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Abstract

Metamaterials are micro-architected structures whose geometry imparts highly1

tunable—often counter-intuitive—bulk properties. Yet their design is difficult2

because of geometric complexity and a non-trivial mapping from architecture to3

behaviour. We address these challenges with three complementary contributions.4

(i) MetaDSL: a compact, semantically rich domain-specific language that captures5

diverse metamaterial designs in a form that is both human-readable and machine-6

parsable. (ii) MetaDB: a curated repository of more than 150 000 parameterized7

MetaDSL programs together with their derivatives—three-dimensional geometry,8

multi-view renderings, and simulated elastic properties. (iii) MetaBench: bench-9

mark suites that test three core capabilities of vision–language metamaterial assis-10

tants—structure reconstruction, property-driven inverse design, and performance11

prediction. We establish baselines by fine-tuning state-of-the-art vision–language12

models and deploy an omni-model within an interactive, CAD-like interface. Case13

studies show that our framework provides a strong first step toward integrated14

design and understanding of structure–representation–property relationships.15

1 Introduction16

Metamaterials have attracted intense research interest because microscale geometries can endow17

bulk matter with properties that are unattainable in the parent substance. Careful geometric tuning18

yields extraordinary behaviours such as programmable deformation [Jenett et al., 2020, Babaee et al.,19

2013], extreme strength-to-weight ratios [Qin et al., 2017], and simultaneous stiffness and stretchabil-20

ity [Surjadi et al., 2025]. These features enable applications ranging from thermal management [Fan21

et al., 2022, Attarzadeh et al., 2022] to biomedical implants [Ataee et al., 2018, Ambu and Morabito,22

2019]. Yet the design space is effectively limitless, and its full potential remains unexplored.23

Metamaterial discovery typically follows two paradigms: forward design, which proposes a structure24

and then measures its properties, and inverse design, which begins with target properties and then25

searches for a matching structure. Both workflows demand (i) domain expertise, (ii) a grasp of26

relevant material metrics, (iii) concise yet expressive geometric representations, and (iv) algorithms27

that map between structural and functional spaces.28

Vision–language models (VLMs) are well suited to this challenge, as they excel at the cross-modal29

reasoning, retrieval, and generation required for effective metamaterial design – spanning text, images,30

3-D geometry, and numerical property vectors. The complex, verifiable data given by metamaterial31

design tasks also offers an ideal sandbox for VLM and AI research targeting real-world applications.32

Despite this symbiotic potential, data-driven metamaterial design is hindered by several issues. For33

example, Surjadi and Portela [2025] cite the need for “universal tools capable of parametrizing34

varied architected material morphologies." There is also an acute need for reusable, reconfigurable,35

task-agnostic datasets featuring diverse structure architectures [Lee et al., 2024].36
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To address these gaps and catalyse progress in both communities, we introduce the first foundational37

VLM ecosystem for metamaterial design, anchored by three components:38

1. MetaDSL: a domain-specific language that captures metamaterials in a structured, compact,39

and expressive form accessible to both humans and large language models.40

2. MetaDB: a database of more than 150 000 metamaterials, each of which pairs a MetaDSL41

program with the derived 3-D geometry, rendered images, and simulated properties.42

3. MetaBench: benchmark suites that probe three fundamental metamaterial design tasks –43

structure reconstruction, property-driven inverse design, and performance prediction – using44

data sampled from MetaDB.45

To complete our vision, we also use MetaBench to train and evaluate MetaAssist, a VLM assistant46

baseline and interactive CAD environment that facilitates multi-modal design interactions including47

language, images, geometry, and MetaDSL code.48

All four components are designed for extensibility and community contribution, such that they can49

evolve seamlessly alongside the state of the art in materials science and agentic design. Collectively,50

our ecosystem provides a coherent, extensible knowledge base for metamaterial design, while laying51

the foundation for intuitive, efficient human–AI collaboration in architected materials.52

2 Background53

Metamaterials Two long-standing hurdles in metamaterial design are (i) navigating the immense54

geometric diversity of candidate architectures and (ii) modelling the intricate, often non-linear55

mapping from geometry to effective properties [Makatura et al., 2023, Lee et al., 2024, Xue et al.,56

2025, Surjadi and Portela, 2025]. Many studies rely on trial-and-error forward design, where experts57

hand-craft parameterized structures for specific targets [Jenett et al., 2020, Muhammad and Lim, 2021,58

Frenzel et al., 2017, Meier et al., 2025]. Now, data-driven pipelines also provide a more scalable,59

systematic alternative in the service of inverse design: Panetta et al. [2015] analysed 1205 families60

of cubic truss lattices, while Abu-Mualla and Huang [2024] expanded to 17 000 truss structures61

spanning six crystal lattices. Beyond trusses, high-throughput workflows create thousands of thin-62

shell architectures including plate lattices [Sun et al., 2023a] and TPMS-inspired surfaces [Xu et al.,63

2023, Liu et al., 2022, Yang and Buehler, 2022, Chan et al., 2020]. Because many datasets target64

a single architecture class (e.g. beams or shells) and a narrow performance metric, they restrict the65

attainable property gamut and thus the capability of downstream models [Berger et al., 2017, Lee et al.,66

2024]. Recent designs also increasingly blend classes in hybrid or hierarchical forms [Surjadi et al.,67

2025, Chen et al., 2019, White et al., 2021], emphasising the need for representations that span such68

boundaries. The procedural-graph approach of Makatura et al. [2023] captures diverse geometries69

but is demonstrated primarily for human-in-the-loop workflows. Voxel and hybrid encodings scale70

to 140 k–180 k diverse structures [Yang et al., 2024a, Xue et al., 2025], but they sacrifice semantic71

clarity and compactness, which complicates human or agent editing. Such tradeoffs – along with72

inconsistencies in geometry descriptors, vocabularies, and evaluation protocols – continue to impede73

dataset reuse and extensibility [Lee et al., 2024].74

We close these gaps with a universal metamaterial descriptor (MetaDSL) along with a reconfigurable75

database of 150 000 metamaterials (MetaDB). Each MetaDB entry couples a succinct, semantically76

rich program with derived 3-D geometry, renderings, and simulated properties, enabling consistent77

comparison and seamless expansion. Programmatic templating further enlarges the design space, and78

community contributions can grow both MetaDB and the accompanying benchmark suite.79

Vision–Language Models for Design Large language and vision–language models (VLMs) have80

recently permeated design tasks, including procedural textures [Li et al., 2025], 3-D scenes [Yang81

et al., 2024b, Kumaran et al., 2023], mesh generation and editing [Sun et al., 2023b, Wang et al.,82

2024, Jones et al., 2025, Huang et al., 2024, Yamada et al., 2024], interior layouts [Çelen et al., 2024],83

sewing-pattern synthesis [Nakayama et al., 2025, Bian et al., 2025], and computer-aided engineering84

and manufacturing [Makatura et al., 2024a,b, Choi et al., 2025, Yuan et al., 2024]. In most cases,85

code serves as the medium: pretrained models follow instructions, reuse standard patterns, and emit86

domain-specific scripts (e.g. Blender Python). When tasks demand novel grammars or specialist87

knowledge, fine-tuning further elevates performance [Zhou et al., 2025].88
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Figure 1: A MetaDSL program (a) and illustrations of each construction stage (clockwise): (b) build a
1D skeleton relative to an abstract convex polytope CP – here, a cuboid; (c) specify a lifting procedure
from 1D to 3D; (d) embed the CP in R3 to create a tile, and execute the lifting procedure to create
our final geometry; and finally, (e) tessellate the tile according to the specified pattern.

Figure 2: We illustrate the expressive power of MetaDSL by showing six different structures that all
stem from the program shown in Figure 1(a). Each one is produced by changing a single aspect of
the original program, as detailed below each structure.

Our work adopts this code-centric philosophy but tailors it to metamaterials, whose design demands89

rich geometric semantics, strict physical constraints, and fluid translation among text, images,90

parameterised programs, and numerical property vectors. By grounding the interface in a purpose-91

built DSL and a physically validated database, we lay a robust foundation for future VLMs to reason92

about, generate, and refine architected materials at scale.93

3 Domain-Specific Language94

To support our vision of an expansive, dynamic metamaterial ecosystem, a suitable structure represen-95

tation is key. An ideal representation would (1) support the full range of metamaterial architectures;96

(2) facilitate modularity and reuse; (3) be compact, semantically meaningful, and easy to use; (4) be97

amenable to and robust under generative design; (5) encourage valid metamaterials by construction;98

and (6) be quickly verifiable through type-checking. In designing MetaDSL, we laid out a long-term99

design philosophy that is amenable to all of these goals. Although our current implementation realizes100

a core subset of this functionality (detailed in Section 3.2), the infrastructure is built with extensibility101

in mind. This will facilitate the continued development of MetaDSL, such that new design paradigms102

can be added to MetaDSL as the field matures, without invalidating existing programs.103

3.1 Language Design Philosophy104

Using MetaDSL, materials are defined by a combination of modular, reusable components. A rich105

type system determines the compatibility between components at different levels, which allows for106

programmatic composition with verifiable outcomes.107

Broadly, these components follow a bi-level approach that is common for metamaterial design. The108

first level describes a small representative unit of the structure, called a tile. The second level specifies109
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a pattern: transformations that extend a tile into a space-filling structure. In MetaDSL, these layers110

are independent and polymorphic: a pattern can be applied to any number of tiles, and vice-versa.111

A detailed view of the MetaDSL construction process is shown in Figure 1. The first stage specifies a112

skeleton, which is a set of open or closed 1D curves defined relative to an abstract convex polytope113

(CP)-such as a cuboid or a tetrahedron. To facilitate downstream compatibility checks, our type114

system classifies the skeleton by examining its topology and its relationship to the CP boundaries.115

Next, we select a lifting function that will be used to promote 1D skeleton curves into 3D geometry.116

The applicability of a lifting function to a skeleton is determined by its type. The third stage specifies117

a concrete embedding in R3 for our CP. At this stage, our lifted skeleton can be evaluated to yield118

the final structure geometry and thus, a completed tile. This separation between the abstract CP of119

a skeleton and the concrete CP of a tile is subtle but critical, as it permits compositional re-use of120

skeletons, as demonstrated in Figure 2(d,e). However, it is also essential that we assign an embedding121

before proceeding, because the admissible pattern operations are influenced by extrinsic geometric122

measures such as the dihedral angles between the polytope planes. To promote the tile into a space-123

filling object, MetaDSL applies a pattern composed of spatial repetition procedures like mirroring,124

gliding, rotating, etc. Patterns themselves can be also be composed into larger patterns. In a final125

layer, we also provide standard constructive solid geometry (CSG) Boolean operations to combine126

multiple structures. This makes it easy to define structures with mixed scales, multiple symmetry127

classes, or interpenetrating lattices [White et al., 2021].128

This philosophy supports the stated goals for our representation in myriad ways. For example,129

because vertex positions are specified relative to their parent CP (e.g., at the halfway point of130

cuboid.edges.TOP_LEFT), it is easy to identify valid position bounds; this facilitates robust explo-131

ration. Inclusion of common synonyms in the syntax hardens against common LLM hallucinations132

(e.g. TOP_LEFT and LEFT_TOP). The separation between abstract skeletons, embedded tile geome-133

tries, and patterns encourages modular re-use at multiple scales. Moreover, deriving tile geometry134

from abstract skeletons enables pattern compatibility verification based on boundary adjacency, and135

the library of lifting functions covers metamaterial design patterns in existing literature.136

3.2 Implementation Details137

We implement our language as an embedded DSL in Python, which provides a familiar, flexible inter-138

face with support for comments, descriptive identifiers, higher-order templates, and parameterization.139

We use Procedural Metamaterials (ProcMeta) [Makatura et al., 2023] as our geometry kernel, as140

their representation is specifically designed to capture a variety of metamaterial classes. Targeting141

this backend introduced limitations which influenced the core functionality we implemented. For142

example, ProcMeta only supports materials with translational-units that reside in a unit cube; thus,143

MetaDSL currently lacks support for patterns beyond that scope. The ProcMeta skeletal design144

space also directly informed the abstract CPs and lifting functions that we implemented in MetaDSL.145

However, as MetaDSL can be transpiled to any kernel, it is not inherently bound by these limitations.146

If a more general backend were developed, our language could be extended to accommodate the147

larger feature set without invalidating our existing examples. Appendix B gives a detailed descrip-148

tion of the language design, implementation, system design insights, and comparison to ProcMeta;149

Appendix G.2 contains the complete MetaDSL documentation.150

4 Database Generation151

MetaDSL represents metamaterials in a consistent, concise manner, which permits a single pipeline152

that produces code, watertight geometry, renderings, and simulated properties for every entry. To en-153

sure the quality of MetaDB, we only add validated models that pass basic checks (see Appendix C.6).154

4.1 Constructing Metamaterial Models155

Each metamaterial is a DSL program, or model, that may optionally expose a set of design parameters156

(with default values). Our metadata block also allows program authors to include details such as157

bounds, dependencies, or recommended ranges for each parameter. This clarifies design freedom,158

enables continuous exploration, and provides hooks for optimisation schemes. The metadata is stored159

in a machine-parsable format (YAML) with a prepopulated scheme for tracking e.g. provenance,160
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(i) (ii) (iii) (iv)

