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ABSTRACT

We present a general framework for evolutionary learning to emergent unbiased
state representation without any supervision. Evolutionary frameworks such as
self-play converge to bad local optima in case of multi-agent reinforcement learning
in non-cooperative partially observable environments with communication due to
information asymmetry. Our proposed framework is a simple modification of self-
play inspired by mechanism design, also known as reverse game theory, to elicit
truthful signals and make the agents cooperative. The key idea is to add imaginary
rewards using the peer prediction method, i.e., a mechanism for evaluating the
validity of information exchanged between agents in a decentralized environment.
Numerical experiments with predator prey, traffic junction and StarCraft tasks
demonstrate that the state-of-the-art performance of our framework.

1 INTRODUCTION

Evolving culture prevents deep neural networks from falling into bad local optima (Bengio, 2012).
Self-play (Samuel, 1967; Tesauro, 1995) has not only demonstrated the ability to abstract high-
dimensional state spaces as typified by AlphaGo (Silver et al., 2017), but also improved exploration
coverage in partially observable environments. Communication (Sukhbaatar et al., 2016; Singh et al.,
2019) exchanges their internal representations such as explored observation and hidden state in RNNs.
Evolutionary learning is expected to be a general framework for creating superhuman AIs as such
learning can generate a high-level abstract representation without any bias in supervision.

However, when applying evolutionary learning to a partially observable environment with non-
cooperative agents, improper bias is injected into the state representation. This bias originates from
the environment. A partially observable environment with non-cooperative agents induces actions
that disable an agent from honestly sharing the correct internal state resulting in the agent taking
actions such as concealing information and deceiving other agents at equilibrium (Singh et al., 2019).
The problem arises because the agent cannot fully observe the state of the environment, and thus, it
does not have sufficient knowledge to verify the information provided by other agents. Furthermore,
neural networks are vulnerable to adversarial examples (Szegedy et al., 2014) and are likely to induce
erroneous behavior with small perturbations. Many discriminative models for information accuracy
are available; these include GANs (Goodfellow et al., 2014; Radford et al., 2016) and curriculum
learning (Lowe et al., 2020). However, these models assume that accurate samples can be obtained
by supervision. Because of this assumption, is it impossible to apply these models to a partially
observable environment, where the distribution is not stable.

We generalize self-play to non-cooperative partially observable environments via mechanism design
(Myerson, 1983; Miller et al., 2005), which is also known as reverse game theory. The key idea is to
add imaginary rewards by using the peer prediction method (Miller et al., 2005), that is, a mechanism
for evaluating the validity of information exchanged between agents in a decentralized environment,
which is calculated based on social influence on the signals. We formulate the non-cooperative
partially observable environment as an extention of the partially observable stochastic games (POSG)
(Hansen et al., 2004); introduce truthfulness (Vickrey, 1961), which is an indicator of the validity
of state representation. We show that the imaginary reward enables us to reflect the bias of state
representation on the gradient without oracles.
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As the first contribution, we propose truthful self-play (TSP) and analytically demonstrate convergence
to the global optimum (Section 4). We propose the imaginary reward on the basis of the peer prediction
method (Miller et al., 2005) and apply it to self-play. The mechanism affects the gradient of the local
optima, but not the global optima. The trick is to use the actions taken by the agents as feedback
to verify the received signal from the every other agent, instead of the true state, input, and intent,
which the agents cannot fully observe. TSP only requires a modification of the baseline function for
self-play; it drastically improves the convergence to the global optimum in Comm-POSG.

As the second contribution, based on the results of numerical experiments, we report that the TSP
achieved state-of-the-art performance for various multi-agent tasks made of up to 20 agents (Section
5). Using predator prey (Barrett et al., 2011), traffic junction (Sukhbaatar et al., 2016; Singh et al.,
2019), and StarCraft (Synnaeve et al., 2016) environments, which are typically used in Comm-POSG
research, we compared the performances of TSP with the current neural nets, including the state-of-
the-art method, with LSTM, CommNet (Sukhbaatar et al., 2016), and IC3Net (Singh et al., 2019).
We report that the model with IC3Net optimized by TSP has the best performance.

This work is the first attempt to apply mechanism design to evolutionary learning. TSP is a general
optimization algorithm whose convergence is theoretically guaranteed for arbitrary policies and
environments. Since no supervision is required, TSP has a wide range of applications to not only
game AIs (Silver et al., 2017), but also the robots (Jaderberg et al., 2018), chatbots (Gupta et al.,
2019; Chevalier et al., 2019), and autonomous cars (Tang, 2019) employed in multiagent tasks.

