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Abstract

Metamaterials are micro-architected structures whose geometry imparts highly
tunable—often counter-intuitive—bulk properties. Yet their design is difficult
because of geometric complexity and a non-trivial mapping from architecture to
behaviour. We address these challenges with three complementary contributions.
(i) MetaDSL: a compact, semantically rich domain-specific language that captures
diverse metamaterial designs in a form that is both human-readable and machine-
parsable. (ii) MetaDB: a curated repository of more than 150 000 parameterized
MetaDSL programs together with their derivatives—three-dimensional geometry,
multi-view renderings, and simulated elastic properties. (iii) MetaBench: bench-
mark suites that test three core capabilities of vision—-language metamaterial assis-
tants—structure reconstruction, property-driven inverse design, and performance
prediction. We establish baselines by fine-tuning state-of-the-art vision—language
models and deploy an omni-model within an interactive, CAD-like interface. Case
studies show that our framework provides a strong first step toward integrated
design and understanding of structure-representation—property relationships.

1 Introduction

Metamaterials have attracted intense research interest because microscale geometries can endow
bulk matter with properties that are unattainable in the parent substance. Careful geometric tuning
yields extraordinary behaviours such as programmable deformation [Jenett et al., 2020, Babaee et al.}
2013]], extreme strength-to-weight ratios [Qin et al., 2017], and simultaneous stiffness and stretchabil-
ity [Surjadi et al.l 2025]]. These features enable applications ranging from thermal management [Fan
et al., 2022 |Attarzadeh et al., [2022] to biomedical implants [Ataee et al., 2018, |Ambu and Morabito,
2019]. Yet the design space is effectively limitless, and its full potential remains unexplored.

Metamaterial discovery typically follows two paradigms: forward design, which proposes a structure
and then measures its properties, and inverse design, which begins with target properties and then
searches for a matching structure. Both workflows demand (i) domain expertise, (ii) a grasp of
relevant material metrics, (iii) concise yet expressive geometric representations, and (iv) algorithms
that map between structural and functional spaces.

Vision—language models (VLMs) are well suited to this challenge, as they excel at the cross-modal
reasoning, retrieval, and generation required for effective metamaterial design — spanning text, images,
3-D geometry, and numerical property vectors. The complex, verifiable data given by metamaterial
design tasks also offers an ideal sandbox for VLM and Al research targeting real-world applications.

Despite this symbiotic potential, data-driven metamaterial design is hindered by several issues. For
example, Surjadi and Portelal [2025] cite the need for “universal tools capable of parametrizing
varied architected material morphologies." There is also an acute need for reusable, reconfigurable,
task-agnostic datasets featuring diverse structure architectures [Lee et al., 2024].

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



37
38

39
40

41
42

43
44
45

46
47
48

49
50
51
52

53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

75
76
77
78
79

80
81
82
83
84
85
86
87
88

To address these gaps and catalyse progress in both communities, we introduce the first foundational
VLM ecosystem for metamaterial design, anchored by three components:

1. MetaDSL: a domain-specific language that captures metamaterials in a structured, compact,
and expressive form accessible to both humans and large language models.

2. MetaDB: a database of more than 150 000 metamaterials, each of which pairs a MetaDSL
program with the derived 3-D geometry, rendered images, and simulated properties.

3. MetaBench: benchmark suites that probe three fundamental metamaterial design tasks —
structure reconstruction, property-driven inverse design, and performance prediction — using
data sampled from MetaDB.

To complete our vision, we also use MetaBench to train and evaluate MetaAssist, a VLM assistant
baseline and interactive CAD environment that facilitates multi-modal design interactions including
language, images, geometry, and MetaDSL code.

All four components are designed for extensibility and community contribution, such that they can
evolve seamlessly alongside the state of the art in materials science and agentic design. Collectively,
our ecosystem provides a coherent, extensible knowledge base for metamaterial design, while laying
the foundation for intuitive, efficient human—AlI collaboration in architected materials.

2 Background

Metamaterials Two long-standing hurdles in metamaterial design are (i) navigating the immense
geometric diversity of candidate architectures and (ii) modelling the intricate, often non-linear
mapping from geometry to effective properties [Makatura et al.,[2023| [Lee et al.| 2024, |Xue et al.,
2025, |Surjadi and Portelal 2025]. Many studies rely on trial-and-error forward design, where experts
hand-craft parameterized structures for specific targets [Jenett et al.| 2020, [Muhammad and Liml [2021}
Frenzel et al.l 2017, |[Meier et al.,|2025]]. Now, data-driven pipelines also provide a more scalable,
systematic alternative in the service of inverse design: |Panetta et al.|[2015] analysed 1205 families
of cubic truss lattices, while |Abu-Mualla and Huang [2024] expanded to 17 000 truss structures
spanning six crystal lattices. Beyond trusses, high-throughput workflows create thousands of thin-
shell architectures including plate lattices [[Sun et al.| | 2023a]] and TPMS-inspired surfaces [Xu et al.,
2023| Liu et al.,[2022] [Yang and Buehler, 2022} |(Chan et al.| 2020]. Because many datasets target
a single architecture class (e.g. beams or shells) and a narrow performance metric, they restrict the
attainable property gamut and thus the capability of downstream models [Berger et al.,| 2017, |Lee et al.,
2024]. Recent designs also increasingly blend classes in hybrid or hierarchical forms [Surjadi et al.|
2025, (Chen et al., 2019} [White et al., 202 1]], emphasising the need for representations that span such
boundaries. The procedural-graph approach of Makatura et al.|[2023]] captures diverse geometries
but is demonstrated primarily for human-in-the-loop workflows. Voxel and hybrid encodings scale
to 140k—180 k diverse structures [[Yang et al.,|2024al Xue et al.,|2025]], but they sacrifice semantic
clarity and compactness, which complicates human or agent editing. Such tradeoffs — along with
inconsistencies in geometry descriptors, vocabularies, and evaluation protocols — continue to impede
dataset reuse and extensibility [Lee et al., 2024]).

We close these gaps with a universal metamaterial descriptor (MetaDSL) along with a reconfigurable
database of 150 000 metamaterials (MetaDB). Each MetaDB entry couples a succinct, semantically
rich program with derived 3-D geometry, renderings, and simulated properties, enabling consistent
comparison and seamless expansion. Programmatic templating further enlarges the design space, and
community contributions can grow both MetaDB and the accompanying benchmark suite.

Vision—Language Models for Design Large language and vision—language models (VLMs) have
recently permeated design tasks, including procedural textures [Li et al.| [2025]], 3-D scenes [ Yang
et al.} [2024b, [Kumaran et al.| [2023]], mesh generation and editing [Sun et al., 2023b| /Wang et al.,
2024, Jones et al., 2025, |Huang et al., 2024} [Yamada et al.,[2024], interior layouts [Celen et al., 2024],
sewing-pattern synthesis [Nakayama et al., 2025} Bian et al.,|2025]], and computer-aided engineering
and manufacturing [Makatura et al., 2024 alb, |Choi et al., [2025| Yuan et al.| |2024]]. In most cases,
code serves as the medium: pretrained models follow instructions, reuse standard patterns, and emit
domain-specific scripts (e.g. Blender Python). When tasks demand novel grammars or specialist
knowledge, fine-tuning further elevates performance [Zhou et al., 2025]].
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Figure 1: A MetaDSL program (a) and illustrations of each construction stage (clockwise): (b) build a
1D skeleton relative to an abstract convex polytope CP — here, a cuboid; (c¢) specify a lifting procedure
from 1D to 3D; (d) embed the CP in R? to create a tile, and execute the lifting procedure to create
our final geometry; and finally, (e) tessellate the tile according to the specified pattern.
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Figure 2: We illustrate the expressive power of MetaDSL by showing six different structures that all
stem from the program shown in Figure[T(a). Each one is produced by changing a single aspect of
the original program, as detailed below each structure.

Our work adopts this code-centric philosophy but tailors it to metamaterials, whose design demands
rich geometric semantics, strict physical constraints, and fluid translation among text, images,
parameterised programs, and numerical property vectors. By grounding the interface in a purpose-
built DSL and a physically validated database, we lay a robust foundation for future VLMs to reason
about, generate, and refine architected materials at scale.

3 Domain-Specific Language

To support our vision of an expansive, dynamic metamaterial ecosystem, a suitable structure represen-
tation is key. An ideal representation would (1) support the full range of metamaterial architectures;
(2) facilitate modularity and reuse; (3) be compact, semantically meaningful, and easy to use; (4) be
amenable to and robust under generative design; (5) encourage valid metamaterials by construction;
and (6) be quickly verifiable through type-checking. In designing MetaDSL, we laid out a long-term
design philosophy that is amenable to all of these goals. Although our current implementation realizes
a core subset of this functionality (detailed in Section[3.2)), the infrastructure is built with extensibility
in mind. This will facilitate the continued development of MetaDSL, such that new design paradigms
can be added to MetaDSL as the field matures, without invalidating existing programs.

3.1 Language Design Philosophy

Using MetaDSL, materials are defined by a combination of modular, reusable components. A rich
type system determines the compatibility between components at different levels, which allows for
programmatic composition with verifiable outcomes.

Broadly, these components follow a bi-level approach that is common for metamaterial design. The
first level describes a small representative unit of the structure, called a file. The second level specifies
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a pattern: transformations that extend a tile into a space-filling structure. In MetaDSL, these layers
are independent and polymorphic: a pattern can be applied to any number of tiles, and vice-versa.

A detailed view of the MetaDSL construction process is shown in Figure[T} The first stage specifies a
skeleton, which is a set of open or closed 1D curves defined relative to an abstract convex polytope
(CP)-such as a cuboid or a tetrahedron. To facilitate downstream compatibility checks, our type
system classifies the skeleton by examining its topology and its relationship to the CP boundaries.
Next, we select a lifting function that will be used to promote 1D skeleton curves into 3D geometry.
The applicability of a lifting function to a skeleton is determined by its type. The third stage specifies
a concrete embedding in R3 for our CP. At this stage, our lifted skeleton can be evaluated to yield
the final structure geometry and thus, a completed tile. This separation between the abstract CP of
a skeleton and the concrete CP of a tile is subtle but critical, as it permits compositional re-use of
skeletons, as demonstrated in Figure Ekd,e). However, it is also essential that we assign an embedding
before proceeding, because the admissible pattern operations are influenced by extrinsic geometric
measures such as the dihedral angles between the polytope planes. To promote the tile into a space-
filling object, MetaDSL applies a pattern composed of spatial repetition procedures like mirroring,
gliding, rotating, etc. Patterns themselves can be also be composed into larger patterns. In a final
layer, we also provide standard constructive solid geometry (CSG) Boolean operations to combine
multiple structures. This makes it easy to define structures with mixed scales, multiple symmetry
classes, or interpenetrating lattices [White et al., [2021]].

This philosophy supports the stated goals for our representation in myriad ways. For example,
because vertex positions are specified relative to their parent CP (e.g., at the halfway point of
cuboid.edges.TOP_LEFT), it is easy to identify valid position bounds; this facilitates robust explo-
ration. Inclusion of common synonyms in the syntax hardens against common LLM hallucinations
(e.g. TOP_LEFT and LEFT_TOP). The separation between abstract skeletons, embedded tile geome-
tries, and patterns encourages modular re-use at multiple scales. Moreover, deriving tile geometry
from abstract skeletons enables pattern compatibility verification based on boundary adjacency, and
the library of lifting functions covers metamaterial design patterns in existing literature.

3.2 Implementation Details

We implement our language as an embedded DSL in Python, which provides a familiar, flexible inter-
face with support for comments, descriptive identifiers, higher-order templates, and parameterization.
We use Procedural Metamaterials (ProcMeta) [Makatura et al., [2023]] as our geometry kernel, as
their representation is specifically designed to capture a variety of metamaterial classes. Targeting
this backend introduced limitations which influenced the core functionality we implemented. For
example, ProcMeta only supports materials with translational-units that reside in a unit cube; thus,
MetaDSL currently lacks support for patterns beyond that scope. The ProcMeta skeletal design
space also directly informed the abstract CPs and lifting functions that we implemented in MetaDSL.
However, as MetaDSL can be transpiled to any kernel, it is not inherently bound by these limitations.
If a more general backend were developed, our language could be extended to accommodate the
larger feature set without invalidating our existing examples. Appendix [B| gives a detailed descrip-
tion of the language design, implementation, system design insights, and comparison to ProcMeta;
Appendix [G.Z] contains the complete MetaDSL documentation.

