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ABSTRACT

The Kernel Rank Reduced Regression (KRRR) technique works well on highly
dependent dataset with a latent variable structure. When we extended the KRRR to
the Reproducing Kernel Hilbert Space (RKHS), the powerful kernel presentation
and reproducing ability can enhance the regression ability. But previous research
always work on Euclidean space with vector data presentation, which omit the
intrinsic geometric shape of the data distribution. If the whole dataset can be
thought as a manifold, the regression result will only rely on the intrinsic data
distribution instead of the extrinsic frame. So we present the manifold kernel rank
reduced regression model (MKRRR). We fist give the definition of the MKRRR
model. Then with leveraging Kendall shape space for representing sample manifold
data, we derive the closed-form solution of the regression model and prediction
result. Moreover, we discuss the convergent and robust ability of the model, with
presenting the robustness proof. At last, the we present a skull repair application
by the MKRRR model for 3D mandibular reconstruction. The experiment result
validate effective of our model even on the data with high-level noise.

1 INTRODUCTION

Regression on the manifold is quite a difficult research for its irregular data presentation. Kernel
Rank Reduced Regressing(KRRR) functions from Euclidean training data {(xi, yi)}Ni=1 is well
studied (Mukherjee & Zhu, 2011). Euclidean statistics do not describe the intrinsic structure of
manifold-valued data well, and there may be corresponding errors in the results predicted by the
model. However, the real shape is located on the low-dimensional submanifold, it is necessary to
map the data to the Kendall shape space to get the intrinsic characteristics of the shape instead of in
the 3D Euclidean space

We work on the manifold with the KRRR with different distance on manifold. We apply the manifold
kernel regression method to analyze the internal relations of the data. In human skull reconstruction
experiment, we compare the reconstruction effects with and without manifold measures. It is shown
that considering manifold structure is beneficial to complex geometric objects. Finally, we map
the point cloud data in the manifold space back to the original space. Figure1 describes the spatial
transformation of the manifold kernel reduced-rank regression method in the operation process with
an example of mandibular predictive reconstruction. The contributions can be summarized as:

(1) We present the present the manifold kernel rank reduced regression (MKRRR) model (Sec 3).
The model obtains the intrinsic geometric distribution of high-dimensional nonlinear sample data.
We construct the sample manifold data representation through Kendall shape space with compact
data description by kernel regression. This algorithm is high accuracy, isometric invariance, and
robustness to similarity transformations.

(2) We provide an close-form solution of the MKRRR(Sec 4.2). The close-form solution can control
the precious of the regression result o the manifold. The algorithm is efficiency and smaller memory
usage. It can work well on the complex and high-dimension model.

(3) We present a robustness proof (Appends A) of MKRRR. We get the condition that the model
converges when the training data is disturbed. In the process of amplification and minification, we
never damage the coefficient of the higher-order term. Therefore, this condition is a sufficient and
necessary condition for model stability, not only a sufficient condition.

1



Under review as a conference paper at ICLR 2024

Figure 1: Schematic diagram of spatial transformation in the algorithm process

We give a application example of MKRRR model to reconstruct missing mandible bone in the 3D
skull model which prove the effective mine ability of our model of the intrinsic correlation between
complex typologies.

2 RELATED WORK

Rank Ridge Regression can help to produce a low-rank estimator of the regression coefficient
matrix. This is very useful when the responses are highly dependent or there are reasons to believe
a latent variable structure among the predictors. Ashin Mukherjee and Ji Zhu (Mukherjee & Zhu,
2011)extend the reduced rank idea to the RKHS set-up and give some intuition for the meaning of a
rank constraint in a functional space. They get the solution to the Reduced Rank Ridge Regression
problem which is as a projection of the Ridge Regression estimator to a constrained space. Ashin
Mukherjee (Mukherjee, 2013) proposes a combination of the ridge penalty and rank constraint on
the coefficient matrix. The ridge penalty helps to ensure that the estimate of the coefficient matrix
is well-behaved even in the presence of multicollinearity, whereas the rank constraint encourages
dimension reduction. Chen et al. (Chen et al., 2013) propose an adaptive nuclear norm penalization
approach for low-rank matrix approximation, and use it to develop a new reduced rank estimation
method for high-dimensional multivariate regression. Wu Qiong et al. Wu et al. (2020) propose
an algorithm based on nuclear norm relaxation. A few numerical examples are presented to show
the smaller mean squared prediction error compared with the elementwise univariate kernel ridge
regression. These methods improve reduced rank ridge regression in kernel extension, rank constraint,
and penalty terms.

Manifold-valued data, however, cannot be considered as a sample point in Euclidean sample space.
So regression methods that originally worked for Euclidean data do not work for these data. Mapping
such arbitrary output to a target manifold such as the 3D rotation space is not trivial, since SO(3) is
not homeomorphic to a Euclidean space (Brégier, 2021). Discretizing the target space is a common
method, and rotationNet (Kanezaki et al., 2018) and SSD-6D (Kehl et al., 2017) have been successful
in object attitude estimation. But their regression results are not accurate enough, as the number of
classes required is typically of the order of (1/αd) with respect to a typical discretization step α
and the dimension d of the target manifold1 (d = 3 in this kind of method). Because their methods
reformulate the regression into a classification problem in essence. Lin Lizhen et al. (Lin et al., 2017)
propose an approach, that embeds the manifold where the responses lie onto a higher dimensional
Euclidean space, obtains a local regression estimate in that space, and then projects this estimate back
onto the image of the manifold. It can model data with manifold-valued responses and Euclidean
predictors, but the regression framework is extrinsic.
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3 MANIFOLD KERNEL REDUCED RANK REGRESSION

In this section, we will provide a detailed introduction to the problem formulation of manifold kernel
reduced rank regression.

