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Abstract

In this work, we consider the notion of “criterion
collapse,” in which optimization of one metric im-
plies optimality in another, with a particular focus
on conditions for collapse into error probability
minimizers under a wide variety of learning cri-
teria, ranging from DRO and OCE risks (CVaR,
tilted ERM) to non-monotonic criteria underly-
ing recent ascent-descent algorithms explored in
the literature (Flooding, SoftAD). We show how
collapse in the context of losses with a Bernoulli
distribution goes far beyond existing results for
CVaR and DRO, then expand our scope to include
surrogate losses, showing conditions where mono-
tonic criteria such as tilted ERM cannot avoid col-
lapse, whereas non-monotonic alternatives can.

1. Introduction
As machine learning systems become more widespread and
integrated in our daily lives, the tension between perfor-
mance metrics we ideally wish to optimize (at test time)
and those we actually optimize in practice (at training time)
becomes increasingly important. Broadly speaking, tasks
are characterized by losses and what we will call learning
criteria. Losses are diverse, depending on the underlying
problem to be solved (e.g., classification, regression, rank-
ing, clustering, etc.) and a wide range of application-specific
needs. Losses depend on random data, and are themselves
random. In principle, performance can be described in terms
of random loss distributions, but working with complex and
unwieldy distributions is not practical; a concise numerical
summary is usually desired both for designing objectives to
optimize, as well as for disseminating interpretable results.
Providing such a summary is the role of learning criteria.
In contrast with the diversity of losses, there is a single de
facto standard learning criterion, namely the expected value
of the loss distribution, a criterion which is central to the
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“general setting of the learning problem” (Vapnik, 1999) that
is pervasive in both theory and practice.

In recent years, however, the need to capture a wider variety
of performance metrics at training time has motivated the
use of novel learning criteria going beyond the expected
value. Arguably the best-known families of such criteria are
those which control sensitivity to the right tail of the loss
distribution, e.g., CVaR (Curi et al., 2020), positive-tilted
ERM (Li et al., 2021), and Cressie-Read DRO (Duchi &
Namkoong, 2021), though criteria designed to capture both
tails at once have also begun to appear (Holland, 2022).
While all of these criteria can be clearly shown to be distinct
from the expected value, when such criteria are optimized at
training time, can we expect the outcome to actually change?
This question is somewhat delicate, since it depends on the
nature of the loss distribution. For example, when we are
working with the zero-one loss for classification, or any
binary performance indicator for that matter, previous work
has noted that vanilla empirical risk minimization (ERM)
is always sufficient for minimizing DRO and CVaR (Hu
et al., 2018; Zhai et al., 2021), making it meaningless to
distinguish between optimizing such criteria.

What about when we make use of surrogate loss functions
for training? The traditional theory of transferring consis-
tency from a surrogate to a target loss is tied tightly to the
expected value criterion (and its linearity) (Bartlett et al.,
2006; Reid & Williamson, 2011), meaning that a change in
criterion can drastically change the relations between loss
distributions. For example, given a model which is CVaR-
optimal in terms of a surrogate loss, it may or may not be
CVaR-optimal in terms of the zero-one loss; understanding
when such properties hold is critical to ensure the learn-
ing algorithms we use in practice are aligned with our true
objectives. For many classes of learning criteria, however,
such questions remain completely unexplored.

In this work, we consider the notion of “criterion collapse,”
in which optimization of one metric implies optimality in
another, with a particular focus on conditions for collapse
into error probability minimizers (i.e., minimizers of the
expected zero-one loss) under a wide variety of learning cri-
teria, including learning scenarios that involve a surrogate
loss. We start in §2 by showing how collapse in the context
of losses with a Bernoulli distribution goes far beyond CVaR
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and DRO. We then expand our scope to include surrogate
losses in §3. First, we highlight cases where optimality
diverges across loss distributions under a common criterion
(§3.1), and then on the other hand show conditions where for
monotonic criteria (e.g., positive-tilted ERM), collapse into
error probability minimizers is unavoidable (§3.2), though
the use of non-monotonic alternatives can be used to avoid
this when such collapse is not desired (§3.3). The main lim-
itation of our results in §3 is that we only cover margin-type
losses for binary classification. Extensions to asymmetric,
multi-class surrogate losses is left as future work. We com-
plement our basic theory with a set of experiments in §4,
training non-linear neural network models (e.g., ResNet-34)
for image classification from scratch, comparing across a
variety of learning criteria with a common base loss. We
find that when criterion selection is optimized for valida-
tion accuracy, the non-monotonic criteria (with clear links
to ascent-descent learning algorithms) provide an appeal-
ing balance across other metrics such as model norm and
average (surrogate) loss at test time.

2. Criterion Collapse
Underlying this section is the following simple question:
is it meaningful to introduce a new criterion? Even if two
criteria are distinct in a mathematical sense, i.e., they return
different values for the same loss distribution, if the solution
set of one criterion completely includes the other, then an
obvious sufficiency property holds; no tradeoffs between
criteria arise. When we have a sufficient condition (for opti-
mality in both criteria) that is easy to satisfy, it essentially
renders one criterion meaningless. Here we will look at
how such a phenomenon occurs frequently under binary
distributions.

2.1. Preliminaries

Basic notation Let X × Y denote our underlying data
space. Random data points will be denoted by individual
random pairs distributed on X × Y . For a single data point,
often to represent “data at test time,” we write (X,Y). When
we are dealing with non-random quantities, X and Y will
be replaced by x and y respectively. As general-purpose
notation for decisions, we write h, assumed to be an ele-
ment of a set of admissible decisions H (the “hypothesis
class”). Throughout this paper, when we use E and P to
represent expectation and probability, it will always be with
respect to the distribution of (X,Y), unless otherwise noted.
For an arbitrary real-valued function f : H → R, we de-
note the set of minimizers by argminh∈H f(h) ⊂ H, with
argminh∈H f(h) = ∅ in the case that no minimizers exist
inH. We remark that unlike h (always h : X → Y), the no-
tation f is not reserved here. We use f and also g to denote
various different helper functions throughout the paper.

Loss function and criterion mapping Central to this
paper is the notion of a numerical loss that can be used to
provide feedback to a learning algorithm, or as a metric
for evaluation after learning is complete. A loss function
` : H×X ×Y → R maps (decision, data point) pairs to real
values `(h;x, y), called losses. When the data is random, so
is the loss. We denote random losses by L(h) ..= `(h;X,Y),
making the dependence on decision h ∈ H explicit in our
notation. Running over the set H, we end up with a set
of random losses, denoted by L ..= {L(h) : h ∈ H}. We
will sometimes just refer to individual random losses L ∈ L
without specifying which h ∈ H is associated with L. The
other basic notion we require is that of a criterion mapping,
denoted C : L → R, which maps random losses L ∈ L
to numerical values C(L), called criteria. As mentioned in
§1, the traditional criterion is C(L) = E[L], often called
the “risk,” but we will go well beyond this criterion in the
following sub-sections.

2.2. Random error and criterion collapse

The most basic and pervasive loss function used for eval-
uation is the “zero-one loss,” a simple classification error
penalty that we denote as

`01(h;x, y) ..=

{
1, if h(x) 6= y

0, otherwise.
(1)

Denoting the random error by L01(h) ..= `01(h;X,Y), it fol-
lows a Bernoulli distribution that is completely determined
by its expected value, the error probability E[L01(h)] =
P{h(X) 6= Y}. Since this quantity will appear frequently,
we reserve the following symbols for the error probability
and its solution set:

E(h) ..= P{h(X) 6= Y}, H∗E ..= argmin
h∈H

E(h). (2)

The expected value L 7→ E[L] also happens to be the tradi-
tional choice of criterion mapping in machine learning, but
as discussed earlier in §1, a variety of new choices for crite-
rion mapping have arisen in the context of “risk-sensitive”
learning.

In general, by introducing new criteria (instead of the ex-
pected value), one gains an additional degree of freedom
(beyond choice of loss function) in terms of what qualities
we evaluate, and how we quantify such qualities. However,
for loss functions such as `01 in (1), the resulting random
loss L01 has such a simple distribution that many criteria
“collapse” into the expected value. Two important special
cases of this phenomenon have been noted in the previous
literature. We recall these two cases here in chronological
order, adapted to our notation for readability.