Figure 3: Assortment of metamaterials in MetaDB, illustrating four creation modes: (i) hand-authored
seeds, (ii) generated models, (iii) type-enabled mutations, and (iv) LLM-augmented hybrids.

versioning, and notable traits about the structure, including symmetries, architecture type (beams,161

shells, etc.), and related structures. Our metadata also permits custom fields.162

Direct Construction Authored models are human-written, with provenance records tracking the163

model author and the original design source(s), and editable semantic parameters to encode families of164

models. We also provide a programmatic generator interface to create families of models. As a proof165

of concept, we implemented a generator following Panetta et al. [2015]; this generates parametrized166

models for all 1,205 truss topologies using a few hundred lines of Python. Our type-checked DSL167

allows us to specify and evaluate validity constraints on the small tile, without needing to generate168

the fully-patterned beam network. Moreover, because our generator is exposed and editable, we can169

easily modify the high-level generator parameters (e.g. maximum vertex valence) to output different170

sub- or supersets of interest. For each generated model, the provenance metadata stores the generator171

script, its settings, and per-instance parameters; generator parameters may be substituted for specific172

values or passed through to remain exposed in the resulting programs.173

Augmentation We propose two orthogonal protocols to enlarge MetaDB based on existing models.174

Our first strategy, Hybridization (crossover), is motivated by works that offer unique, extremal175

mechanical properties by hybridizing common structures such as trusses+woven beams [Surjadi176

et al., 2025], nested trusses [Boda et al., 2025], TPMS shells+planar shells [Chen et al., 2019],177

and trusses+solids [White et al., 2021]. We emulate this process by prompting an LLM with pairs178

or triplets of parent programs, then requesting hybrid code. Our prompting strategy (detailed in179

Appendix C.3) follows insights from recent works in LLM-mediated program search [Li et al., 2025,180

Romera-Paredes et al., 2024]. The resulting hybridized model stores its parent IDs, prompt details,181

and LLM details as provenance information.182

Our second strategy, mutation, leverages MetaDSL’s type system to apply targeted edits—such as183

skeleton reconfiguration, pattern adjustment, and lift procedure changes—while guaranteeing validity.184

The operators are described in Appendix C.4. These operations are motivated by works such as185

Akbari et al. [2022], which posits beam approximations of TPMS shells. Each mutation stores its186

parent and details about the mutator function.187

4.2 Auxiliary Data Generation188

For every model we generate three auxiliary artifacts: geometry, renderings, and physical property pre-189

dictions. To obtain the geometry, we transpile our MetaDSL model into a ProcMeta graph [Makatura190

et al., 2023] and use their geometry kernel to export a watertight .obj. Using the exported mesh, our191

custom PYRENDER scene produces orthographic images from the front, top, right, and front-top-right192

viewpoints. Finally, we use the integrated simulations of ProcMeta to voxelize the mesh on a 1003193

grid and perform periodic homogenisation using a base material with E=1, ρ=1, ν=0.45. The194

resulting 6×6 stiffness matrix C is reduced to 18 scalars: six global metrics—Young’s modulus195

E, shear modulus G, Poisson ratio ν, bulk modulus K, anisotropy A, volume fraction V —plus196

directional values for E (3), G (3), and ν (6). More details are available in Appendix C.5. MetaDB197

therefore combines code, geometry, simulation, imagery, and rich provenance—providing a unified198

benchmark and a data-efficient training ground for vision–language metamaterial assistants.199
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5 Benchmark Curation200

From MetaDB we derive a benchmark that covers three fundamental metamaterial tasks: (1) recon-201

struction—produce a DSL program that reproduces a target structure (for example, from images);202

(2) material understanding—predict the property profile of a given structure description; and (3)203

inverse design—generate a DSL program that satisfies a requested property profile. Each task204

supports multiple query types based on the inputs available. For instance, material understanding may205

be invoked with a single image (“1-view”) or with four images plus code (“multiview_and_code”).206

The benchmark suite ships a dataset for every query type.207

5.1 Task-Based Dataset Construction208

We start with a designated pool of active models and partition them into train, validation, and test209

splits that remain fixed for all tasks. The relevant information for each query type is as follows.210

Reconstruction. Given n∈{1, . . . , 4} orthographic images, the desired output is a DSL program211

whose rendered geometry matches the target. Because every model has four views (Section 4.2), each212

model contributes
(
4
n

)
examples to the n-view dataset.213

Material understanding. Given a structure description, the desired output predicts six global214

properties: Young’s modulus E, shear modulus G, bulk modulus K, Poisson ratio ν, anisotropy A,215

and volume fraction V . Values are rounded to two significant figures. Our benchmark supports two216

query types: multiview_and_code (four images + DSL code) and single_image (one image). The217

relative performance on each type indicates whether additional context helps or hinders a given VLM.218

Inverse design. Given a target property profile, the desired output is a DSL program whose219

simulated properties satisfy the profile. We generate datasets for six query types, where the length-n220

query requests n∈{1, . . . , 6} property targets per profile. Targets may be exact values, ranges, or221

upper/lower bounds—e.g., “auxetic (ν < 0)” or “volume fraction V ≈ 0.6.” To construct target222

profiles from a model, we (1) sample n active properties from the model, (2) choose bounds for223

each, and (3) render a natural-language prompt using a grammar conditioned on each property’s224

part-of-speech tag (adjective, verb, etc.). This process is detailed in Appendix E.2. Both the prompt225

and the underlying numeric targets are stored, so users can rephrase questions or bypass NLP entirely.226

Omnitask dataset. For completeness, we provide an omnitask split that unites every query type227

into a single corpus; this is useful for training generalist agents.228

5.2 Task-Based Example Format229

The query/response pairs are constructed using prompt templates that are specific to each task230

type (listed in Appendix G). Given a metamaterial and a task type, we first gather the data that231

will be used to construct the query/ground truth response, along with the information required232

to evaluate the predicted response. The intermediate format used to organize this information is233

detailed in Appendix E.1. In addition to being model agnostic, this intermediate format allows234

researchers to reframe prompts without regenerating or deviating from the core content of the inquiry.235

The intermediate representation also makes MetaBench applicable to traditional non-AI methods.236

However, since no traditional methods cover the full breadth of MetaBench, we do not include237

traditional baselines in our evaluations.238

6 Results239

6.1 Database240

MetaDB is, to our knowledge, one of the largest metamaterial databases ever collected, comprising241

153, 263 materials. Our dataset features 36,997 expert material designs, including 1,588 variations of242

50 hand-authored programs, 1,205 generations, and 34,204 generation parameter variations. We also243

introduce 12,029 hybrids and 141,234 mutations.244
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Category Inverse Design Material Understanding Reconstruction
Metric Error Valid Error Valid CD IoU Valid
Model

LLaVAOmniTask 0.011 91.9% 0.024 100% 0.034 0.490 82.9%
LLaVASingleTask 0.036 81.9% 0.018 100% 0.029 0.524 83.8%

NovaLite 0.060 2.7% 0.200 100% 0.119 0.051 19.3%
NovaOmniTask 0.026 91.4% 0.032 100% 0.045 0.334 87.2%
NovaSingleTask 0.032 79.2% 0.153 100% 0.059 0.205 84.8%

OpenAIO3 0.038 24.7% 0.077 100% 0.053 0.147 54.6%
Table 1: Category-level evaluation results for various models on MetaBench. Average Normalized
Error (Error), Chamfer Distance (CD), and Intersection over Union (IoU) are averaged over valid
responses for across all tasks within a category, and Valid reports the percentage of valid responses
(note that this means SingleTask models are averaging over fewer task examples). Responses are
considered invalid if they do not contain code or the requested prediction metrics, or if the generated
program does not produce a valid metamaterial. Untuned LLaVa-Next values are not reported because
it failed to produce any valid outputs. See Figures 10 to 12 for qualitative evaluation.

To validate MetaDB, we examine its property gamut relative to our expert seeds. The property gamut245

of MetaDB compares favorably to that of our expert seed programs. Both are centered around similar246

ranges, suggesting that our design space is valid and relevant. However, MetaDB offers more uniform,247

dense coverage, along with a wider range for properties like anisotropy (~2x the expert range) and248

directional Poisson ratios (~1.2-4x the expert range).249

6.2 Benchmark & Baseline250

The 13,282 authored, generated, and hybrid models form the core set from which MetaBench is251

sampled. We randomly split these models into 500 test, 50 validation, and 12,732 training materials,252

and generated benchmark tasks for each as described in Section 5.253

We tested a variety of commercial and open source VLMs on MetaBench, both fine-tuned and254

zero-shot. Table 1 summarizes these models’ performance at the task category level; additional tables255

and galleries in Appendix D break down performance at the task level, with confidence intervals and256

qualitative interpretations. These experiments revealed three primary insights. Firstly, that fine-tuning257

is necessary for strong performance on MetaBench. Untuned models are generally unable to produce258

consistently valid programs, though when they do, a reasoning model (o3) can perform in-line with259

weaker tuned models. Secondly, fine-tuning generalist multi-task models improves inverse design260

performance. Finally, a tuned small model outperforms a tuned large model in nearly all metrics.261

However, this is likely due to it being able to converge more quickly given the same training budget262

(see Appendix F.1). Error metric definitions and tested model details are given below.263

Material Reconstruction Reconstruction measures 3D structure similarity, measured by intersec-264

tion over union (IoU) and volumetric chamfer distance of the voxelized unit cells.265

Material Understanding Material understanding is computed as an Averaged Normalized Error266

across six properties: anisotropy, Young’s modulus (VRH), Bulk Modulus (VRH), Shear Modulus267

(VRH), Poisson’s Ratio, and Volume Fraction, normalized to the typical range of that property across268

the core material set.269

Inverse Design Inverse design is measured by a clipped Averaged Normalized Error. For specific270

value targets normalized error is computed as above. For bounds targets, normalized error is taken271

relative to the bound (and is zero if the bound is respected).272

Models We tested 3 base models; a small open-source VLM (LLaVA-Next), a large commercial273

VLM (Amazon Nova Lite), and a large commercial chain-of-thought reasoning model (Open AI o3274

with medium reasoning). For LLaVA-Next and Nova Lite we also produced four fine-tuned variants275

trained on the MetaBench training set. The OmniTask variants were tuned over all training task276

examples in MetaBench, and three SingleTask variants were trained over one category-representative277
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Figure 4: Reconstruction: (Left) Generating a metamaterial program from an input image enables
incorporating designs from literature, sketches, and nature. (Right) 3D printed design.

Figure 5: Iterative Inverse Design: Designers can specify desired target properties, and these
preferences and constraints can be considered throughout multiple design iterations.

task type each (4-view reconstruction, 4-target inverse design, and multi-view-plus-code material278

understanding). Table 1 condenses the SingleTask variants of each model into a single row for279

compactness. In initial tests, untuned LLaVA-Next failed to produce any valid output, likely due to280

the MetaDSL description overwhelming its context window, so has been excluded from the table.281

Implementation LLaVA models are tuned from Llama3-LLaVA-Next-8b Li et al. [2024], Liu et al.282

[2024]. Commercial models were tuned and tested with default settings. All tuned models were283

trained for 1 epoch. For full training and inference details, see Appendix F. Benchmark construction284

and model prompts are detailed in Appendix E and Appendix G.285

6.3 Interactive Case Studies286

We built a browser-based metamaterial copilot interface to explore practical scenarios. It consists of287

a VLM chat window on the left, a code editor in the center, and a material preview window on the288

right. We conducted a series of case studies, using NovaLiteOmniTask as our interactive model due289

to its large context window and stronger conversational abilities. We experimented with a variety of290

prompts, and present here two scenarios that illustrate the potential of a metamaterial design copilot.291

The first is creating a material from an input image. Images are compelling input for material design292

because they cover trying a new material described pictorially in literature, sketching an idea for293

a design, or taking inspiration from a structure in nature. We prototyped this functionality with a294

material from the MetaBench test set; even though we presented our request conversationally rather295

than in structured form, we were still able to obtain and fabricate a perfect reconstruction.296

The second is iterative inverse design. In Figure 5, we specify a set of target property bounds, and297

the model is able to generate a metamaterial that satisfies them (we verified this with our simulator).298

But design is always iterative, and seeing one design can spark new criteria and objectives. In this299

case we wanted a thicker structure that still conformed to our original input, and (again verified by300

simulation), the model was able to update the design within target parameters. This illustrates the301

powerful ability of language models to remember and carry through design context, allowing for302

assistance across multiple design iterations.303
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7 Discussion, Limitations, and Future Work304

Metamaterial design is an inherently multimodal, high-impact problem that requires complex reason-305

ing and preference consideration, which makes it a natural test bed for AI development. Conversely,306

metamaterial researchers have called for better data sets and AI-powered tools. MetaDSL and MetaDB307

provide a common, traceable descriptor that both communities can adopt. As researchers contribute308

new designs in this format, the database will grow organically, giving machine-learning practitioners309

richer training data while delivering state-of-the-art design assistants to materials scientists.310

