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Abstract

Large Language Models (LLMs) are widely001
applied in decision making, but their deploy-002
ment is threatened by jailbreak attacks, where003
adversarial users manipulate model behavior to004
bypass safety measures. Existing defense mech-005
anisms, such as safety fine-tuning and model006
editing, either require extensive parameter mod-007
ifications or lack precision, leading to perfor-008
mance degradation on general tasks, which is009
unsuitable to post-deployment safety alignment.010
To address these challenges, we propose DEL-011
MAN (Dynamic Editing for LLMs JAilbreak012
DefeNse), a novel approach leveraging direct013
model editing for precise, dynamic protection014
against jailbreak attacks. DELMAN directly015
updates a minimal set of relevant parameters016
to neutralize harmful behaviors while preserv-017
ing the model’s utility. To avoid triggering a018
safe response in benign context, we incorporate019
KL-divergence regularization to ensure updated020
model remains consistent with original model021
when processing benign queries. Experimen-022
tal results demonstrate that DELMAN outper-023
forms baseline methods in mitigating jailbreak024
attacks while preserving the model’s utility, and025
adapts seamlessly to new attack instances, pro-026
viding a practical and efficient solution for post-027
deployment model protection.028

1 Introduction029

Large Language Models (LLMs) play a significant030

role in decision-making, underscoring the impor-031

tance of aligning LLMs with safety standards and032

human values. To ensure that generated content033

aligns with human values and avoids harmful infor-034

mation, various safety alignment methods are em-035

ployed throughout the model production pipeline,036

including pre-training by model providers, task-037

specific adaptations by secondary developers, and038

deployment for user interactions (illustrated in the039

upper part of Figure 1). Among these three phases,040

the deployment stage poses the greatest safety risk,041

as adversarial users can launch “jailbreak attacks” 042

by crafting prompts or optimized suffixes to bypass 043

safety measures (Zou et al., 2023; Liu et al., 2023; 044

Zhou et al., 2024b; Chao et al., 2023). 045

Considering that large-scale modifications to a 046

model’s architecture or parameters become imprac- 047

tical once deployed, and adversarial users repre- 048

sent only a minority, which making it infeasible to 049

construct sufficient labeled datasets for fine-tuning, 050

safety alignment in the deployment phase must 051

meet three essential requirements: (1) Minimal 052

model modifications to ensure efficiency; (2) Tar- 053

geted defenses that address adversarial queries 054

without compromising regular user interactions; 055

(3) Dynamic adaptability to continuously counter 056

emerging jailbreak examples without requiring ex- 057

tensive retraining. Existing defense mechanisms 058

such as safety fine-tuning (Wang et al., 2022; Gan- 059

guli et al., 2022; Xu et al., 2024a) and model de- 060

coder modification (Wang et al., 2024; Zhao et al., 061

2024) are unsuitable due to their extensive changes 062

to model architecture or parameters. Model editing, 063

originally designed for knowledge correction (Zhu 064

et al., 2020; Lee et al., 2022; De Cao et al., 2021; 065

Mitchell et al., 2021; Meng et al., 2022a,b), has also 066

been explored as a defense against jailbreak attacks. 067

Approaches like DINM and LED (Wang et al., 068

2024; Zhao et al., 2024) rely on indirect model 069

editing that fine-tunes specific layers, but they of- 070

ten lack precision in targeting harmful regions and 071

risk degrading overall model performance. 072

A dynamic jailbreak defense mechanism is es- 073

sential, one that is timely, precise, and minimal 074

in required modifications to the deployed model 075

while effectively countering adversarial attacks. To 076

achieve this, our key motivation is to utilize direct 077

editing that focuses on minimal parameter updates, 078

minimizing interference with the model’s overall 079

performance. Specifically, in this work, we in- 080

troduce DELMAN (Dynamic Editing for LLMs 081

JAilbreak DefeNse), a novel approach that dynami- 082
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Figure 1: Upper: The three phases of safety alignment during LLMs production. Lower: LLMs editing as a dynamic defense
mechanism during the deployment stage.

cally protects against jailbreak attacks by directly083

adjusting the weights of specific layers. As illus-084

trated in Figure 2, DELMAN establishes a connec-085

tion between harmful tokens and safe responses by086

computing an input vector k∗ from harmful tokens087

and optimizing a target output vector v∗ represent-088

ing a safe response. The model’s weights are then089

updated with a closed-form solution so that when090

the input vector is fed into the model, the output091

of the targeted layer aligns with the desired safe092

response, effectively minimizing the likelihood of093

generating harmful content. To avoid unintended094

trigger of safe responses in benign contexts (e.g.095

the word “bomb” in “what is a bomb”), we in-096

corporate neutral prompts containing harmful to-097

kens in non-harmful contexts during optimization098

of the target output vector. KL-divergence (Kull-099

back and Leibler, 1951) is applied to ensure that the100

updated model remains consistent with its original101

output distribution when processing these benign102

queries. This ensures that the model distinguishes103

between harmful and harmless uses of the same104

tokens, avoiding over-correction while maintaining105

its utility for normal tasks.106

Our contributions can be summarized as follows:107

• We propose DELMAN, a dynamic post-108

deployment defense that directly edits model pa-109

rameters to neutralize harmful behaviors while110

preserving overall performance.111

• DELMAN focuses on minimal parameter edit-112

ing utilizing only a small set of harmful queries,113

enabling rapid, precise, and adaptive defense114

against unseen jailbreak attempts.115

• DELMAN includes a KL-divergence regulariza-116

tion term to avoid triggering safe responses in117

benign contexts thus preserving normal utilities.118

• Extensive experiments demonstrate DELMAN119

outperforms baseline methods in mitigating jail-120

Figure 2: DELMAN consists of five steps: 1. Extract harmful
tokens from the query; 2. Random context sequence genera-
tion; 3. Calculate k∗ of harmful tokens; 4. Estimate v∗ of safe
response Ytarget; 5. Update W l∗

down with k∗, v∗.