3.1 PROBLEM FORMULATION

In regression analysis, the input and output data can be seen as results of discretizing data from the
original Euclidean space into a manifold representation. The input and output data are respectively
represented as xi ∈ Rp and yi ∈ Rq , where p and q represent the dimensions of the input and output
data. The goal of regression analysis is to model the relationship between xi and yi, with the purpose
of predicting the output data yi. However, since the data is high-dimensional and nonlinear, linear
regression methods are not effective. To address this, the manifold-based kernel method is applied
to project data from the manifold onto a reproducing kernel Hilbert space H, where reduced rank
regression analysis is performed. This approach improves the model’s ability to handle nonlinear
data and increases the accuracy and reliability of the regression analysis.

In the theory of reproducing kernel Hilbert spaces Suzuki (2022), it is guaranteed that for any positive
definite kernel function k, there exists a feature mapping ϕ : E → H, such that for any x, y ∈ E,
k(x, y) = ⟨ϕ(x), ϕ(y)⟩H, where ⟨·, ·⟩H denotes the inner product operation of RKHS. (Manton
et al., 2015) This mapping ϕ is known as the feature mapping of the kernel function k. With this in
mind, the modeling problem described above can be represented in the following form:

yij = fj (xi) + ε

yi = (yi1, yi2, . . . , yiq)
(1)

where fj ∈ H and ε is the random error term. Then the objective of the model’s regression analysis
is to find a set of functions (f1, f2, . . . , fq) ∈ H that minimize the following loss function:

Lλ (f1, f2, . . . , fq) =

n∑
i=1

q∑
j=1

(fj (xi)− yij)
2
+

q∑
j=1

λ ∥fj∥2H (2)

where∥·∥H denotes the norm of RKHS.

In order to utilize the correlation between the dependent variables yi, the rank constraint of the data
in the reproducing kernel Hilbert space needs to be expressed in the form of rank constraint in an
equivalent linear regression model, which satisfies the following:

dim (span {f1, f2, . . . , fq}) ≤ r (3)

where 1 ≤ r ≤ q.

The solution to this problem is given in Section 4.

3.2 CONSTRUCTION OF MANIFOLD

The method proposed in this paper adopts a specific Riemannian manifold framework, which
involves constructing a Kendall shape space Kendall (1984) to discretize the representation of the
original data. As per Kendall’s definition of shape space, shape space is a quotient space formed by
configurations under the action of the similarity transformation group. In general, a configuration
is a set of feature points for a specific object, and the configuration matrix can be represented as
Xk×m = [l1, l2, . . . , lk]

T , where li ∈ Rm represents a configuration composed of k feature points
with m dimensions each.

Shape space, also known as Kendall shape space, is typically denoted as
∑k

m, where k and m have
the same meanings as in configurations. Based on the characteristics of Kendall shape space, its
construction usually involves the following steps: 1) Translation transformation, 2) Scaling, and 3)
Rotation elimination, which is included in the Appendix B.

3.3 ALGORITHMIC PROCESS

The problem model of MKRRR involves analyzing high-dimensional nonlinear data in Kendall shape
space. The model aims to reduce the dimensionality of the data using the dimensionality reduction
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characteristics of manifolds while incorporating relevant features of data in the Kendall shape space.
The algorithmic process of MKRRR involves the following steps:

Algorithm 1 Manifold Kernel Rank Reduced Regression

Require:
1: Training set data X,Y
2: Number of similar samples k
3: Predictors(The same kind of data as X) x′

4: Parameters of the model: regularization parameter, rank constraint λ,r;
Ensure:

5: responses y′;
6: for i = 1 : N do
7: [xi]← shapeRepresentation(xi)
8: [yi]← shapeRepresentation(yi)
9: end for

10: [x
′
]← shapeRepresentation(x

′
)

11: index←− ([dg([x1], [x
′]), dg([x2], [x

′]), . . . , dg([xN ], [x′])]) // k samples that are most
similar to [x′] are selected as training data

12: X,Y ←− X[index1:k],Y[index1:k]

13: [y
′
]← kernelRRR(X,Y, [x

′
], λ, r) // Train the model and predict by MKRRR

14: y′ ← β [ŷ′]R−1 + 1γT

15: return y′

4 KERNEL AND ANALYTICAL SOLUTION OF MKRRR

One of the advantages of being able to compute positive definite kernels on manifolds is that it allows
us to use algorithms developed for Rn space directly, while still taking into account the geometric
shape of the manifold. In this section, we will discuss algorithms that use kernels induced by metrics
on manifolds. MKRRR is a kernel-based reduced-rank regression statistical analysis method, where
the choice of kernel function has a significant impact on the method. The main idea of kernel
reduced-rank regression is to map the original low-dimensional data to a high-dimensional kernel
space and then perform reduced-rank regression in the kernel space.

