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Abstract

This paper introduces MedTrinity-25M, a comprehensive, large-scale multimodal1

dataset for medicine, covering over 25 million images across 10 modalities, with2

multigranular annotations for more than 65 diseases. These enriched annotations3

encompass both global textual information, such as disease/lesion type, modality,4

region-specific descriptions, and inter-regional relationships, as well as detailed5

local annotations for regions of interest (ROIs), including bounding boxes, seg-6

mentation masks. Unlike existing approach which is limited by the availability7

of image-text pairs, we have developed the first automated pipeline that scales8

up multimodal data by generating multigranular visual and texual annotations (in9

the form of image-ROI-description triplets) without the need for any paired text10

descriptions. Specifically, data from over 90 different sources have been collected,11

preprocessed, and grounded using domain-specific expert models to identify ROIs12

related to abnormal regions. We then build a comprehensive knowledge base13

and prompt multimodal large language models to perform retrieval-augmented14

generation with the identified ROIs as guidance, resulting in multigranular tex-15

ual descriptions. Compared to existing datasets, MedTrinity-25M provides the16

most enriched annotations, supporting a comprehensive range of multimodal tasks17

such as captioning and report generation, as well as vision-centric tasks like clas-18

sification and segmentation. This dataset can be utilized to support large-scale19

pre-training of multimodal medical AI models, contributing to the development of20

future foundation models in the medical domain. The dataset is publicly available21

at https://yunfeixie233.github.io/MedTrinity-25M/.22

1 Introduction23

Large-scale multimodal foundation models [1, 2, 3, 4, 5] have demonstrated remarkable success24

across various domains due to their ability to understand complex visual patterns in conjunction with25

natural language. This success has sparked significant interest in applying such models to medical26

vision-language tasks. Much progress has been made to improve the medical capacity of general27

domain multimodal foundation models by constructing medical datasets with image-text pairs and28

fine-tuning general domain models on these datasets [6, 7, 8, 9, 10].29

However, current medical datasets have several limitations. Firstly, these datasets lack multigranular30

annotations that reveal the correlation between local and global information within medical images.31
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Medical images often contain detailed cues, such as regional abnormal textures or structures, which32

may indicate specific types of lesions. Therefore, multimodal models need the ability to infer global33

information, such as disease or lesion type, from local details. The absence of such data limits34

the models’ capacity to comprehensively understand medical images. Moreover, current dataset35

construction methods heavily rely on medical images paired with reports or captions, which restricts36

their scalability.37

In this paper, we address the above challenges by proposing an automated data construction pipeline38

using multimodal large language models (MLLMss) without relying on paired text descriptions. To39

address the lack of comprehensive medical knowledge in general-purpose MLLMs, we leverage40

domain-specific expert grounding models and retrieval-augmented generation (RAG) to extract41

relevant medical knowledge. We then prompt MLLMs to generate multigranular visual and textual42

annotations enriched with this knowledge based on identified regions of interest (ROIs). We utilize43

this pipeline to transform the collected data, including large-scale unpaired images, into image-44

ROI-description triplets. These triplets provide multigranular annotations that encompass both45

global textual information, such as disease/lesion type, modality, and inter-regional relationships,46

as well as detailed local annotations for ROIs, including bounding boxes, segmentation masks, and47

region-specific textual descriptions. Using the proposed pipeline, we create a large-scale multimodal48

multigranular medical dataset containing over 25 million triplets, named MedTrinity-25M. To our49

best knowledge, this is the largest multimodal dataset in medicine to date.50

Initially, we assemble a large amount of medical data from over 90 online resources such as TCIA,51

Kaggle, Zenodo, Synapse, etc. In addition to images with a small amount of high-quality paired52

manual reports, this assembled data also includes two types of coarse medical data: 1) Image53

data with segmentation masks, lesion bounding boxes, or only disease types but lacking detailed54

textual descriptions, and 2) Images paired with coarse captions that describe only global modality55

or disease information, but lack detailed descriptions of local regions. To generate multigranular56

annotations from the massive coarse medical data, we first identify ROIs that contain disease or lesion57

patterns by applying expert grounding models. We then build a comprehensive knowledge base from58

online corpora (e.g., PubMed) and retrieve image-related medical knowledge. Finally, we prompt59