4 Database Generation

MetaDSL represents metamaterials in a consistent, concise manner, which permits a single pipeline
that produces code, watertight geometry, renderings, and simulated properties for every entry. To en-
sure the quality of MetaDB, we only add validated models that pass basic checks (see Appendix|[C.6).

4.1 Constructing Metamaterial Models

Each metamaterial is a DSL program, or model, that may optionally expose a set of design parameters
(with default values). Our metadata block also allows program authors to include details such as
bounds, dependencies, or recommended ranges for each parameter. This clarifies design freedom,
enables continuous exploration, and provides hooks for optimisation schemes. The metadata is stored
in a machine-parsable format (YAML) with a prepopulated scheme for tracking e.g. provenance,
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Figure 3: Assortment of metamaterials in MetaDB, illustrating four creation modes: (i) hand-authored
seeds, (ii) generated models, (iii) type-enabled mutations, and (iv) LLM-augmented hybrids.

versioning, and notable traits about the structure, including symmetries, architecture type (beams,
shells, etc.), and related structures. Our metadata also permits custom fields.

Direct Construction Authored models are human-written, with provenance records tracking the
model author and the original design source(s), and editable semantic parameters to encode families of
models. We also provide a programmatic generator interface to create families of models. As a proof
of concept, we implemented a generator following [Panetta et al| [2015]]; this generates parametrized
models for all 1,205 truss topologies using a few hundred lines of Python. Our type-checked DSL
allows us to specify and evaluate validity constraints on the small tile, without needing to generate
the fully-patterned beam network. Moreover, because our generator is exposed and editable, we can
easily modify the high-level generator parameters (e.g. maximum vertex valence) to output different
sub- or supersets of interest. For each generated model, the provenance metadata stores the generator
script, its settings, and per-instance parameters; generator parameters may be substituted for specific
values or passed through to remain exposed in the resulting programs.

Augmentation We propose two orthogonal protocols to enlarge MetaDB based on existing models.
Our first strategy, Hybridization (crossover), is motivated by works that offer unique, extremal
;jmechanical properties by hybridizing common structures such as trusses+woven beams
[2025]], nested trusses [Boda et al.| 2025]], TPMS shells+planar shells [Chen et all [2019],
and trusses+solids [White et al., 2021]]. We emulate this process by prompting an LLM with pairs
or triplets of parent programs, then requesting hybrid code. Our prompting strategy (detailed in
Appendix [C.3) follows insights from recent works in LLM-mediated program search
[Romera-Paredes et al, 2024]. The resulting hybridized model stores its parent IDs, prompt details,
and LLM details as provenance information.

Our second strategy, mutation, leverages MetaDSL'’s type system to apply targeted edits—such as
skeleton reconfiguration, pattern adjustment, and lift procedure changes—while guaranteeing validity.
The operators are described in Appendix [C.4] These operations are motivated by works such as
Akbari et al|[2022], which posits beam approximations of TPMS shells. Each mutation stores its
parent and details about the mutator function.

4.2 Auxiliary Data Generation

For every model we generate three auxiliary artifacts: geometry, renderings, and physical property pre-
dictions. To obtain the geometry, we transpile our MetaDSL model into a ProcMeta graph
[2023] and use their geometry kernel to export a watertight . obj. Using the exported mesh, our
custom PYRENDER scene produces orthographic images from the front, top, right, and front-top-right
viewpoints. Finally, we use the integrated simulations of ProcMeta to voxelize the mesh on a 1003
grid and perform periodic homogenisation using a base material with E=1, p=1, v=0.45. The
resulting 6x6 stiffness matrix C' is reduced to 18 scalars: six global metrics—Young’s modulus
E, shear modulus G, Poisson ratio v, bulk modulus K, anisotropy A, volume fraction V—plus
directional values for E (3), G (3), and v (6). More details are available in Appendix@ MetaDB
therefore combines code, geometry, simulation, imagery, and rich provenance—providing a unified
benchmark and a data-efficient training ground for vision—language metamaterial assistants.



200

201
202
203
204
205

207

208

209
210

211
212
213

214
215
216
217
218

219
220
221
222
223
224
225
226

227
228

229

230
231
232
233
234
235
236
237

239

240

241
242
243
244

5 Benchmark Curation

From MetaDB we derive a benchmark that covers three fundamental metamaterial tasks: (1) recon-
struction—produce a DSL program that reproduces a target structure (for example, from images);
(2) material understanding—predict the property profile of a given structure description; and (3)
inverse design—generate a DSL program that satisfies a requested property profile. Each task
supports multiple guery types based on the inputs available. For instance, material understanding may
be invoked with a single image (“1-view”) or with four images plus code (“multiview_and_code”).
The benchmark suite ships a dataset for every query type.

5.1 Task-Based Dataset Construction

We start with a designated pool of active models and partition them into train, validation, and test
splits that remain fixed for all tasks. The relevant information for each query type is as follows.

Reconstruction. Given ne€ {1, ...,4} orthographic images, the desired output is a DSL program
whose rendered geometry matches the target. Because every model has four views (Section[4.2), each

model contributes (i) examples to the n-view dataset.

Material understanding. Given a structure description, the desired output predicts six global
properties: Young’s modulus F, shear modulus GG, bulk modulus K, Poisson ratio v, anisotropy A,
and volume fraction V. Values are rounded to two significant figures. Our benchmark supports two
query types: multiview_and_code (four images + DSL code) and single_image (one image). The
relative performance on each type indicates whether additional context helps or hinders a given VLM.

Inverse design. Given a target property profile, the desired output is a DSL program whose
simulated properties satisfy the profile. We generate datasets for six query types, where the length-n
query requests n € {1, ..., 6} property targets per profile. Targets may be exact values, ranges, or
upper/lower bounds—e.g., “auxetic (v < 0)” or “volume fraction V' =~ 0.6.” To construct target
profiles from a model, we (1) sample n active properties from the model, (2) choose bounds for
each, and (3) render a natural-language prompt using a grammar conditioned on each property’s
part-of-speech tag (adjective, verb, etc.). This process is detailed in Appendix [E.2] Both the prompt
and the underlying numeric targets are stored, so users can rephrase questions or bypass NLP entirely.

Omnitask dataset. For completeness, we provide an omnitask split that unites every query type
into a single corpus; this is useful for training generalist agents.

5.2 Task-Based Example Format

The query/response pairs are constructed using prompt templates that are specific to each task
type (listed in Appendix [G). Given a metamaterial and a task type, we first gather the data that
will be used to construct the query/ground truth response, along with the information required
to evaluate the predicted response. The intermediate format used to organize this information is
detailed in Appendix [E.I] In addition to being model agnostic, this intermediate format allows
researchers to reframe prompts without regenerating or deviating from the core content of the inquiry.
The intermediate representation also makes MetaBench applicable to traditional non-Al methods.
However, since no traditional methods cover the full breadth of MetaBench, we do not include
traditional baselines in our evaluations.

6 Results

6.1 Database

MetaDB is, to our knowledge, one of the largest metamaterial databases ever collected, comprising
153, 263 materials. Our dataset features 36,997 expert material designs, including 1,588 variations of
50 hand-authored programs, 1,205 generations, and 34,204 generation parameter variations. We also
introduce 12,029 hybrids and 141,234 mutations.
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Category Inverse Design ~ Material Understanding Reconstruction

Metric Error  Valid  Error Valid CD IoU Valid
Model
LLaVAOmniTask 0.011 91.9% 0.024 100 % 0.034 0490 82.9%
LLaVASingleTask 0.036 81.9% 0.018 100 % 0.029 0.524 83.8%
NovalLite 0.060 2.7%  0.200 100 % 0.119 0.051 19.3%
NovaOmniTask 0.026 91.4% 0.032 100 % 0.045 0334 87.2%
NovaSingleTask  0.032  79.2% 0.153 100 % 0.059 0.205 84.8%
OpenAlIO3 0.038 24.7% 0.077 100 % 0.053 0.147 54.6%

Table 1: Category-level evaluation results for various models on MetaBench. Average Normalized
Error (Error), Chamfer Distance (CD), and Intersection over Union (IoU) are averaged over valid
responses for across all tasks within a category, and Valid reports the percentage of valid responses
(note that this means SingleTask models are averaging over fewer task examples). Responses are
considered invalid if they do not contain code or the requested prediction metrics, or if the generated
program does not produce a valid metamaterial. Untuned LLaVa-Next values are not reported because
it failed to produce any valid outputs. See Figures @to @ for qualitative evaluation.

To validate MetaDB, we examine its property gamut relative to our expert seeds. The property gamut
of MetaDB compares favorably to that of our expert seed programs. Both are centered around similar
ranges, suggesting that our design space is valid and relevant. However, MetaDB offers more uniform,
dense coverage, along with a wider range for properties like anisotropy (~2x the expert range) and
directional Poisson ratios (~1.2-4x the expert range).

6.2 Benchmark & Baseline

The 13,282 authored, generated, and hybrid models form the core set from which MetaBench is
sampled. We randomly split these models into 500 test, 50 validation, and 12,732 training materials,
and generated benchmark tasks for each as described in Section 3]

We tested a variety of commercial and open source VLMs on MetaBench, both fine-tuned and
zero-shot. Table|l|summarizes these models’ performance at the task category level; additional tables
and galleries in Appendix [D|break down performance at the task level, with confidence intervals and
qualitative interpretations. These experiments revealed three primary insights. Firstly, that fine-tuning
is necessary for strong performance on MetaBench. Untuned models are generally unable to produce
consistently valid programs, though when they do, a reasoning model (03) can perform in-line with
weaker tuned models. Secondly, fine-tuning generalist multi-task models improves inverse design
performance. Finally, a tuned small model outperforms a tuned large model in nearly all metrics.
However, this is likely due to it being able to converge more quickly given the same training budget
(see Appendix [F.T). Error metric definitions and tested model details are given below.

Material Reconstruction Reconstruction measures 3D structure similarity, measured by intersec-
tion over union (IoU) and volumetric chamfer distance of the voxelized unit cells.

Material Understanding Material understanding is computed as an Averaged Normalized Error
across six properties: anisotropy, Young’s modulus (VRH), Bulk Modulus (VRH), Shear Modulus
(VRH), Poisson’s Ratio, and Volume Fraction, normalized to the typical range of that property across
the core material set.

Inverse Design Inverse design is measured by a clipped Averaged Normalized Error. For specific
value targets normalized error is computed as above. For bounds targets, normalized error is taken
relative to the bound (and is zero if the bound is respected).

Models We tested 3 base models; a small open-source VLM (LLaVA-Next), a large commercial
VLM (Amazon Nova Lite), and a large commercial chain-of-thought reasoning model (Open Al 03
with medium reasoning). For LLaVA-Next and Nova Lite we also produced four fine-tuned variants
trained on the MetaBench training set. The OmniTask variants were tuned over all training task
examples in MetaBench, and three SingleTask variants were trained over one category-representative
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Figure 4: Reconstruction: (Left) Generating a metamaterial program from an input image enables
incorporating designs from literature, sketches, and nature. (Right) 3D printed design.
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Figure 5: Iterative Inverse Design: Designers can specify desired target properties, and these
preferences and constraints can be considered throughout multiple design iterations.

task type each (4-view reconstruction, 4-target inverse design, and multi-view-plus-code material
understanding). Table [T] condenses the SingleTask variants of each model into a single row for
compactness. In initial tests, untuned LLaVA-Next failed to produce any valid output, likely due to
the MetaDSL description overwhelming its context window, so has been excluded from the table.

Implementation LLaVA models are tuned from Llama3-LLaVA-Next-8b|[Li et al.| [2024]), [Liu et al.
[2024]. Commercial models were tuned and tested with default settings. All tuned models were
trained for 1 epoch. For full training and inference details, see Appendix [F] Benchmark construction
and model prompts are detailed in Appendix [E]and Appendix |G|

6.3 Interactive Case Studies

We built a browser-based metamaterial copilot interface to explore practical scenarios. It consists of
a VLM chat window on the left, a code editor in the center, and a material preview window on the
right. We conducted a series of case studies, using NovaLiteOmniTask as our interactive model due
to its large context window and stronger conversational abilities. We experimented with a variety of
prompts, and present here two scenarios that illustrate the potential of a metamaterial design copilot.