Theorem 2.1 (DRO criterion; Hu et al. (2018, Thm. 1)). For
arbitrary random loss L ∈ L, denote the distributionally
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robust optimization (DRO) criterion by

DRO(L) ..= sup
µ∈P

Eµ[L]

where the “uncertainty set” P is taken to be a ball cen-
tered at some pre-defined data distribution on X × Y , with
finite radius measured by a valid f -divergence. Under zero-
one loss L = L01, error probability minimizers are always
optimal in terms of the DRO criterion, namely we have

H∗E ⊂ argmin
h∈H

DRO(L01(h))

withH∗E defined earlier in (2).

Another very closely related insight has been presented
in the literature, this time looking at conditional value-at-
risk (CVaR), a well-studied criterion that is central to the
quantification of financial risk.
Theorem 2.2 (CVaR criterion; Zhai et al. (2021, Prop. 1)).
Again taking any loss L ∈ L, we write the conditional value-
at-risk (CVaR) criterion as

CVaR(L) ..= inf
θ∈R

[
θ +

1

1− β
E[(L−θ)+]

]
where 0 < β < 1 controls the degree of right-tail sensitivity,
and (·)+ ..= max{0, ·}. Under the zero-one loss L = L01,
error probability minimizers are optimal in terms of CVaR,
i.e.,

H∗E ⊂ argmin
h∈H

CVaR(L01(h)).

The basic message of Theorems 2.1 and 2.2 is clear: under
losses with a Bernoulli distribution, it is essentially mean-
ingless to consider DRO and CVaR as distinct from the
expected value, since minimizing the expected loss is al-
ways sufficient for optimality in terms of DRO and CVaR
as well. In §2.3 to follow, we show that this “collapse” into
error probability minimizers arises for criteria going well
beyond DRO and CVaR.

2.3. Which classes lead to collapse?

Here we take a look at several large classes of criteria, show-
ing how most collapse in the sense illustrated in §2.2.

2.3.1. EXPECTATION OF FIXED FUNCTION

Starting with the simplest class, we consider criteria that are
computed as

L 7→ E[f(L)] (3)

where f : R→ R is any function such that the expectation
is finite. By setting L = L01 and reflecting dependence on
h ∈ H, note that

E[f(L01(h))] = f(0) + E(h) (f(1)− f(0))

where E(·) is the error probability defined in (2). If f(0) =
f(1) happens to hold, the criterion is constant and thus
not very interesting. When f(0) 6= f(1), minimizers of
E[f(L01(·))] are easy to characterize: they either minimize
or maximize E(·), depending on whether f(1) > f(0) or
not. As such, no matter how f is designed, the result of
minimizing such a criterion will always be one of these two
extremes.

2.3.2. QUANTILES

As a natural alternative to the mean, let us consider a stan-
dard definition of quantiles, namely the β-level “left quan-
tile” of the random loss, defined for L ∈ L by

Qβ(L) ..= min{x ∈ R : P{L ≤ x} ≥ β} (4)

for all 0 < β ≤ 1, and Qβ(L) ..= −∞ for β = 0. While in
general the relation between quantiles and the mean can be
very complicated, for the special case of Bernoulli losses,
this relation is very simple for all choices of β, and we
can readily show how the quantile criterion collapses to the
mean.

Proposition 2.3 (Collapse of left quantiles). Given Qβ as
defined in (4) and L = L01, we have

H∗E ⊂ argmin
h∈H

Qβ(L01(h))

for all probability levels 0 ≤ β ≤ 1.

Remark 2.4 (Related case: right quantiles). Another very
similar discussion can be carried out with the “right quan-
tiles” defined by

Q−β (L)
..= max{x ∈ R : P{L < x} ≤ β} (5)

for 0 ≤ β < 1, and Q−β (L)
..=∞ for β = 1.

2.3.3. DISTRIBUTION DEPENDENT FUNCTIONS

As a natural extension to the rudimentary “fixed function ex-
pectation” criteria seen in §2.3.1, one can consider a family
of functions f(·; θ) parameterized by θ ∈ R, for which the
value of θ is allowed to be determined based on the L ∈ L
being evaluated. While countless possibilities exist, one
class of criteria that captures many important special cases
in the literature is to take f(u; θ) = θ + ρ(u − θ), and to
optimize with respect to θ after taking expectation. As a
typical example, consider

Cρ(L)
..= inf

θ∈R
[θ +E[ρ(L−θ)]] (6)

where ρ : R → R used in (6) is assumed to be such that
for each L ∈ L, the function θ 7→ θ +E[ρ(L−θ)] achieves
its minimum on R, and that inf{Cρ(L) : L ∈ L} > −∞.
As we will discuss later, special cases of the learning crite-
rion Cρ(·), as well as close variants, arise frequently in the
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literature, particularly in the case where ρ is monotonic (non-
decreasing) and convex on R. As the following result shows,
under the zero-one loss, monotonicity alone is sufficient to
imply collapse into error probability minimizers.

Proposition 2.5 (Collapse under monotonic dispersion).
With Cρ as defined in (6), we have

H∗E ⊂ argmin
h∈H

Cρ(L01(h))

when ρ(·) is non-decreasing, and equality when ρ(·) is in-
creasing.

As we note in the following remarks, a wide range of well-
known criteria are captured by Proposition 2.5, or can be
shown to collapse using an analogous argument.

Remark 2.6 (Special case: OCE criteria). When ρ in (6) is
assumed to be a closed, convex, sub-differentiable function,
normalized such that ρ(0) = 0 and 1 ∈ ∂ρ(0), which is
monotonically non-decreasing on R, the resulting learning
criterion is called an optimized certainty equivalent (OCE)
(see also Figure 4). Clearly, setting ρ(u) = u recovers
the expected value. Another well-known special case of
OCE criteria is CVaR, which is recovered by setting ρ(u) =
max{0, u}/(1− β) with 0 < β < 1. Clearly this ρ is non-
decreasing, so the inclusion in Proposition 2.5 holds; note
that Theorem 2.2 is thus implied. On the other hand, the ρ
used for CVaR is not strictly increasing. Under the zero-one
loss, are there CVaR-optimal solutions that are not optimal
in terms of error probability? This is indeed possible, but
it depends on both H and β; we discuss this in detail in
§B.2. Another well-studied special case from the OCE class
is the tilted risk (also entropic risk), recovered by setting
ρ(u) = (eγu − 1)/γ with γ > 0, taking the form

Cρ(L) =
1

γ
log
(
E
[
eγ L
])
. (7)

Note that since the exponential function is monotonically
increasing, so is ρ, and thus by Proposition 2.5, tilted risk
minimization under L = L01 is identical to E(·) minimiza-
tion. To conclude this remark, we note that more generally,
the monotonicity of all OCE risks immediately implies that
all E(·)-optimal rules are also Cρ-optimal, even without the
other assumptions of convexity and normalization.

Remark 2.7 (Related case: Cressie-Read DRO). An im-
portant class of distributionally robust optimization (DRO)
criteria is defined in a very similar way to the OCE class
given in (6). In particular, using the Cressie-Read family of
f -divergences leads to criteria of the form

DROc,ε(L) ..= inf
θ∈R

[
θ + (E [ρc,ε(L01(h)− θ)])1/c∗

]
where we have defined ρc,ε(x) ..= (1+ c(c− 1)ε)c∗/c(x)c∗+
and c∗ ..= c/(c − 1), and these criteria are parameterized

by c > 1 and ε ≥ 0. Note that the function ρc,ε is clearly
non-decreasing on R, just like in our discussion of CVaR in
Remark 2.6. With c > 1, Cressie-Read DRO criteria are not
strictly speaking OCE criteria, since the expected value is
wrapped within (·)1/c∗ . That said, an argument analogous
to that in the proof of Proposition 2.5 using monotonicity
can be used to show the same result, i.e., thatH∗E is included
in the solution set of DROc,ε(L01(·)).
Remark 2.8 (Related case: criteria based on Orlicz regret).
Let f : R+ → R+ be a proper, lower semi-continuous
convex function, satisfying f(1) = 0, f(0) < ∞, and
super-coercivity in that f(u)/u → ∞ as u → ∞. Let-
ting f∗ denote the usual convex conjugate of f , namely
f∗(u) ..= supv∈R[uv− f(v)], in recent work by Fröhlich &
Williamson (2023), a class of learning criteria are introduced
with the form

Cf,ε(L)
..= inf

θ,σ

[
σ

(
ε+ θ +E

[
f∗
(
L

σ
− θ
)])]

, (8)

where the infimum is taken over θ ∈ R and σ > 0, and
ε > 0 is a parameter of the criterion. Note that f∗ is finite,
convex, and monotonically increasing on R (Fröhlich &
Williamson, 2023, Prop. 3.2). Using this strong monotonic-
ity property, just as we did for OCE criteria with increasing
ρ, we can prove that under the zero-one loss, Cf,ε(L01(·))-
optimal decisions coincide with the E(·)-optimal decisions.