MLLMs to integrate medical knowledge with guidance of identified ROIs to generate multigranular60

textual descriptions.61

2 Related Work62

Medical Multimodal Foundation Models. Due to the effectiveness of multimodal foundation63

models in understanding visual features, adapting these models to perform medical vision-language64

tasks has garnered increasing attention in recent years [11, 12, 9, 5]. Several papers attempt to65

adapt general domain multimodal foundation models with varying architecture to medical domain66

through end-to-end training on medical datasets. For example, Med-Flamingo [11] enhances the67

medical capacity of OpenFlamingo-9B [13] by fine-tuning it with 0.8M interleaved and 1.6M68

paired medical image-text data. While Med-PalM [12] adapts PaLM-E [14] to medical domain69

using approximately 1M medical data points, demonstrating competitive or surpassing performance70

compared to state-of-the-art models. Additionally, LLaVA-Med [9] employs end-to-end visual71

instruction tuning [1] with two stages, achieving remarkable results in medical Visual Question72

Answering (VQA) tasks. Similarly, Med-Gemini [15] employs a long-form question answering73

dataset to enhance the multimodal and long-context capabilities of baseline Gemini [16]. Although74

these models have achieved remarkable performance, they are still limited by the scale of training75

data. Prior research [17] has shown that scaling up the training data improves the performance of76

large multimodal foundation models. In this paper, we aim to build a large-scale medical dataset to77

facilitate the development of more powerful medical multimodal foundation models.78

Multimodal Datasets for medicine. The significance of construting comprehensive medical79

multimodal datasets has garnered considerable attention [9, 18, 19, 7]. Several works attempt to80

collect images and paired clinical reports prepared by pathology specialist [19, 7, 8], which provide81
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MIMIC-CXR

EXAMINATION:  CHEST (PA AND LAT)
INDICATION:  ... year old man with pleural effusion  // eval
TECHNIQUE:  Chest PA and lateral...
COMPARISON:  Chest radiograph from ...
FINDINGS: There is been reaccumulation of a moderate left pleural 
effusion common new since the most recent previous study. There is 
likely also concomitant left  basilar atelectasis. The right lung is clear. 
There is no pneumothorax. Calcified granuloma is are noted in the right 
lower lobe. The aorta is tortuous but unchanged in configuration.
IMPRESSION: 
Reaccumulation of moderate left pleural effusion.

Med-Trinity-25M
(Ours)

This chest X-Ray image, taken from the PA position,shows the 
thoracic cavity, including the lungs, heart, and surrounding 
structures. The lungs occupy the majority of the image, with the 
heart situated centrally. The region of interest is located horizontally 
to the right and vertically in the lower center, covering approximately 
15% of the image. Within this region, there is an unusual opacity, 
suggesting a pleural effusion. The content in this area indicates fluid 
accumulation that is likely affecting the adjacent lung and potentially 
influencing the position and function of surrounding structures.

ROI 
Analysis

Lesion
Texture

Modality Local-global
Relation

Structure
Detection

ROI 
AnalysisModality

(a) Qualitative Comparison with sample in radiology report of chest x-rays dataset MIMIC-CXR [21].

Med-Trinity-25M
(Ours)

The image is a chest CT scan prominently displaying the lungs with 
the heart not visible. The left-center horizontally and middle 
vertically situated region of interest, covering 1.0% of the area, 
shows a potential abnormality in lung tissue. This area contains a 
texture or density that differs from the surrounding lung tissue, 
possibly indicating lung cancer. The affected area might be 
influencing adjacent tissues, suggesting a local progression of the 
disease without direct implication on distant parts of the lung.
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Lesion
TextureModality Local-global
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Structure
Detection

SLAKE

Q: "What modality is used to take this image?", A: "CT" 
Q: "Which part of the body does this image belong to?", A: "Chest"
Q: "What is the main organ in the image?", A: "Lung"
Q: "Does the picture contain lung?", A: "Yes"
Q: "Does the picture contain heart?", A: "No"
Q: "What diseases are included in the picture?", A: "Lung Cancer"
Q: "Where is/are the abnormality located?", A: "Right Lung, Left"

ROI 
AnalysisModality Structure

Detection

(b) Qualitative Comparison with sample in visual QA dataset SLAKE [22].