Our current work provides a comprehensive framework toward these goals, offering myriad op-311

portunities for improvement. We deliberately restricted our MetaAssist implementation to simple312

supervised fine tuning to provide a bedrock baseline for this new task. This provides common metric313

for techniques such as RAG to read papers and retrieve patterns, chain-of-thought reasoning to314

connect design intent to property profiles, and RL training with curriculum learning to generalize to315

novel inverse design profiles.316

MetaDSL is designed to be retargetable (Appendix A), but we currently only target a ProcMeta317

backend that is more constrained than MetaDSL’s design. A more flexible geometry kernel would318

unlock non-cubic and aperiodic tilings. Targeting a faster kernel would enable larger and more319

interactive workflows (e.g. interactive output simulation – we currently often need multiple attempts320

to get a verifiably correct output), simulation-in-the-loop optimization, and an even-wider data-set321

scale.322

MetaDB also has ample opportunities for growth as a community project, including the imple-323

mentation of additional generators [Sun et al., 2023a, Liu et al., 2022, Abu-Mualla and Huang,324

2024, Makatura et al., 2023], systematic inclusion of singular design templates from metamaterial325

literature, and diversity-guided synthesis. Our program’s explicit semantic structure could support326

taxonomy construction and intelligent exploration of large design spaces. With broad participation,327

MetaDB could become the primary resource for tracking metamaterial lineages, structure–property328

relationships, and mechanistic insights—paralleling the role ImageNet played in computer vision.329

At the same time, our framework may be susceptible to misuse or misguided application – particularly330

when it comes to our VLM-powered design assistant. Of course, our multilayer stack—simulation,331

code generation, and LLM reasoning—can introduce errors. This deserves particular attention in a332

domain like metamaterials, which is difficult to reason about intuitively, and an active frontier of sci-333

ence with rapidly changing understanding. The resulting materials may also be deployed in scenarios334

where inaccurate results may lead to catastrophic failure of engineered products or infrastructure.335

Thus, it is critical that each result must be validated before deployment, and communications should336

avoid overstating reliability. Our format already takes small strides toward ensuring the accuracy and337

traceability of information by including detailed provenance records in each of our models. To further338

improve transparency, we also release our artifacts and the pipelines used to generate them. Moving339

forward, we believe it would be prudent to include additional safeguards such as automated validity340

checks, uncertainty estimates, safety factors, and optional gated access to high-fidelity simulators to341

reduce the risk of erroneous or unsafe designs.342

8 Conclusion343

We introduced MetaGen, a unified ecosystem for vision–language metamaterial design that combines344

(i) MetaDSL, a compact yet expressive domain-specific language; (ii) MetaDB, an over 150 000-entry345

database with paired geometry, renderings, and physics; (iii) MetaBench, a task-oriented benchmark346

that probes reconstruction, material understanding, and inverse design; and (iv) MetaAssist, the347

first VLM-driven CAD interface for architected materials. Our baseline experiments illustrate348

that large vision–language models offer promising performance for multi-modal translation and349

design generation. Moreover, we provide a holistic vision for accelerated, symbiotic research at the350

intersection of machine learning and architected materials. With the introduction of MetaGen as both351

a challenging benchmark for multimodal models and a practical toolkit for materials scientists, our352

paper lays the foundation to bring this vision to life.353
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A Ecosystem Design505

The four components of the MetaGen ecosystem work together to achieve our design goals. We outline these506

goals and the design and organization decisions that achieve them here:507

• MetaDB508

– Design Goals: Collect existing knowledge in a reconfigurable, reusable, and task independent509

manner510

– Organization511

* Primary Elements: Material Definitions; Provenance512

* Derived Elements: Geometry; Computed Properties513

• MetaBench514

– Design Goals:515

– Organization:516

* Primary Elements: Structured Task Definitions; Target Data; References, Evaluation Proce-517

dures518

* Derived Elements: Query Strings; Example Responses519

• MetaDSL520

– Design Goals: Eventual Comprehensiveness via Extensibility; Supports Hybrid Structures Easily;521

Ease of Use522

– Design Decisions: Extensible Embedded Python DSL for extensibility and Ease-of-Us; Separa-523

tion of Front-End Language from Geometry Kernel524

• MetaAssist525

– Design Goals: Usable for general engineers; single interface across design silos; possibility of526

integrating unstructured data (literature, sketches, etc.)527

– Elements: Interactive Interface; Trained Baseline Models528

Each component supports the others, as illustrated in Figure 6
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Figure 6: Relationships between MetaGen ecosystem components.

529

A.1 Ecosystem Development and Insights530

The elements of this ecosystem were developed in concert with one another, going through 3 major iterations531

before arriving at their current state. MetaDSL was at the heart of each iteration, as the representation has a532

direct impact on the efficacy of the other three components:533

• MetaDB needs a representation that captures diverse structures, but also offers robust pathways for534

scalable (and, in this case, VLM-driven) structure generation, hybridization, mutation, sampling, etc.535

• MetaBench can only be used for training and evaluation if it is built atop a large, diverse database.536

• MetaAssist relies on a strong training corpus from MetaBench. MetaAssist also hinges on the537

intelligibility of the representation, and the model’s ability to interpret, generate, and modify programs538

according to user input.539

We defer the language-specific development details to Appendix B.4.540
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Figure 7: Overview of MetaDSL’s implementation. MetaDSL programs are written in an embedded
Python DSL frontend to allow for ease of use and extensibility. These structures are compiled into a
structured intermediate representation, and a backend Translator converts these structures into geome-
try kernel instructions. In our implementation we used the geometry kernel from ProcMeta Makatura
et al. [2023]. By separating the front-end representation from the backend geometry kernel, MetaDSL
is flexible to both be extended in its frontend representation, and retargettable to different geometry
backends for new applications, while keeping a compatible material representation.

Outside the scope of the DSL, we also found that dataset management and curation posed a major hurdle. We541

improved diversity by continuously mining metamaterial literature for additional seed program designs. We542

expressed these seed programs as-parametrically-as-possible to allow for expert-driven sampling. As we scaled543

the dataset, we also realized that it would be critical to keep track of the programs’ sources and relationship to544

one another. This information is especially useful for navigation, contextualization and diversity management,545

particularly as the database grows in response to community effort. To manage this, we introduced a formalized546

provenance system for MetaDB.547

B MetaDSL548

B.1 Additional Implementation Details549

We implemented the core functionality of MetaDSL (version 1.1.0) with two goals in mind. First, we wanted550

full support for the metamaterials that were expressible in our geometry kernel, ProcMeta. Second, we wanted551

our infrastructure to easily permit extensions in the future without invalidating existing programs. We detail the552

current state of each feature category in our language: convex polytopes, skeletons, lifting procedures, tiles, and553

patterns. For a full API description of the accessible functions, please refer to Appendix G.2. Figure 7 shows an554

overview of the compiler architecture.555

Convex Polytopes (CP) Currently, all of our programs make use of three pre-defined CPs (as inspired by556

ProcMeta): cuboid, triPrism and tet. The infrastructure to define custom convex polytopes exists, and most557

operators up to and including Tiles should generalize to such CPs. However, the patterning operations would558

need to be generalized before being able to operate on arbitrary CPs.559

Skeletons Then, a skeleton is constructed via a set of vertices and edges that are positioned relative to a560

common CP. Each vertex is positioned on a particular CP entity (corner, edge, face, interior). Each CP entity is ac-561

cessed via a semantically meaningful alias, permitting calls such as e.g. vertex(cuboid.edges.BACK_LEFT).562

The vertex call also optionally takes a list t⃗ of interpolation values used to position the vertex within the entity.563

If t⃗ is omitted, the returned point will be at the entity’s midpoint (edge) or centroid (face/interior). Presently,564

corners ignore weights (since they cannot be moved); edges use linear interpolation; and faces use barycentric565

coordinates if they contain 3 vertices or bilinear interpolation for quads. If a CP with different polygonal faces566

(e.g. pentagons) were implemented, an appropriate lower-dimensional vertex positioning specification would567

need to be devised. Internally, the vertices are stored using weights over a full list of the CP corners, so additional568

specification interfaces can easily be defined.569

An ordered list of vertices can then be strung together into simple (non-branching, self-intersection-free) open570

or closed paths via the Polyline or Curve commands. Each edge contained in a path infers and maintains571

information about its incidence on the CP – including whether it is contained within a face, through the CP572

volume, coincident with a CP edge, etc. This is very useful when determining lifting function compatibility, as573

some procedures can only be applied when e.g. every path edge is contained within a CP face.574

Then, a skeleton is used to combine a set of vertices or polylines/curves into a larger, more complex element,575

over which additional organizational information is computed. Skeletons infer the connected components formed576
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by the inputs, then categorize them based on their topology. Thus, a skeleton may be labeled as a simple closed577

loop, even if the input is a set of open paths. Again, these insights are critical for determining the skeleton’s578

compatibility with downstream operations, such as lifting procedures. We also included infrastructure for the579

skeletons to infer and track their total incidence on each entity of the reference CP, including the dimensionality580

(e.g. point or line) of an intersection – however, this feature is not fully implemented in the current MetaDSL581

version.582

Lifting Procedures Lifting procedures are used to transform the skeleton into a volumetric object. Sim-583

ple procedures like Spheres instantiate a sphere of the given radius centered at each vertex in the skele-584

ton. Similarly, UniformBeams instantiates a beam of the given thickness centered along each path of the585

input skeleton. The shell operators (UniformDirectShell, UniformTPMSShellViaMixedMinimal, and586

UniformTPMSShellViaConjugation) solve for a surface that spans the provided boundary curve before ex-587

panding the surface to the desired thickness. Our shell and beam procedures mimic those defined by ProcMeta,588

as they cover a wide range of metamaterial classes and were already (by construction) natively supported by our589

geometry kernel. Our Curve and Polyline commands correspond to their smooth/non-smooth edge chains,590

respectively. Unlike the original, we chose to explicitly separate several operators that were previously lumped591

together, which clarified and minimized the number of exposed parameters for each call.592

Tiles To create an embedded, patternable tile, we provide a list of one or more lifted skeletons as input to the593

Tile operator. The tile operator also takes as input the embedding information, which will be used to embed594

the CP and, in turn, each vertex of the contained skeleton(s). To obtain the embedding information, each CP595

implements at least one embed function, which takes high level parameters such as the min/max position of the596

CP’s AABB.597

Because of constraints imposed by ProcMeta – that these must form a partition of the unit cell – our code598

currently treats these CPs with some additional assumptions. Specifically, though the cuboid need not be a cube,599

it must have right angles everywhere, and edge lengths must be 1/2k for some positive integer k; in practice,600

k ∈ [1, ..4]. The triPrism is assumed to be an isoceles triangle with a right angle. The tet similarly has a base601

that is an isoceles triangle with a right angle, and a fourth vertex that is located directly above one of the 45602

degree angles. These assumptions would ideally be relaxed in a future version of MetaDSL.603

Patterns Patterns are currently the most restricted feature of MetaDSL, as we restrict our dataset to programs604

that can be compiled down to the language and solver set described by ProcMeta. Thus, rather than extending605

our structures to a more arbitrary tiling in R3, all of our structures have a translational unit residing in a unit606

cube. The pattern operators were written in a way that allows for additional, extended tiling procedures. We607

prioritized mirrors, because they are sufficient to express a wide range of common metamaterial designs, and608

they are often used in generative metamaterial design schemes, as the connectivity requirements are simpler than609

most other operations. We also have limited support for other operations such as Rotate180 and Translate,610

which can be used inside the Custom pattern specifier. Currently, these limited operations are only defined for611

specific transformations on cuboids. We look forward to an expanded MetaDSL that includes full support for612

these patterning operations, at least over the pre-built CPs that currently exist. In the long term, we envision a613

patterning system that extends well beyond this, to support large, potentially aperiodic or asymmetric tilings614

composed of one or more tiles with arbitrary CPs. This is a very difficult problem, and will itself present an615

interesting set of research directions, including how to intuitively specify these patterns and how to characterize616

their compatibility/validity.617

B.2 Example Programs618

Example program-structure pairs are listed in Figure 8 and Figure 9. Many additional models can be found in619

the accompanying data.620

B.3 MetaDSL vs. ProcMeta621

As suggested by Appendix A.1 and the architecture diagram in Figure 7, MetaDSL is distinct from and strictly622

more general than ProcMeta, with a design philosophy all its own. Our approach was motivated by our early623

experiments with ProcMeta, which revealed a critical shortcoming: important information was represented624

implicitly in the ProcMeta GUI interface, and was entirely absent from the ProcMeta graph representation.625

To make this information accessible to LLMs (and more easily accessible to humans), we implemented a626

programmatic interface, MetaDSL, that compiles to the same geometry kernel as ProcMeta, but provides several627

practical advantages (see Table 2).628

Most importantly, MetaDSL introduces explicit, referenceable bounding volumes (BVs), which are critical for629

verifying and enforcing the preconditions of geometry operations. In the ProcMeta GUI, BVs exist only as630

non-referenceable visual aids; users must manually align coordinates, and no automated compatibility checks631

are possible. ProcMeta graphs omit BVs entirely. MetaDSL represents BVs through a CP abstraction, which632
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from metagen import *

def make_structure ( shell_thickness =0.03) −> Structure :
v0 = vertex ( tet .edges.BOTTOM_LEFT)
v1 = vertex ( tet .edges.TOP_LEFT)
v2 = vertex ( tet .edges.TOP_RIGHT)
v3 = vertex ( tet .edges.BOTTOM_RIGHT)

c0 = Curve([v0, v1, v2, v3, v0])

skel = skeleton ([c0])
shell = UniformTPMSShellViaConjugation(skel, shell_thickness )

embedding = tet .embed(0.5)
tile = Tile ([ shell ], embedding)
pat = TetFullMirror ()
obj = Structure ( tile , pat )

return obj

Figure 8: Example program and corresponding geometry for the Schwarz P structure.

from metagen import *

def make_structure (beamRadius_narrow=0.03, beamRadius_wide=0.1) −> Structure:
embed = cuboid.embed(0.5, 0.5, 0.5,

cornerAtAABBMin=cuboid.corners.FRONT_BOTTOM_LEFT)

v0 = vertex (cuboid. corners .FRONT_BOTTOM_LEFT)
v1 = vertex (cuboid. corners .BACK_TOP_RIGHT)
p0 = Polyline ([v0, v1])

skel = skeleton ([p0])
liftedSkel = SpatiallyVaryingBeams( skel , [[0, beamRadius_narrow],

[0.5, beamRadius_wide],
[1, beamRadius_narrow]])

tile = Tile ([ liftedSkel ], embed)
pat = Custom(Rotate180([cuboid.edges.BACK_RIGHT,

cuboid.edges.BACK_LEFT], True,
Rotate180([cuboid.edges.TOP_RIGHT], True)))

obj = Structure ( tile , pat )

return obj

Figure 9: Example program and corresponding geometry for the pentamode structure.
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MetaDSL ProcMeta

Compactness Shorter, less boilerplate. Easier to read, less likely to
exceed token limits

Longer, more boilerplate. Exceeds context of small,
lightweight models.