The first is creating a material from an input image. Images are compelling input for material design
because they cover trying a new material described pictorially in literature, sketching an idea for
a design, or taking inspiration from a structure in nature. We prototyped this functionality with a
material from the MetaBench test set; even though we presented our request conversationally rather
than in structured form, we were still able to obtain and fabricate a perfect reconstruction.

The second is iterative inverse design. In Figure 5] we specify a set of target property bounds, and
the model is able to generate a metamaterial that satisfies them (we verified this with our simulator).
But design is always iterative, and seeing one design can spark new criteria and objectives. In this
case we wanted a thicker structure that still conformed to our original input, and (again verified by
simulation), the model was able to update the design within target parameters. This illustrates the
powerful ability of language models to remember and carry through design context, allowing for
assistance across multiple design iterations.
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7 Discussion, Limitations, and Future Work

Metamaterial design is an inherently multimodal, high-impact problem that requires complex reason-
ing and preference consideration, which makes it a natural test bed for Al development. Conversely,
metamaterial researchers have called for better data sets and Al-powered tools. MetaDSL and MetaDB
provide a common, traceable descriptor that both communities can adopt. As researchers contribute
new designs in this format, the database will grow organically, giving machine-learning practitioners
richer training data while delivering state-of-the-art design assistants to materials scientists.

Our current work provides a comprehensive framework toward these goals, offering myriad op-
portunities for improvement. We deliberately restricted our MetaAssist implementation to simple
supervised fine tuning to provide a bedrock baseline for this new task. This provides common metric
for techniques such as RAG to read papers and retrieve patterns, chain-of-thought reasoning to
connect design intent to property profiles, and RL training with curriculum learning to generalize to
novel inverse design profiles.

MetaDSL is designed to be retargetable (Appendix [A), but we currently only target a ProcMeta
backend that is more constrained than MetaDSL’s design. A more flexible geometry kernel would
unlock non-cubic and aperiodic tilings. Targeting a faster kernel would enable larger and more
interactive workflows (e.g. interactive output simulation — we currently often need multiple attempts
to get a verifiably correct output), simulation-in-the-loop optimization, and an even-wider data-set
scale.

MetaDB also has ample opportunities for growth as a community project, including the imple-
mentation of additional generators [Sun et al., 2023a, |Liu et al., 2022, |Abu-Mualla and Huang,
2024, Makatura et al., [2023]], systematic inclusion of singular design templates from metamaterial
literature, and diversity-guided synthesis. Our program’s explicit semantic structure could support
taxonomy construction and intelligent exploration of large design spaces. With broad participation,
MetaDB could become the primary resource for tracking metamaterial lineages, structure—property
relationships, and mechanistic insights—paralleling the role ImageNet played in computer vision.

At the same time, our framework may be susceptible to misuse or misguided application — particularly
when it comes to our VLM-powered design assistant. Of course, our multilayer stack—simulation,
code generation, and LLM reasoning—can introduce errors. This deserves particular attention in a
domain like metamaterials, which is difficult to reason about intuitively, and an active frontier of sci-
ence with rapidly changing understanding. The resulting materials may also be deployed in scenarios
where inaccurate results may lead to catastrophic failure of engineered products or infrastructure.
Thus, it is critical that each result must be validated before deployment, and communications should
avoid overstating reliability. Our format already takes small strides toward ensuring the accuracy and
traceability of information by including detailed provenance records in each of our models. To further
improve transparency, we also release our artifacts and the pipelines used to generate them. Moving
forward, we believe it would be prudent to include additional safeguards such as automated validity
checks, uncertainty estimates, safety factors, and optional gated access to high-fidelity simulators to
reduce the risk of erroneous or unsafe designs.

8 Conclusion

We introduced MetaGen, a unified ecosystem for vision—language metamaterial design that combines
(i) MetaDSL, a compact yet expressive domain-specific language; (ii) MetaDB, an over 150 000-entry
database with paired geometry, renderings, and physics; (iii) MetaBench, a task-oriented benchmark
that probes reconstruction, material understanding, and inverse design; and (iv) MetaAssist, the
first VLM-driven CAD interface for architected materials. Our baseline experiments illustrate
that large vision—language models offer promising performance for multi-modal translation and
design generation. Moreover, we provide a holistic vision for accelerated, symbiotic research at the
intersection of machine learning and architected materials. With the introduction of MetaGen as both
a challenging benchmark for multimodal models and a practical toolkit for materials scientists, our
paper lays the foundation to bring this vision to life.
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A Ecosystem Design

The four components of the MetaGen ecosystem work together to achieve our design goals. We outline these
goals and the design and organization decisions that achieve them here:

* MetaDB
— Design Goals: Collect existing knowledge in a reconfigurable, reusable, and task independent
manner
— Organization
* Primary Elements: Material Definitions; Provenance
% Derived Elements: Geometry; Computed Properties
* MetaBench

— Design Goals:
— Organization:

# Primary Elements: Structured Task Definitions; Target Data; References, Evaluation Proce-
dures

% Derived Elements: Query Strings; Example Responses
* MetaDSL

— Design Goals: Eventual Comprehensiveness via Extensibility; Supports Hybrid Structures Easily;
Ease of Use

— Design Decisions: Extensible Embedded Python DSL for extensibility and Ease-of-Us; Separa-
tion of Front-End Language from Geometry Kernel

¢ MetaAssist

— Design Goals: Usable for general engineers; single interface across design silos; possibility of
integrating unstructured data (literature, sketches, etc.)

— Elements: Interactive Interface; Trained Baseline Models

Each component supports the others, as illustrated in Figure[6]

Generates
MetaDB MetaBench
References
gl 18 = [E
Outputs .
MetaDSL MetaAssist
Interprets

Figure 6: Relationships between MetaGen ecosystem components.

A.1 Ecosystem Development and Insights

The elements of this ecosystem were developed in concert with one another, going through 3 major iterations
before arriving at their current state. MetaDSL was at the heart of each iteration, as the representation has a
direct impact on the efficacy of the other three components:

* MetaDB needs a representation that captures diverse structures, but also offers robust pathways for
scalable (and, in this case, VLM-driven) structure generation, hybridization, mutation, sampling, etc.
¢ MetaBench can only be used for training and evaluation if it is built atop a large, diverse database.

* MetaAssist relies on a strong training corpus from MetaBench. MetaAssist also hinges on the
intelligibility of the representation, and the model’s ability to interpret, generate, and modify programs
according to user input.

We defer the language-specific development details to Appendix [B.4]
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Figure 7: Overview of MetaDSL’s implementation. MetaDSL programs are written in an embedded
Python DSL frontend to allow for ease of use and extensibility. These structures are compiled into a
structured intermediate representation, and a backend Translator converts these structures into geome-
try kernel instructions. In our implementation we used the geometry kernel from ProcMeta Makatura
et al.|[2023]]. By separating the front-end representation from the backend geometry kernel, MetaDSL
is flexible to both be extended in its frontend representation, and retargettable to different geometry
backends for new applications, while keeping a compatible material representation.

Outside the scope of the DSL, we also found that dataset management and curation posed a major hurdle. We
improved diversity by continuously mining metamaterial literature for additional seed program designs. We
expressed these seed programs as-parametrically-as-possible to allow for expert-driven sampling. As we scaled
the dataset, we also realized that it would be critical to keep track of the programs’ sources and relationship to
one another. This information is especially useful for navigation, contextualization and diversity management,
particularly as the database grows in response to community effort. To manage this, we introduced a formalized
provenance system for MetaDB.

B MetaDSL

B.1 Additional Implementation Details

We implemented the core functionality of MetaDSL (version 1.1.0) with two goals in mind. First, we wanted
full support for the metamaterials that were expressible in our geometry kernel, ProcMeta. Second, we wanted
our infrastructure to easily permit extensions in the future without invalidating existing programs. We detail the
current state of each feature category in our language: convex polytopes, skeletons, lifting procedures, tiles, and
patterns. For a full API description of the accessible functions, please refer to Appendix[G.2] Figure[7]shows an
overview of the compiler architecture.

Convex Polytopes (CP) Currently, all of our programs make use of three pre-defined CPs (as inspired by
ProcMeta): cuboid, triPrism and tet. The infrastructure to define custom convex polytopes exists, and most
operators up to and including Tiles should generalize to such CPs. However, the patterning operations would
need to be generalized before being able to operate on arbitrary CPs.

Skeletons Then, a skeleron is constructed via a set of vertices and edges that are positioned relative to a
common CP. Each vertex is positioned on a particular CP entity (corner, edge, face, interior). Each CP entity is ac-
cessed via a semantically meaningful alias, permitting calls such as e.g. vertex(cuboid.edges.BACK_LEFT).
The vertex call also optionally takes a list £ of interpolation values used to position the vertex within the entity.
If ¢is omitted, the returned point will be at the entity’s midpoint (edge) or centroid (face/interior). Presently,
corners ignore weights (since they cannot be moved); edges use linear interpolation; and faces use barycentric
coordinates if they contain 3 vertices or bilinear interpolation for quads. If a CP with different polygonal faces
(e.g. pentagons) were implemented, an appropriate lower-dimensional vertex positioning specification would
need to be devised. Internally, the vertices are stored using weights over a full list of the CP corners, so additional
specification interfaces can easily be defined.

An ordered list of vertices can then be strung together into simple (non-branching, self-intersection-free) open
or closed paths via the Polyline or Curve commands. Each edge contained in a path infers and maintains
information about its incidence on the CP — including whether it is contained within a face, through the CP
volume, coincident with a CP edge, etc. This is very useful when determining lifting function compatibility, as
some procedures can only be applied when e.g. every path edge is contained within a CP face.

Then, a skeleton is used to combine a set of vertices or polylines/curves into a larger, more complex element,
over which additional organizational information is computed. Skeletons infer the connected components formed
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by the inputs, then categorize them based on their topology. Thus, a skeleton may be labeled as a simple closed
loop, even if the input is a set of open paths. Again, these insights are critical for determining the skeleton’s
compatibility with downstream operations, such as lifting procedures. We also included infrastructure for the
skeletons to infer and track their total incidence on each entity of the reference CP, including the dimensionality
(e.g. point or line) of an intersection — however, this feature is not fully implemented in the current MetaDSL
version.

Lifting Procedures Lifting procedures are used to transform the skeleton into a volumetric object. Sim-
ple procedures like Spheres instantiate a sphere of the given radius centered at each vertex in the skele-
ton. Similarly, UniformBeams instantiates a beam of the given thickness centered along each path of the
input skeleton. The shell operators (UniformDirectShell, UniformTPMSShellViaMixedMinimal, and
UniformTPMSShellViaConjugation) solve for a surface that spans the provided boundary curve before ex-
panding the surface to the desired thickness. Our shell and beam procedures mimic those defined by ProcMeta,
as they cover a wide range of metamaterial classes and were already (by construction) natively supported by our
geometry kernel. Our Curve and Polyline commands correspond to their smooth/non-smooth edge chains,
respectively. Unlike the original, we chose to explicitly separate several operators that were previously lumped
together, which clarified and minimized the number of exposed parameters for each call.

Tiles To create an embedded, patternable tile, we provide a list of one or more lifted skeletons as input to the
Tile operator. The tile operator also takes as input the embedding information, which will be used to embed
the CP and, in turn, each vertex of the contained skeleton(s). To obtain the embedding information, each CP
implements at least one embed function, which takes high level parameters such as the min/max position of the
CP’s AABB.

Because of constraints imposed by ProcM eta — that these must form a partition of the unit cell — our code
currently treats these CPs with some additional assumptions. Specifically, though the cuboid need not be a cube,
it must have right angles everywhere, and edge lengths must be 1/2F for some positive integer k; in practice,
k € [1,..4]. The triPrism is assumed to be an isoceles triangle with a right angle. The tet similarly has a base
that is an isoceles triangle with a right angle, and a fourth vertex that is located directly above one of the 45
degree angles. These assumptions would ideally be relaxed in a future version of MetaDSL.