4.1 KERNEL AND CONSTRUCTION OF RKHS BASED ON MANIFOLD

The key challenge in extending kernel methods from Euclidean space to manifolds is to define
appropriate positive definite kernel functions on the manifold. Currently, there is no direct way to
extend Euclidean kernels (such as linear and polynomial kernels) to nonlinear manifolds. However,
under certain conditions, the well-known Gaussian kernel in Euclidean space can be extended to
manifolds in some way. In this paper, we define positive definite kernels based on Gaussian kernel
functions on manifolds in the same way as in the literature (Turaga & Srivastava, 2015), enabling us
to embed the given manifold into a high-dimensional RKHS with the corresponding metric. These
positive definite kernels allow algorithms developed for original Euclidean space data to be extended
to nonlinear manifold-valued data.

For various kernel-based algorithms, the Gaussian kernel has been shown to be very effective in
Euclidean space. It maps the original data points to an infinite-dimensional Hilbert space, generating
very rich data representations intuitively. In Euclidean space Rn, the Gaussian kernel can be expressed
as kG(x, y) := exp(−γ||x− y||2), using the Euclidean distance ||x− y|| between two data points x
and y. Therefore, to define a kernel on a manifold, we need to use a more accurate distance metric on
the manifold, the geodesic distance, to replace the Euclidean distance. However, not all geodesic
distances on a manifold can produce positive definite kernels. For example, if the kernel function is
defined as exp(−γd2g(x, y)) on the n-dimensional unit sphere embedded in Rn+1, where dg is the
geodesic distance or great circle distance commonly used on the manifold, the kernel function is
negative definite. To distinguish it from the Gaussian kernel in Euclidean space, this paper refers to
the Gaussian kernel defined by the distance metric on the manifold as a Gaussian-type kernel.
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Table 1: Distance measurement and positive qualitative of Gaussian kernel in different Spaces

Metric name Formula Geodesic distance Positive define

Euclidean Space

Euclidean distance d(x, y) =
√∑n

i=0(xi − yi)2 False True

Shape manifold

Full Procrustes dFP (x, y) =

√
1− |⟨x, y⟩|2 False True

Partial Procrustes dPP (x, y) =
√
1− |⟨x, y⟩| False False

Arc length dρ(x, y) = arccos (|⟨x, y⟩|) True False

As introduced in kernel methods, when the kernel function is expressed in the form of the inner
product of two data, the kernel function itself is positive definite. For the Gaussian-type kernel,
let (M, d) represent the metric space composed of the manifoldM and the metric d, and define
the kernel k : (M,M) → R on it as k(x, y) := exp(−γd2(x, y)). Then, the kernel function k is
positive definite if and only if d(x, y) = ||ϕ(x)− ϕ(y)|| when γ > 0, where ϕ is a mapping fromM
to an inner product space V and ϕ(x) is the result of mapping x in V .

When considering the geodesic distance dg , the Riemannian manifoldM forms a metric space. Based
on the aforementioned definition, it is natural to wonder under what conditions the geodesic distance
on the manifold produces a positive definite Gaussian kernel. According to the theorem given by
Jayasumana et al. (Turaga & Srivastava, 2015) for positive definite Gaussian kernels on manifolds, if
the manifoldM is isometric to some Euclidean space Rn in the Riemannian sense, then the Gaussian
kernel defined by the geodesic distance on the manifold is positive definite. Although it is possible
to find the Gaussian kernel induced by the geodesic distance on some Riemannian manifolds, it is
theoretically impossible for other manifolds. In particular, if the manifold is compact, it is impossible
to find an isometric mapping between the manifold and Rn because Rn is not compact. Therefore, it
is not possible to obtain a positive definite Gaussian kernel from the geodesic distance on a compact
manifold. In this case, the best hope is to find a different non-geodesic distance on the manifold that
differs only slightly from the geodesic distance but still satisfies the conditions of the theorem.

Based on RKHS and the theorem on positive definite Gaussian kernels on manifolds, this paper uses
geodesic distance and Procrustes analysis to define a positive definite kernel on shape manifolds,
which are non-Euclidean manifolds representing the space of all possible shapes of a given object.
The proposed method, called Geodesic Procrustes Analysis (GPA), is a kernel-based approach that
embeds the shape manifold into an RKHS using the Gaussian-type kernel defined by the geodesic
distance on the manifold.

Specifically, given a set of shapes on the manifold, the Procrustes analysis is used to bring them into a
common coordinate system, which removes the differences in position, orientation, and scale. Then,
the geodesic distance between the aligned shapes is used to define the Gaussian-type kernel, which is
positive definite according to the theorem mentioned above. Finally, the embedded data points in the
RKHS space can be used for various machine-learning tasks. In summary, the Geodesic Procrustes
Analysis (GPA) method is a kernel-based approach that uses the geodesic distance and Procrustes
analysis to define a positive definite kernel on shape manifolds. The analysis of different metrics
in various spaces, whether they belong to geodesic distances, and the positive definiteness of their
Gaussian kernels are summarized in Table 1.