Remark 2.9 (Non-monotonic alternative: variantile). The
variance of a random variable, say L, can be naturally ex-
pressed as the minimum value of the function E(L−θ)2,
with the minimum taken with respect to θ ∈ R. The dis-
persion around θ here is measured in a symmetric fashion,
since the same function is used both when L > θ and L ≤ θ.
A natural asymmetric extension considers re-scaling each of
these cases with 2(1− τ) and 2τ respectively, where τ is a
free parameter such that 0 < τ < 1. Writing this explicitly
as a learning criterion, we have

Cτ (L)
..= min

θ∈R
2E
[
|1θ(L)− τ |(L−θ)2

]
(9)

where 1θ(L) ..= I{L ≤ θ}. The value of θ that minimizes
the function shown on the right-hand side of (9) is well-
known in the economics literature as the “expectile,” and
while the residual Cτ (L) itself has received less attention, it
has appeared in recent work under names such as “variancile”
and “variantile” (Frongillo & Kash, 2021). Using the latter
term here, the variantile in (9) generalizes the variance,
with τ = 1/2 recovering the variance as a special case.
While of a similar nature to the Cρ criteria give in (6), the
critical difference here is that (·)2 is not monotonic on R.
As a result, collapse in the sense of Proposition 3.1 and
Remarks 2.6–2.8 is not guaranteed, but instead the solution
set collapses into the set of either minimizers or maximizers
of E(·), analogous to §2.3.1. See §B.3 for a more detailed
demonstration of this.

4



Criterion Collapse and Loss Distribution Control

3. Relationship with Surrogate Losses
Our analysis and discussion of criterion collapse in the pre-
ceding section was centered around losses with a Bernoulli
distribution, which typically arise when using the zero-
one loss `01 defined in (1). While this loss function is
ubiquitous as a metric for evaluation, during training we
rarely use `01 to design a criterion to be optimized directly.
It is far more common to introduce a surrogate function,
say `(h;x, y), that is more congenial to numerical opti-
mization. This results in there being two distinct loss
distributions for each candidate h, namely that of the bi-
nary error L01(h) = `01(h;X,Y) and the surrogate loss
L(h) = `(h;X,Y). Say we introduce some new criterion
map C(·). We already know from §2 how most typical cri-
teria collapse under L01(h), but these insights do not apply
in general for L(h), which may have a much more com-
plicated distribution than a simple Bernoulli. Placing our
focus on the surrogate criterion C(L(·)), there are two natu-
ral instances of “collapse” with respect to error probability
minimizers that we can conceive of:

H∗E ⊂ argmin
h∈H

C(L(h)) (10)

argmin
h∈H

C(L(h)) ⊂ H∗E . (11)

In some learning scenarios, the properties (10) and (11) may
of course be desirable. In the case of (10), which is the
surrogate version of the collapse notion seen in §2, we have
that it is possible to be optimal in C(L(·)) without having to
make a sacrifice in terms of error probability E(·). As for
(11), in the traditional setup where C(·) = E[·], proving that
(11) holds is the central goal of “classification calibrated”
surrogate design (Bartlett et al., 2006).

On the other hand, the inclusion in (11) means that error
probability minimization is unavoidable (under C(·) and
`(·)), which could have unintended repercussions in terms of
other metrics such as fairness or privacy, for which tradeoffs
with accuracy are well-known (Menon et al., 2021). In §3.1
we first give a simple example showing how both (10) and
(11) can fail to hold under a limited model H. In contrast,
whenH is a highly expressive model, we show in §3.2 that
for most important (binary) surrogate losses and a large class
of criteria (in particular the “tilted risk” criteria), average
error optimizers are in fact unavoidable (i.e., (11) holds). We
complement this in §3.3 by showing how criteria underlying
typical “ascent-descent” gradient-based algorithms can be
used to avoid unintentional collapse intoH∗E .

3.1. Disentangling the error and surrogate loss

For the remainder of §3, we will focus on the binary clas-
sification case, where our random data takes the form
Z = (X,Y), taking values in X × Y with Y = {−1, 1}.
Let S denote a set of scoring functions s : X → R, with

decision setH ..= {sign(s(·)) : s ∈ S} based on S, noting
that for any u ∈ R, sign(u) is 1 when u ≥ 0, and is −1
when u < 0. In this setting, we show how under a modelH
with limited expressive power, it is very easy to construct an
example where both notions of “collapse” just mentioned
cannot hold.

For simplicity and ease of visualization, consider an exam-
ple on the plane, i.e., where X = R2. Let X = (V1,V2),
where V1 and V2 are real-valued random variables. Fixing
an arbitrary a > 1, let V1 take values in {−1, 1, a} and
let V2 take values in {−a,−1, 1}. Assume that P{X =
(−1, 1)} = P{X = (1,−1)} > 0, and writing

p ..= P{X = (−1, 1)}+P{X = (1,−1)}

let us say that P{X = (a,−a)} = 1 − p and p < 1 also
hold. As for the labeling, let us assume

Y = sign(
√
2− ‖X‖2) sign(V2 − V1). (12)

Set S ..= {s1, s2}, where s1(v1, v2) ..= v2 − v1 and
s2(v1, v2) ..= v1 − v2 for all v1, v2 ∈ R. The resulting clas-
sifiers are h1(x) ..= sign(s1(x)) and h2(x) ..= sign(s2(x))
for x ∈ R2. See Figure 1 for a visualization of the three
possible data points and the role of p. Error probabilities
are P{h1(X) 6= Y} = 1 − p and P{h2(X) 6= Y} = p.
When p > 1/2, clearlyH∗E = {h1}. As a typical surrogate
loss, let us consider the usual binary “logistic loss,” namely
the binary cross-entropy loss with scores converted to prob-
abilities via the logistic function. Losses take the form
`log(s;x, y) ..= log(1+ exp(−ys(x))) for each x ∈ R2 and
y ∈ {−1, 1}. Writing Llog(s) ..= `log(s;X,Y), the surro-
gate loss distributions that result are quite simple; some
arithmetic shows that we have

Llog(s1) ∈ {log(1 + exp(−2)), log(1 + exp(2a))},
Llog(s2) ∈ {log(1 + exp(−2a)), log(1 + exp(2))}

with probability 1. For any fixed value of a > 1, it is always
possible to take 0 < p < 1 close enough to 1 that in terms
of the expected surrogate loss, we have

argmin
s∈S

E[Llog(s)] = {s1}

which is in agreement with the error probability minimizer.
On the other hand, regardless of what value of 0 < p < 1 is
assumed, both the maximum and minimum losses incurred
by s2 are respectively smaller than those of s1. That is,

max
X,Y

Llog(s2) < max
X,Y

Llog(s1),

min
X,Y

Llog(s2) < min
X,Y

Llog(s1).

This simple observation means that criteria which tend to
emphasize optimizing either the “worst case” or “best case”
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Figure 1. In the left plot, we show the three possible data points that can arise in the example described in §3.1. Points above the dashed
silver line are assigned a label of 1 by h1 and −1 by h2; signs are reversed for all points below this line. For the outlying point in the
bottom right, we have set a = 2 in this example. In the right plot, we illustrate setting p > 1/2 to ensure the optimality of h1 and h2 in
distinct criteria diverges.

in terms of surrogate loss values will end up disagreeing
with the error probability E(·), and thus neither (10) nor (11)
can hold. This is not limited to the extreme case where the
criterion map is C(·) = maxX,Y(·) or C(·) = minX,Y(·).
For example, analogous results can easily be shown to hold
under the γ-tilted risk L 7→ (1/γ) log(E[eγ L]) (recalling
Remark 2.6) for γ 6= 0 with |γ| sufficiently large, with
γ < 0 emphasizing the best case, and γ > 0 emphasizing
the worst case.

3.2. Criteria that cannot avoid collapse

Let us assume that ` is a surrogate loss function which
applies penalties to classification margins, i.e., assume that
`(s;x, y) ..= φ(ys(x)), where margin penalizer φ : R →
R+ is assumed to be convex and non-negative over R, as
well as differentiable at 0; one typical example is ` = `log
from §3.1. Let us also generalize beyond the expected loss
criteria by considering the optimized certainty equivalent
(OCE) criterion, defined for any L ∈ L by

OCE(L) ..= inf
θ∈R

[θ +E[ρ(L−θ)]] (13)

and characterized by ρ : R → R satisfying the proper-
ties mentioned in Remark 2.6. Our running assumption
is that for each L ∈ L, there is always a θ∗ ∈ R such that
OCE(L) = θ∗+E[ρ(L−θ∗)] holds. We show below that for
a large sub-class of OCE criteria and loss functions, criteria
collapse in the sense of (11) often cannot be avoided.