Patterns Patterns are currently the most restricted feature of MetaDSL, as we restrict our dataset to programs
that can be compiled down to the language and solver set described by ProcMeta. Thus, rather than extending
our structures to a more arbitrary tiling in R?, all of our structures have a translational unit residing in a unit
cube. The pattern operators were written in a way that allows for additional, extended tiling procedures. We
prioritized mirrors, because they are sufficient to express a wide range of common metamaterial designs, and
they are often used in generative metamaterial design schemes, as the connectivity requirements are simpler than
most other operations. We also have limited support for other operations such as Rotate180 and Translate,
which can be used inside the Custom pattern specifier. Currently, these limited operations are only defined for
specific transformations on cuboids. We look forward to an expanded MetaDSL that includes full support for
these patterning operations, at least over the pre-built CPs that currently exist. In the long term, we envision a
patterning system that extends well beyond this, to support large, potentially aperiodic or asymmetric tilings
composed of one or more tiles with arbitrary CPs. This is a very difficult problem, and will itself present an
interesting set of research directions, including how to intuitively specify these patterns and how to characterize
their compatibility/validity.

B.2 Example Programs

Example program-structure pairs are listed in Figure[§|and Figure[0] Many additional models can be found in
the accompanying data.

B.3 MetaDSL vs. ProcMeta

As suggested by Appendix[A.T]and the architecture diagram in Figure[7} MetaDSL is distinct from and strictly
more general than ProcMeta, with a design philosophy all its own. Our approach was motivated by our early
experiments with ProcMeta, which revealed a critical shortcoming: important information was represented
implicitly in the ProcMeta GUI interface, and was entirely absent from the ProcMeta graph representation.
To make this information accessible to LLMs (and more easily accessible to humans), we implemented a
programmatic interface, MetaDSL, that compiles to the same geometry kernel as ProcMeta, but provides several
practical advantages (see Table2).

Most importantly, MetaDSL introduces explicit, referenceable bounding volumes (BVs), which are critical for
verifying and enforcing the preconditions of geometry operations. In the ProcMeta GUI, BVs exist only as
non-referenceable visual aids; users must manually align coordinates, and no automated compatibility checks
are possible. ProcMeta graphs omit BVs entirely. MetaDSL represents BVs through a CP abstraction, which
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from metagen import *

def make_structure ( shell_thickness =0.03) —> Structure :
v0 = vertex ( tet .edges. BOTTOM_LEFT)
vl = vertex ( tet .edges. TOP_LEFT) P
v2 = vertex ( tet .edges. TOP_RIGHT) — i i
v3 = vertex ( tet .edges. BOTTOM_RIGHT)

c0 = Curve([v0, v1, v2, v3, v0]) '/ |

| /|
skel = skeleton ([c0]) < | &/
shell = UniformTPMSShellViaConjugation(skel, shell_thickness ) ‘/ 4 ~
embedding = tet .embed(0.5) — ) . ’ /

tile = Tile ([ shell ], embedding)
pat = TetFullMirror ()
obj = Structure ( tile , pat)

return obj

Figure 8: Example program and corresponding geometry for the Schwarz P structure.

from metagen import

def make_structure (beamRadius_narrow=0.03, beamRadius_wide=0.1) —> Structure:
embed = cuboid.embed(0.5, 0.5, 0.5,
cornerAtAABBMin=cuboid.corners. FRONT_BOTTOM_LEFT)

v0 = vertex (cuboid. corners . FRONT_BOTTOM_LEFT)
vl = vertex (cuboid. corners .BACK_TOP_RIGHT) ]
p0 = Polyline ([v0, v1]) AN >

skel = skeleton ([p0]) ‘ g
liftedSkel = SpatiallyVaryingBeams(skel, [[0, beamRadius_narrow], /f’f \
[0.5, beamRadius_wide], y/4

[1, beamRadius_narrow]])
tile = Tile ([ liftedSkel ], embed)
pat = Custom(Rotate180([cuboid.edges. BACK_RIGHT,
cuboid.edges. BACK_LEFT], True,
Rotate180([ cuboid.edges. TOP_RIGHT], True)))
obj = Structure ( tile , pat)

return obj

Figure 9: Example program and corresponding geometry for the pentamode structure.
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MetaDSL

ProcMeta

Compactness

Modules

Relative vs. Absolute Po-
sitioning

BV representation

Type/Error checking

Simplified Operations

Semantic information

Parameters

Loops, Functions

Shorter, less boilerplate. Easier to read, less likely to
exceed token limits

Highly reusable. Patterns defined in composable chunks
(eg TetMirror), independent of tile contents. Skeletons
defined independent of embedding, easily scale to differ-
ent Tiles.

Positions and transforms use local coordinates (i.e. [0,1])
wrt named entities (cuboid.edges.TOP_LEFT) in ab-
stract polytopes. Robust for generation, clear design
space bounds, more intuitive.

Explicit BV with named, referenceable entities. Facili-
tates verifiable parametric design, e.g., vertex constrained
to given BV edge. Allows type/error checking.

Type/incidence tracking to ensure compatibility — e.g.
conjugate TPMS require a closed loop where every edge
lies in a BV face, and every BV face contains at least 1
loop edge. This is known from our representation and ver-
ified by downstream operations. Helps determine valid
substitutions for mutations, even when large changes are
proposed, leading to greater diversity. Critical for com-
plex patterning, to determine compatibility of proposed-
adjacent faces.

Abstractions simplify element creation; e.g., Sphere()
takes a center point and a radius, as one would expect.
Easier for humans and LLMs.

Complete support. Comments and meaningful variable
names improve readability and admit metadata (prove-
nance, parameter bounds)

Complete support. Allows parametrized models and
family generators.

Supports complex logic that would be tedious to im-
plement otherwise. Functions are especially useful for
hybridization, as programs can be directly reused and/or
rescaled.

Longer, more boilerplate. Exceeds context of small,
lightweight models.

No support. Limited reuse. Patterns can’t exist indepen-
dently; no pre-built Patterns. Absolute Skeletons, cannot
easily be rescaled.

Positions and transforms use absolute coordinates. Eas-
ily misaligned, difficult to visualize without plotting. Un-
suitable for VLMs, which struggle with computation/s-
patial tasks.

Implicit or Absent BV: drawn as a visual aid in the
GUI, but not represented/preserved in the graph. Never
referenceable.

None. The burden of verification (for e.g. vertices on BV
edges or edges in BV faces) is left to the user — infeasible
for agentic design. Bad inputs crash ProcMeta with no
explanation or suggested improvements.

Strict compliance with the given graph interface makes
some operations cumbersome; e.g. for a sphere, thicken
a 0-length edge chain over 2 co-located vertices

No support.

None. Explicit positions etc. only. Variations defined as
separate graphs. Difficult/impossible to infer constraints
or design space from the graph description.

No support. Each instance must be created/connected
individually. Even hybridization is difficult, because
subgraphs cannot be inserted directly — the identifier/ref-
erences of each node must be updated.

Table 2: Detailed differences between the interfaces for MetaDSL and ProcMeta.

enforces constraints by construction, enables type checking, and cleanly separates tile content from patterning,
improving modularity and reconfigurability. These features align the representation more closely with the
valid shape space, aiding both human designers and LLMs in producing valid, diverse structures. MetaDSL
programs also make heavy use of programmatic features absent from ProcMeta graphs. Semantic variable
names, comments (avg. 4/program), and parametric variables improve human interpretability and support
natural-language reasoning for LLMs. Loops and helper functions are also common, appearing in 1,744 and
2,103 of the 13,284 core programs respectively. These features allow compact, self-consistent definitions that
would be unwieldy if unrolled or inlined into a ProcMeta graph.

We tested LLM-based augmentation using ProcMeta JSON instead of MetaDSL. MetaDSL yielded: (1) higher
code validity (75% vs. 54%), (2) more structurally focused reasoning rather than boilerplate handling, and (3)
lower token usage (580 vs. 1,049 tokens on average for 04). Beyond these immediate benefits for LLM usage
and dataset generation, our DSL interface also makes MetaDSL a more flexible platform from which to build
further extensions, which facilitates its intended purpose as the seed of a wider community project.

Extensibility The MetaDSL interface naturally generalizes to shape spaces that would be difficult to represent
in ProcMeta’s graph approach. For example, implicit functions are common in metamaterial design, but they
would be cumbersome to represent in ProcMeta’s graph. However, MetaDSL could naturally include them:
rather than an explicit Skeleton, we could use the implicit function to define a SkeletonGenerator; this could then
be fed to an Implicit lifting function, which would solidify a given isovalue range. Non-trivial patterning would
also be possible through MetaDSL’s Custom pattern interface. For example, given a set of mutually compatible
unit cells (like the left/right faces of Figure[2h,b,c,f), simple translations could combine them into an elongated,
interleaved tile (e.g. ABCCBA). With enhanced compatibility determination, we could also create Pattern
procedures for scholastic or aperiodic tilings. This will allow MetaDSL to expand alongside developments in
metamaterial design.

B.4 Language Development Process and Insights

As mentioned in Appendix@ our geometry representation went through 3 major stages.

17



658
659
660
661
662
663

664
665
666
667
668
669
670
671

672
673
674
675
676
677
678
679
680
681
682
683
684

685

686

687

688

689

690

691

692

693
694

695

696

698

699
700
701
702
703

704

706

707
708

In the first iteration, we represented metamaterials using ProcMeta graphs directly. This had several issues: it was
not compact enough for the context windows of small, lightweight models; intuitiveness and editability suffered
dramatically without the aid of a GUI editing tool; the graphs’ use of absolute coordinates proved challenging
for LLMs (which struggle with spatial reasoning); and the program manipulations (e.g. hybridization, mutation)
were unwieldy and fragile, with low validity rates that prohibited effective dataset scaling and diversification.
This limited the breadth of MetaDB and MetaBench, while curtailing the efficacy of MetaAssist.

To address this, we designed a higher-level language that became MetaDSL-v0. This approach had a compact,
modular, bilevel design that was embedded within Python and thus permitted semantically meaningful content;
as such, it solved the context length and human editability issues of ProcMeta. It allowed for relative positioning,
which mitigated the issues with coordinates while improving components’ reusability. It also allowed for dataset
augmentation through programmatic mutation, and improved the efficacy of VLM-based hybridization and
mutation — we attributed this jump to our Python embedding, as VLMs show great facility with Python. Still,
MetaDSL-v0 remained fragile: generated programs frequently failed, and database augmentations showed
limited diversity.

Analysis of MetaDSL-v0’s failure modes offered several insights; we arrived at the current MetaDSL by
addressing each in turn. First, we noticed that VLMs often used hallucinated synonyms, such as TOP_LEFT
vs LEFT_TOP; we added overloads for all reasonable variations of our functions and attributes. We also found
that it was critical to abrogate as much spatial reasoning from the VLM as possible: a full 1/3 of failures were
due to the VLM’s improper positioning of vertices that form the concrete polytope tiles. We circumvented
this through abstracted tile embedding functions, which generate valid embeddings from simple, meaningful
parameterizations. In our final large-scale change, we swapped the relative order of lifting functions and tile
embeddings (previously Embed then Lift; now, Lift then Embed). This change improved the modularity and
compositionality while reducing verbosity — for example, this change allows multiple skeletons to reside in a
shared Tile embedding, such that they can be patterned as a single unit. This change also paved the way for
patterning of more diverse geometry-generation methods in future extensions. As a result, MetaDSL showed
dramatic improvements in generation/mutation rates, and — in turn — significantly more diverse LLM-driven
hybridizations.

C MetaDB

C.1 Database Layout
MetaDB is structured into 4 primary directories:

* literature: Literature references that are the sources for hand-authored models.
* models: MetaDSL programs and their outputs.

» generators: Programs that create and augment models

¢ benchmark: The MetaBench benchmark

Data items in MetaDB can reference other items by path. These paths are either absolute (start with a forward
slash *“/”) or relative (no leading slash). Absolute paths are assumed to start at the root of the database structure.
For example, a model may reference the paper that defined it in its sources as /literature/. ...

C.2 Provenance Information

Each Model in MetaDB starts with a triple-single-quote (’ > ) delimited yaml string called the header-block.
This contains useful metadata about the program, including provenance information about how it was created,
and what sources it draws on. Provenance information is recorded in two places in the header block.

The primary location is in the “sources” key. This is a dictionary where the keys are MetaDB paths
to literature, models, or generators that are the source of this model. The secondary location is in
file_info—generator_info. For models that are autogenerated via enumeration or augmentation this
section contains a MetaDB path to the script that generated the file, the arguments that were passed into that
script, and specific structure_details that specified this particular model.