4.2 ANALYTICAL SOLUTION OF MKRRR

According to the formulation of the problem in section 3.1, the objective of kernel reduced rank
regression is to find the function (f1, f2, . . . , fq) ∈ H to minimize the Loss function equation 2, and
at the same time, the constraint of equation 3.
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According to the introduction of the Reproducing Kernel Hilbert Space (RKHS), we know that
H := M ⊕M⊥, where

M := span({k(xi, ·)}ni=1)

M⊥ := {f ∈ H|⟨f, k(xi, ·)⟩H = 0, i = 1, 2, . . . , n}
(4)

Decompose each f in RKHS, let f = f∗ + f⊥, f∗ ∈M , f⊥ ∈M⊥, then we have
f(xi) =

〈
f∗ + f⊥, k(xi, ·)

〉
= f∗(xi)

∥f∥2H = ∥f∗∥2H +
∥∥f⊥∥∥2

H

(5)

Apparently, Lλ(f
∗
1 , f

∗
2 , . . . , f

∗
q ) ≤ Lλ(f1, f2, . . . , fq), the objective of kernel reduced-rank regres-

sion can be transformed into optimizing Lλ(f
∗
1 , f

∗
2 , . . . , f

∗
q ). At the same time, since f∗ is the

projection of f in M and dim(span{f1, f2, . . . , fq}) ≤ r, dim(span{f∗
1 , f

∗
2 , . . . , f

∗
q }) ≤ r still

holds. Therefore, according to the representation theorem of RKHS, the optimization result of kernel
reduced-rank regression 2 can be expressed as the following formula:

fj(x) =

n∑
i=1

αijk(x, xi) j = 1, 2, . . . , q, αij ∈ R

[f1, f2, . . . , fq] = [k(·, x1), k(·, x2), . . . , k(·, xn)]An×q

(6)

Next, we need to find sufficient conditions, under which the rank constraint in equation 3 is equivalent
to the rank constraint on the coefficient matrix A = [αij ]n×q , that is:

dim(span{f1, f2, . . . , fq}) ≤ r ⇒ rank(A) ≤ r (7)
After that, the parameters of the kernel reduced-rank regression model can be solved using the
optimization method of linear reduced-rank regression models.

Since the reproducing kernel function k(·, ·) is strictly positive definite, and each sample point xi

in the input data is distinct, when r = q, 7 clearly holds. When r < q, there must exist a linear
combination

∑q
i=1 aifi ≡ 0, which is equivalent to ∥

∑q
i=1 aifi∥

2

H = 0:∥∥∥∥∥
q∑

i=1

aifi

∥∥∥∥∥
2

H

= 0⇔ aTq×1A
T [(k(xi, xj))]

n
i,j=1Aaq×1 = 0 (8)

Since k(·, ·) is strictly positive definite, 8 holds only when Aa = 0q×1 ⇔ a ∈ Ker(A), where the
coefficient matrix A is obviously a mapping defined on the vector space Rq . When dim(Ker(A)) > 0,
according to the rank-nullity theorem,

rank(A) + nullity(A) = q

∴ rank(A) + dim(Ker(A)) = q

∴ rank(A) = q − dim(Ker(A)) < q

(9)

From the above results, it can be seen that the rank constraint of the coefficient matrix A is established.
Therefore, by analogy with the solution method of linear reduced rank regression model, the solution
of kernel reduced rank regression can be obtained. Recalling the solution of the reduced rank
regression algorithm, for the input data x ∈ Rp, given the rank constraint and regularization penalty
(λ, r), the prediction result of the model is:

Ŷx(λ, r) = x
(
XTX + λI

)−1
XTY Pr (10)

Pr is the projection matrix formed by the r principal eigenvectors of P = Y TX(XTX+λI)−1XTY .
For Kernel Reduced Rank Regression, we use the Gram matrix K instead of the inner product matrix
XTX of the input data, we can get:

Y TX(XTX + λI)−1XTY ⇒ Y TK(K + λI)−1Y

x
(
XTX + λI

)−1
XTY ⇒ K(x) (K + λI)

−1
Y

(11)

Finally, the prediction form of Rernel Reduced Rank Regression is obtained as follows:
Ŷx(λ, r) = K(x)(K + λI)−1Y PK

r (12)
where PK

r is the projection matrix formed by the first r principal eigenvectors of matrix P , and
K(x) = [k(x, x1), k(x, x2), . . . , k(x, xn)] is the similarity measure calculated by the kernel function
k between the predicted input x and the training sample data.
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5 EXPERIMENTS AND DATA ANALYSIS

The aforementioned method is also applied to the task of reconstructing 3D mandibular point clouds.
Reconstruction of mandibular defects poses a challenging problem in digitally-assisted fine recon-
struction due to the complex manifold structure of the human skull. We conducted experiments on
optimizing the parameters of the MKRRR model and compared the reconstruction effect achieved
by selecting training samples based on Kendall manifold with that obtained by randomly selecting
samples without considering manifold metric, in order to validate the meaningfulness of our gen-
eralization of Kernel Rank Reduced Regression to manifolds. Additionally, we evaluated model
robustness by predicting noise-disturbed samples.