Modules Highly reusable. Patterns defined in composable chunks
(eg TetMirror), independent of tile contents. Skeletons
defined independent of embedding, easily scale to differ-
ent Tiles.

No support. Limited reuse. Patterns can’t exist indepen-
dently; no pre-built Patterns. Absolute Skeletons, cannot
easily be rescaled.

Relative vs. Absolute Po-
sitioning

Positions and transforms use local coordinates (i.e. [0,1])
wrt named entities (cuboid.edges.TOP_LEFT) in ab-
stract polytopes. Robust for generation, clear design
space bounds, more intuitive.

Positions and transforms use absolute coordinates. Eas-
ily misaligned, difficult to visualize without plotting. Un-
suitable for VLMs, which struggle with computation/s-
patial tasks.

BV representation Explicit BV with named, referenceable entities. Facili-
tates verifiable parametric design, e.g., vertex constrained
to given BV edge. Allows type/error checking.

Implicit or Absent BV: drawn as a visual aid in the
GUI, but not represented/preserved in the graph. Never
referenceable.

Type/Error checking Type/incidence tracking to ensure compatibility – e.g.
conjugate TPMS require a closed loop where every edge
lies in a BV face, and every BV face contains at least 1
loop edge. This is known from our representation and ver-
ified by downstream operations. Helps determine valid
substitutions for mutations, even when large changes are
proposed, leading to greater diversity. Critical for com-
plex patterning, to determine compatibility of proposed-
adjacent faces.

None. The burden of verification (for e.g. vertices on BV
edges or edges in BV faces) is left to the user – infeasible
for agentic design. Bad inputs crash ProcMeta with no
explanation or suggested improvements.

Simplified Operations Abstractions simplify element creation; e.g., Sphere()
takes a center point and a radius, as one would expect.
Easier for humans and LLMs.

Strict compliance with the given graph interface makes
some operations cumbersome; e.g. for a sphere, thicken
a 0-length edge chain over 2 co-located vertices

Semantic information Complete support. Comments and meaningful variable
names improve readability and admit metadata (prove-
nance, parameter bounds)

No support.

Parameters Complete support. Allows parametrized models and
family generators.

None. Explicit positions etc. only. Variations defined as
separate graphs. Difficult/impossible to infer constraints
or design space from the graph description.

Loops, Functions Supports complex logic that would be tedious to im-
plement otherwise. Functions are especially useful for
hybridization, as programs can be directly reused and/or
rescaled.

No support. Each instance must be created/connected
individually. Even hybridization is difficult, because
subgraphs cannot be inserted directly – the identifier/ref-
erences of each node must be updated.

Table 2: Detailed differences between the interfaces for MetaDSL and ProcMeta.

enforces constraints by construction, enables type checking, and cleanly separates tile content from patterning,633

improving modularity and reconfigurability. These features align the representation more closely with the634

valid shape space, aiding both human designers and LLMs in producing valid, diverse structures. MetaDSL635

programs also make heavy use of programmatic features absent from ProcMeta graphs. Semantic variable636

names, comments (avg. 4/program), and parametric variables improve human interpretability and support637

natural-language reasoning for LLMs. Loops and helper functions are also common, appearing in 1,744 and638

2,103 of the 13,284 core programs respectively. These features allow compact, self-consistent definitions that639

would be unwieldy if unrolled or inlined into a ProcMeta graph.640

We tested LLM-based augmentation using ProcMeta JSON instead of MetaDSL. MetaDSL yielded: (1) higher641

code validity (75% vs. 54%), (2) more structurally focused reasoning rather than boilerplate handling, and (3)642

lower token usage (580 vs. 1,049 tokens on average for o4). Beyond these immediate benefits for LLM usage643

and dataset generation, our DSL interface also makes MetaDSL a more flexible platform from which to build644

further extensions, which facilitates its intended purpose as the seed of a wider community project.645

Extensibility The MetaDSL interface naturally generalizes to shape spaces that would be difficult to represent646

in ProcMeta’s graph approach. For example, implicit functions are common in metamaterial design, but they647

would be cumbersome to represent in ProcMeta’s graph. However, MetaDSL could naturally include them:648

rather than an explicit Skeleton, we could use the implicit function to define a SkeletonGenerator; this could then649

be fed to an Implicit lifting function, which would solidify a given isovalue range. Non-trivial patterning would650

also be possible through MetaDSL’s Custom pattern interface. For example, given a set of mutually compatible651

unit cells (like the left/right faces of Figure 2a,b,c,f), simple translations could combine them into an elongated,652

interleaved tile (e.g. ABCCBA). With enhanced compatibility determination, we could also create Pattern653

procedures for scholastic or aperiodic tilings. This will allow MetaDSL to expand alongside developments in654

metamaterial design.655

B.4 Language Development Process and Insights656

As mentioned in Appendix A.1, our geometry representation went through 3 major stages.657
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In the first iteration, we represented metamaterials using ProcMeta graphs directly. This had several issues: it was658

not compact enough for the context windows of small, lightweight models; intuitiveness and editability suffered659

dramatically without the aid of a GUI editing tool; the graphs’ use of absolute coordinates proved challenging660

for LLMs (which struggle with spatial reasoning); and the program manipulations (e.g. hybridization, mutation)661

were unwieldy and fragile, with low validity rates that prohibited effective dataset scaling and diversification.662

This limited the breadth of MetaDB and MetaBench, while curtailing the efficacy of MetaAssist.663

To address this, we designed a higher-level language that became MetaDSL-v0. This approach had a compact,664

modular, bilevel design that was embedded within Python and thus permitted semantically meaningful content;665

as such, it solved the context length and human editability issues of ProcMeta. It allowed for relative positioning,666

which mitigated the issues with coordinates while improving components’ reusability. It also allowed for dataset667

augmentation through programmatic mutation, and improved the efficacy of VLM-based hybridization and668

mutation – we attributed this jump to our Python embedding, as VLMs show great facility with Python. Still,669

MetaDSL-v0 remained fragile: generated programs frequently failed, and database augmentations showed670

limited diversity.671

Analysis of MetaDSL-v0’s failure modes offered several insights; we arrived at the current MetaDSL by672

addressing each in turn. First, we noticed that VLMs often used hallucinated synonyms, such as TOP_LEFT673

vs LEFT_TOP; we added overloads for all reasonable variations of our functions and attributes. We also found674

that it was critical to abrogate as much spatial reasoning from the VLM as possible: a full 1/3 of failures were675

due to the VLM’s improper positioning of vertices that form the concrete polytope tiles. We circumvented676

this through abstracted tile embedding functions, which generate valid embeddings from simple, meaningful677

parameterizations. In our final large-scale change, we swapped the relative order of lifting functions and tile678

embeddings (previously Embed then Lift; now, Lift then Embed). This change improved the modularity and679

compositionality while reducing verbosity – for example, this change allows multiple skeletons to reside in a680

shared Tile embedding, such that they can be patterned as a single unit. This change also paved the way for681

patterning of more diverse geometry-generation methods in future extensions. As a result, MetaDSL showed682

dramatic improvements in generation/mutation rates, and – in turn – significantly more diverse LLM-driven683

hybridizations.684

C MetaDB685

C.1 Database Layout686

MetaDB is structured into 4 primary directories:687

• literature: Literature references that are the sources for hand-authored models.688

• models: MetaDSL programs and their outputs.689

• generators: Programs that create and augment models690

• benchmark: The MetaBench benchmark691

Data items in MetaDB can reference other items by path. These paths are either absolute (start with a forward692

slash “/”) or relative (no leading slash). Absolute paths are assumed to start at the root of the database structure.693

For example, a model may reference the paper that defined it in its sources as /literature/....694

C.2 Provenance Information695

Each Model in MetaDB starts with a triple-single-quote (’’’) delimited yaml string called the header-block.696

This contains useful metadata about the program, including provenance information about how it was created,697

and what sources it draws on. Provenance information is recorded in two places in the header block.698

The primary location is in the “sources” key. This is a dictionary where the keys are MetaDB paths699

to literature, models, or generators that are the source of this model. The secondary location is in700

file_info→generator_info. For models that are autogenerated via enumeration or augmentation this701

section contains a MetaDB path to the script that generated the file, the arguments that were passed into that702

script, and specific structure_details that specified this particular model.703

C.3 Hybridization Implementation704

We hybridized hand-authored models using calls to OpenAI’s o4-mini model using a reasoning effort of705

"medium". For every pair and triplet of authored models, we used the following prompt template:706

You have access to a DSL whose specification is as follows :707

{ api_description }708

18



709

I want you to help discover unique new programs. Do this by genetic crossover based on these710

parent Metagen DSL programs:711

712

1)713

‘‘‘ python714

{program 1 code}715

‘‘‘716

717

2)718

‘‘‘ python719

{program 2 code}720

721

722

Combine relevant structural / logical features from each sample into one coherent DSL program.723

Be sure to :724

− Respect the DSL syntax strictly .725

− Maintain correctness in the final structure definition .726

− Keep the final program well−formed and ready to be run as a standard Metagen DSL generator.727

− Provide minimal descriptive comments.728

729

Return only the resulting code in a single code block .730

where api_description is the MetaDSL API specification given in Appendix G, and the program code is731

listed excluding the header block.732

C.4 Mutation Implementation733

Our mutation script loads a DSL model from file and constructs the corresponding Structure object in memory.734

Then, it is able to modify the structure along 4 different axes. Two of the axes allow discrete adjustments: (1)735

switching any Polyline to a Curve or vice versa; and (2) selecting a different lifting procedure from the set of736

options compatible with the skeleton (as inferred by our type system). The remaining modification axes permit737

continuous variations: (3) repositioning a vertex within its CP element; and (4) selecting a different thickness738

specification for any lifting procedures. To generate a given variant, each modification axis was permitted with a739

pre-specified probability; we used Pr = 0.7 for both discrete changes, Pr = 0.9 for vertex perturbation, and740

Pr = 0.98 for thickness perturbation. Once a given perturbation category was permitted, we looped over each741

opportunity for said modification within our structure specification, and evaluated a random number against the742

same respective probability to decide whether this specific instance should be modified or not. For example,743

with Pr = 0.7 we allow Polyline/Curve swaps in the variant; then, each time a candidate Polyline/Curve is744

identified, we enact the swap with Pr = 0.7. Once an instance has been approved, the specific replacement value745

was chosen at random from the appropriate set of options (if more than one available). The updated structure is746

then written to file using the dslTranslator, which writes a DSL model from a Structure object. Additional747

mutation procedures could be implemented to further increase the vawriety of resulting structures.748

Provenance Information is stored in the sources section of each program’s header block. This is a dictionary749

where the keys are database paths.750

C.5 Material Properties751

Our simulation provides the 6×6 elastic tensor C in Voigt notation, along with the compliance matrix, S = C−1.752

From this, we extract 18 common material properties:753

• E: Young’s Modulus, Voigt-Reuss-Hill (VRH) average, relative to Ebase.754

• E1, E2, E3: Directional Young’s Moduli, relative to Ebase755

• G: Shear Modulus (VRH average), relative to Ebase756

• G23, G13, G12: Directional Shear Moduli, relative to Ebase757

• ν: Poisson ratio (VRH average)758

• ν12, ν13, ν23, ν21, ν31, ν32: Directional Poisson ratios759

• K: Bulk modulus (VRH average), relative to Ebase760

• A: Anisotropy (universal anisotropy index)761

• V : Volume Fraction.762
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Category Inverse Design Material Understanding Reconstruction
Metric Error Valid Error Valid CD IoU Valid
Model

LLaVAOmniTask 0.011 ± 0.002 91.9% ± 0.9% 0.024 ± 0.004 100.0% ± 0.0% 0.034 ± 0.001 0.490 ± 0.008 82.9% ± 0.9%
LLaVASingleTask 0.036 ± 0.007 81.9% ± 3.2% 0.018 ± 0.004 100.0% ± 0.0% 0.029 ± 0.003 0.524 ± 0.030 83.8% ± 3.2%

NovaLite 0.060 ± 0.023 2.7% ± 0.6% 0.200 ± 0.005 100.0% ± 0.0% 0.119 ± 0.003 0.051 ± 0.003 19.3% ± 0.9%
NovaOmniTask 0.026 ± 0.002 91.4% ± 1.0% 0.032 ± 0.005 100.0% ± 0.0% 0.045 ± 0.001 0.334 ± 0.007 87.2% ± 0.8%
NovaSingleTask 0.032 ± 0.007 79.2% ± 3.4% 0.153 ± 0.006 100.0% ± 0.0% 0.059 ± 0.003 0.205 ± 0.020 84.8% ± 3.2%

OpenAIO3 0.038 ± 0.006 24.7% ± 1.5% 0.077 ± 0.005 100.0% ± 0.0% 0.053 ± 0.001 0.147 ± 0.004 54.6% ± 1.1%

Table 3: Benchmark summary with confidence intervals.