C.3 Hybridization Implementation

We hybridized hand-authored models using calls to OpenAl’s 04-mini model using a reasoning effort of
"medium". For every pair and triplet of authored models, we used the following prompt template:

You have access to a DSL whose specification is as follows:
{ api_description }
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I want you to help discover unique new programs. Do this by genetic crossover based on these
parent Metagen DSL programs:

D

python
{program 1 code}

e

2)

python
{program 2 code}

Combine relevant structural / logical features from each sample into one coherent DSL program.
Be sure to:

— Respect the DSL syntax strictly .

— Maintain correctness in the final structure definition .

— Keep the final program well-formed and ready to be run as a standard Metagen DSL generator.
— Provide minimal descriptive comments.

Return only the resulting code in a single code block.

where api_description is the MetaDSL API specification given in Appendix [G] and the program code is
listed excluding the header block.

C.4 Mutation Implementation

Our mutation script loads a DSL model from file and constructs the corresponding Structure object in memory.
Then, it is able to modify the structure along 4 different axes. Two of the axes allow discrete adjustments: (1)
switching any Polyline to a Curve or vice versa; and (2) selecting a different lifting procedure from the set of
options compatible with the skeleton (as inferred by our type system). The remaining modification axes permit
continuous variations: (3) repositioning a vertex within its CP element; and (4) selecting a different thickness
specification for any lifting procedures. To generate a given variant, each modification axis was permitted with a
pre-specified probability; we used Pr = 0.7 for both discrete changes, Pr = 0.9 for vertex perturbation, and
Pr = 0.98 for thickness perturbation. Once a given perturbation category was permitted, we looped over each
opportunity for said modification within our structure specification, and evaluated a random number against the
same respective probability to decide whether this specific instance should be modified or not. For example,
with Pr = 0.7 we allow Polyline/Curve swaps in the variant; then, each time a candidate Polyline/Curve is
identified, we enact the swap with Pr = 0.7. Once an instance has been approved, the specific replacement value
was chosen at random from the appropriate set of options (if more than one available). The updated structure is
then written to file using the ds1Translator, which writes a DSL model from a Structure object. Additional
mutation procedures could be implemented to further increase the vawriety of resulting structures.

Provenance Information is stored in the sources section of each program’s header block. This is a dictionary
where the keys are database paths.

C.5 Material Properties

Our simulation provides the 6 X 6 elastic tensor C' in Voigt notation, along with the compliance matrix, S = C -1
From this, we extract 18 common material properties:

* FE: Young’s Modulus, Voigt-Reuss-Hill (VRH) average, relative to Fpase.

e E, E5, E3: Directional Young’s Moduli, relative to Fhase

¢ (G: Shear Modulus (VRH average), relative to Fipase

¢ (F23,(G13, G12: Directional Shear Moduli, relative to Fhase

» v: Poisson ratio (VRH average)

* V12,13, V23, V21, V31, V32: Directional Poisson ratios

e K: Bulk modulus (VRH average), relative to Fipase

¢ A: Anisotropy (universal anisotropy index)

¢ V: Volume Fraction.
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Category Inverse Design Material Understanding Reconstruction
Metric Error Valid Error Valid CD IoU Valid
Model
LLaVAOmniTask 0.011 £0.002  919% £09%  0.024 +0.004  100.0% * 0.0% 0.034 £0.001  0.490 £ 0.008 82.9% + 0.9%
LLaVASingleTask  0.036 + 0.007 81.9% +3.2% 0.018 £ 0.004  100.0% * 0.0% 0.029 £ 0.003  0.524 £ 0.030 83.8% +3.2%
NovaLite 0.060 + 0.023 2.7% + 0.6% 0.200 +0.005  100.0% + 0.0% 0.119+0.003  0.051 +0.003 19.3% + 0.9%
NovaOmniTask 0.026 + 0.002 91.4% + 1.0% 0.032+0.005  100.0% * 0.0% 0.045+0.001  0.334+0.007 87.2% +0.8%
NovaSingleTask 0.032 + 0.007 79.2% + 3.4% 0.153+0.006  100.0% * 0.0% 0.059+0.003  0.205 +0.020 84.8% +3.2%
OpenAIO3 0.038 + 0.006 24.7% + 1.5% 0.077 £0.005  100.0% * 0.0% 0.053 £ 0.001 0.147 £ 0.004 54.6% + 1.1%

Table 3: Benchmark summary with confidence intervals.

C.6 Ensuring MetaDB Quality

MetaDB is founded on a strong basis of expert programs, including 50 hand-authored examples sourced from
diverse, singularly-developed designs in metamaterial literature. This large, diverse collection of seeds is unique
to MetaDB, as most large datasets are derived exclusively from a small set of procedural generators. For example,
Xue et al.|[2025]] creates a database of 180k samples, 78% of which stem from variations of the topologies
in Elastic Textures [Panetta et al.l [2015]. The remaining 22% stem from similar generators for planar- and
curved-shell structures [Liu et al.,[2022] |Sun et al.,[2023a]]. Because of the reliance on such generators, |Xue
et al.|[2025] does not offer any representation of e.g. CSG-style structures like the Bucklicrystal of |Babaee et al.
[2013]]. However, the bucklicrystal is part of our database, as shown in Figure[3]i), center). MetaDB also already
includes Elastic Textures, and similar generators could be implemented for the remaining sources mentioned
above.

To ensure that MetaDB only contains high-quality material definitions — even when automatically generating a
large portion of our entries — material models are only added after they have passed a series of basic checks.
Presently, this includes 3 criteria:

* MetaDSL compilation: the model must contain valid python code that successfully evaluates to a
MetaDSL Structure object. This includes all runtime type checking done by MetaDSL.

¢ Valid Geometry Generation: after the MetaDSL Structure object is transpiled into the target geometry
kernel (in our case, ProcMeta), the kernel is run. We check the resulting geometry for validity, as
measured by a non-null result that is tilable in 3D. To determine tilability, we tile the base cell in a
3 x 3 x 3 lattice, then check that the boundaries are periodic and that at least one connected component
of this larger base cell reaches all boundaries.

Physically Consistent Simulation Results: the simulator must return reasonable results that obey
physical constraints. For example, since our simulation is normalized by the base material’s Young’s
modulus Fi,se, it must be the case that our simulation returns £ < 1.

D Further Benchmark Results

D.1 Expanded Quantitative Results

In this section we extend the primary table from the paper Table[T]to include 95% confidence intervals, computed
using the standard-error approximation (Table[3). We also show more detailed tables for each task category,
broken down to the individual task type. These extended views do not change the primary observations from the
main text, but do highlight the differences between subtasks.

Significance In Table[3|we show 95% confidence intervals around the sample means for our top-level task
categories. From these we can see that for every task that LLaVASingleTask outperformed LLaVAOmniTask,
the confidence intervals actually overlap, indicating that this performance boost from single-task training may
not be significant. This reaffirms our decision to base our metamaterial co-pilot on the OmniTask trained models.

Categorical Results Tables @ and E]break down Table|1|for each task category into its task variations
(number of views, targets, etc.). These provide a more even point of comparison between single and omni-task
models because the results are aggregated over exactly the same examples. By contrast, in the primary table, the
omni-task models are averaging over more and different tasks; thus, they may be biased by overall easier or
harder requests.

In reconstruction (Table ), we see a trend that having more viewpoints makes reconstruction slightly easier.
We can see that the inclusion of these harder tasks did pull down the OmniTask average slightly in the general
benchmark, but it was not the deciding factor. A similar trend is seen in Nova, but there the gap is significantly
larger.
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Task 1 View 2 View 3 View 4 View

Metric CD IoU Valid CD TIoU Valid CD IoU Valid CD IoU Valid
Model
LLaVAOmniTask 0.036  0.458 82.3%  0.033  0.497 83.0%  0.032 0.509 83.2% 0.033  0.497 83.2%
LLaVASingleTask — — — — — — — — — 0.029 0.524 83.8%
NovaLite 0.119  0.049 187%  0.117  0.050 17.0%  0.118  0.053 22.0% 0.125  0.050  25.0%
NovaOmniTask 0.047 0307 87.5% 0.044 0338 87.5% 0.043 0350 86.2% 0.044 0346 87.8%
NovaSingleTask — — — — — — — — — 0.059  0.205 84.8%
OpenAIO3 0.052  0.150  36.8%  0.055 0.141 589%  0.052  0.151 62.6% 0.052  0.155 68.5%

Table 4: Reconstruction Results Broken Down by task type.

Task 1 Target 2 Target 3 Target 4 Target 5 Target 6 Target
Metric Error Valid Error Valid Error Valid Error Valid Error Valid Error Valid
Model

LLaVAOmniTask 0.023 99.0% 0.011 94.3% 0.007 93.1% 0.010 89.7% 0.008 88.3% 0.008 87.9%
LLaVASingleTask — — — — — — 0.036 81.9% — — — —
NovaLite 0.036 2.1% 0.049 4.6% 0.043 2.0% 0.078 3.2% 0.083 1.2% 0.072 2.8%
NovaOmniTask 0.020 90.3% 0.018 90.6% 0.024 90.5% 0.029 92.7% 0.035 90.2% 0.028 94.0%
NovaSingleTask — — — — — — 0.032 79.2% — — — —
OpenAIO3 0.045 30.5% 0.035 20.2% 0.023 23.1% 0.045 20.5% 0.037 28.2% 0.042 25.9%

Table 5: Inverse Design Results broken down by task type.

For the inverse design tasks in Table[5] the 2 or 3 target design appears to be the easiest benchmark, depending on
the model; however, there is not a clear trend stating whether more-or-fewer targets is easier. It is not clear why
these intermediate task numbers are less difficult than single target design. Our hypothesis is that the individual
targets become easier to achieve with increasing target count (either due to profile selection bias or correlation
between targets in the real materials we are sampling from), but this is eventually counteracted by having more
optimization criteria. More in-depth study is required to deduce why this happens.

The expanded material understanding results shown in Table |§|reveal only that predicting material properties
with limited information (a single view), is somewhat more challenging than with an abundance of signal (many
views and a MetaDSL representation); this is an unsurprising finding. This discrepancy did lower the overall
accuracy of LLaVAOmniTask, but not enough to make a categorical difference.

D.2 Result Galleries

We also present randomlyﬂ sampled queries for each task, and visualize their results across models, along with
their benchmark metrics. This shows the qualitative differences between the models’ performances, while
grounding the numeric metrics to make them more understandable.

Figure [T0]illustrates reconstruction from 4 viewpoint renders. Of particular interest is the 03 column on the
far right. For 4/5 examples, 03 correctly reproduced the basic shape of the side-on views up-to the number of
repeats. This suggests that it can correctly build skeletons, but struggles with selecting the correct embedding
scale.

Figure [TT]illustrates material prediction based on specified property requirements. In these examples, the LLaVA
models successfully generate materials that meet the given criteria, but other models occasionally generate
invalid materials or fail to satisty the specified requirements.

'rejection filtered so that all models had valid outputs for the input, except for inverse design where this was
not possible

Task 1 View 4 View + Code
Metric Error Valid Error Valid
Model

LLaVAOmniTask 0.026 100% 0.023 100%
LLaVASingleTask — — 0.018 100%
NovaLite 0.208 100% 0.192  100%
NovaOmniTask 0.031 100% 0.032 100%
NovaSingleTask — — 0.153 100%
OpenAIO3 0.084 100% 0.071 100%

Table 6: Material Understanding results broken down by task type.
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Figure 10: 4 View reconstruction results for random test samples by model. Left: the input renders
shown to each model. Right: renders of predicted reconstructions.
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Figure 11: Inverse design results for a random selection of queries. Left: the text query given to each
model. Right: paired data showing — for each model — an image of the generated structure alongside
a property profile comparison. This profile shows the target values/ranges (in blue), versus simulated
properties of the predicted materials (in red). Red arrows indicate that the predicted value is beyond
the chart boundaries. Some models failed to produce a valid model for certain queries, indicated by
the label “INVALID”.
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Figure 12: Material property predictions given 4 input views (shown) and the program code (not
shown). The radar charts plot the 6 averaged property values (scaled and shifted to always be positive).
The blue regions show the ground truth values, while red shows the prediction.

Figure[12]illustrates generated materials’ predicted versus actual properties. In these examples the LLaVA and
OmniTask Nova models do quite well, but single task Nova and untuned models (Novalite and 03) fall behind.