5.1 DATASET

The data used in this experiment came from the Chinese craniofacial morphological information
database of Beijing Normal University, which contains 215 sets of skull models, among which 126
sets of male skull models and 89 sets of female skull models. All sample volunteers were Chinese,
aged 19-75. The processed three-dimensional skull model contains the same number of points, and
each point corresponds to one by one. The upper skull point cloud contains 7,477 points and the
lower jaw contains 2,340 points, The complete skull can be divided into the upper skull and the lower
jaw to simulate the absence of the lower jaw, see figure2.

Figure 2: Original 3D skull model and its separation results

5.2 EVALUATION METRIC

From the practical point of view of 3D mandibular point cloud reconstruction, we pay more attention to
the error of reconstruction results in Euclidean space. The kernel function we choose is full Procrustes

distance Gaussian kernel dFP (x, y) =

√
1− |⟨x, y⟩|2. We use the relative errors mentioned in this

paper Yan et al. (2022) to evaluate the reconstruction results, i.e. :

Eeu =

∑n
i=1

∥∥∥yi − y
′

i

∥∥∥
n · ∥bmax − bmin∥

(13)

Where bmax and bmin are the largest and smallest vertices of the axially aligned bounding box, and
∥·∥ represents the Euclidean distance between two points.

In addition, in order to more accurately evaluate the reconstruction error after excluding the Similarity
transformation, this paper calculates the distance between two shapes in the shape space to measure.
Since the preshaped hypersphere is embedded in (k−1)m, we consider the inferior arc length of the
great circle between two points on the sphere as the shortest distance between the two shapes, called
the Riemannian distance, denoted dp, and use this geodesic distance to evaluate the similarity of the
two shapes, i.e. :

Eshape = d(y, y
′
) = arccos(| < y, y

′
> |) (14)

Our setting of γ parameters will also follow the conclusions we obtained in Appendix A.
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Figure 3: Regularization term λ contrast, reconstruction error under different λ values are compared.

5.3 RESULT ANALYSIS

As can be seen from figure 3, the reconstruction error is minimal when λ is 0.0001.

In figure 4, when 1 < α ≤ 2, the reconstruction error changes little with the change of rank constraint.
In many experiments, it is found that when α = 1.2, the reconstruction error reaches the minimum
value, and the parameter is the optimal value. Finally, the optimal parameters of MKRRR we get are
λ = 0.00013, α = 1.2, r = min(p, q)/1.2.

The results of the two experiments, one using random training samples and the other using similar
training samples, demonstrate that models trained with similar training samples exhibit performance
and lower reconstruction error compared to those trained with random training samples. Furthermore,
as the number of training samples increases, the reconstruction results obtained from similar training
samples become more stable. This highlights the importance of metrics on manifolds in our approach,
particularly when dealing with objects possessing complex topological structures. Our method’s
advantage lies in its ability to effectively describe geometric object’s topological relationships through
manifold metrics.

As can be seen from figure 5, the MKRRR algorithm proposed in this paper shows better anti-noise
performance, and the error range of its reconstruction results is relatively small. This shows that
MKRRR algorithm has stronger robustness in processing noisy data and is expected to achieve good
results in practical applications, Figure 7 shows the reconstruction effect.

6 CONCLUSION

In this paper, we illustrate the extension kernel regression to a Riemannian manifold framework.
We provide the definition of MKRRR model. Subsequently, we compute the analytical solution
for MKRRR on Kendall manifolds. Then we establish the robustness through proof of MKRRR
model. Furthermore, we demonstrate the effectiveness of our method on a 3D mandib point cloud
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Figure 4: Regularization term r contrast, reconstruction error under different r values are compared.
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Figure 5: Comparison of reconstruction errors of different algorithms under different noise

dataset, which represents a complex topological structure, thereby showcasing its resilience. The
experimental results suggest that Kernel Reduced Rank regression can be effectively employed on
manifolds to yield meaningful estimates. By means of comparison, we highlight both the superiority
of manifold metric and the necessity to extend the RKKK method to encompass manifolds. Based on
the theory of regenerated kernel Hilbert space and the theorem of positive definite Gaussian kernel on
manifolds, other distance measures can be explored to induce Gaussian kernel function and other
manifold structure can be further discussed, which also leaves room for expansion of our method.
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ETHICS STATEMENT

This section elucidates the concept of informed consent: The cranial data utilized in our experiment
were acquired from human participants. All sample volunteers were Chinese individuals, ranging in
age from 19 to 75 years old. Participants are provided with comprehensive information regarding
the data collection process through written communication and are duly appr of potential risks
and benefits associated with such collection We shall ensure utmost confidentiality of all personal
information pertaining to participants, while also acknowledging their right to withdraw at any given
point.
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A ROBUSTNESS PROOF

Considering that 3D scanners have machine errors and often contain noise in the input data, we
will prove the robustness of the model to noise in the following section. Because skull point cloud
extraction needs to go through multiple data processing, its real noise source is complex, and
Gaussian noise is the best simulation method for real noise. According to the central limit theorem,
the superposition of a large number of independent random variable distributions tends to be a normal
distribution.