C.6 Ensuring MetaDB Quality763

MetaDB is founded on a strong basis of expert programs, including 50 hand-authored examples sourced from764

diverse, singularly-developed designs in metamaterial literature. This large, diverse collection of seeds is unique765

to MetaDB, as most large datasets are derived exclusively from a small set of procedural generators. For example,766

Xue et al. [2025] creates a database of 180k samples, 78% of which stem from variations of the topologies767

in Elastic Textures [Panetta et al., 2015]. The remaining 22% stem from similar generators for planar- and768

curved-shell structures [Liu et al., 2022, Sun et al., 2023a]. Because of the reliance on such generators, Xue769

et al. [2025] does not offer any representation of e.g. CSG-style structures like the Bucklicrystal of Babaee et al.770

[2013]. However, the bucklicrystal is part of our database, as shown in Figure 3(i), center). MetaDB also already771

includes Elastic Textures, and similar generators could be implemented for the remaining sources mentioned772

above.773

To ensure that MetaDB only contains high-quality material definitions – even when automatically generating a774

large portion of our entries – material models are only added after they have passed a series of basic checks.775

Presently, this includes 3 criteria:776

• MetaDSL compilation: the model must contain valid python code that successfully evaluates to a777

MetaDSL Structure object. This includes all runtime type checking done by MetaDSL.778

• Valid Geometry Generation: after the MetaDSL Structure object is transpiled into the target geometry779

kernel (in our case, ProcMeta), the kernel is run. We check the resulting geometry for validity, as780

measured by a non-null result that is tilable in 3D. To determine tilability, we tile the base cell in a781

3×3×3 lattice, then check that the boundaries are periodic and that at least one connected component782

of this larger base cell reaches all boundaries.783

• Physically Consistent Simulation Results: the simulator must return reasonable results that obey784

physical constraints. For example, since our simulation is normalized by the base material’s Young’s785

modulus Ebase, it must be the case that our simulation returns E ≤ 1.786

D Further Benchmark Results787

D.1 Expanded Quantitative Results788

In this section we extend the primary table from the paper Table 1 to include 95% confidence intervals, computed789

using the standard-error approximation (Table 3). We also show more detailed tables for each task category,790

broken down to the individual task type. These extended views do not change the primary observations from the791

main text, but do highlight the differences between subtasks.792

Significance In Table 3 we show 95% confidence intervals around the sample means for our top-level task793

categories. From these we can see that for every task that LLaVASingleTask outperformed LLaVAOmniTask,794

the confidence intervals actually overlap, indicating that this performance boost from single-task training may795

not be significant. This reaffirms our decision to base our metamaterial co-pilot on the OmniTask trained models.796

Categorical Results Tables 4, 5, and 6 break down Table 1 for each task category into its task variations797

(number of views, targets, etc.). These provide a more even point of comparison between single and omni-task798

models because the results are aggregated over exactly the same examples. By contrast, in the primary table, the799

omni-task models are averaging over more and different tasks; thus, they may be biased by overall easier or800

harder requests.801

In reconstruction (Table 4), we see a trend that having more viewpoints makes reconstruction slightly easier.802

We can see that the inclusion of these harder tasks did pull down the OmniTask average slightly in the general803

benchmark, but it was not the deciding factor. A similar trend is seen in Nova, but there the gap is significantly804

larger.805
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Task 1 View 2 View 3 View 4 View
Metric CD IoU Valid CD IoU Valid CD IoU Valid CD IoU Valid
Model

LLaVAOmniTask 0.036 0.458 82.3% 0.033 0.497 83.0% 0.032 0.509 83.2% 0.033 0.497 83.2%
LLaVASingleTask — — — — — — — — — 0.029 0.524 83.8%

NovaLite 0.119 0.049 18.7% 0.117 0.050 17.0% 0.118 0.053 22.0% 0.125 0.050 25.0%
NovaOmniTask 0.047 0.307 87.5% 0.044 0.338 87.5% 0.043 0.350 86.2% 0.044 0.346 87.8%
NovaSingleTask — — — — — — — — — 0.059 0.205 84.8%

OpenAIO3 0.052 0.150 36.8% 0.055 0.141 58.9% 0.052 0.151 62.6% 0.052 0.155 68.5%

Table 4: Reconstruction Results Broken Down by task type.

Task 1 Target 2 Target 3 Target 4 Target 5 Target 6 Target
Metric Error Valid Error Valid Error Valid Error Valid Error Valid Error Valid
Model

LLaVAOmniTask 0.023 99.0% 0.011 94.3% 0.007 93.1% 0.010 89.7% 0.008 88.3% 0.008 87.9%
LLaVASingleTask — — — — — — 0.036 81.9% — — — —

NovaLite 0.036 2.1% 0.049 4.6% 0.043 2.0% 0.078 3.2% 0.083 1.2% 0.072 2.8%
NovaOmniTask 0.020 90.3% 0.018 90.6% 0.024 90.5% 0.029 92.7% 0.035 90.2% 0.028 94.0%
NovaSingleTask — — — — — — 0.032 79.2% — — — —

OpenAIO3 0.045 30.5% 0.035 20.2% 0.023 23.1% 0.045 20.5% 0.037 28.2% 0.042 25.9%

Table 5: Inverse Design Results broken down by task type.

For the inverse design tasks in Table 5, the 2 or 3 target design appears to be the easiest benchmark, depending on806

the model; however, there is not a clear trend stating whether more-or-fewer targets is easier. It is not clear why807

these intermediate task numbers are less difficult than single target design. Our hypothesis is that the individual808

targets become easier to achieve with increasing target count (either due to profile selection bias or correlation809

between targets in the real materials we are sampling from), but this is eventually counteracted by having more810

optimization criteria. More in-depth study is required to deduce why this happens.811

The expanded material understanding results shown in Table 6 reveal only that predicting material properties812

with limited information (a single view), is somewhat more challenging than with an abundance of signal (many813

views and a MetaDSL representation); this is an unsurprising finding. This discrepancy did lower the overall814

accuracy of LLaVAOmniTask, but not enough to make a categorical difference.815

D.2 Result Galleries816

We also present randomly1 sampled queries for each task, and visualize their results across models, along with817

their benchmark metrics. This shows the qualitative differences between the models’ performances, while818

grounding the numeric metrics to make them more understandable.819

Figure 10 illustrates reconstruction from 4 viewpoint renders. Of particular interest is the o3 column on the820

far right. For 4/5 examples, o3 correctly reproduced the basic shape of the side-on views up-to the number of821

repeats. This suggests that it can correctly build skeletons, but struggles with selecting the correct embedding822

scale.823

Figure 11 illustrates material prediction based on specified property requirements. In these examples, the LLaVA824

models successfully generate materials that meet the given criteria, but other models occasionally generate825

invalid materials or fail to satisfy the specified requirements.826

1rejection filtered so that all models had valid outputs for the input, except for inverse design where this was
not possible

Task 1 View 4 View + Code
Metric Error Valid Error Valid
Model

LLaVAOmniTask 0.026 100% 0.023 100%
LLaVASingleTask — — 0.018 100%

NovaLite 0.208 100% 0.192 100%
NovaOmniTask 0.031 100% 0.032 100%
NovaSingleTask — — 0.153 100%

OpenAIO3 0.084 100% 0.071 100%

Table 6: Material Understanding results broken down by task type.
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Input Predicted renderings
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Figure 10: 4 View reconstruction results for random test samples by model. Left: the input renders
shown to each model. Right: renders of predicted reconstructions.
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Write a metagen
program that creates... Predicted Results

a compressible (K ≤ 0.5),
anisotropic (A ≥ 0.05)
material that is compliant
along the x direction
(E3 ≤ 0.4) and compliant
along the x direction
(E1 ≤ 0.4).

LLaVASingle
Error: 0.0

LLaVAOmni
Error: 0.0

NovaSingle
Error: 0.0

NovaOmni
Error: 0.0

INVALID

NovaLite OpenAI-o3
Error: 0.0

a nearly isotropic
(A ≤ 0.05), very sparse
(V ≥ 0.2) material that
is resistant to compres-
sion (K ≥ 1.0), with a
high Young’s modulus
(E ≥ 0.4).

LLaVASingle
Error: 0.0

LLaVAOmni
Error: 0.0

INVALID

NovaSingle

NovaOmni
Error: 0.167

NovaLite
Error: 0.218

OpenAI-o3
Error: 0.134

a compliant along the x di-
rection (E3 ≤ 0.4), com-
pliant along the x direc-
tion (E1 ≤ 0.4), compli-
ant along the y direc-
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Figure 11: Inverse design results for a random selection of queries. Left: the text query given to each
model. Right: paired data showing – for each model – an image of the generated structure alongside
a property profile comparison. This profile shows the target values/ranges (in blue), versus simulated
properties of the predicted materials (in red). Red arrows indicate that the predicted value is beyond
the chart boundaries. Some models failed to produce a valid model for certain queries, indicated by
the label “INVALID”.
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Input Predicted Properties
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Figure 12: Material property predictions given 4 input views (shown) and the program code (not
shown). The radar charts plot the 6 averaged property values (scaled and shifted to always be positive).
The blue regions show the ground truth values, while red shows the prediction.

Figure 12 illustrates generated materials’ predicted versus actual properties. In these examples the LLaVA and827

OmniTask Nova models do quite well, but single task Nova and untuned models (Novalite and o3) fall behind.828

E MetaBench829

E.1 Intermediate Representation830

Each dataset is given by a set of .jsonl files: one file each for train, validate, and test. Each line of a .jsonl file831

describes a single example using a dictionary with the following keys:832

• ‘task_type’: a string identifying the task category; in our case, it is one of {‘reconstruction’, ‘in-833

verse_design’, ‘material_understanding’}.834
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• ‘label’: unique text label identifying this task entry, using descriptive elements where applicable, such835

as provided image viewpoints or source files.836

• ‘source’: [if applicable] path to the source metamaterial, relative to the database root (and including837

the leading ‘/’)838

• ‘data’: any and all data required to run evaluations, including references for large elements (e.g.839

images, meshes, etc.) and/or directly embedded values.840

• ‘query’: natural language framing of the question to be provided to an LLM. Any images (or other841

non-text input) must be specified by reference.842

• ‘response’: [optional] an expected response from an LLM that has been asked ‘query’. This field843

is permitted to exist for a test example; removal of this information is the responsibility of the844

LLM-specific formatters, when required.845

The system prompt has been purposefully excluded, both because it would be very large, and because that is an846

implementation detail of a predictive model, and not part of the benchmark itself.847

E.2 Task Construction for Inverse Design848

Inverse design tasks are specified as a collection of target values or bounded-ranges for a subset of material849

properties, from which we construct a natural-language query that describes that set of targets. Creating these850

tasks has two stages: selecting a set of targets, and generating an grammatically correct English sentence from851

those targets.852

Property References To aid in this process, we generate a reference dictionary with information about each853

of the 18 properties, of the following form:854

855
1 {856

2 ’nu’: {857

3 "full_prop_name": "Poisson ratio " ,858

4 " alternate_symbols " : ["nu_{VRH}"],859

5 " property_generality " : PropertyGenerality .OVERALL,860

6 " property_type " : PropertyType.POISSON_RATIO,861

7 " dataset_coverage " : {862

8 "min": −0.5,863

9 "max": 0.5,864

10 "q1": 0.3,865

11 "q3": 0.36,866

12 "densely_populated_ranges" : [ [0.2, 0.4]]867

13 },868

14 " smallest_meaningful_quantization " : 0.01,869

15 " adjective_descriptors " : [{" description " : f" auxetic " , " target_type " : TargetType.870

UPPER_BOUND, "target_value":0}],871

16 " property_descriptors " : [{" description " : f"a negative Poisson ratio " , " target_type " :872