Proposition 3.1. Assume that the margin penalizer satis-
fies φ′(0) < 0, and that ρ in (13) is increasing (not just
non-decreasing) and differentiable. WithH ..= {sign(s(·)) :
s ∈ S}, let S be the set of all measurable functions on
X , and let (s1, s2, . . .) be a sequence from S, with the re-
sulting classifiers denoted by hn(·) ..= sign(sn(·)). Write
Lφ(h) ..= `(sh;X,Y) = φ(Ysh(X)) for the losses induced

by φ. Taking n→∞, the following implication holds:

OCE(Lφ(hn))→ inf
h∈H

OCE(Lφ(h)) =⇒ E(hn)→ E∗,

where E∗ ..= infh∈H E(h). In addition, minimizers of the
OCE surrogate satisfy

argmin
h∈H

OCE(Lφ(h)) ⊂ H∗E .

Remark 3.2 (Classification calibrated surrogates). Our as-
sumptions on the margin penalizer φ(·) in Proposition 3.1
amount to it being classification calibrated in the sense of
Bartlett et al. (2006), a basic property common in all popular
surrogates for binary classification. Many choices of φ(·)
are allowed by Proposition 3.1: in addition to monotonic
losses such as the logistic loss φ(u) = log(1 + exp(−u)),
exponential loss φ(u) = exp(−u), and hinge loss φ(u) =
max{0, 1−u}, it also captures non-monotonic choices such
as the quadratic loss φ(u) = (1 − u)2, the ARC-X4 loss
φ(u) = |1− u|5 (Breiman, 1999), and shifted Huber-Catoni
penalties (Holland, 2019).
Remark 3.3 (Strict monotonicity of ρ). While the class
of OCE criteria in its most general form just asks for ρ
to be non-decreasing, in Proposition 3.1 we require that
it be strictly monotonic (increasing). Should a flat (zero
slope) region be allowed to exist, it allows for OCE(Llog(·))-
optimal but E(·)-sub-optimal solutions to exist. This is
akin to the “positive steepness” condition seen in related
work on DRO (Hu et al., 2018, Lem. 1). This means
that the special case of CVaR, amounting to OCE(·) with
ρ(u) = max{0, u}/(1 − β) and 0 < β < 1, is excluded.
On the other hand, the closely related γ-tilted risk, with
ρ(u) = (eγu − 1)/γ and γ > 0, is included. Under models
with high expressive capacity, Proposition 3.1 suggests that
methods such as tilted ERM may not always be a trustwor-
thy choice for learning tasks where some evaluation metric
of interest (e.g., fairness, interpretability) is at odds with
error probability.

6
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3.3. Criteria that can avoid collapse

Here we consider alternatives to the class of criteria cap-
tured by the “unavoidability” result in Proposition 3.1. To
do so, we introduce minor changes to the functional form
of the OCE criterion of (13), and highlight links to ex-
isting algorithms in the literature (see Remark 3.5). Let
ρ̃ : R → [0,∞) be a continuous convex function which
is coercive (i.e., |u| → ∞ implies ρ̃(u) → ∞), takes its
minimum at 0 (assuming ρ̃(0) = 0), and is strictly con-
vex on a neighborhood of 0. We use the symbol ρ̃ (instead
of ρ as in §3.2) because these assumptions imply that ρ̃
cannot be monotonic on R. Let us denote the inner and
outer loss-restraining criterion maps by Cinn(·) and Cout(·)
respectively, defined for any L ∈ L by

Cinn(L; θ) ..= ρ̃(E[L]− θ), (14)
Cout(L; θ) ..= E[ρ̃(L−θ)]. (15)

See Figure 4 for some examples of valid ρ̃ compared with
valid ρ used for OCE criteria. Intuitively, Cinn(L; θ) simply
asks the learning algorithm to arrive at a loss distribution
whose mean is “close” to some threshold θ; when θ =
0, Cinn(L; θ) and E[L] are equivalent (i.e., their solution
sets coincide). In contrast, Cout(L; θ) asks that the loss
distribution be well-concentrated near θ. In both cases, the
notions of “closeness” and “concentration” are broad, and
can be asymmetric (e.g., heavier right tails than left tails are
allowed) when ρ̃ is. The following result shows how even
under a highly expressive model as in §3.2, constraining the
loss distribution by means of criteria such as Cinn and Cout
lets us circumvent the unavoidability of Proposition 3.1.
Proposition 3.4. Under the assumptions of Proposition
3.1, assume that E∗ = 0 and the margin penalizer φ(·) is
monotonic (non-increasing) and unbounded above. Con-
sider the non-trivial case where H∗E 6= H. Then, there
exists θ > 0 such that (11) cannot hold under either of the
loss-restraining criteria, i.e., we have

H∗E ∩ argmin
h∈H

C(Lφ(h); θ) = ∅

for both C = Cinn and C = Cout.
Remark 3.5 (Links to algorithms in the literature). While
we have introduced the loss-restraining criteria Cinn and
Cout in (14) and (15) in a rather general form, plugging in
concrete examples of ρ̃ can be shown to align with specific
learning algorithms from the literature. Perhaps the best-
known is that of “Flooding,” as studied by Ishida et al.
(2020). By setting ρ̃(·) = |·| and applying sub-gradient
descent with step-size α ≥ 0 to the resulting Cinn(L(·); θ)
for any differentiable loss L, we end up with an update rule

ht+1 = ht − α sign(E[L(ht)]− θ)E[∇ L(ht)]. (16)

In practice, of course, the true expectation is replaced with
the empirical mean over a finite sample. From (16) it is clear

that as the sequence (h1, h2, . . .) progresses, as long as the
expected loss is above threshold θ, vanilla gradient descent
(on the expected loss) is run. It is only if the expected loss
falls below this threshold that the sign flips, changing the
update to gradient ascent. The original intuition behind this
approach was simply to avoid over-optimizing a surrogate
loss function, but since the original paper, links between
this method and sharpness-aware minimization (Foret et al.,
2021) have been established; see for example Karakida et al.
(2023). The hard condition for switching between ascent
and descent was softened in recent work by Holland &
Nakatani (2023); their approach can be interpreted in our
framework as using Cout rather than Cinn, and replacing the
absolute value function with ρ̃(·) =

√
(·)2 + 1 − 1. The

resulting gradient descent update looks like

ht+1 = ht − αE[ρ̃′(L(ht)− θ)∇ L(ht)]. (17)

This procedure is called “softened ascent-descent” (SoftAD)
by the authors; note that the hard switch of sign(·) in (16) is
replaced in (17) by a smooth switch ρ̃′(·), plus the modula-
tion is applied in a per-point fashion before averaging, rather
than after. Given that the Flooding and SoftAD methods just
described are captured as special cases in Proposition 3.4,
we shall pay particular attention to them in our empirical
analysis to follow in §4.

Remark 3.6 (Alternative approaches in the literature). In
the context of avoiding collapse of DRO criteria (e.g., The-
orem 2.1), Hu et al. (2018, §4) consider constraining the
uncertainty set (our P) such that the underlying data distri-
bution is effectively controlled by a simple discrete latent
variable. This nice trick allows them to express their “struc-
tural ARM” criterion in terms of a weighted sum of expected
zero-one loss and variance-like terms (e.g., their equation
18), which in principle makes it possible to avoid collapse.
Another clever approach to avoiding such collapse (this time
for CVaR; Theorem 2.2) is to consider the task of learning
an ensemble of k candidates as done by Zhai et al. (2021,
§3), i.e., choosing h ..= (h1, . . . , hk) with each hj ∈ H
and a weight vector λ ..= (λ1, . . . , λk). The underlying loss
function is then a weighted sum of zero-one losses, namely
`
(k)
01 (h, λ;x, y) ..=

∑k
j=1 λj`01(hj ;x, y), and thus in princi-

ple we can avoid collapse since the distribution is no longer
Bernoulli. While both of these results describe settings in
which collapse need not occur under L = L01, collapse
is still possible, and there are not conditions for avoiding
collapse with surrogates (as in our Proposition 3.4).