The noise ε = (ε(x))x∈X are independent and identically distributed (i.i.d.) Gaussian random
variables with mean 0 and standard deviation σ > 0. The expectations for the difference between
noise-disturbed predictions and undisturbed predictions are as follows:

E(|Ŷx+ε(λ, r)− Ŷx(λ, r)|)
=E(|K(x+ ε)(K + λI)−1Y PK

r −K(x)(K + λI)−1Y PK
r |)

=E([|k(x+ ε, x1)− k(x, x1)|, |k(x+ ε, x2)− k(x, x2)|, . . . , |k(x+ ε, xn)− k(x, xn)|]) · (K + λI)−1Y PK
r

=[E(|k(x+ ε, x1)− k(x, x1)|), E(|k(x+ ε, x2)− k(x, x2)|), . . . , E(|k(x+ ε, xn)− k(x, xn)|)] · (K + λI)−1Y PK
r

(15)

We choose Full Procrustes as the metric of the kernel function. Then we consider |k(x+ ε, xi)−
k(x, xi)| where i ∈ {1, 2, . . . , n}.

|k(x+ ε, xi)− k(x, xi)|
=| exp(−γd2(x+ ε, xi))− exp(−γd2(x, xi))|
=exp(−γd2(x, xi))| exp(γd2(x, xi)− γd2(x+ ε, xi))− 1|

(16)

According to the definition of metric, in this kind of inner product space | < x, y > | is bounded, so
d(x, y) is bounded. then we focus | exp[γd2(x, xi)− γd2(x+ ε, xi)]− 1|

| exp{γ[d2(x, xi)− d2(x+ ε, xi)]} − 1|
=| exp{γ[2| < ε, xi > | · | < x, xi > |+ | < ε, xi > |2]} − 1|
≤| exp{γ[2|xi| · | < x, xi > | · |ε|+ (|xi|ε)2]} − 1|

(17)

So
| exp{γ[d2(x, xi)− d2(x+ ε, xi)]} − 1|

≤2
∫ +∞

0

| exp[2γ|xi| · | < x, xi > | · ε+ γ|xi|2ε2]− 1| · exp(− ε2

2σ2
) · dε

≤2
∫ +∞

0

exp[2γ|xi| · | < x, xi > | · ε+ γ|xi|2ε2 −
ε2

2σ2
]+ exp(− ε2

2σ2
) · dε

(18)

This integral
∫ +∞
0

exp(− ε2

2σ2 )dε converges, and exp[2γ|xi| · | < x, xi > | · ε+ γ|xi|2ε2 − ε2

2σ2 ] is
continuous over interval [0,+∞) and doesn’t have improper point. Using one term Taylor expansion,

0 ≤ε2 · exp[2γ|xi| · | < x, xi > | · ε+ γ|xi|2ε2 −
ε2

2σ2
]

≤ exp[(2γ|xi| · | < x, xi > |+ 2) · ε+ (γ|xi|2 −
1

2σ2
)ε2]

(19)

11
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We should modify γ < 1
2σ2|xi|2 , so that

lim
x→+∞

exp[(2γ|xi| · | < x, xi > |+ 2) · ε+ (γ|xi|2 −
1

2σ2
)ε2] = 0

lim
x→+∞

ε2 · exp[2γ|xi| · | < x, xi > | · ε+ γ|xi|2ε2 −
ε2

2σ2
] = 0

(20)

There must exist a constant ε1 > 0, when ε > ε1,

|ε2 · exp(2γ|xi| · | < x, xi > | · ε+ γ|xi|2ε2 −
ε2

2σ2
)− 0| < 1

0 ≤ ε2 · exp(2γ|xi| · | < x, xi > | · ε+ γ|xi|2ε2 −
ε2

2σ2
) < 1

(21)

And we know
∫ +∞
ε1

1
ε2 dε converge, so∫ +∞

ε1

exp[2γ|xi| · | < x, xi > | · ε+ γ|xi|2ε2 −
ε2

2σ2
]dε (22)

converge.

And exp[2γ|xi| · | < x, xi > | · ε+ γ|xi|2ε2 − ε2

2σ2 ] is continuous over interval [0, ε1] and doesn’t
have improper point and bounded. So E| exp[γd2(x, xi)− γd2(x+ ε, xi)]− 1| converge.

And we can modify γ < 1
2σ2|xt|2 , |xt| = min{|x1|, |x2|, . . . , |xn|}. Then

[E(|k(x+ ε, x1)− k(x, x1)|), E(|k(x+ ε, x2)− k(x, x2)|), . . . , E(|k(x+ ε, xn)− k(x, xn)|)]
(23)

converge.

Note that (K + λI)−1Y PK
r is a constant matrix, so the expectation of error converges and is

bounded.

B MODEL DETAIL

B.0.1 TRANSLATION TRANSFORMATION

The purpose of translation transformation is to eliminate the influence of spatial position on shape,
as a shape only contains geometric information of configurations, which is invariant under position,
rotation, and isotropic scaling (Euclidean similarity transformation).

The translation is the easiest to remove from configurations, and there are two ways to eliminate
translation information: one is to move the center of the configuration to the origin, i.e., centering
operation; the other is to remove the effect of the original position of the configuration by left-
multiplying the matrix with a Helmert submatrix. The difference between the two methods is that the
resulting matrix shape is different after removing the coordinate information. The former results in
a k ×m matrix after centering, while the latter results in a (k − 1) ×m matrix. In this paper, we
use the centering operation. The centering of configurations is generally achieved by subtracting
the mean of the feature points from each feature point, i.e., X̄ =

[
1
k

∑n
i=1 li, ...,

1
k

∑n
i=1 li

]
, and

applying the following formula:

XC = X − X̄

= (Ik −
1

k
1k1

T
k )X

= CX

(24)

This formula centers the configuration by subtracting the mean feature point from each feature point
and multiplying the resulting matrix with C, which is a centering matrix.

