66 15.18 18.10 12.05 13.64 12.64 17.72 15.91 14.30
G-LLaVA 13B 19.35 4.26 11.89 7.14 9.52 10.71 4.55 8.05 7.59 11.36 9.70
Llava v1.6 34B 16.13 27.66 10.57 1.79 8.57 11.16 18.18 11.49 17.72 11.36 11.50

Table 10: Results of open-source MLLMs on the testmini split of POLYMATH. We report model
results using Chain-of-Thought, and Step Back prompting methods.

E PROMPTS FOR DATASET CURATION AND EXPERIMENTS

The various prompts are detailed in this section. Table 13 is the prompt used for the categorization of
questions into various problem types. Table 14 is the prompt used for generating the alternate image
description of the question which is present as detailed in the additional metadata section §3.3. Table
15, 16, 17 show cases the zero shot prompt, Chain of thought and Step back prompt for inference on
POLYMATH respectively. Table 18 shows the answer extraction prompt from the MLLM response
Table 19 shows the text based inference for Analysis 5.
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Error Type PS FC PR SC RR MR NR SR OD LR Overall

Gemini-1.5 Pro

Calculation Error (CE) 1 0 0 0 0 5 1 0 0 0 7
Incomplete (IC) 1 0 0 4 5 4 1 0 0 0 15
Logical Flaw (LF) 3 5 24 24 10 16 0 20 22 13 137
Memory Flaw (MF) 0 2 6 0 10 1 4 5 0 0 28
Misalignment (MG) 3 0 0 4 0 0 0 0 4 0 11
Spatial Misunderstanding (SM) 6 10 0 0 5 4 4 5 4 0 38

Overall Errors 14 17 30 32 30 30 10 30 30 13 236

GPT-4o

Calculation Error (CE) 1 0 0 0 0 1 1 0 0 0 3
Incomplete (IC) 0 3 0 4 0 4 1 0 0 0 12
Logical Flaw (LF) 1 7 24 20 15 8 0 15 26 8 124
Memory Flaw (MF) 0 0 6 0 5 8 4 0 0 0 23
Misalignment (MG) 6 0 0 4 0 1 0 0 0 5 16
Spatial Misunderstanding (SM) 6 7 0 4 10 8 4 15 4 0 58

Overall Errors 14 17 30 32 30 30 10 30 30 13 236

Claude-3.5 Sonnet

Calculation Error (CE) 1 0 0 0 0 12 1 0 1 0 15
Incomplete (IC) 0 0 0 0 0 1 0 0 0 0 1
Logical Flaw (LF) 3 10 24 20 10 12 1 20 25 10 135
Memory Flaw (MF) 1 0 6 0 10 1 4 5 0 0 27
Misalignment (MG) 6 2 0 8 0 0 0 0 0 3 19
Spatial Misunderstanding (SM) 3 5 0 4 10 4 4 5 4 0 39

Overall Errors 14 17 30 32 30 30 10 30 30 13 236

Table 11: Type of errors made by Gemini-1.5 Pro, GPT4-o, and Claude-3.5 Sonnet over various
question categories.

Category PS FC PR SC RR MR NR SR OOO LR Overall

Human 1 45.16 80.85 52.86 69.64 74.29 67.86 52.27 60.92 72.15 40.91 63.10
Human 2 41.94 53.19 45.81 80.36 84.76 85.71 75.00 77.01 75.95 40.91 69.10
Human 3 67.74 63.83 86.78 54.46 61.90 80.80 72.73 44.83 79.75 40.91 70.70
Human 4 64.52 78.72 85.90 47.32 43.81 80.80 47.73 68.97 56.96 56.82 68.30
Human 5 45.16 87.23 45.81 79.46 80.00 75.00 54.55 60.92 51.90 75.00 65.10
Human 6 41.94 59.57 53.74 84.82 74.29 69.64 50.00 63.22 53.16 52.27 63.40

Table 12: Per-category accuracy scores achieved by six human evaluators. The average human
accuracy over all categories is 66.62%.