E MetaBench

E.1 Intermediate Representation

Each dataset is given by a set of .jsonl files: one file each for train, validate, and test. Each line of a .jsonl file
describes a single example using a dictionary with the following keys:

* ‘task_type’: a string identifying the task category; in our case, it is one of { ‘reconstruction’, ‘in-
verse_design’, ‘material_understanding’}.
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‘label’: unique text label identifying this task entry, using descriptive elements where applicable, such
as provided image viewpoints or source files.

‘source’: [if applicable] path to the source metamaterial, relative to the database root (and including
the leading /)

‘data’: any and all data required to run evaluations, including references for large elements (e.g.
images, meshes, etc.) and/or directly embedded values.

‘query’: natural language framing of the question to be provided to an LLM. Any images (or other
non-text input) must be specified by reference.

‘response’: [optional] an expected response from an LLM that has been asked ‘query’. This field
is permitted to exist for a test example; removal of this information is the responsibility of the
LLM-specific formatters, when required.

The system prompt has been purposefully excluded, both because it would be very large, and because that is an
implementation detail of a predictive model, and not part of the benchmark itself.

E.2 Task Construction for Inverse Design

Inverse design tasks are specified as a collection of target values or bounded-ranges for a subset of material
properties, from which we construct a natural-language query that describes that set of targets. Creating these
tasks has two stages: selecting a set of targets, and generating an grammatically correct English sentence from
those targets.

Property References To aid in this process, we generate a reference dictionary with information about each
of the 18 properties, of the following form:

‘nu’: |
"full_prop_name": "Poisson ratio ",
" alternate_symbols ": ["nu_{ VRH}"],
" property_generality ": PropertyGenerality . OVERALL,
"property_type": PropertyType.POISSON_RATIO,
" dataset_coverage ": {

"min": =0.5,

"max": 0.5,

"ql": 0.3,

"q3": 0.36,

"densely_populated_ranges": [[0.2, 0.4]]

" smallest_meaningful_quantization ": 0.01,
" adjective_descriptors ":[{" description ": f"auxetic", " target_type ": TargetType.
UPPER_BOUND, "target_value":0}],

" property_descriptors ": [{" description ": f"a negative Poisson ratio", " target_type ":
TargetType. UPPER_BOUND, "target_value":0},
{" description ": f"a positive Poisson ratio", " target_ type ":
TargetType. LOWER_BOUND, "target_value":0}],
" verb_descriptors ": [{" description ": f" contracts transversely under axial compression", "

target_type ": TargetType. UPPER_BOUND, "target _value":0},

{" description ": f"expands transversely under axial compression",
target_type ": TargetType. LOWER_BOUND, "target_value":0},

{" description ": f" contracts in other directions when compressed
along one axis", " target_type ": TargetType. UPPER_BOUND, "
target_value":0},

{" description ": f"expands in other directions when compressed along
one axis", "target_type ": TargetType. LOWER_BOUND, "
target_value":0},

{" description ": f"expands transversely under axial elongation",
target_type ": TargetType. UPPER_BOUND, "target_value":0},

{" description ": f" contracts transversely under axial elongation",
target_type ": TargetType. LOWER_BOUND, "target_value":0},

{" description ": f"expands in other directions when stretched along
one axis", "target_type ": TargetType. UPPER_BOUND, "
target_value":0},

"

"
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{" description ": f" contracts in other directions when stretched along
one axis", "target_type ": TargetType. LOWER_BOUND, "
target_value":0}]

The full listing for all 18 properties is available in the metagen code provided in the supplement:
metagen/benchmarks_inverse_design.py.

These entries provide information about the property ranges, dataset coverage, and interesting value breakpoints
together with phrases that might be used to request them (e.g., “auxetic” implies v < 0). All aspects of these
reference entries will be used in the following subsections to construct robust, varied and meaningful property
queries for different material examples.

Active Property Selection For a given structure, we enforce that the “active” property subset follows two
rules. First, the active set may only employ the overall values or the directional values for any given property —
e.g., if a profile includes measure(s) for Young’s modulus, it may either include the overall Young’s modulus £
or one or more of the directional values { E1, F2, F3 }; however, it is not permitted to simultaneously include
FE and one or more directional variants. Moreover, a profile is only allowed to use directional variants if it is
sufficiently anisiotropic. We chose our anisotropy threshold as A > 0.0025, based on a manual exploration of
the correlation between material spheres and anisotropy values appearing in our dataset. Subject to these rules,
we select the “active” subset of properties based on a heuristic that determines the most interesting or salient
properties of a given model.

We construct this heuristic score by examining individual properties of a model, and assigning a reward or
penalty based on the expected notability of a particular characteristic or combination thereof. For example, if
a material is near isotropic (A < 0.0025), we strongly reward the anisotropy property (so it is likely to end
up in the active set) and heavily penalize all directional properties (so they will not be activated, as they are
not likely to be notable). If the material is sufficiently anisotropic, we look at each property with directional
variants, then compute pairwise differences between the values (e.g. E1 vs. E5). The directional properties are
rewarded proportionally to each pairwise difference, so directions with larger discrepancies are more likely to be
activated. Independently, we examine the ratio between the Young’s modulus £ and the volume fraction V' — if
the ratio is high (i.e., the material preserves stiffness with dramatically less material / lighter weight, which is a
highly sought after combination), we strongly reward both properties. Finally, we examine each property in turn,
and award additional points if they exhibit values that are extreme and/or underrepresented in our dataset. The
reward is proportional to the relative extremity and inversely proportional to representation.

Given these scores, we iteratively select the highest-reward properties that preserve our overall active set rules.
To ensure some variation in our inverse design profiles, we also introduce the opportunity to add randomly
chosen properties into our profile: after each active set addition from the ranked data, we break the loop with
some low probability (10%) and fill the remaining slots with randomly chosen properties that respect the rules
relative to our partial active set.

Active Property Target Selection For each active property, we must now select a target value or range.
To do this, we evaluate the options present in our reference dictionary, and extract all targets that are satisfied by
the material at hand. We organize these into groups based on value and target type (range, value, lower/upper
bound). Then, we choose the group that offers the tightest bound relative to the current material’s property
value. If multiple bound types are associated with the chosen target value, we select a bound type at random.
Finally, we construct a profile with all targets matching the selected value and bound type. Assuming an example
material where the Poisson ratio v = —0.1, the resulting profile might be as follows:

{

" "

"property ": "nu
" target_value ": 0
" target_type ": "upper_bound"

" target_descriptions ": [

{
" description ": "auxetic",
" description_type ": " adjective "

}s

{
" description ": "a negative Poisson ratio ",
" description_type ": "noun"

}

{
" description " : " contracts transversely under axial compression”,
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" description_type ": "verb"

" description " : " contracts in other directions when compressed along one axis",
" description_type ": "verb"
1
{
" description " : "expands transversely under axial elongation",
" description_type ": "verb"
1
{
" description " : "expands in other directions when stretched along one axis",
" description_type ": "verb"

Query Construction We want to create varied sentence structures to train and test against. To do this, each
target type (value, upper bound, or lower bound) and target property has associated with it several descriptive
phrases, as shown in the profile above. These phrases are paired with a part of speech (adjective, noun, or verb).
As examples “very dense” (adjective), “contracts in the X direction when the Y direction is stretched” (verb),
or “a negative Poisson ratio in at least one direction” (noun). Phrases that do not include numeric targets are
accompanied by a parenthetical aside given a target value or range (e.g. “very dense (V > 0.8).”

We start by randomly selecting one phrase for each target property, binning them by part of speech, then
randomizing the order within bins. Adjectives are further randomly split between front-adjectives that precede
the noun “material” (“a very dense material””) and back-adjectives that follow it (‘“a material that is very dense”).
We then form a query string by applying the template:

Write a metagen program that creates [a/an] { front_adjectives } material { back_adjectives } {verbs}
{nouns}.

The template strings are augmented with part-of-speech appropriate connectors (“that is”, “with”, “that”, “and”),
and commas, depending on the parts of number of each part of speech in each position. The pronoun (a/an) as
selected based on the first letter of {front_adjectives} if there are any, otherwise “a” for “a material”.

F Implementation Details

LLaVASingleTask and LLaVAOmniTask tune Llama3-LLaVA-Next-8b [Li et al.|[2024], Liu et al.| [2024]
using low-rank adaptation |[Hu et al.| [2022], with with » = 16 and o = 32. Models were optimized using
AdamW [Loshchilov and Hutter| [2017] with a 1e-5 learning rate and a cosine learning rate scheduler with
0.03 warm-up ratio. SingleTask models were trained on for 7000 iterations on 8 NVIDIA A100 GPUs over
approximately 17 hours, while the OmniTask model was trained for just 1 epoch on 8 H200 GPUs over 25 hours
due to its significantly larger training set, and for parity with the NovaLiteOmniTask. All LLaVA models were
trained with a batch size of 16. During inference, the temperature was set to O to ensure deterministic outputs.

For commercial models we primarily used their default settings to avoid excess costs in hyperparameter tuning.
NovaSingleTask models were trained on Amazon Bedrock with default settings (2 epochs, learning rate le-5,
batch size 1, 10 learning rate warmup steps), and NovaOmniTask was trained with the same settings for 1 epoch.
NovaSingleTask models trained for 4 hours for reconstruction and material understanding, and 2 hours for inverse
design. The NovaOmniTask trained for 24 hours. Default Bedrock parameters were also used at inference time
(temperature=0.7, topP=0.9, topK=50). OpenAI’s 03 model was queried using the default “medium” reasoning
level.

F.1 Training Curves

The surprising result that the smaller LLaVA models generally outperformed their much larger Nova counterparts
is likely due to the smaller models converging more quickly given the same number of training examples.

F.2 Timing and Costs

MetaDSL execution and simulation time dominate LLM inference time for material generation. These are highly
variable based on the geometric complexity of the generated program, with the majority executing and simulating
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Figure 13: Training loss for LLaVAOmnitask and NovaOmnitask. Losses have been normalized
so that starting-loss was 1. The LLaVA model converged very quickly, whereas the Nova loss was
still decreasing. Given more training iterations or a steeper learning rate, is is possible that Nova
performance would rise to match LLaVA’s.

in 5 minutes or less. MetaAssist generations are on average more time-complex that MetaDB (see Table[7} In
practice, MetaAssist latencies are much lower because we do not run simulations in the interactive system.

Program Source | Avg. (s) | Median (s) | Std (s)
MetaDB 181 123 ‘ 328

MetaAssist 591 290 746
Table 7: MetaDSL Execution and simulation times for program in MetaDB, and programs generated
by MetaAssist using NovaOmni over the MetaBench test set (reconstruction and inverse design).

Since MetaDSL is quite compact, inference can be performed efficiently with few tokens. The majority of the
inference tokens are taken by the common API-description system prompt (Appendix[G.I), the cost of which
can be amortized by caching. Using NovaOmni (ignoring caching for simplicity), the average MetaBench query
used 8730 tokens (8284 input and 446 output). At current API pricing, the average query would cost $0.0006,
and inference for the full test set would cost $7.11.

G Query Templates

For training models and running inference, we used prompt templates and inserted details for each specific query.
In the following templates, <[ ... 1> is used as a delimiter to denote the inclusion of an image.

G.1 Universal System Prompt

For consistency, every example was provided with a common system prompt that describes the Metagen
DSL, explains the material properties and rendered views we have in our dataset, and describes the basic task
categories.

You are an expert metamaterials assistant that generates and analyzes cellular metamaterial
designs based on material properties , images, and programatic definitions in the Metagen
metamaterial DSL.

# Procedural Description in a Metamaterial DSL:

{ api_description }

# Material Analysis:

You can analyze the density, anisotropy, and elasticity properties of metamaterials. All

metamaterials are assumed to be constucted from an isotropic base material with Poisson’s
ratio nu = 0.45.
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The Young’s Modulus of this base material is not specified , instead, the elastic moduli of the
metamaterials —— Young’s Modulus (E), Bulk Modulus (K), and Shear Modulus (G), are expressed
relative to the base material Young’s modulus (E_base). This means, for example, that
relative Young’s Moduli can range from O to 1. The material properties you can analyze are:

— E: Young’s Modulus, Voigt—Reuss—Hill (VRH) average, relative to E_base
—E_1LE_2,E 3: Directional Young’s Moduli, relative to E_base

— G: Shear Modulus (VRH average), relative to E_base

— G_23,G_13,G_12: Directional Shear Moduli, relative to E_base

— nu: Poisson ratio (VRH average)

—nu_12, nu_13, nu_23, nu_21, nu_31, nu_32: Directional Poisson ratios

— K: Bulk modulus (VRH average), relative to E_base

— A: Anisotropy (universal anisotropy index)

— V: Volume Fraction

# Material Images:
Images of metamaterials depict a base cell of the material rendered from four viewpoints:

— from the top

— from the front side

— from the right side

— from an angle at the upper—front—right

# Tasks:
You will be asked to perform several kinds of tasks:

— Reconstruction : from one or more images of a target material, reconstruct a Metagen program that
generates the metamaterial in the images.