12
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B.0.2 SCALING

Scaling is a method to eliminate shape size differences in shape space, which can be simply explained
as making shapes in shape space have the same size. Scaling information is removed by dividing the
configuration by the size of its centroid so that the scaled centroid has a size of 1. In this paper, we
use the size of the centroid of the configuration S(X) as the scaling factor:

S(X) = ∥CX∥ =

√√√√ k∑
i=1

∥∥Xi − X̄
∥∥2

=
√
trace(XTCX)

(25)

Once we obtain the size of the centroid, we can scale the configuration:

Z =
1

S(X)
CX =

CX

∥CX∥
(26)

The result obtained at this point is called the pre-shape, which eliminates all information about
position and proportion in the configuration. The pre-shape space is a quotient space formed by
configurations of k non-coincident pointsets in Rm under the action of translation and isotropic
scaling, and is typically denoted as Sk

m. The pre-shape space Sk
m is a (k − 1)m-dimensional unit

radius hypersphere, where the norm of all pre-shapes in the space is 1. Pre-shape implies that it is
one step away from the shape, i.e., the rotation information of the pre-shape is removed.

B.0.3 ROTATION ELIMINATION

Rotation is the most variable information in a configuration and is the most difficult to remove. A
k ×m configuration X can be rotated around the origin by left-multiplying with an m-dimensional
rotation matrix R, which satisfies RTR = RRT = Im and det(R) = +1. The set of all m-
dimensional rotation matrices is called the special orthogonal group SO(m). The shape can be
represented by the set [X] as follows:

[X] = {ZR : R ∈ SO(m)} (27)

Here, Z is the pre-shape of configuration X , and R is the rotation matrix. SO(m) is an m-dimensional
special orthogonal group.

To align the rotation of the pre-shape Z, Procrustes analysis is used, which expressed as follows:

R∗ = argmin
R∈SO(m)

d2g(Z1R,Z2) (28)

where dg(·, ·) is the geodesic distance, which is the shortest distance between two shapes in shape
space. According to the definition in (Dryden & Mardia, 2016), this distance is isometric to the arc
length between two points on a hypersphere embedded in Euclidean space.

The alignment operation first selects a reference point and then aligns all shape data to the reference
point. There are several ways to select a reference point, such as aligning all pre-shape data to the
first pre-shape data, or calculating the intrinsic mean of all pre-shape data and aligning all pre-shape
data to the mean shape. In this paper, we first align all data to the selected first pre-shape data, and
then calculate the intrinsic mean of all pre-shape data, which is the average shape of the sample, and
align all shapes to the intrinsic mean. Therefore, we also need to calculate the intrinsic mean of all
pre-shape data.

First, Procrustes analysis is used to align the rotation of the pre-shape. The best rotation matrix
R that aligns all pre-shapes Zi to the first pre-shape Z1 is calculated using Eq. 28. The aligned
pre-shapes are obtained as Zrot

i = ZiR, and all pre-shapes aligned in the first step are denoted as
Zrot
1 , Zrot

2 , . . . , Zrot
N ∈ Sk

3 . Next, the intrinsic mean of all pre-shape data is calculated.

13
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The concept of intrinsic mean was first proposed by Fréchet (M, 1948). Given a set of data
x1,x2, . . . ,xN ∈M, Fréchet defined the intrinsic mean of the data as the shape xin that minimizes
the sum of squared geodesic distances to all shapes, i.e.:

xin = arg min
x∈M

N∑
i=1

d2g(x,xi) (29)

Clearly, the computation of intrinsic mean is a non-convex optimization problem, i.e., finding the
minimum value of the squared distance function f(x) = 1

2N

∑N
i=1 d

2
g(x,xi), which requires iterative

optimization algorithms. We use the gradient descent algorithm adopted in (X, 1999; H, 1977) to
iteratively compute the minimum value. The gradient of the function f(x) is:

∇f(x) = − 1

N

N∑
i=1

logx(xi) (30)

Here, logx(xi) represents the logarithmic mapping, and its norm can be used to represent the
geodesic distance on the Riemannian manifold. Next, we choose the step size τ of the gradient
descent algorithm and update the estimate xt of the intrinsic mean using the following formula:

xt + 1 = expxt(
τ

N

∑
i = 1N logxt(xi)) (31)

The results of iterative optimization depend on the choice of the initial value and step size. Typically,
the initial value for iteration is selected from the sample data, and the choice of the step size depends
onthe manifoldM. Since the data is in pre-shape space, which is a unit-radius hypersphere composed
of pre-shape trajectories, according to (R & P, 2001), a step size τ = 1 on spherical data is sufficient
for gradient descent convergence.