ROCO

A 49-year-old man presenting 
a pancreatic neoplasia with 
peritoneal carcinomatosis. 
Axial T2W TSE fat-suppressed 
M R I  s h o w s  t w o  h e p a t i c 
p e r i c a p s u l a r  i m p l a n t s  o f 
per i toneal  carc inomatosis 
(arrowheads), biconvex, in 
high signal iontensity.

Med-Trinity-25M
(Ours)

The image is an axial T2W TSE fat-suppressed MRI focusing on the liver and surrounding areas, 
highlighting two hepatic pericapsular implants indicative of peritoneal carcinomatosis, marked by 
their high signal intensity and biconvex shape. These abnormalities, located on the right side of the 
liver, are positioned horizontally to the left and vertically at the bottom of the image, occupying 
about 1.5% of the area. The region of interest reveals these unusual features, contrasting with the 
normal liver texture and appearance. These hepatic implants are significant as they suggest a 
spread from the primary pancreatic neoplasia, indicating a direct relationship where the primary 
disease has metastasized to adjacent organs, further complicating the patient's condition.

ROI 
Analysis

Lesion
Texture

Modality Local-global
Relation

Structure
DetectionModality Structure

Detection
Lesion
Texture

(c) Qualitative Comparison with sample in radiology objects caption dataset ROCO [18].

Figure 1: Qualitative comparison with different types of dataset.

comprehensive descriptions of images, including disease types and corresponding reasoning. For82

example, MIMIC-CXR[8] comprises 227,835 images for 65,379 patients, containing pathological83

findings and impressions in reports paired with each images. However, manually constructing such84

reports is both time-consuming and expensive, thereby limiting the scale of these datasets. PMC-85

OA [20] aims to expand the dataset scale by extracting a large number of image-caption pairs from86

medical papers, increasing the number of data samples to 1.65 million. However, the extracted87

captions are less detailed compared to manual clinical reports, resulting in a lack of multigranular88

annotations. RadGenome-Chest CT [19] includes more detailed annotations, such as segmentation89

masks and medical reports generated by MLLMs. Nonetheless, its construction method still relies90

on paired image-text data, which limits its scalability. Unlike these existing methods, we devise the91

first automated data construction pipeline to generate multigranular annotations for unpaired images,92

achieving a comprehensive multigranular dataset with 25 million data samples.93

3 MedTrinity-25M Dataset94

3.1 Data Triplet95

Our dataset comprises triplets of {image, ROI, description}. Each ROI is associated with an96

abnormality and is represented by a bounding box or a segmentation mask, specifying the relevant97

region within the image. For each image, we provide a multigranular textual description, which98

includes the disease/lesion type, modality, region-specific description, and inter-regional relationships99

as illustrated in Figure 2.100
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Images. We use the original medical image in the source dataset, we extensively collected medical101

datasets from the following sources: (1) online resources such as TCIA, Kaggle, Zenodo, Synapse,102

Hugging Face,Grand Challenge , GitHub, etc. (2) relevant medical dataset research, such as CheX-103

pert [7] and DeepLesion [23]. These datasets were first categorized into two types: (1) datasets104

containing local annotations, such as MIMIC-CXR [8] with corresponding radiology reports, and105

PMC-OA [24] with corresponding captions, where the reports or captions provide analysis of specific106

local conditions in the images; another example is the 3D image segmentation dataset BraTS2024 [25],107

which marks the tumor regions in CT scans with masks. (2) datasets containing global annotations:108

such as image classification datasets ISIC2019 [26] and ISIC2020 [27], whose classification labels109

reflect the overall pathological condition of tissue sections; another example is the CheXpert [7]110

dataset, which provides detailed classification of disease types for each chest X-ray. We collect111

25,001,668 samples spanning 10 modalities and over 65 diseases. For 3D volumetric images stored112

in DICOM or NIfTI formats, we converted each 2D slice to PNG format. Additional caption and113

annotations like masks and bounding boxes from these datasets were utilized to construct ROIs and114

corresponding textual descriptions as below.115

ROIs. For each image, ROIs are highlighted using segmentation masks or bounding boxes. These116