4. Empirical Analysis
Within our theoretical analysis of §3, we contrasted learning
criteria that can and cannot avoid collapse into error proba-
bility minimizers. In particular, we emphasized the role of
monotonicity in measuring the dispersion of losses around
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Figure 2. Key metrics of interest (vertical axis) over epochs (horizontal axis). Here “loss” refers to average surrogate loss, “acc” refers
to accuracy, and “norm” refers to the model L2 norm. Loss and accuracy are given for both training (dotted lines) and test data (solid
lines). Plots on the left are for CIFAR-100, and plots on the right are for SVHN.

CIFAR-10 CIFAR-100 FashionMNIST SVHN
CVaR 0.14 (0.15) 0.28 (0.13) 0.46 (0.13) 0.20 (0.12)
DRO 0.02 (0.04) 0.0 (0.0) 0.0 (0.0) 0.17 (0.20)
Flood 0.05 (0.06) 0.03 (0.05) 0.01 (0.0) 0.01 (0.0)

SoftAD 0.06 (0.05) 0.15 (0.13) 0.01 (0.0) 0.19 (0.19)
Tilted 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

Table 1. Hyperparameter values selected for each method to maximize validation accuracy (averaged over trials). Standard deviation
(again over trials) is given in parentheses.

a threshold (ρ vs. ρ̃). DRO, CVaR, and tilted ERM are typi-
cal monotonic methods, whereas Flooding and SoftAD are
representative non-monotonic methods. To complement the
points established in the previous section, here we imple-
ment the aforementioned methods and apply them to the
training of non-linear neural network models for classifica-
tion. Our interest is in tradeoffs. Namely, having optimized

for their respective learning criterion (under a base surrogate
loss), we compare performance in terms of three alternative
metrics, namely average surrogate loss, accuracy, and model
complexity measured by the norm of model parameters.

Setup Our experiment design essentially follows the ex-
perimental design described by Ishida et al. (2020) (who

8
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first proposed the Flooding technique). The basic learning
task is image classification from scratch. We use four stan-
dard datasets: CIFAR-10, CIFAR-100, FashionMNIST, and
SVHN, accessed via the torchvision package. Each
of these datasets has a default training-test split, which we
leave fixed across all randomized trials. In each trial, how-
ever, we shuffle the training data and do an 80-20 split for
training-validation. For CIFAR-10/100, we use ResNet-34;
for FashionMNIST we flatten the images and use a sim-
ple feed-forward network (one hidden layer, 1000 units,
batch normalization, ReLU activation); finally, for SVHN,
we use ResNet-18. As an optimizer, we use vanilla SGD
with step size 0.1 and momentum 0.9, run for 250 epochs,
with mini-batch size of 200. In all cases, no pre-training
is done; initial weights are randomly determined anew for
each trial, and we note that the initial weights for any given
trial are common across all methods being tested. The “base”
surrogate loss function used for training is the multi-class
cross-entropy loss.

Code A GitHub repository with code and seed values to
re-create all the results presented in this paper is available at
this URL: https://github.com/feedbackward/
collapse.

Methods We are comparing the impact of different learn-
ing criteria, so the choice of “method” here amounts to
choosing from the following: CVaR, DRO, Flooding, Sof-
tAD, and tilted ERM. For DRO, we use Cressie-Read di-
vergences (Remark 2.7), with c = 2 fixed and ε as a hy-
perparameter. For CVaR (cf. Theorem 2.2), the quantile
level β is the hyperparameter. For both CVaR and DRO, we
optimize the threshold θ simultaneously with model param-
eters. Tilted ERM has a closed form (7) that we use, with
hyperparameter γ. For the non-monotonic methods (Re-
mark 3.5), Flooding is Cinn with ρ̃(u) = |u|, and SoftAD is
Cout with ρ̃(u) =

√
u2 + 1− 1; both have threshold θ as a

hyperparameter. For each method, we consider ten distinct
hyperparameter candidates, as follows. CVaR: β ranges
between 0 and 0.9. DRO: with ε = (1/(1− ε̃)− 1)2/2, ε̃
ranges between 0 and 0.9. Flooding: θ ranges between 0.01
and 1.0. SoftAD: θ ranges between 0.01 and 0.75. Tilted
ERM: γ ranges between 0 and 2.0. We remark that vanilla
ERM is captured as a special case of the three monotonic
methods (β = 0, ε = 0, and γ = 0).

Results For evaluation, before and after each epoch, we
record three metrics: average surrogate loss, average accu-
racy (one minus average zero-one loss), and the L2 norm
of model parameters. Here “average” refers to taking an av-
erage over each relevant data set (training, validation, test).
Furthermore, we have run five independent trials, and the
results to be presented are averaged over all trials. To choose
a representative hyperparameter setting for each method, we

select the value which maximizes the validation accuracy.
In Figures 2 and 5 we show the trajectory of our metrics of
interest over epochs (with epoch 0 being the initial state).
In Table 1, we show the hyperparameter values that were
selected for each method (here also, averaged over trials).

Discussion There are several salient points that can be
extracted from the results just described. First, it is clear
that in terms of accuracy, all methods that we have tested
include hyperparameter settings which can achieve near-
perfect training accuracy, with test accuracy essentially the
same across all methods. Note that for all trials and all
datasets, tilted ERM is such that optimizing for validation
accuracy leads to a setting of γ = 0, namely vanilla ERM.
Second, while the “best accuracy” levels are essentially uni-
form across the methods tested, from the perspective of
tradeoffs, we see that things are far less uniform. In terms
of average surrogate loss and model norm metrics, there is
substantial dispersion between methods. We see that the
two non-monotonic methods tend to achieve a far better av-
erage test surrogate loss than the monotonic methods, with
SoftAD being unique in terms of realizing a small model
norm as well. Considering these trends (in Figures 2 and 5)
together with the selection trends (in Table 1), the results
seem to suggest that even weakly constraining the surrogate
loss distribution via Cinn and Cout (corresponding to Flood-
ing and SoftAD here) looks to offer an appealing balance
between the metrics we have studied here. Whether or not
this behavior can be extended in a straightforward manner
to metrics from other domains (e.g., fairness, prediction
calibration, etc.) remains to be seen.

5. Concluding Remarks
In this work, we have formulated and studied the notion of
criterion collapse in machine learning, with particular em-
phasis placed on settings in which unintended collapse may
occur, and how this phenomenon changes when surrogate
functions are introduced into the picture. By highlighting
situations in which unintentional collapse is possible, we are
hoping to slowly but surely build a methodological roadmap
of sorts, highlighting potential risks with model/algorithm
design decisions, something analogous to the “AI model
cards” that have attracted interest in recent years (Liang
et al., 2024). By complementing our theory with exper-
iments, we try to highlight how learning algorithms de-
rived from distinct criteria classes (here the key difference
is monotonicity) can lead to rather different algorithm be-
havior and learned model properties, both during and after
training. The idea is to take these empirical insights together
with the aforementioned basic principles to guide smart AI
system design when our goals are more diverse than just
“maximize the accuracy on a big training set.”
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A. Additional Notes
Tradeoffs between metrics The navigation between “measures” and their “proxies” is a well-known challenge in the field
of public policy design, and has recently been highlighted as an important challenge by researchers at OpenAI.1

Surveys on learning criteria In recent years, several in-depth surveys looking at trends in criterion design for machine
learning and related disciplines have appeared. See Holland & Tanabe (2023), Hu et al. (2023), and Royset (2022) for
representative work.

OCE and DRO references See Lee et al. (2020) and Holland & Tanabe (2023, §3.2) for background on OCE criteria
in machine learning, and Ben-Tal & Teboulle (2007) for an authoritative initial reference. Tilted ERM with γ > 0 is a
special case of OCE, but it should be noted that a more general notion of “tilted ERM” can be considered by using the
right-hand side of (7) with general γ 6= 0 (Li et al., 2021). For γ < 0 the link to OCE criteria breaks down (reducing the
role of right-side tails instead of emphasizing them), but leads to an array of different applications (Li et al., 2023). For the
well-known special case of CVaR, see Rockafellar & Uryasev (2000) for the landmark paper that presents the form of CVaR
used in our Theorem 2.2. See Kashima (2007) and Takeda & Sugiyama (2008) for early links to machine learning. CVaR
can be derived as a limiting case of DRO under a specific f -divergence ((Duchi & Namkoong, 2021, Ex. 3)). For more
general results on DRO with uncertainty sets constructed using on f -divergences, see Namkoong & Duchi (2016) and Duchi
& Namkoong (2021).

Tail-sensitive criteria The basic argument of §3.1 can be extended well beyond the tilted ERM criterion to a wide variety
of other criteria including many OCE risks and their “inverted” variants; see Lee et al. (2020) or Holland & Tanabe (2023)
for some representative examples of such criteria.