break attacks while preserving the model’s util- 121

ity on normal tasks, as well as its transferability 122

and generalization ability to unseen jailbreak at- 123

tacks and harmful queries. A case study is also 124

included to demonstrate that DELMAN can sup- 125

port continuous updates to counter new jailbreak 126

instances without undermining previous edits. 127

2 Related Work 128

2.1 Model Editing 129

Model editing enables targeted behavioral modifi- 130

cations within specific domains and can be catego- 131

rized as indirect editing and direct editing. Indirect 132

model editing involves fine-tuning the model to 133

update knowledge with specifically-designed ob- 134

jective (Zhu et al., 2020; Lee et al., 2022) or use 135

meta-learning with hypernetworks to learn optimal 136

parameter updates (De Cao et al., 2021; Mitchell 137

et al., 2021). However, both approaches require 138

extensive model updates, which risks catastrophic 139
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forgetting on non-target tasks.140

Direct editing refers to directly locating and edit-141

ing the knowledge-related parameters. Research142

indicate that factual knowledge is primarily stored143

in the MLP modules of transformer-based architec-144

tures (Geva et al., 2020, 2022). Leveraging these145

insights, model-editing methods like ROME (Meng146

et al., 2022a) employ causal tracing to identify and147

edit the parameters encoding the particular knowl-148

edge. However, ROME is limited to single-instance149

knowledge editing, restricting its applicability in150

scenarios requiring large-scale updates. MEMIT151

extends the approach to support batch knowledge152

editing, providing a scalable solution for efficient153

and precise modifications (Meng et al., 2022b).154

2.2 Existing Defense to Jailbreak Attacks155

Recent studies reveal that jailbreak attacks (Zou156

et al., 2023; Liu et al., 2023; Zhou et al., 2024b;157

Chao et al., 2023) can bypass security alignment158

leading LLMs to generate harmful or unethical out-159

puts. As countermeasures, various defense meth-160

ods are developed against such threats. Existing161

defenses can be categorized into active defenses162

and passive defenses. Active defense enhances163

LLMs robustness against adversarial prompting164

by dynamically altering model parameters (Wang165

et al., 2022; Ganguli et al., 2022; Xu et al., 2024a;166

Wang et al., 2024; Zhao et al., 2024). A common167

approach to safety training involves constructing168

safety-relevant datasets and fine-tuning the model169

(Mazeika et al., 2024). Instead, passive defense170

aims to build auxiliary modules or use external171

safety methods including input and output filtering172

(Alon and Kamfonas, 2023), input smoothing, sani-173

tation and modification (Cao et al., 2023; Jain et al.,174

2023; Zhou et al., 2024a).175

2.3 Model Editing as a Jailbreak Defense176

Several studies have explored LLMs model edit-177

ing as a defense mechanism to precisely mod-178

ify toxic regions (Wang et al., 2024; Zhao et al.,179

2024). DINM (Wang et al., 2024) and LED (Zhao180

et al., 2024) are motivated by indirect model edit-181

ing method that fine-tuning the toxic layer using182

specific objectives. The difference between these183

two methods is the way of locating the toxic re-184

gion. The layer-level localization and fine-tuning185

approaches lack precision in identifying harmful186

words while potentially compromising the model’s187

general performance. In contrast, we propose to188

adapt direct-edit as a jailbreak defense in LLMs.189

3 Methods 190

The idea behind DELMAN is to mitigate a model’s 191

harmful behavior by directly modifying the weights 192

of specific layers, establishing a direct association 193

between harmful tokens and safe responses. Fac- 194

tual knowledge is stored in the MLP of specific 195

layer l (Meng et al., 2022a). The MLP acts as two- 196

layer key–value memories where the neurons of the 197

first layer W l
gate generate a key k, with which the 198

W l
down retrieves an associated value v. The MLP 199

layer can be expressed as: 200

k = σ(W l
gate γ(a

l + hl−1)), v = W l
downk, (1) 201

where al is the attention output at layer l, hl−1 is 202

the hidden state of previous layer l − 1, σ is the 203

activation function and γ is the layernorm. DEL- 204

MAN aims to edit W l
down to rebuild the connec- 205

tion between harmful-token-related key represen- 206

tation k∗ and safe-response-related representation 207

v∗. As illustrated in Figure 2, DELMAN achieves 208

this through five key steps. In the following of this 209

section, we first outline the process of identifying 210

k∗ through harmful token extraction and random 211

sequence generation. Then, we describe how to es- 212

timate the v∗ to establish its connection to k∗ that 213

can generate safe responses. Last, we explain how 214

to update the W l∗
down, the MLP of specific layer 215

l∗ (directly adopted from MEMIT (Meng et al., 216

2022b)) accordingly. 217

3.1 Identify Key Representation k∗ 218

To identify the harmful-token-related key represen- 219

tation k∗, we first extract the harmful tokens from 220

input queries that may trigger unsafe responses. To 221

improve the stability of model editing on a specific 222

harmful token, we generate multiple sequences that 223

incorporate these tokens in varied contexts. Follow- 224

ing that, we perform forward propagation for each 225

sequence through the language model f and use 226

the internal representations at layer l∗ as harmful- 227

token-related key representation k∗. 228

Harmful tokens extraction. We automate this pro- 229

cess using GPT-4 as a token extraction assistant, 230

which analyzes each query to pinpoint tokens likely 231

to trigger harmful outputs. Formally, for each query 232

in a set of harmful queries q ∈ Qharm, we extract a 233

harmful token or phrase t, forming a set of consec- 234

utive harmful tokens Th = {t1, t2, . . . , tn}, which 235

can be defined as: Th = Extraction(Qharm). 236

The Extraction() is a carefully designed GPT-4 237
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prompt (see Appendix C.1) that includes instruc-238