F DATASET EXAMPLES

Figures 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 demonstrate examples from each question category defined in
Table 1.

G MORE DETAILS ON ERROR ANALYSIS

We leveraged 2 authors of this work to act as error evaluators independently and in parallel. Each
evaluator has a graduate degree in Computer Science and experience in similar puzzle-solving. Owing
to the clear and mutually-exclusive definitions of error types, there is little ambiguity in identifying the
error type of the incorrect responses. Our measure of inter-evaluator agreement is Cohen’s Kappa (K),
found to be 0.9 - indicating near-unanimous agreement. For questions where there was disagreement
in evaluations, a consensus was reached after discussion.
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You are given a question designed to test a student on mathematical or logical reasoning. These
questions can be categorized based on the skills and techniques used to solve them.
These are the categories of questions.

Mathematical reasoning: this question purely requires calculations of a mathematical nature. This
includes solving a straightforward equation.

Pattern recognition: this requires the understanding of a one-to-one relationship or pattern and
replicating that pattern. For example, given the relationship between a and b, determining the
equivalent of b to c. Questions involving substituting characters and operations in a pre-defined
pattern fall into this category.

Sequence completion: given a sequence of numbers or figures, this question involves finding the
sequentially next element in a series.

Figure completion: You are given a figure with an arrangement of numbers or characters such that
their relationship to one another based on their position in the figure is consistent. Th goal is to
complete the figure and identify the element missing from a marked position.

Odd one out: given a set of elements, identify the element that is not like the others.

Spatial reasoning: questions involving reasoning observationally and visualizing the question in
order to arrive at the answer.

Perspective shift: Questions where a figure is given and you are instructed to morph it according to
the instructions (flip, mirror image, rotate, etc)

Numerical reasoning: questions involving counting the number of elements mentioned. The
elements may be part of a single figure or conform to a specified pattern, but solving these questions
requires counting.

Relative reasoning: the question contains distinct data points, and solving the questions requires
understanding the relationships between all data points and extrapolating relationships that are not
explicitly mentioned. Questions involving venn diagrams, family relations, or relative positions
given a reference point fall into this category.

Logical reasoning: Questions involving simple logical reasoning such as entailment and
contradiction.

Now, observe the following question.

Using the categorization schema explained above, classify this question into a category.
Provide a detailed explanation. Output a JSON with the key "question" containing a transcript of
the question, "category" containing the classification category, and "explanation" containing the
reasoning for assigning the question to this category, and "contains diagram" which should be True
or False depending on whether there is a diagram provided in the question.

Table 13: Prompt used for categorization of question of image.

H QUALITATIVE ERROR ANALYSIS

This section presents examples of the qualitative error analysis that was carried out. Figures 5, 6, 7, 8,
9, 10, 11, 12, 13 and 14 contains examples of failures by three proprietary models viz. Gemini-1.5
Pro, GPT-4o, and Claude-3.5 Sonnet across all categories.
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You are given a mathematical question involving a diagram. You are an accessibility reader for the
blind. Output a detailed text description describing the diagram.

Example description: "description": "The diagram contains a circle, triangle, and rectangle
overlapping. The circle is the topmost figure, the triangle is figure with the lowest base. The
rectangle top cuts through the circle and triangle, while its lower side only passes through
the triangle. The portion of the circle that does not overlap with any other figure contains
the number 10. The intersection between circle and triangle contains the number 12. The
intersection of only the circle and rectangle contains the number 5. The area where all 3
figures intersect contains 20. The area of the rectangle that interacts with no other figure
contains 14. The area of the intersection between only the rectangle and triangle contains 17.
Finally, the area of the triangle does not intersect with any other figures contains the number 16.
Outside these figures are text labels and arrows. The arrow labeled Teacher points to the circle.
The arrow labeled Doctor points to the rectangle. The arrow labeled Musician points to the triangle."