References on surrogate design There is a very large literature on the topic of designing surrogate functions under the
E[·] criterion. For binary classification, see for example Bartlett et al. (2006) and Reid & Williamson (2010; 2011). For the
multi-class setting, see Williamson et al. (2016), and the references within.

Remark A.1 (Coherent risks). One of the most well-known and well-studied classes of risk functions is that of “coherent
risk” criteria.2 Coherent risks are characterized by several properties, including a very weak notion of monotonicity, which
simply requires that for any random losses L and L′, a criterion map C(·) satisfies the following:

L ≤ L′ (almost surely) =⇒ C(L) ≤ C(L′). (18)

While a very natural property in a general context, when we restrict ourselves to Bernoulli losses, with say L = L01(h1)
and L′ = L01(h2) based on candidates h1, h2 ∈ H, this monotonicity property becomes rather vacuous. Just consider when
the condition in (18) actually can hold. It can only be valid in two cases: either we have L = L′ (almost surely) or L < L′

(almost surely). Note that for L < L′ to hold almost surely, we must have L = 0 and L′ = 1 almost surely. In any case, we
are dealing with either constant random variables or identical distributions, so the notion of “monotonicity” only really
becomes interesting for more complicated distributions.

Gaps between theory and practice? As discussed in §3.2, our Proposition 3.1 could be interpreted as a “negative result”
showing that criteria like tilted ERM (with positive tilt) cannot avoid error probability minimization. On the other hand,
such criteria have been applied with effect to classification under class imbalance learning problems (e.g., Li et al. (2023,
§7.2.4)). We remark that there is no conflict between our results and such empirical results, since in practice, we only have
limited expressive power and more importantly limited capability to optimize a typically non-convex objective (viewed as a
function onH). When effective model capacity is constrained, it is easy to find settings in which the zero-one loss mean is
not controlled by relevant surrogate loss criterion (e.g., our example from §3.1).

Notes on experiment results Looking at Table 1, note that for CIFAR-100 and FahsionMNIST, in all five trials, the
hyperparameter setting for both DRO and Tilted ERM was zero, i.e., vanilla ERM was selected. In the case of FashionMNIST,
the trajectories in Figure 5 (right plot) align perfectly, but for CIFAR-100 (Figure 2, left plot), they do not; this is due to
randomness inherent in the PyTorch implementation of ResNet-34 (no pre-training) that we have left uncontrolled.

1https://openai.com/research/measuring-goodharts-law
2See Rockafellar & Uryasev (2013, §3) for background.
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B. Proofs
B.1. Proofs of results given in the main text

Proof of Proposition 2.3. Fixing h ∈ H and taking 0 < β ≤ 1 − E(h), we know that for any choice of x ≥ 0 we have
P{L01(h) ≤ x} ≥ β, but this fails for any x < 0. Thus we have Qβ(L01(h)) = 0 for any β in this range. For larger
probability levels, namely where 1− E(h) < β ≤ 1, we know that P{L01(h) ≤ x} ≥ β holds for any x ≥ 1, but fails for
any x < 1, giving us Qβ(L01(h)) = 1 for this range. Taking these facts together, we have

Qβ(L01(h)) =

{
1, if 1− E(h) < β ≤ 1

0, if 0 < β ≤ 1− E(h).

Now, consider the task of minimizing Qβ(L01(h)) as a function of h ∈ H given a fixed level 0 < β < 1. Note that in all
situations, we can always say that

H∗E ⊂ argmin
h∈H

Qβ(L01(h)). (19)

This should be intuitively clear since achieving a small quantile amounts to achieving a sufficiently small error probability,
though the probability need not be minimal. For completeness, let us deal with the corner cases. If minh∈H E(h) > 1− β,
then regardless of what h we choose, the value is Qβ(L01(h)) = 1, and so every h ∈ H is trivially “optimal.” The same
trivial optimality arises if maxh∈H E(h) ≤ 1− β, since all h result in Qβ(L01(h)) = 0. When neither of these conditions
hold, choosing h ∈ H such that the error probability is small enough gives us the desired minimum quantile value. In all
cases, the inclusion (19) holds.

Proof of Proposition 2.5. For convenience, let us write

Cρ(L; θ) ..= θ +E[ρ(L−θ)]

for any L ∈ L and θ ∈ R. Since our running assumption is that the minimum (in θ) is achieved on R, we have
that Cρ(L) = minθ∈R Cρ(L; θ). Let h1, h2 ∈ H be any candidates such that E(h1) ≤ E(h2). In addition, let θ1 and
θ2 respectively minimize Cρ(L01(h1); ·) and Cρ(L01(h2); ·). With these assumptions in place, the following chain of
inequalities holds:

Cρ(L01(h1)) = Cρ(L01(h1); θ1)

≤ Cρ(L01(h1); θ2)

= θ2 + ρ(−θ2) + E(h1) (ρ(1− θ2)− ρ(−θ2))
≤ θ2 + ρ(−θ2) + E(h2) (ρ(1− θ2)− ρ(−θ2))
= Cρ(L01(h2)).

Note that the second inequality uses the assumed monotonicity of ρ, which implies ρ(1− θ2) ≥ ρ(−θ2). Since the choice
of h1 and h2 was arbitrary, we can immediately conclude for any h1, h2 ∈ H that

E(h1) ≤ E(h2) =⇒ Cρ(L01(h1)) ≤ Cρ(L01(h2)).

Another immediate conclusion is that

H∗E ⊂ argmin
h∈H

Cρ(L01(h)). (20)

If ρ is monotonically increasing (rather than just non-decreasing), then it follows that

E(h1) < E(h2) =⇒ Cρ(L01(h1)) < Cρ(L01(h2)).

This means that one cannot be sub-optimal in E(·) while still being optimal in Cρ(L01(·)). As such, the two solution sets
must coincide:

H∗E = argmin
h∈H

Cρ(L01(h)). (21)

Taking the conditions for (20) and (21), we have the desired result.
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Proof of Proposition 3.1. To get started, we would like to express the OCE criterion in terms of a modified penalty applied
to binary classification margins. Let us denote the modified penalty based on φ by

φ̃(u; θ) ..= θ + ρ(φ(u)− θ) (22)

with the corresponding θ-dependent expectation denoted by

Cφ(s; θ) ..= E[φ̃(Ys(X); θ)]. (23)

By our running assumptions, there always exists a minimizer of θ 7→ Cφ(s; θ) on R, which for convenience we will denote
by

θ∗(s) ∈ argmin
θ∈R

Cφ(s; θ). (24)

With this notation in hand, it follows that for each s ∈ S we have

Cφ(s; θ
∗(s)) = OCE(φ(Ys(X))). (25)

Moving forward, we will want to study sequences (s1, s2, . . .) of functions in S that minimize the OCE criterion in terms of
the surrogate loss. More formally, let us assume (s1, s2, . . .) is any sequence satisfying

lim
n→∞

OCE(φ(Ysn(X))) = inf
s∈S

OCE(φ(Ys(X))) (26)

With such a sequence in hand, note that there exists a value θ > 0 such that for all integers n ≥ 1, we have

0 ≤ θ∗(sn) ≤ θ. (27)

The lower bound in (27) holds because φ(·) ≥ 0, and thus the support of the surrogate losses φ(Ys(X)) is bounded below
by zero.3 We cannot however guarantee that the support of φ(Ys(X)) is bounded above. That said, (s1, s2, . . .) is not a
completely arbitrary sequence; from (26) we are assuming this sequence minimizes the OCE criterion. If the sequence
θ∗(sn) were to grow without bound, it would contradict (26).4 As such, while the choice of θ < ∞ may depend on the
sequence, (26) always implies (27).