ROIs mostly contain pathological findings such as lesions, inflammation, neoplasms, infections, or117

other potential abnormalities. In the few cases without abnormalities, the ROIs generally indicate the118

primary object or organ in the image, as shown in examples in the supplementary material.119

Textual Descriptions. The textual descriptions for each image are provided with detailed infor-120

mation across various aspects. Unlike the unstructured free-text descriptions found in previous121

medical report datasets[7, 8, 6] or simple short sentences in visual QA dataset[28, 22] and caption122

dataset[18, 24], our textual descriptions are multigranular and structured. General attributes related to123

the image are described first, including the image modality, the specific organ depicted, and the type124

of disease presented. Subsequently, ROI-related information is provided, including their locations125

and the abnormal characteristics within them that indicate underlying pathology, such as distinctive126

color and texture. Additionally, comparisons between the ROIs and surrounding regions are presented127

to highlight differences in features and the extent of disease progression.128

We also demonstrate the multigranular textual descriptions in our dataset with those in other common129

forms. As illustrated in Figure 1, our textual description is multigranular with more attributes130

than radiology report of chest x-rays dataset MIMIC-CXR [21], visual QA dataset SLAKE[22] and131

radiology objects caption dataset ROCO[18].132

3.2 Data Construction Pipeline133

Given a medical image, we aim to generate corresponding multigranular visual and texual annotations134

by leveraging MLLMs. Specifically, as shown in Figure 2, our pipeline can be decomposed into two135

stages - Data Processing and Generation of Multigranular Text Description. In the Data Pro-136

cessing stage (Section 3.2.1), we address the lack of domain-specific knowledge in general-purpose137

MLLMs by leveraging expert grounding models and retrieval-augmented generation (RAG). This138

stage includes three key steps: 1) Metadata Integration to produce coarse captions encapsulating139

fundamental image information such as modality and disease types; 2) ROI Locating to identify140

regions of abnormalities; and 3) Medical Knowledge Retrieval to extract relevant fine-grained141

medical details. Based on the processed data, we then prompt MLLMs to generate multigranular text142

descriptions, resulting in the creation of fine-grained captions, as detailed in Section 3.2.2.143

3.2.1 Data Processing144

Coarse Caption Generation via Metadata Integration. We aim to generate coarse captions that145

provide fundamental information for a given image, including modality, organ labels, disease types,146

and optionally, camera views and equipment information. Instead of extracting features directly from147

the images, we generate these captions by integrating dataset metadata. We first extract metadata from148
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Coarse
Caption

ROI

…
Knowledge

Base

Medical
Knowledge

(1) Data Processing

Report or QA

Classification

Mask or B-box

 
Knowledge
Retrieval

 
ROI

Locating

 
Metadata

Integration

Give me detailed description 
of the image, based on
coarse caption, lesion 
region, medical knowledge... 

Prompt

MLLM

(2) Multigranular Textual
Description Generation

Modality
Organ & tissue 

Detection
ROI Analysis 

Lesion Texture
Local-global 
relationship

Multigranular 
Textual Description

Data Triplet

A chest X-ray.
Showing lungs centrally 
located within the 
thoracic cavity.
ROI is positioned 
horizontally at the left-
center and vertically at …,
Region exhibits increased 
opacity and irregular 
texture, indicating …
Showing a pattern of 
bilateral lung involvement 
typically seen in COVID-
19 cases.

ROI

Image

Multigranular Description

Figure 2: Data construction pipeline. 1) Data processing: extracting essential information from
collected data, including metadata integration to generate coarse caption, ROI locating, and medi-
cal knowledge collection. 2) Multigranular textual description generation: using this information to
prompt MLLMs to generate fine-grained captions.

Coarse
Caption

Without coarse caption:
The image is a chest X-ray showing detailed 
views of the lungs and heart. The lungs occupy 
the majority of the thoracic cavity, which is the 
region encased by the rib cage, extending from 
the collarbone to the diaphragm. The heart is 
located centrally just beneath the ribs, slightly 
tilted to the left. No medical devices are visible in 
the image.