TargetType.UPPER_BOUND, "target_value":0},873

17 {" description " : f"a positive Poisson ratio " , " target_type " :874

TargetType.LOWER_BOUND, "target_value":0}],875

18 " verb_descriptors " : [{" description " : f" contracts transversely under axial compression", "876

target_type " : TargetType.UPPER_BOUND, "target_value":0},877

19 {" description " : f"expands transversely under axial compression", "878

target_type " : TargetType.LOWER_BOUND, "target_value":0},879

20 {" description " : f" contracts in other directions when compressed880

along one axis" , " target_type " : TargetType.UPPER_BOUND, "881

target_value":0},882

21 {" description " : f"expands in other directions when compressed along883

one axis" , " target_type " : TargetType.LOWER_BOUND, "884

target_value":0},885

22 {" description " : f"expands transversely under axial elongation " , "886

target_type " : TargetType.UPPER_BOUND, "target_value":0},887

23 {" description " : f" contracts transversely under axial elongation " , "888

target_type " : TargetType.LOWER_BOUND, "target_value":0},889

24 {" description " : f"expands in other directions when stretched along890

one axis" , " target_type " : TargetType.UPPER_BOUND, "891

target_value":0},892
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25 {" description " : f" contracts in other directions when stretched along893

one axis" , " target_type " : TargetType.LOWER_BOUND, "894

target_value":0}]895

26 },896

27 }897898

The full listing for all 18 properties is available in the metagen code provided in the supplement:899

metagen/benchmarks_inverse_design.py.900

These entries provide information about the property ranges, dataset coverage, and interesting value breakpoints901

together with phrases that might be used to request them (e.g., “auxetic” implies ν < 0). All aspects of these902

reference entries will be used in the following subsections to construct robust, varied and meaningful property903

queries for different material examples.904

Active Property Selection For a given structure, we enforce that the “active” property subset follows two905

rules. First, the active set may only employ the overall values or the directional values for any given property –906

e.g., if a profile includes measure(s) for Young’s modulus, it may either include the overall Young’s modulus E907

or one or more of the directional values {E1, E2, E3}; however, it is not permitted to simultaneously include908

E and one or more directional variants. Moreover, a profile is only allowed to use directional variants if it is909

sufficiently anisiotropic. We chose our anisotropy threshold as A ≥ 0.0025, based on a manual exploration of910

the correlation between material spheres and anisotropy values appearing in our dataset. Subject to these rules,911

we select the “active” subset of properties based on a heuristic that determines the most interesting or salient912

properties of a given model.913

We construct this heuristic score by examining individual properties of a model, and assigning a reward or914

penalty based on the expected notability of a particular characteristic or combination thereof. For example, if915

a material is near isotropic (A < 0.0025), we strongly reward the anisotropy property (so it is likely to end916

up in the active set) and heavily penalize all directional properties (so they will not be activated, as they are917

not likely to be notable). If the material is sufficiently anisotropic, we look at each property with directional918

variants, then compute pairwise differences between the values (e.g. E1 vs. E2). The directional properties are919

rewarded proportionally to each pairwise difference, so directions with larger discrepancies are more likely to be920

activated. Independently, we examine the ratio between the Young’s modulus E and the volume fraction V – if921

the ratio is high (i.e., the material preserves stiffness with dramatically less material / lighter weight, which is a922

highly sought after combination), we strongly reward both properties. Finally, we examine each property in turn,923

and award additional points if they exhibit values that are extreme and/or underrepresented in our dataset. The924

reward is proportional to the relative extremity and inversely proportional to representation.925

Given these scores, we iteratively select the highest-reward properties that preserve our overall active set rules.926

To ensure some variation in our inverse design profiles, we also introduce the opportunity to add randomly927

chosen properties into our profile: after each active set addition from the ranked data, we break the loop with928

some low probability (10%) and fill the remaining slots with randomly chosen properties that respect the rules929

relative to our partial active set.930

Active Property Target Selection For each active property, we must now select a target value or range.931

To do this, we evaluate the options present in our reference dictionary, and extract all targets that are satisfied by932

the material at hand. We organize these into groups based on value and target type (range, value, lower/upper933

bound). Then, we choose the group that offers the tightest bound relative to the current material’s property934

value. If multiple bound types are associated with the chosen target value, we select a bound type at random.935

Finally, we construct a profile with all targets matching the selected value and bound type. Assuming an example936

material where the Poisson ratio ν = −0.1, the resulting profile might be as follows:937

938
1 {939

2 " property " : "nu"940

3 " target_value " : 0941

4 " target_type " : "upper_bound"942

5 " target_descriptions " : [943

6 {944

7 " description " : " auxetic " ,945

8 " description_type " : " adjective "946

9 },947

10 {948

11 " description " : "a negative Poisson ratio " ,949

12 " description_type " : "noun"950

13 },951

14 {952

15 " description " : " contracts transversely under axial compression",953
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16 " description_type " : "verb"954

17 },955

18 {956

19 " description " : " contracts in other directions when compressed along one axis" ,957

20 " description_type " : "verb"958

21 },959

22 {960

23 " description " : "expands transversely under axial elongation " ,961

24 " description_type " : "verb"962

25 },963

26 {964

27 " description " : "expands in other directions when stretched along one axis" ,965

28 " description_type " : "verb"966

29 }967

30 ]968

31 }969970

Query Construction We want to create varied sentence structures to train and test against. To do this, each971

target type (value, upper bound, or lower bound) and target property has associated with it several descriptive972

phrases, as shown in the profile above. These phrases are paired with a part of speech (adjective, noun, or verb).973

As examples “very dense” (adjective), “contracts in the X direction when the Y direction is stretched” (verb),974

or “a negative Poisson ratio in at least one direction” (noun). Phrases that do not include numeric targets are975

accompanied by a parenthetical aside given a target value or range (e.g. “very dense (V > 0.8).”976

We start by randomly selecting one phrase for each target property, binning them by part of speech, then977

randomizing the order within bins. Adjectives are further randomly split between front-adjectives that precede978

the noun “material” (“a very dense material”) and back-adjectives that follow it (“a material that is very dense”).979

We then form a query string by applying the template:980

Write a metagen program that creates [a/an] { front_adjectives } material { back_adjectives } {verbs}981

{nouns}.982

The template strings are augmented with part-of-speech appropriate connectors (“that is”, “with”, “that”, “and”),983

and commas, depending on the parts of number of each part of speech in each position. The pronoun (a/an) as984

selected based on the first letter of {front_adjectives} if there are any, otherwise “a” for “a material”.985

F Implementation Details986

LLaVASingleTask and LLaVAOmniTask tune Llama3-LLaVA-Next-8b Li et al. [2024], Liu et al. [2024]987

using low-rank adaptation Hu et al. [2022], with with r = 16 and α = 32. Models were optimized using988

AdamW Loshchilov and Hutter [2017] with a 1e-5 learning rate and a cosine learning rate scheduler with989

0.03 warm-up ratio. SingleTask models were trained on for 7000 iterations on 8 NVIDIA A100 GPUs over990

approximately 17 hours, while the OmniTask model was trained for just 1 epoch on 8 H200 GPUs over 25 hours991

due to its significantly larger training set, and for parity with the NovaLiteOmniTask. All LLaVA models were992

trained with a batch size of 16. During inference, the temperature was set to 0 to ensure deterministic outputs.993

For commercial models we primarily used their default settings to avoid excess costs in hyperparameter tuning.994

NovaSingleTask models were trained on Amazon Bedrock with default settings (2 epochs, learning rate 1e-5,995

batch size 1, 10 learning rate warmup steps), and NovaOmniTask was trained with the same settings for 1 epoch.996

NovaSingleTask models trained for 4 hours for reconstruction and material understanding, and 2 hours for inverse997

design. The NovaOmniTask trained for 24 hours. Default Bedrock parameters were also used at inference time998

(temperature=0.7, topP=0.9, topK=50). OpenAI’s o3 model was queried using the default “medium” reasoning999

level.1000

F.1 Training Curves1001

The surprising result that the smaller LLaVA models generally outperformed their much larger Nova counterparts1002

is likely due to the smaller models converging more quickly given the same number of training examples.1003

F.2 Timing and Costs1004

MetaDSL execution and simulation time dominate LLM inference time for material generation. These are highly1005

variable based on the geometric complexity of the generated program, with the majority executing and simulating1006

27



Figure 13: Training loss for LLaVAOmnitask and NovaOmnitask. Losses have been normalized
so that starting-loss was 1. The LLaVA model converged very quickly, whereas the Nova loss was
still decreasing. Given more training iterations or a steeper learning rate, is is possible that Nova
performance would rise to match LLaVA’s.

in 5 minutes or less. MetaAssist generations are on average more time-complex that MetaDB (see Table 7. In1007

practice, MetaAssist latencies are much lower because we do not run simulations in the interactive system.1008

Program Source Avg. (s) Median (s) Std (s)
MetaDB 181 123 328

MetaAssist 591 290 746
Table 7: MetaDSL Execution and simulation times for program in MetaDB, and programs generated
by MetaAssist using NovaOmni over the MetaBench test set (reconstruction and inverse design).

Since MetaDSL is quite compact, inference can be performed efficiently with few tokens. The majority of the1009

inference tokens are taken by the common API-description system prompt (Appendix G.1), the cost of which1010

can be amortized by caching. Using NovaOmni (ignoring caching for simplicity), the average MetaBench query1011

used 8730 tokens (8284 input and 446 output). At current API pricing, the average query would cost $0.0006,1012

and inference for the full test set would cost $7.11.1013

G Query Templates1014

For training models and running inference, we used prompt templates and inserted details for each specific query.1015

In the following templates, <[ ... ]> is used as a delimiter to denote the inclusion of an image.1016

G.1 Universal System Prompt1017

For consistency, every example was provided with a common system prompt that describes the Metagen1018

DSL, explains the material properties and rendered views we have in our dataset, and describes the basic task1019

categories.1020

You are an expert metamaterials assistant that generates and analyzes cellular metamaterial1021

designs based on material properties , images, and programatic definitions in the Metagen1022

metamaterial DSL.1023

1024

1025

# Procedural Description in a Metamaterial DSL:1026

1027

{ api_description }1028

1029

# Material Analysis :1030

You can analyze the density , anisotropy , and elasticity properties of metamaterials . All1031

metamaterials are assumed to be constucted from an isotropic base material with Poisson’s1032

ratio nu = 0.45.1033
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The Young’s Modulus of this base material is not specified , instead , the elastic moduli of the1034

metamaterials −− Young’s Modulus (E), Bulk Modulus (K), and Shear Modulus (G), are expressed1035

relative to the base material Young’s modulus (E_base). This means, for example, that1036

relative Young’s Moduli can range from 0 to 1. The material properties you can analyze are :1037

1038

− E: Young’s Modulus, Voigt−Reuss−Hill (VRH) average, relative to E_base1039

− E_1,E_2,E_3: Directional Young’s Moduli, relative to E_base1040

− G: Shear Modulus (VRH average), relative to E_base1041

− G_23,G_13,G_12: Directional Shear Moduli, relative to E_base1042

− nu: Poisson ratio (VRH average)1043

− nu_12, nu_13, nu_23, nu_21, nu_31, nu_32: Directional Poisson ratios1044

− K: Bulk modulus (VRH average), relative to E_base1045

− A: Anisotropy ( universal anisotropy index)1046

− V: Volume Fraction1047

1048

# Material Images:1049

1050

Images of metamaterials depict a base cell of the material rendered from four viewpoints :1051

1052

− from the top1053

− from the front side1054

− from the right side1055

− from an angle at the upper−front− right1056

1057

# Tasks:1058

1059

You will be asked to perform several kinds of tasks :1060

1061

− Reconstruction : from one or more images of a target material , reconstruct a Metagen program that1062

generates the metamaterial in the images.1063

− Inverse Design: from a description of the properties of a desired materials , write a Metagen1064

program that creates a metamaterial with those properties .1065

− Material Understanding: from images of a metamaterial and/or a Metagen program, analyze a1066

material and predict its properties .1067

G.2 MetaDSL API1068

The Metagen language description (inserted as the api_description in the system prompt above) is as follows:1069

1070

Programs in Metagen are built in two stages : one that creates local geometric structure , and a1071

second that patterns this structure throughout space . Each of these is further broken down1072

into subparts .1073

1074

1075

==================================1076

API description ( Boilerplate )1077

==================================1078

Each program is given as a python file (. py) .1079

This program must import the metagen package and define a function called "make_structure () ",1080

which returns the final Structure object defined by the program.1081

If parameters are present in make_structure () , they MUST have a default value .1082

Specifically , the file structure is as follows :1083

1084

1085

from metagen import *1086

1087

def make_structure (...) −> Structure :1088

<content>1089

1090

1091

1092

==================================1093

DSL description1094

==================================1095
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1096

======= Skeleton Creation ========1097

vertex ( cpEntity , t )1098

@description:1099

Create a new vertex . This vertex is defined relative to its containing convex polytope (1100