Next, we would like to link up surrogate losses (under the OCE criterion) to the error probability E(·). To do this, first note
that the excess value in the OCE criterion can be bounded below by

OCE(φ(Ys(X)))− inf
s∈S

OCE(φ(Ys(X))) = Cφ(s; θ
∗(s))− inf

s′∈S

[
inf
θ∈R

Cφ(s
′; θ)

]
≥ Cφ(s; θ

∗(s))− inf
s′∈S

Cφ(s
′; θ∗(s)). (28)

Next let us note that the normalization of ρ (slope 1, value 0 at the origin) combined with its convexity and monotonicity
immediately implies ρ(u) ≥ u for all u ∈ R, and thus for any choice of θ ∈ R, we have φ̃(u; θ) ≥ θ + (φ(u)− θ) = φ(u).
As such, it follows that

φ(·) ≥ 0 =⇒ φ̃(·; θ) ≥ 0. (29)

This fact is useful because it allows us to leverage structural results of Bartlett et al. (2006). To do so, let us denote the
so-called “conditional φ̃-risk” by

Cβ(u; θ) ..= βφ̃(u; θ) + (1− β)φ̃(−u; θ) (30)

for each u ∈ R, θ ∈ R, and 0 ≤ β ≤ 1. Note that we can connect this function to our modified penalty through the equality

Cφ(s; θ) = EX

[
Cβ(X)(s(X); θ)

]
(31)

3That this implies 0 ≤ θ∗(s) for any s ∈ S is a basic property of OCE criteria; see for example Ben-Tal & Teboulle (2007, Prop. 2.1).
4To see this, just note that the θ term in the OCE criterion increases (with θ) no slower than the ρ(· − θ) term decreases (again, as θ

grows), due to the slope, convexity, and monotonicity conditions on ρ.
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that holds for any choice of θ ∈ R and s ∈ S, where we have denoted β(x) ..= P{Y = 1 |X = x}. Optimal values of this
function (with and without constraints) are denoted by

H−(β; θ) ..= inf {Cβ(u; θ) : u(2β − 1) ≤ 0} , (32)
H(β; θ) ..= inf

u∈R
Cβ(u; θ). (33)

Here H(β; θ) corresponds to the optimal conditional risk computed in terms of φ̃, and H−(β; θ) is used to quantify the
best possible risk when a score (i.e., with u as s(x)) disagrees with the Bayes optimal score (i.e., (2β − 1) with β as
P{Y = 1 |X = x}). The so-called “ψ-transform” is based on the gap between these two optimal values. Denoting

ψ̃(u; θ) ..= H−
(
1 + u

2
; θ

)
−H

(
1 + u

2
; θ

)
(34)

for all −1 ≤ u ≤ 1, define ψ(·; θ) ..= ψ̃∗∗(·; θ), namely the Fenchel-Legendre biconjugate of ψ̃. The first key structural
results we wish to leverage are as follows:

ψ(·; θ) is continuous on [0, 1], ψ(·; θ) ≥ 0, ψ(0; θ) = 0. (35)

The properties in (35) hold for all θ ∈ R.5 Furthermore, using (29) and applying the proof of Bartlett et al. (2006, Thm. 1(1)),
for any choice of s ∈ S and θ ∈ R, we have

ψ (E(hs)− E∗; θ) ≤ EX

[
Cβ(X)(s(X); θ)−H (β(X); θ)

]
, (36)

where hs(·) ..= sign(s(·)), E∗ ..= minh∈H E(h) and β(x) ..= P{Y = 1 |X = x} as before. By assuming that S is the set of
all measurable functions on X , we have

H (β(X); θ) = inf
s′∈S

EX

[
Cβ(X)(s

′(X); θ)
]

(37)

for any choice of θ ∈ R.6 Combining (36), (37), and (31) with the inequality (28) established earlier, we may conclude that

OCE(φ(Ys(X)))− inf
s∈S

OCE(φ(Ys(X))) ≥ ψ (E(hs)− E∗; θ∗(s)) (38)

holds for any choice of s ∈ S. Applying this bound (38) to any sequence (s1, s2, . . .) satisfying (26), it follows from the
basic properties of (35) that

lim
n→∞

ψ (E(hn)− E∗; θ∗(sn)) = 0, (39)

where we have denoted hn(·) ..= sign(sn(·)) for readability. All that remains is to analyze how the sequence
(E(h1), E(h2), . . .) behaves.

In order to establish E(hn)→ E∗, we need to utilize some additional properties of ρ. We have assumed that ρ is differentiable,
and can easily confirm that the first two derivatives of φ̃(·; θ) are as follows:

φ̃′(u; θ) = ρ′(φ(u)− θ)φ′(u),

φ̃′′(u; θ) = ρ′′(φ(u)− θ)(φ′(u))2 + ρ′(φ(u)− θ)φ′′(u).

Since ρ and φ are both assumed to be convex, and strict monotonicity of ρ implies ρ′(·) > 0, we can immediately conclude
that φ̃′′(·; θ) ≥ 0, and thus φ̃(·; θ) is convex on R, for any choice of θ ∈ R. Furthermore, since we have assumed φ′(0) < 0,
it also follows that φ̃′(0; θ) < 0. This property along with convexity implies that we have

ψ(u; θ) > 0, 0 < u ≤ 1 (40)

ψ(u; θ) = φ̃(0; θ)−H
(
1 + u

2
; θ

)
(41)

5These properties follow from Lemma 2 (parts 6, 7, and 8) of Bartlett et al. (2006) after applying (29).
6This fact is also used in the proof of Bartlett et al. (2006, Thm. 1(1)).
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for any θ ∈ R.7 Using the definitions of φ̃ and H(·; θ) along with (41), we can write

ψ(u; θ) = ρ(φ(0)− θ)− inf
v∈R

[(
1 + u

2

)
ρ(φ(v)− θ) +

(
1− u
2

)
ρ(φ(−v)− θ)

]
.

Introducing the helper function

g(θ, u; v) ..=

(
1 + u

2

)
ρ(φ(v)− θ) +

(
1− u
2

)
ρ(φ(−v)− θ),

clearly we have ψ(u; θ) = ρ(φ(0)− θ)− infv∈R g(θ, u; v). Due to the monotonicity of ρ and the convexity of both φ and
ρ, it is easy to directly verify that (θ, v) 7→ g(θ, u; v) is convex on R2, for any choice of 0 ≤ u ≤ 1. In addition, partial
minimization preserves convexity, so θ 7→ infv∈R g(θ, u; v) is also convex and continuous.8 As such, for any convergent
sequence (θ1, θ2, . . .) and any choice of 0 ≤ u ≤ 1, we have

lim
n→∞

ψ(u; θn) = ψ
(
u; lim
n→∞

θn

)
. (42)

With this fact established, let us say that under (26), the sequence E(hn) does not converge to E∗. In such a case, there exists
some ε > 0 such that

lim sup
n→∞

[E(hn)− E∗] = ε.

From the definition of lim sup, we can always find a convergent subsequence, denoted (s′1, s
′
2, . . .) such that E(h′n)−E∗ → ε,

where h′n(·) ..= sign(s′n(·)). This implies that for all large enough n, we have E(h′n)− E∗ ≥ ε/2 > 0, and further that we
have

ψ(E(h′n)− E∗; θ∗(s′n)) ≥ ψ(ε/2; θ∗(s′n)) > 0 (43)

for all such n.9 Noting that from (27), all elements of sequence θ∗(s′n) must be included in a bounded interval (i.e., a
compact set), there exists a sub-sequence of (s′n) that we denote as (s′′1 , s

′′
2 , . . .), such that θ∗(s′′n) converges.10 Utilizing the

continuity property (42) and positivity (40), it follows that

lim
n→∞

ψ(ε/2; θ∗(s′′n)) = ψ
(
ε/2; lim

n→∞
θ∗(s′′n)

)
> 0. (44)

This however would contradict (39), which we have already shown to be implied by any sequence satisfying (26). As such,
we can conclude that under (26), we have E(hn)→ E∗.

Finally, for our statement regarding the inclusion of solution sets, for the trivial case that no minimizer of h 7→ OCE(Lφ(h))
exists, we have ∅ ⊂ H∗E ; let us consider the non-trivial case where a minimizer exists. Write such a minimizer by

s∗ ∈ argmin
s∈S

OCE(φ(Ys(X))). (45)

Writing h∗(·) ..= sign(s∗(·)), if E(h∗) > E∗ were to hold, then via positivity (40), we would have a contradiction to the
inequality (38). As such, h∗ ∈ argminh∈H E(h) must hold, concluding the proof.