tions to avoid generating any harmful content and239

to focus solely on the task of token extraction.240

Random sequence generation. To enhance the241

accuracy of extracting the key vector k∗ for the242

harmful tokens, we generate multiple sequences243

that incorporate these tokens. Formally, for each244

harmful token t ∈ Th, we utilize GPT-4 to gen-245

erate distinct sequences {xj}Nj=1, where N = 5.246

These sequences are then used in the subsequent247

step to compute k∗. The prompt can be found248

in Appendix C.2.249

Calculate k∗ of harmful tokens. We perform for-250

ward propagation through the language model f251

and average the internal representations at layer l∗252

over N generated sequences xj to represent the k∗253

of harmful token t, which can be expressed as254

k∗ =
1

N

N∑
j=1

σ
(
W l∗

gate γ(a
l∗
xj ,t + hl

∗−1
xj ,t

)
)
, (2)255

where al
∗
xj ,t and hl

∗−1
xj ,t

are the attention score and256

hidden score of the harmful token t in sequence xj257

at layer l∗ and previous layer l∗ − 1 respectively.258

Aggregating key vectors over multiple sequences259

ensures that k∗ encodes robust, context-insensitive260

representations of harmful semantics.261

3.2 Estimate v∗ of Safe Response Ytarget262

To establish the connection to k∗ that determines263

the model’s likelihood of generating safe response,264

we optimize v∗ with the following loss function:265

Lsafe = − logPf(ml∗
i :=v)[Ytarget

∣∣ q], (3)266

where ml∗
i refers to the MLP output activation at267

layer l∗ and position i, and f(ml∗
i := v) indicates268

the model f with the specified activation replaced269

by vector v, and q represents the harmful query in270

Qharm introduced in Section 3.1.271

To prevent unintended triggers of the safe re-272

sponse in ordinary contexts where the harmful to-273

ken might appear benignly, we want the updated274

model to remain consistent with its original distri-275

bution when asked a benign query, thus avoiding276

the over-activation of the safe response in normal277

conversation. We use KL-divergence to achieve278

this, which can be formulated as:279

Lutility = KL
(
Pf(ml∗

i :=v)

[
· | qu

] ∥∥∥ Pf
[
· | qu

])
, (4)280

where qu is a neutral prompt of the form “What281

is { harmful token }?”. The optimization can be282

formulated as the following joint objective for v∗: 283

v∗ = argmin
v

[Lsafe + λLutility]. (5) 284

Solving Eq.5 yields the final value vector v∗, which 285

can ensure that occurrences of the harmful token 286

result in the safe response. 287

3.3 Weight Update of W l∗
down 288

After obtaining the pair
(
k∗, v∗

)
, we incorporate 289

this new key-value association into the MLP at 290

layer l∗ by editing the matrix W l∗
down via solving the 291

least-squares problem (Belinkov and Glass, 2019): 292

min
Ŵ l∗

down

∥∥Ŵ l∗
downKD − VD

∥∥2 (6) 293

subject to Ŵ l∗
downk

∗ = v∗. (7) 294

Here, KD = [k∗1, k
∗
2, . . .] is a matrix of key vec- 295

tors, and VD = [v∗1, v
∗
2, . . .] is the matrix of their 296

corresponding value vectors. Eq.6 can be solved 297

with this closed form solution: 298

Ŵ l∗
down = W l∗

down + RD KD
T (Cl∗ + KD KD

T )−1, (8) 299

where C l∗ = KK⊤ denotes the covariance matrix 300

of K, which is the key of original knowledge pair 301

K and V at layer l∗, pre-cached from Wikipedia 302

dataset. The term RD is defined as 303

RD = VD −W l∗
downKD, (9) 304

which measures the residual error between the de- 305

sired values VD and the model’s current outputs 306

W l∗
downKD at target layer l∗. 307

Practical scheme. In practice, instead of updating 308

a single layer l∗, we spread the updates over a 309

range of crucial layersR = {l1, l2, ..., L} to limit 310

the magnitude of parameter changes in a single 311

layer, which results for better robustness (Zhu et al., 312

2020). For example, we directly adopt the finding 313

in MEMIT and use the 7th and 8th layer as the 314

crucial layers for Llama2 and Vicuna. The v∗ and 315

the residual in Eq.10 is only estimated for the last 316

crucial layer L. This residual is then distributed to 317

the lower layer with a factor L− l + 1, which can 318

be expressed as: 319

RD =
VD −WL

downKD

L− l + 1
. (10) 320

By ensuring smaller changes in lower layers, 321

DELMAN can promote stability and avoid abrupt 322

changes in a single layer. A detailed description of 323

the algorithm is provided in Appendix A. 324
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Figure 3: ASR across four datasets (HB, AB, JBB, and MI) for Llama2-7B (top row) and Vicuna-7B (bottom row) under
three attack methods: GCG, AutoDAN, and PAIR. Each bar group compares five defense strategies — Original Model, LoRA,
SafeDecoding, LED, and DELMAN. Lower ASR indicates more robust defense.