— Inverse Design: from a description of the properties of a desired materials, write a Metagen
program that creates a metamaterial with those properties .

— Material Understanding: from images of a metamaterial and/or a Metagen program, analyze a
material and predict its properties .

G.2 MetaDSL API

The Metagen language description (inserted as the api_description in the system prompt above) is as follows:

Programs in Metagen are built in two stages: one that creates local geometric structure , and a
second that patterns this structure throughout space. Each of these is further broken down
into subparts .

API description ( Boilerplate )

Each program is given as a python file (.py).

This program must import the metagen package and define a function called "make_structure () ",
which returns the final Structure object defined by the program.

If parameters are present in make_structure (), they MUST have a default value.

Specifically , the file structure is as follows:

from metagen import

def make_structure (...) —> Structure :
<content>

DSL description
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======= Skeleton Creation ========
vertex (cpEntity, t)
@description:
Create a new vertex. This vertex is defined relative to its containing convex polytope (
CP). It will only have an embedding in R3 once the CP has been embedded.
@params:
cpEntity —an entity of a convex polytope (CP), referenced by the entity names.
t — [OPTIONAL] list of floats in range [0,1], used to interpolate to a specific
position on the cpEntity .
If cpEntity is a corner, t is ignored.
If cpEntity is an edge, t must contain exactly 1 value. t is used for
linear interpolation between the endpoints of cpEntity .
If cpEntity is a face, t must contain exactly 2 values. If cpEntity is a
triangular face, t is used to interpolate via barycentric coordinates
. If cpEntity is a quad face, bilinear interpolation is used.

If the optional interpolant t is omitted for a non—corner entity , the
returned point will be at the midpoint (for edge) or the centroid (
for face) of the entity . Semantically, we encourage that t be
excluded (1) if the structure would be invalid given a different non
—midpoint t, or (2) if the structure would remain unchanged in the
presence a different t (e.g., in the case of a conjugate TPMS,
where only the entity selection matters).

@returns:
vertex — the new vertex object
@example_usage:
v0 = vertex (cuboid.edges. BACK_RIGHT, [0.5])
vl = vertex (cuboid.edges. TOP_LEFT)

Polyline ( ordered_verts )
@description:

Creates a piecewise—linear path along the ordered input vertices . All vertices must be
referenced to the same CP (e.g., all relative to cuboid entities ). The resulting path
will remain a polyline in any structures that include it.

@params:

ordered_verts —a list of vertices, in the order you’d like them to be traversed . A
closed loop may be created by repeating the zeroth element at the end of the list .
No other vertex may be repeated. Only simple paths are permitted .

@returns:

polyline — the new polyline object
@example_usage:

pO = Polyline ([v2, v3])

p0O = Polyline ([v0, v1, v2, v3, v4, v5, v0])

Curve( ordered_verts )
@description:
Creates a path along the ordered input vertices . This path will be smoothed at a later
stage (e.g., to a Bezier curve), depending on the lifting procedures that are chosen.
All input vertices must be referenced to the same CP (e.g., all relative to cuboid
entities ).
@params:
ordered_verts —a list of vertices , in the order you’d like them to be traversed . A
closed loop may be created by repeating the zeroth element at the end of the list .
No other vertex may be repeated. Only simple paths are permitted .
@returns:
curve — the new curve object
@example_usage:
c0 = Curve([v2, v3])
c0 = Curve([v0, v1, v2, v3, v4, v5, vO])

skeleton ( entities )
@description:
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Combines a set of vertices OR polylines/curves into a larger structure , over which
additional information can be inferred . For example, within a skeleton, multiple
open polylines /curves may string together to create a closed loop, a branched path,
or a set of disconnected components.

@params:

entities —a list of entities ( vertices or polylines /curves) to be combined. A
given skeleton must only have entities with the same dimension —— that is, it must
consist of all points or all polylines /curves.

@returns:
skeleton — the new skeleton object
@example_usage:

skel = skeleton ([curve0O, polylinel, curve2, polyline3 ])

skel = skeleton ([vO])

======= Lifting Procedures ========
UniformBeams(skel, thickness )
@description:
Procedure to lift the input skeleton to a 3D volumetric structure by instantiating a beam
of the given thickness centered along each polyline /curve of the input skeleton .
@requirements:
The skeleton must contain only polylines and/or curves. The skeleton must not contain any
standalone vertices .

@params:
skel — the skeleton to lift
thickness — the diameter of the beams
@returns:
liftProc — the lifted skeleton

@example_usage:
liftProcedure = UniformBeams(skel, 0.03)

Spatially VaryingBeams(skel, thicknessProfile )
@description:
Procedure to lift the input skeleton to a 3D volumetric structure by instantiating a beam
of the given spatially —varying thickness profile centered along each polyline /curve
of the input skeleton .
@requirements:
The skeleton must contain only polylines and/or curves. The skeleton must not contain any
standalone vertices .
@params:
skel — the skeleton to lift
thicknessProfile — specifications for the diameter of the beams along each polyline /curve.
Given as a list [ list [ floats ]], where the each of the n inner lists gives the
information for a single sample point along the polyline/curve. The first element in
each inner list provides a position parameter t\\in [0,1] along the polyline /curve,
and the second element specifies the thickness of the beam at position t
@returns:
liftProc — the lifted skeleton
@example_usage:
liftProcedure = Spatially VaryingBeams(skel, 0.03)

UniformDirectShell (skel, thickness)
@description:
Procedure to lift the input skeleton to a 3D volumetric structure by inferring a surface

that conforms to the boundary provided by the input skeleton. The surface is given by
a simple thin shell model: the resulting surface is incident on the provided
boundary while minimizing a weighted sum of bending and stretching energies. The
boundary is fixed, though it may be constructed with a mix of polylines and curves (
which are first interpolated into a spline, then fixed as part of the boundary). The
skeleton must contain a single closed loop composed of one or more polylines and/or
curves. The skeleton must not contain any standalone vertices .

@requirements:

@params:
skel — the skeleton to lift
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thickness — the thickness of the shell . The final offset is thickness/2 to each side
of the inferred surface.
@returns:
liftProc — the lifted skeleton
@example_usage:
liftProcedure = UniformDirectShell (skel, 0.1)

UniformTPMSShellViaConjugation(skel, thickness)
@description:

Procedure to lift the input skeleton to a 3D volumetric structure by inferring a triply
periodic minimal surface (TPMS) that conforms to the boundary constraints provided by
the input skeleton. The surface is computed via the conjugate surface construction
method.

@requirements:

The skeleton must contain a single closed loop composed of one or more polylines and/or
curves. The skeleton must not contain any standalone vertices .

Each vertex in the polylines /curves must live on a CP edge.

Adjacent vertices must have a shared face.

The loop must touch every face of the CP at least once.

If the CPhas N faces, the loop must contain at least N vertices .

@params:
skel — the skeleton to lift
thickness — the thickness of the shell . The final offset is thickness/2 to each side
of the inferred surface.
@returns:
liftProc — the lifted skeleton

@example_usage:
liftProcedure = UniformTPMSShellViaConjugation(skel, 0.03)

UniformTPMSShellViaMixedMinimal(skel, thickness)
@description:

Procedure to lift the input skeleton to a 3D volumetric structure by inferring a triply
periodic minimal surface (TPMS) that conforms to the boundary constraints provided by
the input skeleton. The surface is computed via mean curvature flow. All polyline
boundary regions are considered fixed, but any curved regions may slide within their
respective planes in order to reduce surface curvature during the solve.

@requirements:

The skeleton must contain a single closed loop composed of one or more polylines and/or
curves. The skeleton must not contain any standalone vertices .

Each vertex in the polylines /curves must live on a CP edge.

Adjacent vertices must have a shared face.

@params:
skel — the skeleton to lift
thickness — the thickness of the shell . The final offset is thickness/2 to each side
of the inferred surface.
@returns:
liftProc — the lifted skeleton

@example_usage:
liftProcedure = UniformTPMSShell ViaMixedMinimal(skel, 0.03)

Spheres(skel, thickness )
@description:
Procedure to lift the input skeleton to a 3D volumetric structure by instantiating a
sphere of the given radius centered at vertex p, for each vertex in the skeleton .

@requirements:

The skeleton must only contain standalone vertices ; no polylines or curves can be used.
@params:

skel — the skeleton to lift

thickness — the sphere radius
@returns:

liftProc — the lifted skeleton

@example_usage:
s_lift = Spheres(skel, 0.25)
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=======Tile Creation ========
Tile ( lifted_skeletons , embedding)
@description:

Procedure to embed a copy of the skeleton in R”3 using the provided embedding information.
The embedding information can be computed by calling the "embed" method of the
relevant CP.

@requirements:

The embedding information must correspond to the same CP against which the vertices were
defined . For example, if the vertices are defined relative to the cuboid, you must
use the cuboid.embed() method.

@params:
lifted_skeletons — a list of lifted skeleton entities to embed in R*3. All entities must
reside in the same CP type, and this type must have N corners.

embedding — information about how to embed the CP and its relative skeletons within
R”3. Obtained using the CP’s embed() method
@returns:
tile — the new tile object

@example_usage:
embedding = cuboid.embed(side_len, side_len, side_len, cornerAtAABBMin=cuboid.corners.
FRONT_BOTTOM_LEFT)
s_tile = Tile ([beams, shell ], embedding)

======= Patterning Procedures ========
TetFullMirror ()
@description:
Procedure which uses only mirrors to duplicate a tet—based tile such that it partitions R
A3
@params:
N/A
@returns:
pat — the patterning procedure
@example_usage:
pat = TetFullMirror ()

TriPrismFullMirror ()
@description:
Procedure which uses only mirrors to duplicate a triangular prism—based tile such that it
partitions RA3
@params:
N/A
@returns:
pat — the patterning procedure
@example_usage:
pat = TriPrismFullMirror ()

CuboidFullMirror ()
@description:
Procedure which uses only mirrors to duplicate an axis—aligned cuboid tile such that it
fills a unit cube, such that it partitions R"3. Eligible cuboid CPs must be such
that all dimensions are 1/(27k) for some positive integer k.
@params:
N/A
@returns:
pat — the patterning procedure
@example_usage:
pat = CuboidFullMirror ()

Identity ()
@description:
No-op patterning procedure.
@params:
N/A
@returns:
pat — the patterning procedure
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@example_usage:
pat = Identity ()

Custom(patternOp)
@description:
Environment used to compose a custom patterning procedure. Currently only implemented for
the Cuboid CP.

@params:

patternOp— outermost pattern operation in the composition
@returns:

pat — the complete patterning procedure

@example_usage:
pat = Custom(Rotate180([cuboid.edges. BACK_RIGHT, cuboid.edges. BACK_LEFT], True,
Rotate180([cuboid.edges. TOP_RIGHT], True)))

Mirror( entity , doCopy, patternOp)

@description:

Pattern operation specifying a mirror over the provided CP entity , which must be a CP
Face. Can only be used inside of a Custom patterning environment.