With coarse caption:
The image is a chest X-ray showing both lungs, 
centrally positioned in the thoracic cavity, flanked 
by the ribs and the diaphragm visible at the bottom. 
The heart is visible in the center between the 
lungs. There are no......The lungs show patchy 
opacit ies suggesting an infectious process, 
consistent with pulmonary involvement in 
COVID-19.

“A chest X-Ray 
image with COVID-

19 in the lungs”

Specify
Disease

Figure 3: A qualitative comparison example of generated textual description with and without
coarse caption. Without a coarse caption, MLLMs fails to detect diseases. On the contrary, providing
a caption mentioning “COVID-19” allows MLLMs to identify and categorize the disease, facilitating
further analysis.

the datasets and then apply a fixed rule to integrate this information into coarse captions. For example,149

for an image from the QaTa-COV19 dataset1, we derive metadata from the dataset’s accompanying150

paper or documentation, indicating that it consists of COVID-19 chest X-ray images. Next, we151

construct coarse captions like “A chest X-ray image with COVID-19 in the lungs” highlighting the152

modality, organ types, and disease labels. If the image contains additional textual information like153

radiological findings, this is also integrated to enhance the richness of the caption. The effectiveness154

of adding coarse captions when generating fine-grained captions is illustrated in Figure 3. In contrast155

to the scenario without a coarse caption where MLLMs fails to recognize the disease, providing156

MLLMs with a coarse caption that includes the disease type “COVID-19” enables it to identify and157

categorize the disease, thereby laying the foundation for further analysis.158

ROI Locating. We employ various strategies to locate Regions of Interest (ROIs) in images. For159

datasets that already include localization annotations, such as segmentation masks or bounding boxes,160

we derive the ROIs from these existing annotations. Specifically, bounding boxes are directly used161

1https://www.kaggle.com/aysendegerli/qatacov19-dataset.
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Without ROIs:
The image is a chest X-ray showing 
both lungs, centrally positioned in 
the thoracic cavity, flanked by the 
ribs and the diaphragm visible at the 
bottom. The heart is visible in the 
center between the lungs. There are 
no. . . . . .  The lungs show patchy 
opacities suggesting an infectious 
process, consistent with pulmonary 
involvement in COVID-19.

With ROIs:
The image is a chest X-ray showing both lungs and the heart 
centrally positioned between them. In two specific regions of 
interest located at the left-center and right-center of the middle 
of the lungs, there are unusual findings suggestive of COVID-19. 
These areas, occupying 8.3% and 5.0% of the image respectively, 
display changes in lung texture that may indicate infection, such 
as increased opacity. The left-center region is slightly larger and 
potentially indicates a more extensive involvement of the lung tissue 
compared to the right-center region. These areas of alteration in the 
lung tissue are critical in understanding the spread and impact of 
COVID-19, affecting surrounding lung areas.

ROIs

ROI 
analysis

Region
Relationship

Figure 4: A qualitative comparison example of generated textual description with and without
locating ROIs. Without ROIs, the caption offers only a brief global analysis; with ROIs, MLLMs con-
ducts detailed local analysis and assesses the impact of lesion ROIs on adjacent normal regions.

Without medical knowledge：
The image is a chest X-ray showing both lungs and 
the heart centrally positioned between them. In two 
specific regions of interest located at ...... of the 
image respectively, display changes in lung texture 
that may indicate infection, such as increased 
opacity. The left-center region is slightly larger and 
potentially indicates a more extensive involvement of 
the lung tissue compared to the right-center region. 
These areas of alteration in the lung tissue are critical 
in understanding the spread and impact of COVID-19, 
affecting surrounding lung areas.

external medical 
knowledge

“glass opacities”, 
“consolidation” With medical knowledge：

The image is a chest X-ray showing the thoracic 
cavity, primarily focusing on the lungs. Visible organs 
include the lungs and the heart, centrally positioned 
beneath the sternum and between the lungs. The 
regions of interest, located...... These regions 
exhibit ground-glass opacities and consolidation, 
typical indicators of COVID-19 pneumonia, which 
suggest the presence of inflammatory processes. 
These affected areas are significant as they indicate 
the primary sites of infection and inflammation in 
COVID-19, often leading to bilateral and multifocal 
lung involvement as the disease progresses.