Now, generate a similarly comprehensive text description for the diagram in this question.

Image:image

Remember, the description must be detailed enough that the user can recreate the diagram exactly
as shown based on the description alone. Do not add any information or make assumptions that are
not explicitly mentioned in the image.

Output a JSON with the key "description" whose value is the generated description. Output only
the JSON. Go!

Table 14: Prompt used to generated detailed textual description of diagrams.

Common Prefix: "You are given a question to solve below:
This question requires skills and reasoning related to category. Definition: category definition.
This question has a list of options : answer range.
Your output must be a valid JSON."

Zeroshot Prompt: "Q1: Provide a step by step solution to this question.
Q2: What is the answer to this question? Remember, the answer must be present in the given list of
answer options
Q3: Which is the option from answer range that corresponds to the answer above? Output only the
option and nothing else.
Output a JSON with the keys Q1, Q2, Q3 with their answers."

Common postfix: "Remember, your output must be a valid JSON in this for-
mat:’Q1’:<answer>,’Q2’:<answer>,’Q3’:<answer> If your JSON is incomplete, incorrectly delim-
ited or badly formatted, you will be destroyed. Output the valid JSON and nothing else. Go!"

Table 15: Prompt for zero shot inference
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Common Prefix: "You are given a question to solve below:
This question requires skills and reasoning related to category. Definition: category definition.
This question has a list of options : answer range.
Your output must be a valid JSON."

CoT Prompt: Now answer the following questions.
Q1: What is the list of variables and their values provided in the questions?
Q2: What is the variable that needs to be solved for?
Q3: What information that is not present in the question, can you infer from the given variables?
Q4: Provide a step-by-step solution with reasoning to obtain the answer to this question. Provide
the solution at each step.
Q5: What is the answer to this question? Remember, the answer must be present in the given list of
answer options.
Q6: Which is the option from answer range that corresponds to the answer above? Output only the
option and nothing else.

Output a JSON with the keys Q1, Q2, Q3, Q4, Q5, Q6 with their answers.

Common postfix: "Remember, your output must be a valid JSON in this for-
mat:’Q1’:<answer>,’Q2’:<answer>,’Q3’:<answer> If your JSON is incomplete, incorrectly delim-
ited or badly formatted, you will be destroyed. Output the valid JSON and nothing else. Go!"

Table 16: Prompt for Chain-of-Thought inference
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Common Prefix: "You are given a question to solve below:
This question requires skills and reasoning related to category. Definition: category definition.
This question has a list of options : answer range.
Your output must be a valid JSON."

Step back category prompt:

Mathematical Reasoning: "Q1: What is the relation of all given variables to one another? How is
each variable related to the missing value?
Q2: Which are the mathematical operations involved in solving a question like this?"

Pattern Recognition: "Q1: What is the pattern being followed in this question? Provide an example.
Q2: Which are the elements in this question that follow this pattern?"

Sequence Completion: "Q1: What is a numerical sequence?
Q2: What is the relationship between previous and subsequent elements in a sequence? What is the
relationship between elements in the sequence present in this question?"

Figure Completion: "Q1: How do you approach a figure completion problem?
Q2: What is the information you have and the missing information? What are their spatial
relationships to one another?"

Odd one out: "Q1: How do you identify an odd element out of a set?
Q2: Describe the elements in this set. Now ,what do almost all of these elements have in common?"

Spatial Reasoning: "Q1: What are the spatial manipulations that occur in this question? Eg.
unfolding, folding, 2D to 3D reconstruction, etc.
Q2: Given the original question image, how can you visualize the resulting image after the
manipulations mentioned in the question? Explain in detail."

Perspective Shift: "Q1: What are the attributes of an image that is flipped, rotated, or its mirror
image? What differentiates the result of these operations from the original image?
Q2: Which of these operations apply in this image, and in what order?"