4 Experiments325

We begin this section by detailing the configuration326

of our experiments, including evaluated datasets,327

jailbreak attacks, and models, along with compared328

baselines and evaluation metrics. Then, we present329

the effectiveness of DELMAN in terms of defense330

performance and utility preservation. Next, we331

demonstrate the impact of single-behavior edit of332

DELMAN, highlighting its transferability across333

datasets and harmful behaviors. Last, we use a334

consecutive edit case study to illustrate that each335

edit, once applied, does not interfere with the edit336

established in previous phases.337

4.1 Experiment Setup338

Datasets. To ensure a comprehensive evaluation339

of defense effectiveness against jailbreak attacks,340

we use the HARMBENCH (Mazeika et al., 2024)341

dataset for editing and evaluate across multiple342

testing benchmarks: HARMBENCH (HB), AD-343

VBENCH (AB) (Zou et al., 2023), JAILBREAK-344

BENCH (JBB) (Chao et al., 2024), and MALI-345

CIOUSINSTRUCT (MI) (Huang et al., 2023). To346

comprehensively assess potential side effects of347

model editing on LLMs’ general utility, we evalu-348

ate DELMAN using MT-bench (Zheng et al., 2023)349

and seven downstream tasks: Closed-domain QA,350

Dialogue, Named entity recognition (NER), Nat-351

ural language inference (NLI), Reasoning, Senti-352

ment analysis and Summarization. The detail of the353

datasets and their evaluation metrics are presented354

in the appendix B.3.355

Evaluated jailbreak attacks and models. We use356

three leading jailbreak attack methods to demon- 357

strate the defense performance of DELMAN: two 358

optimization based attack GCG (Zou et al., 2023), 359

AutoDAN (Liu et al., 2023) that search for ad- 360

versarial suffix, and prompt-based attack PAIR 361

that rewrite the prompt to adversarial form (Chao 362

et al., 2023). Our evaluation focuses on a strong 363

aligned model, Llama-2-7B-chat (Touvron et al., 364

2023), and a weak aligned model Vicuna-7B-v1.5 365

(Zheng et al., 2023). A detailed description of at- 366

tack setup is provided in Appendix B.1. 367

Baselines and evaluation metrics. We con- 368

sider three different defense methods as baselines, 369

SafeDecoding (Xu et al., 2024a) an decoder modi- 370

fication method, Safety fine-tuning with LoRA (Hu 371

et al., 2021), as well as LED (Zhao et al., 2024), an 372

indirect editing method. For all baseline methods, 373

we follow their original papers’ suggested hyper- 374

parameter settings. A detailed description of base- 375

line setup is provided in Appendix B.2. We em- 376

ploy HARMBENCH classifier (Mazeika et al., 2024) 377

to detect the harmful content in model responses. 378

The primary evaluation metric is the Attack Suc- 379

cess Rate (ASR), which measures the proportion of 380

successful attacks over all tested examples. For a 381

dataset Qharm containing harmful queries q, ASR 382

is formally defined as: 383

ASR(Qharm) =
1

|Qharm|
∑

q∈Qharm

I(f(q)) (11) 384

where I is the indicator function that returns 1 for 385

successful attacks and 0 otherwise. 386
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4.2 Effectiveness of DELMAN387