@params:
entity — CP Face that serves as the mirror plane.
doCopy - boolean. When True, applies the operation to a copy of the input, such that the

original and the transformed copy persist . When False, directly transforms the input

patternOp— [OPTIONAL] outermost pattern operation in the sub—composition, if any
@returns:
pat — the composed patterning procedure, which may be used as is (within the Custom
environment), or as the input for further composition
@example_usage:
pat = Custom(Mirror(cuboid. faces . TOP, True,
Mirror(cuboid. faces .LEFT, True)))

Rotate180( entities , doCopy, patternOp)
@description:
Pattern operation specifying a 180 degree rotation about the provided CP entity . Can only
be used inside of a Custom patterning environment.
@params:
entities — List of CP entities , which define the axis about which to rotate . If a single
entity is provided, it must be a CP Edge. If multiple entities , they will be used to
define a new entity that spans them. For example, if you provide two corners, the
axis will go from one to the other. If you provide two CP Edges, the axis will reach
from the midpoint of one to the midpoint of the other.
doCopy - boolean. When True, applies the operation to a copy of the input, such that the
original and the transformed copy persist . When False, directly transforms the input

patternOp— [OPTIONAL] outermost pattern operation in the sub—composition, if any
@returns:
pat — the composed patterning procedure, which may be used as is (within the Custom
environment), or as the input for further composition
@example_usage:
pat = Custom(Rotate180([cuboid.edges. FRONT_LEFT, cuboid.edges. FRONT_RIGHT], True))

Translate (fromEntity, toEntity , doCopy, patternOp)
@description:
Pattern operation specifying a translation that effectively moves the fromEntity to the
targetEntity . Can only be used inside of a Custom patterning environment.
@params:
fromEntity— CP Entity that serves as the origin of the translation vector. Currently only
implemented for a CP Face.
toEntity — CP Entity that serves as the target of the translation vector. Currently only
implemented for a CP Face.
doCopy - boolean. When True, applies the operation to a copy of the input, such that the
original and the transformed copy persist . When False, directly transforms the input

patternOp— [OPTIONAL] outermost pattern operation in the sub—composition, if any
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@returns:
pat — the composed patterning procedure, which may be used as is (within the Custom
environment), or as the input for further composition
@example_usage:
gridPat = Custom(Translate (cuboid. faces . LEFT, cuboid.faces . RIGHT, True,
Translate (cuboid. faces . FRONT, cuboid.faces.BACK, True)))

======= Structure Procedures ========
Structure ( tile , pattern )
@description:
Combines local tile information (containing lifted skeletons) with the global patterning
procedure to generate a complete metamaterial .

@params:
tile — the tile object, which has (by construction ) already been embedded in 3
D space, along with all lifted skeletons it contains .
pattern — the patterning sequence to apply to extend this tile throughout space
@returns:
structure — the new structure object

@example_usage:
obj = Structure ( tile , pat)

Union(A, B)
@description:
Constructive solid geometry Boolean operation that computes the union of two input
structures . The output of Union(A,B) is identical to Union(B,A)

@params:
A — the first Structure to be unioned. This may be the output of Structure ,
Union, Subtract, or Intersect
B — the second Structure to be unioned. This may be the output of Structure ,
Union, Subtract, or Intersect
@returns:
structure — the new structure object containing union(A,B)

@example_usage:
final_obj = Union(schwarzP_obj, Union(sphere_obj, beam_obj))

Subtract (A, B)
@description:
Constructive solid geometry Boolean operation that computes the difference (A — B) of two
input structures . The relative input order is critical .

@params:
A — the first Structure, from which B will be subtracted . This may be the
output of Structure , Union, Subtract, or Intersect
B — the second Structure , to be subtracted from A. This may be the output of
Structure , Union, Subtract, or Intersect
@returns:
structure — the new structure object containing (A — B)

@example_usage:
final_obj = Subtract (c_obj, s_obj)

Intersect (A, B)
@description:
Constructive solid geometry Boolean operation that computes the intersection of two input
structures , A and B.

@params:
A — the first Structure , which may be the output of Structure , Union,
Subtract, or Intersect
B — the second Structure , which may be the output of Structure , Union,
Subtract, or Intersect
@returns:
structure — the new structure object containing the intersection of A and B

@example_usage:
final_obj = Intersect (c_obj, s_obj)
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Prebuilt Convex Polytopes

There are 3 prebuilt convex polytopes (CP) available for use: cuboid, triPrism, and tet. Each CP
comprises a set of Entities , namely faces, edges and corners .

For convenience, each individual entity can be referenced using the pattern <CP>.<entity_type>.<
ENTITY_NAME>.

For example, you can select a particular edge of the cuboid with the notation cuboid.edges.
BOTTOM_RIGHT.

Each CP also has an embed() method which returns all necessary information to embed the CP within
RA3.

The full list of entities and embed() method signatures for our predefined CPs are as follows:

tet .corners.{ BOTTOM_RIGHT,
BOTTOM_LEFT,
TOP_BACK,
BOTTOM_BACK
}
tet .edges. { BOTTOM_FRONT,
TOP_LEFT,
BACK,
BOTTOM_RIGHT,
TOP_RIGHT,
BOTTOM_LEFT
}
tet.faces. { BOTTOM,
TOP,
RIGHT,
LEFT

tet .embed(bounding_box_side_length)
@description:
Constructs the information required to embed the tet CPin R”3
@params:
bounding_box_side_length— length of axis—aligned bounding box containing the tet. Float in
range [0,1]. Must be 1/2”°k for some integer k
@returns:
embedding — the embedding information. Specifically , the position in R*3 of all the
CP corners.
@example_usage:
side_len = 0.5 / num_tiling unit_repeats_per_dim
embedding = tet .embed(side_len)

triPrism . corners .{ FRONT_BOTTOM_LEFT,
FRONT_TOP,
FRONT_BOTTOM_RIGHT,
BACK_BOTTOM_LEFT,
BACK_TOP,
BACK_BOTTOM_RIGHT

}

triPrism .edges.{ FRONT_LEFT,
FRONT_RIGHT,
FRONT_BOTTOM,
BACK_LEFT,
BACK_RIGHT,
BACK_BOTTOM,
BOTTOM_LEFT,
TOP,
BOTTOM_RIGHT

}
triPrism . faces .{ FRONT_TRI,
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BACK_TRI,
LEFT_QUAD,
RIGHT_QUAD,
BOTTOM_QUAD
}
triPrism .embed(bounding_box_side_length)
@description:

Constructs the information required to embed the triangular prism CPin R”3

@params:

bounding_box_side_length — length of axis—aligned bounding box containing the triangular
prism. Float in range [0,1]. Mustbe 1/27k for some integer k

@returns:
embedding — the embedding information.
CP corners.
@example_usage:

Specifically , the position in R7A3 of all the

side_len = 0.5 / num_tiling_unit_repeats_per_dim

embedding = triPrism .embed(side_len)

cuboid. corners .{ FRONT_BOTTOM_LEFT,
FRONT_BOTTOM_RIGHT,
FRONT_TOP_LEFT,
FRONT_TOP_RIGHT,
BACK_BOTTOM_LEFT,
BACK_BOTTOM_RIGHT,
BACK_TOP_LEFT,
BACK_TOP_RIGHT

}
cuboid.edges.{ FRONT_BOTTOM,
FRONT_LEFT,
FRONT_TOP,
FRONT_RIGHT,
BACK_BOTTOM,
BACK_LEFT,
BACK_TOP,
BACK_RIGHT,
BOTTOM_LEFT,
TOP_LEFT,
TOP_RIGHT,
BOTTOM_RIGHT
}

cuboid. faces.{ FRONT,
BACK,
TOP,
BOTTOM,
LEFT,
RIGHT

}

cuboid.embed(width, height, depth, cornerAtMinPt)
@description:

Constructs the information required to embed the cuboid CPin R”3

@params:
width
1/27°k for some integer k

height
127k for some integer k

depth
1/27°k for some integer k

— length of cuboid side from left to right. float in
— length of cuboid side from top to bottom. float in range

— length of cuboid side from front to back. float in range

range [0,1]. Must be
[0,1]. Must be

[0,1]. Must be

cornerAtMinPt — CP corner entity (e.g., cuboid.corners . FRONT _BOTTOM_LEFT) that
should be collocated with the cuboid’s minimum position in R*3

@returns:
embedding — the embedding information.
CP corners.
@example_usage:
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side_len = 0.5 / num_tiling unit_repeats_per_dim
embedding = cuboid.embed(side_len, side_len, side_len, cornerAtAABBMin=cuboid.corners.
FRONT_BOTTOM_LEFT)

cuboid.embed_via_minmax(aabb_min_pt, aabb_max_pt, cornerAtMinPt)
@description:
Constructs the information required to embed the cuboid CPin R”3
@params:
aabb_min_pt — Minimum point of the cuboid, in R”3. Given as a list of length 3, where
each component must be a float in range [0,1], with 1/2°k for some integer k
aabb_max_pt — Maximum point of the cuboid, in R”3. Given as a list of length 3, where
each component must be a float in range [0,1], with 1/2°k for some integer k
cornerAtMinPt — CP corner entity (e.g., cuboid.corners . FRONT _BOTTOM_LEFT) that
should be collocated with the cuboid’s minimum position in R*3
@returns:
embedding — the embedding information. Specifically , the position in R”3 of all the
CP corners.
@example_usage:
side_len = 0.5 / num_tiling_unit_repeats_per_dim
embedding = cuboid.embed ([0,0,0], [side_len, side_len, side_len ], cuboid. corners.
BACK_BOTTOM_RIGHT)

API Errata The API description listed in this section is the exact version we used to train all models in
MetaBench. This differs slightly from the released version, which corrects two mistakes that were identified at a
later stage:

¢ cuboid.embed(): the original description (above) listed a parameter cornerAtMinPt in both the
signature line and the @params listing. However, the @example_usage showed the parameter as
cornerAtAABBMin. The latter is correct, and reflects an update made in the code independently of
the documentation. The released API description consistently shows the correct parameter name,
cornerAtAABBMin.

¢ cuboid.embed_via_minmax(): the @example_usage field of the original description (above)
erroneously lists the cuboid.embed() function with the inputs of the intended function,
cuboid.embed_via_minmax (). None of the parameters were updated, as they are all correct in the
original description above. Only the erroneous function call was corrected in the released version
(cuboid.embed() — cuboid.embed_via_minmax()).

These mistakes did not cause any observable issue in the trained model output, as the (correctly expressed)
training data overrode the error in our API description. However, this did cause an issue for zero shot experiments
(which ultimately revealed the bug). All zero shot results reported in the paper reflect the results using the
updated version of our API, where the difference relative to the listing above constitutes exactly the two changes
discussed here.

To ensure that this API description would not derail otherwise successful program outputs (and to mitigate
confusion between the two very similar keywords across functions), we added an optional keyword argument to
the signature of both affected functions, such that either keyword (or no keyword, as in a positional argument) is
permissible. Thus, either API description is suitable; however, we release the corrected version to prevent issues
and reduce confusion moving forward.

G.3 Reconstruction

Reconstruction tasks can have any combination of one to four views. Here we only reproduced the 4 view
template; the others have the irrelevant lines removed.

# Task:
Analyze these views of a metamaterial, then generate a metamaterial DSL procedure to reproduce it .

# Inputs :

sxRendered Views: s

Top: <[{top}]>

Front: <[{ front }]>

Right: <[{right }]>

Angled (Front—Top—Right): <[{ top_right }]>

# Output Format:
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Generate a Metagen program within a python code block:

*““ python
from metagen import

def make_structure (...) —> Structure :

e

G.4 Inverse Design

# Task:
Write a metagen program that creates { query_target }.

# Output Format:
Generate a Metagen program within a python code block:

*“‘ python
from metagen import

def make_structure (...) —> Structure :

e

G.5 Material Understanding
Single View:

# Task:
Analyze these views of a metamaterial, and predict its material properties .

# Inputs :
wxRendered View:s:
— Angled (Front—Top—Right): <[{ top_right }]>

# Output Format:

Output a json object, delimited by ‘““json ‘‘‘, where the keys are material property names, and
the values are the predicted material properties . Predict these properties (keys):

— "A" : Anisotropy (universal anisotropy index)

—"E" : Young’s Modulus relative to E_base

— "K" : Bulk modulus relative to E_base

— "G": Shear modulus relative to E_base

— "nu": Isotropic Poisson ratio

— "V": Relative Density (Volume Fraction)

Multiview + Code:

# Task:

Analyze these views of a metamaterial, and the Metagen program, and predict its material
properties .

# Inputs :

x+Metagen Program: s

{code}

x+Rendered Views: s

— Top: <[{top}]>

— Front: <[{front }]>
— Right: <[{right}]>
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1731 — Angled (Front—Top—Right): <[{ top_right }]>

1732

1733 # Output Format:

1734

1735 Output a json object, delimited by ‘‘‘json ‘‘‘, where the keys are material property names, and
1736 the values are the predicted material properties . Predict these properties (keys):
1737 — "A" : Anisotropy (universal anisotropy index)

1738 — "E" : Young’s Modulus relative to E_base

1739 — "K" : Bulk modulus relative to E_base

1740 — "G": Shear modulus relative to E_base

1741 — "nu": Isotropic Poisson ratio

1742 — "V" : Relative Density (Volume Fraction)
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