CP). It will only have an embedding in R3 once the CP has been embedded.1101

@params:1102

cpEntity − an entity of a convex polytope (CP), referenced by the entity names.1103

t − [OPTIONAL] list of floats in range [0,1], used to interpolate to a specific1104

position on the cpEntity .1105

If cpEntity is a corner , t is ignored .1106

If cpEntity is an edge, t must contain exactly 1 value . t is used for1107

linear interpolation between the endpoints of cpEntity .1108

If cpEntity is a face , t must contain exactly 2 values . If cpEntity is a1109

triangular face , t is used to interpolate via barycentric coordinates1110

. If cpEntity is a quad face , bilinear interpolation is used.1111

1112

If the optional interpolant t is omitted for a non−corner entity , the1113

returned point will be at the midpoint ( for edge) or the centroid (1114

for face ) of the entity . Semantically , we encourage that t be1115

excluded (1) if the structure would be invalid given a different non1116

−midpoint t , or (2) if the structure would remain unchanged in the1117

presence a different t (e .g ., in the case of a conjugate TPMS,1118

where only the entity selection matters ) .1119

@returns:1120

vertex − the new vertex object1121

@example_usage:1122

v0 = vertex (cuboid.edges.BACK_RIGHT, [0.5])1123

v1 = vertex (cuboid.edges.TOP_LEFT)1124

1125

1126

Polyline ( ordered_verts )1127

@description:1128

Creates a piecewise− linear path along the ordered input vertices . All vertices must be1129

referenced to the same CP (e.g ., all relative to cuboid entities ) . The resulting path1130

will remain a polyline in any structures that include it .1131

@params:1132

ordered_verts − a list of vertices , in the order you’d like them to be traversed . A1133

closed loop may be created by repeating the zeroth element at the end of the list .1134

No other vertex may be repeated . Only simple paths are permitted .1135

@returns:1136

polyline − the new polyline object1137

@example_usage:1138

p0 = Polyline ([v2, v3])1139

p0 = Polyline ([v0, v1, v2, v3, v4, v5, v0])1140

1141

1142

Curve( ordered_verts )1143

@description:1144

Creates a path along the ordered input vertices . This path will be smoothed at a later1145

stage (e .g ., to a Bezier curve) , depending on the lifting procedures that are chosen.1146

All input vertices must be referenced to the same CP (e.g ., all relative to cuboid1147

entities ) .1148

@params:1149

ordered_verts − a list of vertices , in the order you’d like them to be traversed . A1150

closed loop may be created by repeating the zeroth element at the end of the list .1151

No other vertex may be repeated . Only simple paths are permitted .1152

@returns:1153

curve − the new curve object1154

@example_usage:1155

c0 = Curve([v2, v3])1156

c0 = Curve([v0, v1, v2, v3, v4, v5, v0])1157

1158

skeleton ( entities )1159

@description:1160
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Combines a set of vertices OR polylines / curves into a larger structure , over which1161

additional information can be inferred . For example, within a skeleton , multiple1162

open polylines / curves may string together to create a closed loop , a branched path ,1163

or a set of disconnected components.1164

@params:1165

entities − a list of entities ( vertices or polylines / curves) to be combined. A1166

given skeleton must only have entities with the same dimension −− that is , it must1167

consist of all points or all polylines / curves .1168

@returns:1169

skeleton − the new skeleton object1170

@example_usage:1171

skel = skeleton ([curve0, polyline1 , curve2, polyline3 ])1172

skel = skeleton ([v0])1173

1174

1175

======= Lifting Procedures ========1176

UniformBeams(skel, thickness )1177

@description:1178

Procedure to lift the input skeleton to a 3D volumetric structure by instantiating a beam1179

of the given thickness centered along each polyline /curve of the input skeleton .1180

@requirements:1181

The skeleton must contain only polylines and/or curves . The skeleton must not contain any1182

standalone vertices .1183

@params:1184

skel − the skeleton to lift1185

thickness − the diameter of the beams1186

@returns:1187

liftProc − the lifted skeleton1188

@example_usage:1189

liftProcedure = UniformBeams(skel, 0.03)1190

1191

SpatiallyVaryingBeams( skel , thicknessProfile )1192

@description:1193

Procedure to lift the input skeleton to a 3D volumetric structure by instantiating a beam1194

of the given spatially −varying thickness profile centered along each polyline /curve1195

of the input skeleton .1196

@requirements:1197

The skeleton must contain only polylines and/or curves . The skeleton must not contain any1198

standalone vertices .1199

@params:1200

skel − the skeleton to lift1201

thicknessProfile − specifications for the diameter of the beams along each polyline /curve .1202

Given as a list [ list [ floats ]], where the each of the n inner lists gives the1203

information for a single sample point along the polyline /curve . The first element in1204

each inner list provides a position parameter t \\ in [0,1] along the polyline /curve ,1205

and the second element specifies the thickness of the beam at position t1206

@returns:1207

liftProc − the lifted skeleton1208

@example_usage:1209

liftProcedure = SpatiallyVaryingBeams( skel , 0.03)1210

1211

UniformDirectShell ( skel , thickness )1212

@description:1213

Procedure to lift the input skeleton to a 3D volumetric structure by inferring a surface1214

that conforms to the boundary provided by the input skeleton . The surface is given by1215

a simple thin shell model: the resulting surface is incident on the provided1216

boundary while minimizing a weighted sum of bending and stretching energies . The1217

boundary is fixed , though it may be constructed with a mix of polylines and curves (1218

which are first interpolated into a spline , then fixed as part of the boundary). The1219

skeleton must contain a single closed loop composed of one or more polylines and/or1220

curves . The skeleton must not contain any standalone vertices .1221

@requirements:1222

1223

@params:1224

skel − the skeleton to lift1225
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thickness − the thickness of the shell . The final offset is thickness /2 to each side1226

of the inferred surface .1227

@returns:1228

liftProc − the lifted skeleton1229

@example_usage:1230

liftProcedure = UniformDirectShell ( skel , 0.1)1231

1232

UniformTPMSShellViaConjugation(skel, thickness )1233

@description:1234

Procedure to lift the input skeleton to a 3D volumetric structure by inferring a triply1235

periodic minimal surface (TPMS) that conforms to the boundary constraints provided by1236

the input skeleton . The surface is computed via the conjugate surface construction1237

method.1238

@requirements:1239

The skeleton must contain a single closed loop composed of one or more polylines and/or1240

curves . The skeleton must not contain any standalone vertices .1241

Each vertex in the polylines / curves must live on a CP edge.1242

Adjacent vertices must have a shared face .1243

The loop must touch every face of the CP at least once.1244

If the CP has N faces , the loop must contain at least N vertices .1245

@params:1246

skel − the skeleton to lift1247

thickness − the thickness of the shell . The final offset is thickness /2 to each side1248

of the inferred surface .1249

@returns:1250

liftProc − the lifted skeleton1251

@example_usage:1252

liftProcedure = UniformTPMSShellViaConjugation(skel, 0.03)1253

1254

UniformTPMSShellViaMixedMinimal(skel, thickness)1255

@description:1256

Procedure to lift the input skeleton to a 3D volumetric structure by inferring a triply1257

periodic minimal surface (TPMS) that conforms to the boundary constraints provided by1258

the input skeleton . The surface is computed via mean curvature flow. All polyline1259

boundary regions are considered fixed , but any curved regions may slide within their1260

respective planes in order to reduce surface curvature during the solve .1261

@requirements:1262

The skeleton must contain a single closed loop composed of one or more polylines and/or1263

curves . The skeleton must not contain any standalone vertices .1264

Each vertex in the polylines / curves must live on a CP edge.1265

Adjacent vertices must have a shared face .1266

@params:1267

skel − the skeleton to lift1268

thickness − the thickness of the shell . The final offset is thickness /2 to each side1269

of the inferred surface .1270

@returns:1271

liftProc − the lifted skeleton1272

@example_usage:1273

liftProcedure = UniformTPMSShellViaMixedMinimal(skel, 0.03)1274

1275

Spheres( skel , thickness )1276

@description:1277

Procedure to lift the input skeleton to a 3D volumetric structure by instantiating a1278

sphere of the given radius centered at vertex p, for each vertex in the skeleton .1279

@requirements:1280

The skeleton must only contain standalone vertices ; no polylines or curves can be used.1281

@params:1282

skel − the skeleton to lift1283

thickness − the sphere radius1284

@returns:1285

liftProc − the lifted skeleton1286

@example_usage:1287

s_lift = Spheres( skel , 0.25)1288

1289

1290
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======= Tile Creation ========1291

Tile ( lifted_skeletons , embedding)1292

@description:1293

Procedure to embed a copy of the skeleton in R^3 using the provided embedding information .1294

The embedding information can be computed by calling the "embed" method of the1295

relevant CP.1296

@requirements:1297

The embedding information must correspond to the same CP against which the vertices were1298

defined . For example, if the vertices are defined relative to the cuboid, you must1299

use the cuboid.embed() method.1300

@params:1301

lifted_skeletons − a list of lifted skeleton entities to embed in R^3. All entities must1302

reside in the same CP type, and this type must have N corners .1303

embedding − information about how to embed the CP and its relative skeletons within1304

R^3. Obtained using the CP’s embed() method1305

@returns:1306

tile − the new tile object1307

@example_usage:1308

embedding = cuboid.embed(side_len, side_len , side_len , cornerAtAABBMin=cuboid.corners.1309

FRONT_BOTTOM_LEFT)1310

s_tile = Tile ([beams, shell ], embedding)1311

1312

1313

======= Patterning Procedures ========1314

TetFullMirror ()1315

@description:1316

Procedure which uses only mirrors to duplicate a tet −based tile such that it partitions R1317

^31318

@params:1319

N/A1320

@returns:1321

pat − the patterning procedure1322

@example_usage:1323

pat = TetFullMirror ()1324

1325

TriPrismFullMirror ()1326

@description:1327

Procedure which uses only mirrors to duplicate a triangular prism−based tile such that it1328

partitions R^31329

@params:1330

N/A1331

@returns:1332

pat − the patterning procedure1333

@example_usage:1334

pat = TriPrismFullMirror ()1335

1336

CuboidFullMirror()1337

@description:1338

Procedure which uses only mirrors to duplicate an axis−aligned cuboid tile such that it1339

fills a unit cube, such that it partitions R^3. Eligible cuboid CPs must be such1340

that all dimensions are 1/(2^k) for some positive integer k.1341

@params:1342

N/A1343

@returns:1344

pat − the patterning procedure1345

@example_usage:1346

pat = CuboidFullMirror()1347

1348

Identity ()1349

@description:1350

No−op patterning procedure .1351

@params:1352

N/A1353

@returns:1354

pat − the patterning procedure1355
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@example_usage:1356

pat = Identity ()1357

1358

Custom(patternOp)1359

@description:1360

Environment used to compose a custom patterning procedure . Currently only implemented for1361

the Cuboid CP.1362

@params:1363

patternOp− outermost pattern operation in the composition1364

@returns:1365

pat − the complete patterning procedure1366

@example_usage:1367

pat = Custom(Rotate180([cuboid.edges.BACK_RIGHT, cuboid.edges.BACK_LEFT], True,1368

Rotate180([cuboid.edges.TOP_RIGHT], True)))1369

1370

Mirror( entity , doCopy, patternOp)1371

@description:1372

Pattern operation specifying a mirror over the provided CP entity , which must be a CP1373

Face. Can only be used inside of a Custom patterning environment.1374

@params:1375

entity − CP Face that serves as the mirror plane .1376

doCopy − boolean. When True, applies the operation to a copy of the input , such that the1377

original and the transformed copy persist . When False, directly transforms the input1378

.1379

patternOp− [OPTIONAL] outermost pattern operation in the sub−composition, if any1380

@returns:1381

pat − the composed patterning procedure , which may be used as is ( within the Custom1382

environment), or as the input for further composition1383

@example_usage:1384

pat = Custom(Mirror(cuboid. faces .TOP, True,1385

Mirror(cuboid. faces .LEFT, True)))1386

1387

Rotate180( entities , doCopy, patternOp)1388

@description:1389

Pattern operation specifying a 180 degree rotation about the provided CP entity . Can only1390

be used inside of a Custom patterning environment.1391

@params:1392

entities − List of CP entities , which define the axis about which to rotate . If a single1393

entity is provided , it must be a CP Edge. If multiple entities , they will be used to1394

define a new entity that spans them. For example, if you provide two corners , the1395

axis will go from one to the other . If you provide two CP Edges, the axis will reach1396

from the midpoint of one to the midpoint of the other .1397

doCopy − boolean. When True, applies the operation to a copy of the input , such that the1398

original and the transformed copy persist . When False, directly transforms the input1399

.1400

patternOp− [OPTIONAL] outermost pattern operation in the sub−composition, if any1401

@returns:1402

pat − the composed patterning procedure , which may be used as is ( within the Custom1403

environment), or as the input for further composition1404

@example_usage:1405

pat = Custom(Rotate180([cuboid.edges.FRONT_LEFT, cuboid.edges.FRONT_RIGHT], True))1406

1407

Translate ( fromEntity , toEntity , doCopy, patternOp)1408

@description:1409

Pattern operation specifying a translation that effectively moves the fromEntity to the1410

targetEntity . Can only be used inside of a Custom patterning environment.1411

@params:1412

fromEntity− CP Entity that serves as the origin of the translation vector . Currently only1413

implemented for a CP Face.1414

toEntity − CP Entity that serves as the target of the translation vector . Currently only1415

implemented for a CP Face.1416

doCopy − boolean. When True, applies the operation to a copy of the input , such that the1417

original and the transformed copy persist . When False, directly transforms the input1418