Standardize  
Terminology

Revise 
Diagnosis

Figure 5: A qualitative comparison example of generated textual description with and without
external medical knowledge. MLLMs can standardize medical terminology in its expressions and
refine its diagnosis based on disease progressions detailed in medical literature.

as the ROIs, while segmentation masks are converted to ROIs by creating the smallest bounding162

box that covers the mask. When such localization annotations are not available, we apply different163

pretrained expert models listed in the Appendix to generate ROIs. For text-prompt driven grounding164

model[29], we use disease and organ information in coarse captions as text prompts to guide the165

model in segmenting specific parts. Examples of generated ROIs from various modalities with166

different models are demonstrated in Figure 6.167

Without ROIs, the original description is limited to a brief global analysis of the image. However,168

with ROIs, MLLMs can perform a more detailed local analysis of the ROIs and assess the impact of169

lesion ROIs on the surrounding normal regions, as demonstrated in Figure 4.170

Medical Knowledge Retrieval. General-purpose MLLMs often produce content that lacks spe-171

cialized medical terminology and professional expression. To address this issue, we build a medical172

knowledge database following the approach in MedRAG [32]. We collect three main corpora:173

PubMed2 for biomedical knowledge, StatPearls3 for clinical decision support, and medical text-174

books [33] for domain-specific knowledge. We segment these corpora into short snippets and encode175

2https://pubmed.ncbi.nlm.nih.gov/
3https://www.statpearls.com/

6

https://pubmed.ncbi.nlm.nih.gov/
https://www.statpearls.com/


Textual description of ROI
horizontally: right-center 
vertically: lower-middle 
area ratio:1.2%

ROI

(a) Example of locating ROI via
SAT[29].

Textual description of ROI
horizontally: center 
vertically: middle
area ratio:21.2%

ROI

(b) Example of locating ROI via
BA-Transformerr [30].

Textual description of ROI
horizontally: right
vertically: lower-middle
area ratio:8.5%

ROI

(c) Example of locating ROI via
MedRPG [31].

Figure 6: Example of ROIs and their corresponding textual descriptions.
Knowledge 1: 
Title: Mobile chest X-ray manifestations of 54 deceased patients with coronavirus disease 2019: Retrospective study.
Content: ...... We found that 50 (93%) patients with lesions occurred in the bilateral lung, 4 (7%) patients occurred in the right lung, 54 (100%) 
patients were multifocal involvement. The number of lung fields involved was 42 (78%) patients in 6 fields, 3 (6%) patients in 5 lung fields, 4 
(7%) patients in 4 lung fields, and 5 (9%) patients in 3 lung fields. Fifty-three (98%) patients had patchy opacities, 3 (6%) patients had round or 
oval solid nodules, 9 (17%) patients had fibrous stripes, 13 (24%) patients had pleural effusion, 8 (15%) patients had pleural thickening, 6 
(11%) patients had pneumothorax, 3 (6%) patients had subcutaneous emphysema. Among the 24 patients who had serial mobile chest X-rays, 
16 (67%) patients had the progression of the lesions, 8 (33%) patients had no significant change of the lesions, and there was no case of 
reduction of the lesions.The mobile chest X-ray manifestations of deceased patients with COVID-19 were mostly bilateral lung, multifocal 
involvement, and extensive lung field, and pleural effusion, pleural thickening, and pneumothorax probably could be observed. The 
serial mobile chest X-ray showed that the chest lesions were progressive with a high probability.
.......

Figure 7: An example of the Top-8 retrieval results. By leveraging COVID-19-related medical
knowledge, MLLMs can standardize medical terminology and enhance diagnoses according to the
disease progressions described in medical literature.

them into high-dimensional vectors using the text encoder from Med-CPT [34]. These vectors176

are then indexed into a specialized vector knowledge base using Faiss[35], optimized for efficient177

retrieval.178

For a given image, we retrieve relevant medical knowledge by using its coarse caption, which is179

generated through metadata integration. Specifically, we encode the coarse captions, including disease180

and organ classifications, into vectors using the Med-CPT text encoder. We then perform a vector181

similarity search in the medical vector database, retrieving the top eight medical knowledge snippets182

that semantically match the query. These snippets provide the external medical knowledge paired183

with the image. A qualitative example demonstrating the effectiveness of incorporating external184

medical knowledge is shown in Figure 7. With access to COVID-19-related medical knowledge,185