Safety evaluation. Figure 3 compares DELMAN388

with baselines and the Original Model under three389

jailbreak attacks across four datasets. DELMAN390

edits the model according to HARMBENCH (HB)391

data, and evaluates the edited model performance392

on AB, JBB and MI, showing its generalization393

ability on unseen datasets. The exact value of re-394

duced ASR is relegated to Appendix D.1. We ob-395

serve several key findings. First, compared to the396

original model, DELMAN significantly reduces the397

ASR across all datasets (HB, AB, JBB, and MI)398

and against different attack types, including opti-399

mized suffix attacks (GCG, AutoDAN) and prompt-400

rewriting attacks (PAIR), and in many cases DEL-401

MAN is able to completely mitigate jailbreak at-402

tacks, reducing ASR to 0. Second, among base-403

lines, LED also demonstrates some defensive capa-404

bility, even surpassing DELMAN in certain sce-405

narios within HB. However, LED struggles on406

unseen datasets, indicating a lack of generaliza-407

tion. In contrast, LoRA and SafeDecoding perform408

worse, failing to bring ASR down to an acceptable409

level. Last, since Llama2 already exhibits strong410

safety alignment, PAIR has little effect on it. As411

a result, the improvements from DELMAN in this412

case are less pronounced.413

Utility evaluation. We summarizes the perfor-414

mance of DELMAN and baselines on general-415

purpose tasks with Vicuna-7B and Llama2-7B on416

MT-Bench, along with seven downstream tasks to417

comprehensively evaluate the model’s utility in Ta-418

ble 1. The highest utility scores are highlighted419

in bold (except LoRA which has the highest ASR),420

and scores that exceed those of the Original Model421

are marked with (↑). Overall, DELMAN better422

preserves model utility compared to baseline ap-423

proaches on most tasks. Notably, on Vicuna-7B, 424

DELMAN even achieves higher scores than the 425

Original Model on MT-Bench (6.84 vs 6.77). For 426

Llama2-7B, DELMAN shows improvements over 427

the Original Model in several tasks, including NER 428

(0.228 vs 0.187) and NLI (0.612 vs 0.603). Other 429

defense methods like LED and SafeDecoding typ- 430

ically show performance drop. Although LED 431

achieves the highest scores in Dialogue, NER and 432

Summarization on Vicuna-7B, it experiences sig- 433

nificant degradation on MT-Bench (dropping to 434

3.70), as MT-bench evaluates through multi-turn 435

interactions rather than single-task performance. 436

SafeDecoding shows consistent utility losses across 437

most tasks. Figures 4 present a detailed breakdown 438

of model performance across MT-Bench subcate- 439

gories. The visualization particularly highlights 440

DELMAN’s advantages in preserving complex ca- 441

pabilities, with the largest area marked in dark blue. 442

Notably, DELMAN maintains strong performance 443

in Reasoning, Writing, and Roleplay tasks, where 444

LED and SafeDecoding exhibit substantial weak- 445

nesses. This demonstrates DELMAN’s ability to 446

balance robustness against jailbreak attacks while 447

minimizing degradation in general utility. 448

4.3 Edit According to Harmful Behavior 449

In this section, we investigate the effect of DEL- 450

MAN edit on individual harmful behavior and its 451

impact on defending other unedited behavior. 452

Effectiveness of DELMAN on each harmful be- 453

havior. Figure 5 compares the performance of 454

DELMAN across individual HARMBENCH behav- 455

ior, including chemical and biological (CheBio), 456

cybercrime intrusion (CybIn), harassment and bul- 457

lying (HaraBull), general harmful (GenHarm), il- 458

legal (Ill), and misinformation (MisInfo). The two 459

Model Defense MT-Bench
Downstream Tasks

Closed-
domain QA

Dialogue NER NLI Reasoning
Sentiment
analysis

Summarization

Vicuna-7B

Original Model (82.1%) 6.77 0.777 0.483 0.287 0.563 0.982 0.862 0.272

LoRA (23.2%) 5.64 0.742 0.459 0.177 0.610 0.976 0.898 0.268
SafeDecoding (10.7%) 6.61 0.671 0.314 0.098 0.536 0.969 0.645 0.174

LED (8.8%) 3.70 0.760 0.478 0.265 0.558 0.974 0.831 0.267
DELMAN (6.7%) 6.84 (↑) 0.762 0.470 0.254 0.560 0.981 0.854 0.260

Llama2-7B

Original Model (23.2%) 6.89 0.734 0.465 0.187 0.603 0.977 0.909 0.267

LoRA (8.6%) 6.90 0.769 0.480 0.288 0.551 0.976 0.854 0.259
SafeDecoding (1.2%) 6.17 0.688 0.327 0.099 0.518 0.976 0.872 0.227

LED (2.6%) 5.80 0.705 0.425 0.228 (↑) 0.577 0.973 0.898 0.256
DELMAN (0.1%) 6.31 0.718 0.462 0.228 (↑) 0.612 (↑) 0.974 0.905 0.251

Table 1: Utility evaluation of DELMAN and baselines on Vicuna-7B and Llama2-7B, with the average ASR of each method is
shown in parentheses. Bold: best score (excluding LoRA); (↑): improvement over Original Model.
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Figure 4: Comparison of MT-Bench sub-scores across eight skill dimensions between different defense methods on Vicuna-7B
(left) and Llama2-7B (right).

Figure 5: ASR for Vicuna-7B after applying single-behavior
DELMAN against GCG and AutoDAN attacks.

figures demonstrate the ASR drop on GCG and460

AutoDAN after DELMAN edits respectively. In461

single-behavior editing, DELMAN demonstrates462

significant effectiveness in defending against two463

types of jailbreak attacks.464

Cross-behavior observations. We further study465

the cross-behavior defense performance of DEL-466

MAN with heatmap. We perform single-behavior467

edits on each behavior with DELMAN, and test468

the resulting model on all six categories, present-469

ing a 6×6 ASR heatmap. Figure 6 presents the470

results for Llama2-7B under the GCG and Auto-471

DAN jailbreak attacks. Notably, single-category472

edits in many cases show resilience to off-category473

attacks. For instance, focusing on CheBio class474

editing can also mitigate malicious queries from475

GenHarm or MisInfo classes, reducing ASR even476

for these distinct domains.477

4.4 Understanding the DELMAN478

Transferability Across Datasets and479

Behaviors480

DELMAN establishes a direct link between harmful481

tokens and specific responses to modify the model482

parameters effectively. To explain why modifying483

the model based on one set of harmful tokens from484

Figure 6: ASR heatmaps for the cross-behavior transfer results
of single-behavior DELMAN edit on Llama2-7B against GCG
(up) and AutoDAN (down) attacks.

a specific harmful behavior also improves its robust- 485

ness against different harmful behavior, and why 486

edits made using examples from one dataset gener- 487

alize to other datasets, we analyze the distribution 488

of harmful token keys k in the target model layer l∗ 489

using Principal Component Analysis (PCA) (Wold 490

et al., 1987). As shown in Figure 7, each cluster rep- 491

resents the k of harmful token from a behavior (Fig- 492

ure 7a) or from a dataset (Figure 7b). We can note 493

that harmful token keys k in the target model layer 494

l∗ from different categories or datasets exhibit sub- 495
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(a) The k of harmful tokens
across behaviors.

(b) The k of harmful tokens
across datasets.