Numerical Reasoning: "Q1: What is the information you are given? What do you need to find out?
How can you arrive at this number?
Q2: What are the main points of concern in solving such a question? How can you ensure that you
do not under or over estimate the final number?"

Relative Reasoning: "Q1: What is the information you are given? What are the relationships of the
given data points to one another? What is the information you need to discover? Which data points
are directly or indirectly related to the missing variable? Explain in detail.
Q2: What principles of relational logic do you need to apply to this question?"

Logical Reasoning: "Q1: what are the principle of logical reasoning involved in solving this
question?
Q2: What is the information provided in this question? What is the objective of this question?"

Meta Prompt: Step back category prompt
Q3: Based on the above information, provide a step-by-step solution to the question in the image.
Q4: What is the answer to this question? Remember, the answer must be present in the given list of
answer options
Q5: Which is the option from answer range that corresponds to the answer above? Output only the
option and nothing else.
Output a JSON with the keys Q1, Q2, Q3, Q4, Q5 with their answers.

Table 17: Per-category and meta-prompts for Step Back prompt inference
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You are given a mathematical question with a list of multiple choice answers. You are an accessibility
reader for the blind. Transcribe the textual part of the question, and the list of answer options
provided.
Example: ’question’:’How many triangles are present in this diagram?’,’answer list’:’(A) 23 (B) 21
(C) 29 (D) 34’
Now, generate a question and answer list transcript for the question in the image.
Output a JSON with the keys "question" and "answer list" as described. Output only the JSON. Go!

Table 18: Prompt to transcribe list of answer options from question image

You are given a question to solve below:

This question requires skills and reasoning related to category. This question contains a
diagram that is crucial to solving the question whose textual description as been provided.
Definition: category definition. Problem: extracted question. Diagram: image description extracted
answer list
Q1: Provide a step by step solution to this question.
Q2: What is the answer to this question? Remember, the answer must be present in the given list of
answer options
Q3: Which is the option from answer range that corresponds to the answer above? Output only the
option and nothing else.
Output a JSON with the keys Q1, Q2, Q3 with their answers.
Remember, your output must be a valid JSON in this for-
mat:’Q1’:<answer>,’Q2’:<answer>,’Q3’:<answer> If your JSON is incomplete, incorrectly
delimited or badly formatted, you will be destroyed. Output the valid JSON and nothing else. Go!

Table 19: Prompt for text-only inference.
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Figure 5: Questions belonging to the figure_completion (FC) category
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Figure 6: Questions belonging to the logical_reasoning (LR) category
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Figure 7: Questions belonging to the mathematical_reasoning (MR) category
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Figure 8: Questions belonging to the numerical_reasoning (NR) category
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Figure 9: Questions belonging to the odd_one_out (OD) category
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Figure 10: Questions belonging to the pattern_recognition (PR) category
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Figure 11: Questions belonging to the perspective_shift (PS) category
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Figure 12: Questions belonging to the relative_reasoning (RR) category
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Figure 13: Questions belonging to the sequence_completion (SC) category

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Figure 14: Questions belonging to the spatial_reasoning (SR) category
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Figure 15: Erroneous model reasoning patterns observed on an FC question
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Figure 16: Erroneous model reasoning patterns observed on an LR question
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Figure 17: Erroneous model reasoning patterns observed on an MR question
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Figure 18: Erroneous model reasoning patterns observed on an NR question
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Figure 19: Erroneous model reasoning patterns observed on an OD question

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

Figure 20: Erroneous model reasoning patterns observed on a PR question
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Figure 21: Erroneous model reasoning patterns observed on a PS question
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Figure 22: Erroneous model reasoning patterns observed on an RR question
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Figure 23: Erroneous model reasoning patterns observed on an SC question
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Figure 24: Erroneous model reasoning patterns observed on an SR question
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