MLLMs can standardize medical terminology and refine diagnoses based on the disease progressions186

outlined in medical literature.187

3.2.2 Generation of Multigranular Text Description188

After data processing, a comprehensive prompt is utilized to guide the MLLMs in generating multi-189

granular descriptions. The prompt template consists of a three-level hierarchical framework with190

questions to instruct MLLMs: (1) a global description that captures all details of the image; (2) a191

local-focused analysis of specific ROIs that potentially are unusual; and (3) a local-global examination192

of the interaction between local and global attributes to understand the impact of local abnormalities193

on the entire organ. Detailed prompt template is presented in supplementary materials.194

To ensure that the MLLMs are guided by relevant medical information not inherently present195

in their training data, we incorporate the processed data (coarse captions, ROIs, and retrieved196

medical knowledge) into the prompts. Specifically, for global information, coarse captions are197

directly integrated into the prompt. For local information, ROIs on images are converted into textual198

descriptions based on their coordinates and area ratio within the images. Examples of these textual199

descriptions are shown in Figure 6, using terms such as “left-center" and “area ratio: 1.2%."200

To refine terminology and diagnosis within ROIs, relevant medical knowledge about specific diseases201

is incorporated into the prompt. Instead of merely inserting this knowledge, we instruct MLLMs to202

identify and align the relevant knowledge to ROIs that require analysis.203

Choice of MLLMs We first prompt GPT-4V with the provided medical coarse captions, ROIs,204

and medical knowledge to generate a subset of 200,000 samples, maintaining a similar modality205

and organ distribution to our full 25 million dataset. The goal of curating this subset is to calibrate206

a medical knowledge-guided MLLM to adhere to the formatting instructions specified for our text.207
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The MRI image presents a transverse slice of the brain, where 
the cerebral hemispheres are visible, with the region of 
interest located centrally and towards the upper-middle 
portion of the image, occupying a small area ratio. This region 
exhibits an abnormality characterized by altered signal 
intensity, which contrasts with the surrounding brain tissue, 
suggesting the presence of a brain tumor. The abnormal 
area's position, relative to the rest of the brain, could imply an 
effect on or from adjacent structures, potentially influencing 
nearby tissue due to mass effect or being part of a larger 
pathological process within the brain.

The image is a transverse slice of a magnetic resonance imaging (MRI) scan of the 
brain, showing the cerebral hemispheres with the cerebrum visible. A region of interest 
is located at center part of the image horizontally and upper-middle part of image 
vertically, occupying approximately 3.9% of the total area. The region of interest is 
located in the white matter of the left cerebral hemisphere and appears to have an 
abnormal texture and size, which is indicative of a brain tumor. This abnormal area is 
likely to be affecting the surrounding brain tissue due to its mass effect or infiltration, 
which can cause a shift in the position of adjacent structures or potentially disrupt the 
normal brain function in its vicinity. The MRI scan provides a detailed view of the brain's 
anatomy, allowing for the visualization of soft tissue differences that may not be possible 
with other imaging modalities. 

GPT-4V LLaVA-Med++

More detailed
ROI analysis

More detailed
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Contain image
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lesion impact
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Figure 8: Qualitative Comparison with sample generated by GPT-4V Compared to GPT-4V, our
model generate more detailed caption.
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Figure 9: Statistical overview of MedTrinity-25M.

Subsequently, we employ our model, LLaVA-Med++, which is based on LLAVA-Med [9], the208

state-of-the-art medical MLLM. To further improve this model, we leverage the latest LLaMA3[36]209

to enhance its linguistic capabilities, and incorporate multi-scale feature extraction [37] to improve210

its vision capabilities. LLaVA-Med++ undergoes continuous training on medical multimodal data211

and is fine-tuned using our multigranular annotations, resulting in a specialized medical model.212

After fine-tuning, we then use this specialized model to generate the multigranular text descriptions213

on our entire dataset, resulting in 25 million image-ROI-description triplets. The fine-tuning process214

leverages the advanced language organization capabilities of GPT-4V, providing an effective template215

for fine-grained captions, which our model uses to learn the formatting of fine-grained captions. As a216

result, our model generates more detailed descriptions compared to GPT-4V, as illustrated in Figure 8.217