Figure 7: Principal Component Analysis (PCA) visualizations
of k at the target layer L of Llama2-7B across different behav-
iors and datasets.

stantial overlap in the embedding space, suggesting496

that instructions carrying malicious intent share497

similar representations across seemingly distinct498

harm classes or datasets. Through focused editing499

of these common token representations, DELMAN500

effectively reduces various types of harmful out-501

puts, including those from categories or datasets502

not seen during editing.503

4.5 Consecutive Edits with DELMAN504

In real-world deployment, adversarial parties may505

repeatedly attempt to jailbreak the model, making it506

crucial for dynamic and consecutive edits to main-507

tain the effects of earlier modifications without in-508

terference. To evaluate the robustness of DELMAN509

under consecutive edits, we conduct an experiment510

where edits are applied sequentially across differ-511

ent harmful behavior categories. Specifically, we512

select one category each from the HB, AB, JBB,513

and MI datasets and perform DELMAN edits in514

succession. After each edit, we evaluate:515

• ASR on the current edit category to measure516

the immediate effectiveness of DELMAN.517

• ASR on previously edited categories to de-518

termine whether earlier modifications remain519

effective.520

• ASR on the full dataset to assess the overall521

robustness of DELMAN against diverse jail-522

break attacks.523

We used line charts to represent the overall ASR524

reduction across four successive edit phases for525

each edited behavior of HB dataset and the ASR526

of the entire HB dataset. As observed in Figure527

8, the overall ASR for the HB dataset consistently528

decreases with each edit, indicating that DELMAN529

effectively reduces harmful behaviors across multi-530

ple categories and each edit achieves maximal ASR531

drop in its targeted behavior. Additionally, each 532

category edited during the successive phases main- 533

tains its defense effectiveness, with no increase 534

of ASR in subsequent edits. This demonstrates 535

that each edit, once applied, is preserved and does 536

not interfere with the defense applied in previous 537

phases, ensuring continuous and cumulative reduc- 538

tion in ASR across the dataset. 539

Figure 8: Defense performance of consecutive DELMAN edits
on Llama2-7B against GCG attacks.

5 Conclusion 540

In this work, we introduce DELMAN, a novel de- 541

fense mechanism that directly edits model param- 542

eters to neutralize harmful behaviors by forming 543

explicit connections. DELMAN brings minimal 544

parameter modification, preserving the utility on 545

normal tasks and is capable of dynamic and con- 546

secutive edits. Extensive experiments demonstrate 547

superiority over existing baselines in terms of de- 548

fense performance and utility preservation, as well 549

as strong transferability. Overall, DELMAN demon- 550

strates how token-level editing method can effec- 551

tively enhance model safety while maintaining per- 552

formance. In the future, it would be interesting to 553

investigate more efficient methods for harmful to- 554

ken identification, for instane, using a minimal set 555

of tokens (e.g., 20-30 Tokens) to effectively cover 556

the majority of harmful scenarios, which would 557

significantly reduce computational costs. Addi- 558

tionally, exploring the application of DELMAN to 559

domain-specific LLMs and VLMs would validate 560

its generalizability across different domains and 561

modalities. 562
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Limitations563

The limitations of our study are as follows:564

1. Our evaluations are currently restricted to565

general-purpose LLMs, leaving the applicability to566

domain-specialized models (e.g., medical or legal567

LLMs) and larger-scale models (e.g., 70B parame-568

ters) unexplored. Further investigation is required569

to assess its defense capabilities against domain-570

specific jailbreak attacks and potential impacts on571

domain expertise after editing.572

2. DELMAN relies on GPT-4 for harmful to-573

ken extraction and context generation, which intro-574

duces dependency on external models and potential575

cost barriers.576

3. The stability of consecutive edits, though577

preliminarily validated, needs deeper analysis to578

assess potential performance drift over extended579

deployment.580

Ethics Statement581

DELMAN directly edits parameters linked to harm-582

ful tokens, raising concerns about potential mis-583

application or unintended bias introduction. We584

advocate for responsible deployment where prac-585

titioners thoroughly validate parameter modifica-586

tions and strictly limit edits to well-defined harmful587

content categories. While our approach offers fine-588

grained, post-deployment protection, it should be589

viewed as one component within a comprehensive590

safety framework that includes human oversight591

and established moderation systems to ensure ethi-592

cal and harm-free interactions.593
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A Algorithm775

Algorithm 1 demonstrates the detailed procedure776

of DELMAN.777

B Detail Experiment Setting778

B.1 Attack Setup779

For GCG (Zou et al., 2023), AutoDAN (Liu et al.,780

2023), and PAIR (Chao et al., 2023), we lever-781

age multiple harmful query datasets: the com-782

plete HARMBENCH (200 queries), a subset of AD-783

VBENCH (100 queries), the complete JAILBREAK-784

BENCH (100 queries), and the complete MALI-785

CIOUSINSTRUCT (100 queries). For each model786

under test, we generate specific attack prompts787

using every query from these datasets, following788

the original hyperparameter configurations as de-789

scribed in their respective papers.790

B.2 Baseline Setup791

B.2.1 Original Model792

Recent work (Inan et al., 2023; Xu et al., 2024b)793

has demonstrated that system prompts and prompt794

formats can significantly influence the effectiveness795

of jailbreaking attacks. For experimental consis-796

tency and reproducibility, we utilize the default797

settings across all evaluations.798

Llama2 template.799

[INST] «SYS»
You are a helpful, respectful and honest
assistant. Always answer as helpfully as
possible, while being safe. Your answers
should not include any harmful, unethical,
racist, sexist, toxic, dangerous, or illegal
content. Please ensure that your responses
are socially unbiased and positive in nature.