.1419

patternOp− [OPTIONAL] outermost pattern operation in the sub−composition, if any1420
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@returns:1421

pat − the composed patterning procedure , which may be used as is ( within the Custom1422

environment), or as the input for further composition1423

@example_usage:1424

gridPat = Custom(Translate(cuboid. faces .LEFT, cuboid.faces .RIGHT, True,1425

Translate (cuboid. faces .FRONT, cuboid.faces.BACK, True)))1426

1427

1428

======= Structure Procedures ========1429

Structure ( tile , pattern )1430

@description:1431

Combines local tile information ( containing lifted skeletons ) with the global patterning1432

procedure to generate a complete metamaterial .1433

@params:1434

tile − the tile object , which has (by construction ) already been embedded in 31435

D space, along with all lifted skeletons it contains .1436

pattern − the patterning sequence to apply to extend this tile throughout space1437

@returns:1438

structure − the new structure object1439

@example_usage:1440

obj = Structure ( tile , pat )1441

1442

Union(A, B)1443

@description:1444

Constructive solid geometry Boolean operation that computes the union of two input1445

structures . The output of Union(A,B) is identical to Union(B,A)1446

@params:1447

A − the first Structure to be unioned. This may be the output of Structure ,1448

Union, Subtract , or Intersect1449

B − the second Structure to be unioned. This may be the output of Structure ,1450

Union, Subtract , or Intersect1451

@returns:1452

structure − the new structure object containing union(A,B)1453

@example_usage:1454

final_obj = Union(schwarzP_obj, Union(sphere_obj, beam_obj))1455

1456

Subtract (A, B)1457

@description:1458

Constructive solid geometry Boolean operation that computes the difference (A − B) of two1459

input structures . The relative input order is critical .1460

@params:1461

A − the first Structure , from which B will be subtracted . This may be the1462

output of Structure , Union, Subtract , or Intersect1463

B − the second Structure , to be subtracted from A. This may be the output of1464

Structure , Union, Subtract , or Intersect1465

@returns:1466

structure − the new structure object containing (A − B)1467

@example_usage:1468

final_obj = Subtract (c_obj , s_obj)1469

1470

Intersect (A, B)1471

@description:1472

Constructive solid geometry Boolean operation that computes the intersection of two input1473

structures , A and B.1474

@params:1475

A − the first Structure , which may be the output of Structure , Union,1476

Subtract , or Intersect1477

B − the second Structure , which may be the output of Structure , Union,1478

Subtract , or Intersect1479

@returns:1480

structure − the new structure object containing the intersection of A and B1481

@example_usage:1482

final_obj = Intersect (c_obj , s_obj)1483

1484

1485
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1486

1487

==================================1488

Prebuilt Convex Polytopes1489

==================================1490

There are 3 prebuilt convex polytopes (CP) available for use: cuboid, triPrism , and tet . Each CP1491

comprises a set of Entities , namely faces , edges and corners .1492

For convenience, each individual entity can be referenced using the pattern <CP>.<entity_type>.<1493

ENTITY_NAME>.1494

For example, you can select a particular edge of the cuboid with the notation cuboid.edges.1495

BOTTOM_RIGHT.1496

Each CP also has an embed() method which returns all necessary information to embed the CP within1497

R^3.1498

1499

The full list of entities and embed() method signatures for our predefined CPs are as follows :1500

1501

tet . corners .{ BOTTOM_RIGHT,1502

BOTTOM_LEFT,1503

TOP_BACK,1504

BOTTOM_BACK1505

}1506

tet .edges. { BOTTOM_FRONT,1507

TOP_LEFT,1508

BACK,1509

BOTTOM_RIGHT,1510

TOP_RIGHT,1511

BOTTOM_LEFT1512

}1513

tet . faces . { BOTTOM,1514

TOP,1515

RIGHT,1516

LEFT1517

}1518

tet .embed(bounding_box_side_length)1519

@description:1520

Constructs the information required to embed the tet CP in R^31521

@params:1522

bounding_box_side_length− length of axis−aligned bounding box containing the tet . Float in1523

range [0,1]. Must be 1/2^k for some integer k1524

@returns:1525

embedding − the embedding information . Specifically , the position in R^3 of all the1526

CP corners .1527

@example_usage:1528

side_len = 0.5 / num_tiling_unit_repeats_per_dim1529

embedding = tet .embed(side_len)1530

1531

1532

triPrism . corners .{FRONT_BOTTOM_LEFT,1533

FRONT_TOP,1534

FRONT_BOTTOM_RIGHT,1535

BACK_BOTTOM_LEFT,1536

BACK_TOP,1537

BACK_BOTTOM_RIGHT1538

}1539

triPrism .edges.{FRONT_LEFT,1540

FRONT_RIGHT,1541

FRONT_BOTTOM,1542

BACK_LEFT,1543

BACK_RIGHT,1544

BACK_BOTTOM,1545

BOTTOM_LEFT,1546

TOP,1547

BOTTOM_RIGHT1548

}1549

triPrism . faces .{FRONT_TRI,1550
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BACK_TRI,1551

LEFT_QUAD,1552

RIGHT_QUAD,1553

BOTTOM_QUAD1554

}1555

triPrism .embed(bounding_box_side_length)1556

@description:1557

Constructs the information required to embed the triangular prism CP in R^31558

@params:1559

bounding_box_side_length − length of axis−aligned bounding box containing the triangular1560

prism. Float in range [0,1]. Must be 1/2^k for some integer k1561

@returns:1562

embedding − the embedding information . Specifically , the position in R^3 of all the1563

CP corners .1564

@example_usage:1565

side_len = 0.5 / num_tiling_unit_repeats_per_dim1566

embedding = triPrism .embed(side_len)1567

1568

1569

cuboid. corners .{FRONT_BOTTOM_LEFT,1570

FRONT_BOTTOM_RIGHT,1571

FRONT_TOP_LEFT,1572

FRONT_TOP_RIGHT,1573

BACK_BOTTOM_LEFT,1574

BACK_BOTTOM_RIGHT,1575

BACK_TOP_LEFT,1576

BACK_TOP_RIGHT1577

}1578

cuboid.edges.{ FRONT_BOTTOM,1579

FRONT_LEFT,1580

FRONT_TOP,1581

FRONT_RIGHT,1582

BACK_BOTTOM,1583

BACK_LEFT,1584

BACK_TOP,1585

BACK_RIGHT,1586

BOTTOM_LEFT,1587

TOP_LEFT,1588

TOP_RIGHT,1589

BOTTOM_RIGHT1590

}1591

cuboid. faces .{ FRONT,1592

BACK,1593

TOP,1594

BOTTOM,1595

LEFT,1596

RIGHT1597

}1598

1599

cuboid.embed(width, height , depth , cornerAtMinPt)1600

@description:1601

Constructs the information required to embed the cuboid CP in R^31602

@params:1603

width − length of cuboid side from left to right . float in range [0,1]. Must be1604

1/2^k for some integer k1605

height − length of cuboid side from top to bottom. float in range [0,1]. Must be1606

1/2^k for some integer k1607

depth − length of cuboid side from front to back. float in range [0,1]. Must be1608

1/2^k for some integer k1609

cornerAtMinPt − CP corner entity (e .g ., cuboid. corners .FRONT_BOTTOM_LEFT) that1610

should be collocated with the cuboid’s minimum position in R^31611

@returns:1612

embedding − the embedding information . Specifically , the position in R^3 of all the1613

CP corners .1614

@example_usage:1615
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side_len = 0.5 / num_tiling_unit_repeats_per_dim1616

embedding = cuboid.embed(side_len, side_len , side_len , cornerAtAABBMin=cuboid.corners.1617

FRONT_BOTTOM_LEFT)1618

1619

cuboid.embed_via_minmax(aabb_min_pt, aabb_max_pt, cornerAtMinPt)1620

@description:1621

Constructs the information required to embed the cuboid CP in R^31622

@params:1623

aabb_min_pt − Minimum point of the cuboid, in R^3. Given as a list of length 3, where1624

each component must be a float in range [0,1], with 1/2^k for some integer k1625

aabb_max_pt − Maximum point of the cuboid, in R^3. Given as a list of length 3, where1626

each component must be a float in range [0,1], with 1/2^k for some integer k1627

cornerAtMinPt − CP corner entity (e .g ., cuboid. corners .FRONT_BOTTOM_LEFT) that1628

should be collocated with the cuboid’s minimum position in R^31629

@returns:1630

embedding − the embedding information . Specifically , the position in R^3 of all the1631

CP corners .1632

@example_usage:1633

side_len = 0.5 / num_tiling_unit_repeats_per_dim1634

embedding = cuboid.embed ([0,0,0], [ side_len , side_len , side_len ], cuboid. corners .1635

BACK_BOTTOM_RIGHT)1636

API Errata The API description listed in this section is the exact version we used to train all models in1637

MetaBench. This differs slightly from the released version, which corrects two mistakes that were identified at a1638

later stage:1639

• cuboid.embed(): the original description (above) listed a parameter cornerAtMinPt in both the1640

signature line and the @params listing. However, the @example_usage showed the parameter as1641

cornerAtAABBMin. The latter is correct, and reflects an update made in the code independently of1642

the documentation. The released API description consistently shows the correct parameter name,1643

cornerAtAABBMin.1644

• cuboid.embed_via_minmax(): the @example_usage field of the original description (above)1645

erroneously lists the cuboid.embed() function with the inputs of the intended function,1646

cuboid.embed_via_minmax(). None of the parameters were updated, as they are all correct in the1647

original description above. Only the erroneous function call was corrected in the released version1648

(cuboid.embed()→ cuboid.embed_via_minmax()).1649

These mistakes did not cause any observable issue in the trained model output, as the (correctly expressed)1650

training data overrode the error in our API description. However, this did cause an issue for zero shot experiments1651

(which ultimately revealed the bug). All zero shot results reported in the paper reflect the results using the1652

updated version of our API, where the difference relative to the listing above constitutes exactly the two changes1653

discussed here.1654

To ensure that this API description would not derail otherwise successful program outputs (and to mitigate1655

confusion between the two very similar keywords across functions), we added an optional keyword argument to1656

the signature of both affected functions, such that either keyword (or no keyword, as in a positional argument) is1657

permissible. Thus, either API description is suitable; however, we release the corrected version to prevent issues1658

and reduce confusion moving forward.1659

G.3 Reconstruction1660

Reconstruction tasks can have any combination of one to four views. Here we only reproduced the 4 view1661

template; the others have the irrelevant lines removed.1662

# Task:1663

Analyze these views of a metamaterial , then generate a metamaterial DSL procedure to reproduce it .1664

1665

# Inputs :1666

**Rendered Views:**1667

Top: <[{top}]>1668

Front : <[{ front }]>1669

Right: <[{ right }]>1670

Angled (Front−Top−Right): <[{ top_right }]>1671

1672

# Output Format:1673
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Generate a Metagen program within a python code block:1674

1675

‘‘‘ python1676

from metagen import *1677

1678

def make_structure (...) −> Structure :1679

...1680

‘‘‘1681

G.4 Inverse Design1682

# Task:1683

Write a metagen program that creates { query_target }.1684

1685

# Output Format:1686

Generate a Metagen program within a python code block:1687

1688

‘‘‘ python1689

from metagen import *1690

1691

def make_structure (...) −> Structure :1692

...1693

‘‘‘1694

G.5 Material Understanding1695

Single View:1696

# Task:1697

Analyze these views of a metamaterial , and predict its material properties .1698

1699

# Inputs :1700

1701

**Rendered View:**1702

1703

− Angled (Front−Top−Right): <[{ top_right }]>1704

1705

# Output Format:1706

1707

Output a json object , delimited by ‘‘‘ json ‘‘‘, where the keys are material property names, and1708

the values are the predicted material properties . Predict these properties (keys) :1709

− "A" : Anisotropy ( universal anisotropy index)1710

− "E" : Young’s Modulus relative to E_base1711

− "K" : Bulk modulus relative to E_base1712

− "G": Shear modulus relative to E_base1713

− "nu": Isotropic Poisson ratio1714

− "V" : Relative Density (Volume Fraction)1715

Multiview + Code:1716

# Task:1717

Analyze these views of a metamaterial , and the Metagen program, and predict its material1718

properties .1719

1720

# Inputs :1721

1722

**Metagen Program:**1723

1724

{code}1725

1726

**Rendered Views:**1727

− Top: <[{top}]>1728

− Front : <[{ front }]>1729

− Right : <[{ right }]>1730
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− Angled (Front−Top−Right): <[{ top_right }]>1731

1732

# Output Format:1733

1734

Output a json object , delimited by ‘‘‘ json ‘‘‘, where the keys are material property names, and1735

the values are the predicted material properties . Predict these properties (keys) :1736

− "A" : Anisotropy ( universal anisotropy index)1737

− "E" : Young’s Modulus relative to E_base1738

− "K" : Bulk modulus relative to E_base1739

− "G": Shear modulus relative to E_base1740

− "nu": Isotropic Poisson ratio1741

− "V" : Relative Density (Volume Fraction)1742
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