Thus, for Zrot
1 , Zrot

2 , . . . , Zrot
N , their intrinsic mean is:

Zin = argminZ ∈ Sk
3

∑
i = 1Nd2g(Z,Z

rot
i ) (32)

After each update iteration, the result is:

Zt+1 = expZt(
1

N

N∑
i=1

logZt(Zrot
i )) (33)

It is worth noting that Kendall (Kendall, 1984) and Bhattacharya (Bhattacharya & Bhattacharya,
2012) pointed out that for Kendall’s shape space

∑k
m, when m = 2, the space is a compact differential

manifold. However, for shape spaces
∑k

m where m > 2, they do not have a manifold structure. For
shape spaces with m > 2, they have singularities (where configurations lie in subspaces of dimension
m − 2 or smaller), which are called strata of the space. The existence of singularities breaks the
differential structure of the manifold, and such spaces are called stratified spaces. In this study, we
adopt the viewpoint proposed by Dryden et al. (Dryden & Mardia, 2016) as a prerequisite. That
is, if the configuration data is modeled according to a continuous probability distribution, then the
Lebesgue measure of the set of singularities is zero.

In general, the data found in nature usually follows a Gaussian distribution. Therefore, the assumption
that there are no singularities in the shape space where shape data resides is also valid, and this
assumption is usually reasonable in practice. This paper always assumes that the shape space is
far away from the degenerate shapes that lead to singularities, and restricts the shape space to the
manifold part.
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C EXPERIMENTAL DETAILS

C.1 EXPERIMENTAL PROCESS

In the reconstruction experiment, the regularization parameter λ and the rank constraint term r are the
two decisive parameters that affect the reconstruction results in the MKRRR algorithm. Therefore,
cross experiments are needed to verify the values of these two parameters before the comparison test,
and the influence of the regularization parameter λ and the rank constraint term r on the algorithm is
determined by Leave-One-Out Cross Validation respectively. Specific experimental methods are as
follows:

Firstly, the choice of the regularization parameter λ is usually between 0 and 1, and the regularization
term exists to solve the problem of multiple collinearity in the training data, which leads to overfitting
of the model. However, due to the large differences among the samples in the skull data set we
adopted and the small amount of data in the data set, the value of the regularization term should not
be set too large. Therefore, in the experiment, we mainly test the value range of λ from 0.0001 to
0.1, and the value is expanded ten times each time. For each λ value, we cross-validate 20 samples
by Leave-One-Out method, and increase the training sample data one by one in step size 1 until
all samples except the test sample data are used as training data. For each training sample number,
we calculate its corresponding reconstruction error respectively, and finally take the average of all
reconstruction errors as the reconstruction error under this λ value. Finally, we choose the λ value
with the smallest reconstruction error as the final regularization parameter.

Secondly, the experimental verification method for rank constraint r is similar to that for the regular-
ization parameter λ, and the value range of rank constraint r is 0 < r < min(p, q), where p and q are
the characteristic dimensions of the predictor variable and the response variable respectively. Let
r = min(p, q)/α, in the experiment we test the reconstruction error in 1 < α ≤ 1.6, α growth step is
0.1. The subsequent robustness comparison experiments under noise interference were carried out
under optimal parameters obtained by us.

Thirdly, in order to verify the robustness of the method proposed in this paper, and considering the
machine error of 3D scanner, we added Gaussian noise of different degrees to the input data. The noise
standard deviation σ was set within the range of 0.00 to 0.05, and the standard deviation increased by
0.01 each time. The reconstruction error of the algorithm under this condition is compared with the
Example-oriented full mandible reconstruction based on principal component analysis proposed by
Yan et al. (Yan et al., 2022) and 3D mandible reconstruction method based on PGA. Our setting of γ
parameters will also follow the conclusions we obtained in Appendix A. Gaussian noise is the best
simulation method for skull point cloud data because the real noise source is complex after multiple
data processing (Duan et al., 2014). According to the central limit theorem, the superposition of a
large number of independent random variable distributions tends to normal distribution. Therefore,
using Gaussian noise can better simulate the unknown real noise.

C.2 PARAMETER ANALYSIS

As can be seen from figure 6, as the rank constraint r increases, the error of both measures decreases.
It is difficult to determine the optimal value of resolving rank constraints from the two graphs, so we
chose a smaller rank constraint for the experiment, which is shown in figure 4.

C.3 RECONSTRUCTION EFFECT
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Figure 6: Regularization term r contrast experiment, The reconstruction error results under different
r values are compared. Figure 6a shows the Shape space error comparison under random training
samples, and Figure 6b shows the Euclidean space error comparison under random training samples.
Figure 6c shows the Shape space error comparison under similar training samples, and Figure 6d
shows the Euclidean space error comparison under similar training samples.
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(a) An example of reconstructed mandibles (b) Another example of reconstructed mandibles

Figure 7: Two example of reconstructed mandibles

17


	Introduction
	Related work
	Manifold Kernel Reduced Rank Regression
	Problem formulation
	Construction of manifold
	Algorithmic process

	Kernel and Analytical solution of MKRRR
	Kernel and Construction of RKHS based on manifold
	Analytical solution of MKRRR

	Experiments and data analysis
	Dataset
	Evaluation Metric
	Result analysis

	Conclusion
	Robustness Proof
	Model Detail
	Translation Transformation
	Scaling
	Rotation Elimination


	EXPERIMENTAL DETAILS
	experimental process
	parameter analysis
	reconstruction effect