If a question does not make any sense,
or is not factually coherent, explain why
instead of answering something not correct.
If you don’t know the answer to a question,
please don’t share false information.
«/SYS»

{instruction} [/INST]
800

Vicuna template.801

A chat between a curious human and an
artificial intelligence assistant. The
assistant gives helpful, detailed, and polite
answers to the human’s questions. USER:
{instruction} ASSISTANT:

802

B.2.2 DELMAN 803

The editing dataset consists of 200 queries from 804

HARMBENCH, along with a single uniform Ytarget: 805

“I’m sorry, I can’t assist with that.”. Our method 806

does not require a dedicated safe response for ev- 807

ery single question; Instead, just this one Ytarget 808

is sufficient to provide robust defenses with mini- 809

mal impact on the model’s utility. And we directly 810

adopt the findings in MEMIT (Meng et al., 2022b) 811

and use the 7th and 8th layer as the crucial layers 812

for Llama2-7B and Vicuna-7B. The hyperparame- 813

ters of DELMAN are shown in Table 2.

Hyperparameter Value
Target LayersR [7,8]
Learning Rate of v∗ 5e-1
Weight Decay of v∗ 0.5
Gradient Steps of v∗ 25
Loss Layer of v∗ 31
KL-divergence Factor 0.0625
Gradient Norm Clamp Factor 0.75
Mom2 Update Weight 15000
Optimizer Adam

Table 2: DELMAN hyperparameters. Values are shared across
models unless specified.

814

B.2.3 LoRA 815

We also apply LoRA fine-tuning on the same 200 816

queries from the HARMBENCH; However, in this 817

setup, each query is paired with a safe response gen- 818

erated by GPT-4 as the Ytarget. We have verified 819

that these Ytarget achieve 0 ASR on HARMBENCH 820

classifier. Notably, if we were to follow the same 821

strategy as used in DELMAN and adopt a single 822

uniform Ytarget for all queries, the model would 823

inevitably converge to generating only that single 824

response. This would severely limit the model’s 825

ability to provide diverse and contextually appro- 826

priate responses. The hyperparameters of LoRA are 827

shown in Table 3. 828

B.2.4 SafeDecoding 829

SafeDecoding (Xu et al., 2024a), a safety enhance- 830

ment method that operates by adjusting token prob- 831

ability distributions. This approach strengthens 832

the model’s security through two key mechanisms: 833

boosting the probability of safety disclaimers while 834

reducing the likelihood of potential jailbreak se- 835

quences. We utilized their publicly released fine- 836

tuned versions of Llama2 and Vicuna models. 837
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Algorithm 1 DELMAN: Dynamic Editing for LLM Jailbreak Defense
Input: Original LLM f , Harmful query dataset Qharm, Target safe response Ytarget, Target layersR and
the last target layer L, Covariance matrix C l for each layer l ∈ R, Number of random context sequences
N , KL-divergence factor λ.
Output: Edited model f ′

1: Initialize: Th ← ∅; f ′ ← f
2: for q ∈ Qharm do
3: t← Extraction(q)
4: end for
5: Th = {t1, t2, . . . , tn}
6: for t ∈ Th do
7: for j = 1 to N do
8: xj,t ← GenerateSequence(t)
9: end for

10: end for
11: for t ∈ Th do
12: v∗t ← argmin

vt
[Lsafe + λLutility] ▷ Eq.5

13: end for
14: VD ← [v∗1, v

∗
2, . . . , v

∗
n]

15: for l ∈ R do
16: for t ∈ Th do
17: for j = 1 to N do
18: klt,j ← σ

(
W l

gate γ(a
l
xj ,t + hl−1

xj ,t
)
)

▷ Eq.2
19: end for
20: klt ← 1

N

∑N
j=1 k

l
t,j ▷ Eq.2

21: end for
22: K l

D ← [kl1, k
l
2, . . . , k

l
n]

23: Rl
D =

VD−WL
downK

L
D

L−l+1 ▷ Eq.10

24: f ′ ←W l
down + Rl

D K l
D
T (

C l + K l
D K l

D
T
)−1 ▷ Eq.8

25: end for
26: return f ′
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Hyperparameter Value
LoRA Alpha 8
LoRA Rank 32
LoRA Dropout 0.05
Train Batch Size 1
Gradient Accumulation Steps 8
Train Epoch 1
Learning Rate (Llama2-7B) 2e-3
Learning Rate (Vicuna-7B) 1e-3
Optimizer AdamW

Table 3: LoRA hyperparameters. Values are shared across
models unless specified.

B.2.5 LED838

We used the same dataset as in the LoRA setup.839

Since LED (Zhao et al., 2024) did not provide an840

official code implementation, we reproduced their841

method following the procedures described in their842

paper. We selected the corresponding layers for843

each model according to their recommendations.844

The hyperparameters of LED are shown in Table 4.845

Hyperparameter Value
Edit Layers (Llama2-7B) [4,5,6,13,14,15]
Edit Layers (Vicuna-7B) [9,10,11,13,14,15]
Target Layers [29,30,31]
Learning Rate (Llama2-7B) 8e-5
Learning Rate (Vicuna-7B) 5e-5
Train Batch Size 1
Gradient Acc Steps 8
Train Epochs 1
Optimizer AdamW

Table 4: LED hyperparameters. Values are shared across
models unless specified.