Proof of Proposition 3.4. To start, fix a threshold θ = θε ..= φ(0) + ε using some ε > 0 to be determined later. Next, note
that for any h ∈ H, the expected surrogate loss can be written as

E[Lφ(h)] = E[I{h(X) 6= Y} Lφ(h)] +E[I{h(X) = Y} Lφ(h)]. (46)

7The properties (40) and (41) follow by applying Theorem 2 and Lemma 2(9) of Bartlett et al. (2006).
8See for example Bertsekas (2015, B.3.3 and B.1.3).
9The first inequality holds using the fact that monotonicity of u 7→ ψ(u; θ) is implied by the properties of being minimized at zero

(see (35)) and convexity on [0, 1] for all θ ∈ R; see Lemma 2(2) of Bartlett et al. (2006). The second inequality follows from (41).
10See for example Rudin (1976, Thm. 2.37).
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Now, taking an arbitrary h∗ ∈ H∗E and the assumption that E(h∗) = 0, it follows that

E[I{h∗(X) 6= Y} Lφ(h∗)] = 0. (47)

Combining (46) and (47) with the monotonicity of φ, we have that the expected surrogate loss of h∗ ∈ H∗E can be bounded
above by

E[Lφ(h
∗)] = E[I{h∗(X) = Y} Lφ(h∗)] ≤ φ(0). (48)

With this in place, consider any h /∈ H∗E , namely any h ∈ H such that E(h) > 0. Recall that by definition of H, there is
some s ∈ S such that h(x) = sign(s(x)) for all x ∈ X . Again by assumption, this s(·) is measurable.11 Consider a simple
re-scaling of s, namely for some constant b > 0, let us define

s̃(x) ..=

{
b, s(x) ≥ 0

−b, s(x) < 0.

Using the measurability of s(·) and the fact that s̃(·) is a simple function (in the usual measure theoretical sense), we have
that s̃ ∈ S and thus defining h̃(x) ..= sign(s̃(x)), we have h̃ ∈ H as well. In fact, since signs are not changed, we have
h(x) = h̃(x) for all x ∈ X , and thus E(h̃) = E(h) > 0. On the other hand, re-scaling impacts the margin penalties incurred
via the surrogate loss, and the resulting expected value is

E[Lφ(h̃)] = E[I{h̃(X) 6= Y} Lφ(h̃)] +E[I{h̃(X) = Y} Lφ(h̃)]
= E(h)φ(−b) + (1− E(h))φ(b). (49)

Using the running assumption that φ(·) is both unbounded and non-negative, from (49) it is clear that we can take b > 0

large enough that E[Lφ(h̃)] > φ(0). Returning to the threshold θε, if we set ε = E[Lφ(h̃)]− φ(0), we have found a value of
θε such that

E[Lφ(h
∗)] ≤ φ(0) < E[Lφ(h̃)] = θε,

noting that the first inequality comes from (48). Note that this implies

E[Lφ(h̃)]− θε = 0 > E[Lφ(h
∗)]− θε

and using the local strict convexity of ρ̃ near the origin, we have

ρ̃(E[Lφ(h̃)]− θε) = 0 < ρ̃(E[Lφ(h
∗)]− θε).

In other words, we have that h∗ ∈ H∗E is sub-optimal in terms of Cinn(Lφ(·); θε). Note that the preceding argument (in
particular the choice of b) does not depend on the particular choice of h∗ ∈ H∗E , and thus we can conclude that all elements
ofH∗E share this sub-optimality, which is the desired result for C = Cinn.

As for the remaining case of C = Cout, the preceding argument can fail because a large b used in defining s̃ means
that the distribution of Lφ(h̃) becomes arbitrarily widely spread out, and thus can be strongly penalized by Cout. As a
simple alternative, we consider re-scaling and flipping the sign of any E(·)-optimal classifier. Take any h∗ ∈ H∗E , with
h∗(x) = sign(s∗(x)) for some s∗ ∈ S. Define a modified version of the scoring function as follows:

s̃∗(x) ..=

{
−s∗(x)
|s∗(x)| , s∗(x) 6= 0

0, s∗(x) = 0.

As mentioned earlier, measurability is preserved, and so s̃∗ ∈ S and thus setting h̃∗(x) ..= sign(s̃∗(x)), we also have
h̃∗ ∈ H. Since this classifier always disagrees with h∗, we have 1 = E(h̃∗) > E(h∗) = 0. With probability 1, we have

0 ≤ Lφ(h
∗) ≤ φ(0) < Lφ(h̃

∗) = φ(−1).
11We have a typical notion of Borel measurability in mind. It is sufficient, for example, if for any a ∈ R, we have that the event

{s(X) ≤ a} is measurable, i.e., an element of the sigma-field composing the underlying measure space. See for example Ash &
Doléans-Dade (2000, Ch. 1) for more background.
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As such, by taking θ = φ(−1), clearly we have that

E[ρ̃(Lφ(h̃
∗)− θ)] = 0 < E[ρ̃(Lφ(h

∗)− θ)],

where the inequality holds because Lφ(h
∗)− φ(−1) < 0 holds with probability 1, plus the strict convexity of ρ̃ around the

origin. This shows how while h∗ is optimal in E(·), it is sub-optimal in terms of Cout(Lφ(·); θ). Again, this approach holds
for any choice of h∗ ∈ H∗E , and thus the desired result holds for C = Cinn as well.

B.2. Divergence of CVaR from error probability

As mentioned in Remark 2.6, CVaR satisfies the non-decreasing condition of Proposition 2.5, but ρ(u) = (u)+/(1− β) is
not strictly monotonic on R (i.e., not increasing). With ρ that is non-decreasing, we know the inclusion (20) holds, telling us
that all error probability minimizers are also optimal in terms of CVaR. Are there any CVaR-optimal solutions that are not
optimal in terms of error probability? The answer is that it depends on bothH and β. To consider this a bit more precisely,
first note that quantiles (recall §2.3.2) of the zero-one loss are also binary valued, namely that we have

Qβ(L01(h)) =

{
1, if 1 > β > P{L01(h) = 0}
0, if 0 < β ≤ P{L01(h) = 0}.

It is straightforward to check that the following implications hold:

min
h∈H
E(h) > 1− β =⇒ Qβ(L01(h)) = 1, for all h ∈ H (50)

max
h∈H
E(h) ≤ 1− β =⇒ Qβ(L01(h)) = 0, for all h ∈ H (51)

When the modelH is poor enough (or β is large/strict enough) that the condition in (50) holds, the CVaR risk is constant,
i.e., Cρ(L01(h)) = 1 for all h ∈ H, and thus trivially all h ∈ H are optimal in CVaR, but certainly need not be in E(·).
When the model is good enough (or β is small/loose enough) that the condition in (51) holds, we have for all h ∈ H that

ρ(1−Qβ(L01(h)))− ρ(−Qβ(L01(h))) = ρ(1) > 0,

and thus the strong monotonicity argument used earlier applies, telling us that CVaR-optimal solutions and error probability
minimizers are identical (i.e., (21) holds).

B.3. Collapse under variantile

With Remark 2.9 as context, note that for 0 ≤ θ ≤ 1, it is straightforward to confirm that under the zero-one loss L = L01,
for any h ∈ H we have

2E
[
|1θ(L01(h))− τ |(L01(h)− θ)2

]
= 2

[
(1− τ)(1− E(h))θ2 + τE(h)(1− θ)2

]
.

Checking first-order conditions, this function can be minimized (in θ) by setting

θ =
τE(h)

(1− τ)(1− E(h)) + τE(h)
.

Plugging this solution in to obtain an explicit form of Cτ (L01(h)), we have

Cτ (L01(h)) =

2

[
(1− τ)(1− E(h))

(
τE(h)

(1− τ)(1− E(h)) + τE(h)

)2

+ τE(h)
(

(1− τ)(1− E(h))
(1− τ)(1− E(h)) + τE(h)

)2
]
.

With this form in mind, simply replace E(h) with a variable p that can be taken over [0, 1], and introduce a helper function

gτ (p) ..= 2

[
(1− τ)(1− p)

(
τp

(1− τ)(1− p) + τp

)2

+ τp

(
(1− τ)(1− p)

(1− τ)(1− p) + τp

)2
]
. (52)

One can readily check that this function gτ (·) is strictly concave on the unit interval for any choice of 0 < τ < 1; see Figure
3 for a numerical example. As a result, we may conclude that depending on the nature ofH, the minimizer set of Cτ (L01(·))
is either the set of minimizers or maximizers of E(·), a result analogous to the point raised in §2.3.1.
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Figure 3. Graphs of gτ (·) in (52) over the unit interval for varying choices of τ .
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C. Additional Figures
As supplementary material for the main text, here we include two additional figures.

• Examples of valid ρ for OCE criteria and ρ̃ for loss-restraining criteria are shown in Figure 4.

• In §4 we only gave metric trajectories for CIFAR-100 and SVHN; analogous results for CIFAR-10 and FashionMNIST
are given in Figure 5.
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Figure 4. Examples of valid choices of ρ (left) and ρ̃ (right) for use in defining OCE criteria (13) and loss-restraining criteria (14)–(15)
respectively.
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Figure 5. Results for CIFAR-10 and FashionMNIST; see the caption of Figure 2 for details.
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