We also show a detailed quantitative comparison in the supplementary material.218
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Dataset ModalityLesion
Type

Lesion
BBox/Mask

Color Texture
Description

Region
Relationship

MedMNIST [39] ✗ ✓ ✗ ✗ ✗
DeepLesion [40] ✓ ✗ ✓ ✗ ✗
BraTS 2024 [41] ✓ ✗ ✓ ✗ ✗

MIMIC-CXR [21] ✓ ✓ ✓ ✓ ✗
Quilt-1M [10] ✓ ✓ ✗ ✓ ✓

VQA-RAD [42] ✓ ✓ ✗ ✓ ✗
CRC100K [43] ✓ ✓ ✗ ✗ ✗

SA-Med2D-20M [44] ✓ ✓ ✓ ✗ ✗
MedTrinity-25M(Ours) ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of dataset types based
on provided attributes of annotations.

Figure 10: Comparison of the av-
erage word count of text descrip-
tions.

4 Dataset Analysis219

Diversity Our dataset encompasses a wide range of 10 imaging modalties, with more than 65220

diseases across various anatomical structures in human. The distribution of Anatomical and biological221

structures in MedTrinity-25M is shown in Figure 9b. Meanwhile, the number of samples in the dataset222

for each modality are shown in Figure 9a, spanning from common ones with over 1 million samples223

each (CT, MRI, X-ray) to rare modalities(ultrasound, dermoscopy) with at least more than 100,000224

samples, demonstrating a much more balanced distribution compared to other large-scale dataset like225

SA-Med2D-20M[38], which only contain thousands of ultrasound and dermoscopy samples.226

Scale Figure 9c shows the amount of our dataset, which is significantly larger than previous datasets.227

To the best of our knowledge, this is the largest open-source, multi-modal multigranular medical228

dataset to date.229

Diseases The datasets involved in constructing MedTrinity-25M primarily focus on disease diagno-230

sis and medical discovery. In MedTrinity-25M, diseases are given in the free-form text. The same231

disease may be referred to using different terms, allowing for elaborate identification and analysis.232

Figure 9d illustrates the frequently used words related to diseases in our dataset.233

Richness We provide both quantitative analysis and qualitative examples to show the richness234

of our generated multigranular compare to other medical dataset. Qualitative examples are shown235

in Figure 1, our textual description is multigranular with more attributes than radiology report of236

chest x-rays dataset MIMIC-CXR [21], visual QA dataset SLAKE[22] and radiology objects caption237

dataset ROCO[18]. To demonstrate the multi-granularity of our data, we compared the average word238

count of text descriptions in our dataset, MedTrinity-25M, with those in other medical datasets, as239

illustrated in Figure 10. The word count in our dataset is significantly higher, indicating greater240

richness.241

Alignment with human We leverage GPT-4 to quantify the alignment of generated text descriptions242

compared to clinical reports from pathologist, which is set as the ground-truth. Specifically, we243

utilize GPT-4 to score the helpfulness, relevance, accuracy, and level of details of the our generated244

text descriptions based on clinical reports, and give an overall score on a scale of 1 to 10, where245

a higher score indicates better overall performance. Additionally, GPT-4 is required to provide a246

comprehensive explanation for the evaluation score. Detailed experiment results are presented in247

supplementary materials.248

5 Conclusion249

This paper introduces MedTrinity-25M, a large-scale multimodal medical dataset comprising over250

25 million image-ROI-description triplets sourced from more than 90 online resources, spanning251

10 modalities and covering over 65 diseases. Unlike existing dataset construction methods that rely252

on image-text pairs, we have developed the first automated pipeline to scale up multimodal data by253

generating multigranular visual and textual annotations from unpaired image inputs, leveraging expert254

grounding models, retrieval-augmented generation techniques, and advanced MLLMs. MedTrinity-255

25M’s enriched annotations have the potential to support a wide range of multimodal tasks, such as256

captioning, report generation, classification, and segmentation, as well as facilitate the large-scale257

pre-training of multimodal medical AI models.258
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