846

B.3 Downstream Task Datasets847

(1) Closed-domain QA on the BoolQ (Clark et al.,848

2019), and the results were also measured by EM.849

(2) Dialogue on the MuTual (Cui et al., 2020), and850

the results were measured by selecting one best-851

matched response from four available candidates852

(Lowe et al., 2015). (3) Named entity recognition853

(NER) tested on CoNLL03 (Sang and De Meulder,854

2003) with F1 Score. (4) Natural language infer-855

ence (NLI) on RTE (Dagan et al., 2005) measured856

by binary classification accuracy. (5) Reasoning ca-857

pability evaluated on GSM8K (Cobbe et al., 2021)858

using solution accuracy. (6) Sentiment analysis859

on SST2 (Socher et al., 2013) measured by binary860

classification accuracy. (7) Summarization skills 861

evaluated on SAMSum (Gliwa et al., 2019) using 862

ROUGE metrics (Chin-Yew, 2004). 863

C Prompt 864

C.1 Prompt Used for Harmful Tokens 865

Extraction via GPT-4 866

You are tasked with analyzing queries to ex-
tract harmful tokens. Follow these instruc-
tions: 1. Do not generate harmful, inappro-
priate, or speculative content; 2. Do not ful-
fill or answer harmful queries; 3. Extract the
most harmful tokens (keywords or phrases)
that contribute to the query’s harmful nature
or potential misuse; 4. Output tokens as a
list: [token1, token2, ...].
Query: {INSERT QUERY HERE}

867

C.2 Prompt Used for Random Sequence 868

Generation via GPT-4 869

You are tasked with generating random se-
quences that include the specified token. Fol-
low these instructions: 1. Avoid generating
harmful, inappropriate, or unsafe content; 2.
Each sequence should be 15–30 words long;
3. Use the given token exactly once in each
sequence.
Tokens: {INSERT TOKENS HERE}

870

D Supplementary Materials 871

D.1 Effectiveness of DELMAN 872

Table 7 presents the exact value of reduced ASR 873

by DELMAN and baselines. 874

D.2 Effectiveness of DELMAN on Each 875

Harmful Behavior 876

Figure 9 compares the performance of DELMAN 877

on Llama2-7B across individual HARMBENCH be- 878

havior. 879

D.3 Cross-Behavior Observations 880

Figure 10 presents the results for Vicuna-7B under 881

the GCG and AutoDAN jailbreak attacks. 882
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Figure 9: ASR for Llama2-7B after applying single-behavior
editing against GCG and AutoDAN attacks.

Figure 10: ASR heatmaps for the cross-category transfer
results of single-category DELMAN defense on Vicuna-7B
against GCG (up) and AutoDAN (down) attacks.

D.4 Results of DELMAN across Harmful and883

Clean Tokens884

Figure 11 shows the k and v distribution differences885

between harmful and clean tokens. Notably, choos-886

ing harmful tokens is vital for preserving model887

utility: while editing with clean tokens also re-888

duces ASR, these tokens frequently appear in be-889

nign queries across various contexts, leading to890

unnecessary modifications of the model’s normal891

behaviors. In contrast, harmful tokens are primarily892

concentrated in unsafe queries, allowing for more 893

precise interventions. This explains why editing 894

based on clean tokens leads to significant degrada- 895

tion in MT-Bench scores (see Table 5) - it uninten- 896

tionally affects the model’s processing of legitimate 897

queries where these common tokens naturally oc- 898

cur. In our experiment, we define clean tokens as 899

the third-to-last word in queries. 900

(a) The k of harmful and
clean tokens.

(b) The v of harmful and
clean tokens.

Figure 11: Principal Component Analysis (PCA) visualiza-
tions of k and v at the target layer L of Llama2-7B across
harmful and clean tokens.

Method MT-Bench
GCG

HB AB JBB MI
DELMAN 6.31 0% 0% 0% 1%
DELMAN(clean-token) 5.09(↓) 1% 1% 3% 1%

Table 5: ASR(%) of GCG attack and MT-Bench score on
Llama2-7B comparing vanilla DELMAN and clean-token
DELMAN. Bold: lowest ASR.

D.5 Effectiveness of Sequential DELMAN 901

Method MT-Bench
GCG

HB AB JBB MI
DELMAN 6.31 0% 0% 0% 1%
DELMAN(Sequential-Case1) 6.35 3% 0% 10% 0%
DELMAN(Sequential-Case2) 6.64 4% 5% 6% 0%

Table 6: ASR(%) of GCG attack and MT-Bench score on
Llama2-7B comparing vanilla DELMAN and 4-Edit DELMAN.
Bold: lowest ASR.

E Computing Resources 902

The experiments are carried out on 2 NVIDIA A40 903

GPUs with a total computation time of 680 GPU 904

hours. 905
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Model Defense
GCG AutoDAN PAIR

HB AB JBB MI HB AB JBB MI HB AB JBB MI

Vicuna-7B

Original Model 92% 89% 89% 94% 69% 78% 73% 83% 80% 75% 77% 86%
LoRA 40% 18% 32% 8% 22% 29% 22% 32% 26% 13% 20% 16%

SafeDecoding 7% 4% 3% 1% 17% 20% 18% 8% 16% 8% 15% 11%
LED 3% 6% 34% 5% 11% 9% 8% 10% 4% 5% 6% 5%

DELMAN 11% 2% 17% 1% 4% 2% 8% 5% 10% 5% 11% 5%

Llama2-7B

Original Model 42% 39% 46% 45% 23% 19% 27% 30% 2% 1% 4% 0%
LoRA 13% 2% 50% 32% 1% 0% 1% 0% 2% 0% 2% 0%

SafeDecoding 0% 4% 1% 1% 0% 0% 0% 0% 1% 4% 3% 0%
LED 2% 0% 8% 8% 2% 1% 2% 2% 1% 0% 4% 1%

DELMAN 0% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0%

Table 7: ASR (%) of three jailbreak attacks (GCG, PAIR, AutoDAN) across four datasets on different models, under different
defense methods. Bold: lowest ASR.
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