Notation: Vectors are columns. Let JnK := {1, . . . , n}. R is a set of real numbers. i is the imaginary
unit. Reu and Imu are a real and an imaginary part of complex number u, respectively. n-tuple are
written as boldface of the original variables a := 〈a1, . . . , an〉 , and a−i is a (n− 1)-tuple obtained
by removing the i-th entry from a. Let 1 := (1, . . . , 1)T. Matrices are shown in uppercase letters
L := (`ij). E is the unit matrix. The set of probability distributions based on the support X is
described as P(X ).

2 RELATED WORK

Neural communication has gained attention in the field of multiagent reinforcement learning (MARL)
for both discrete (Foerster et al., 2016) and continuous (Sukhbaatar et al., 2016; Singh et al., 2019)
signals. Those networks are trained via self-play to exchange the internal state of the environment
stored in the working memory of recurrent neural networks (RNNs) to learn the right policy in
partially observable environments.

The term self-play was coined by the game AI community in the latter half of the century. Samuel
(Samuel, 1967) introduced self-play as a framework for sharing a state-action value among two
opposing agents to efficiently search the state space at Checkers. TD-Gammon (Tesauro, 1995)
introduced self-play as a framework to learn TD(λ) (Sutton & Barto, 1998) and achieve professional-
grade levels in backgammon. AlphaGo (Silver et al., 2017) defeated the Go champion by combining
supervised learning with professional game records and self-play. AlphaZero (Silver et al., 2018)
successfully learnt beyond its own performance entirely based on self-play. All these studies explain
that eliminating the bias of human knowledge in supervision is the advantage of self-play.

Self-play is also known as evolutionary learning (Bengio, 2012) in the deep learning community
mainly as an approach to emerging representations without supervision (Bansal et al., 2018; Balduzzi
et al., 2019). Bansal et al. (2018) show that competitive environments contribute to emerging diversity
and complexity. Rich generative models such as GANs (Goodfellow et al., 2014; Radford et al.,
2016) are frameworks for acquiring an environmental model by employing competitive settings.
RNNs such as world models (Ha & Schmidhuber, 2018; Eslami et al., 2018) are capable of more
comprehensive ranges of exploration in partially observable environments and generation of symbols
and languages (Bengio, 2017; Gupta et al., 2019; Chevalier et al., 2019). The difference between
evolutionary learning and supervised learning is the absence of human knowledge and oracles.

Several works have formalized those in which the agents exchange environmental information as
a formal class of the games such as Dec-POMDP-Com (Goldman & Zilberstein, 2003) and COM-
MTDP (Pynadath & Tambe, 2002), and several frameworks are proposed to aim to solve the problems.
However, the limitation of the frameworks is that they assume a common reward. As there are
yet no formal definition of non-cooperative communication game, we formalize such a game to
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Comm-POSG as a superset of POSGs (Hansen et al., 2004), a more general class of multi-agent
games including the cases of non-cooperativity (Hansen et al., 2004).

To the best of our knowledge, there are no studies that have introduced truthful mechanisms into the
field of MARL, but it may be possible to introduce it by using agents that can learn flexibly, such as
neural networks. A typical truthful mechanism is the VCG mechanism (Vickrey, 1961), which is a
generalization of the pivot method used in auction theory, but whereas the subject of the report that
must satisfy truthfulness must be a valuation (or a value function if interpreted from a RL perspective).
In this study, the scope of application is different because the belief states of the environment are
subject to reporting. Therefore, we introduce instead a peer prediction method (Miller et al., 2005)
that guarantees truthfulness with respect to reporting beliefs about arbitrary probability distributions
using proper scoring rules (Gneiting & Raftery, 2007).

3 PROBLEM DEFINITION

3.1 COMM-POSG

A communicative partially-observable stochastic game (Comm-POSG) is a class of non-cooperative
Bayesian games in which every agent does not fully observe the environment but interacts each other.
We define Comm-POSG as an extension of POSG (Hansen et al., 2004) with a message protocol.

Definition 3.1 (Hansen et al., 2004) POSG 〈n, T,S,A,X , T ,P,R〉 is a class for multi-agent decision
making under uncertainty in which the state evolves over time 1 ≤ t ≤ T , where

• n is the number of agents,
• T is a horizon i.e., the episode length,
• S is a set of discrete/continuous state st ∈ S with an initial probabilistic distribution p(s0),
• A is a set of discrete/continuous action ati ∈ A,
• X is a set of discrete/continuous observation xti ∈ X ,
• T ∈ P (S ×A× S) is state transition probability,
• P ∈ P (S × Xn) is an observation probability, and
• R : S ×An → Rn is a reward function that outputs an n-dimensional vector. �

In Comm-POSGs, every agent further follows a message protocol Zn×n, where Z is the dis-
crete/continuous signal space. The complete information exchanged among the agent in time is
Zt, where Zt := (ztij)i,j∈JnK ∈ Zn×n is a signal matrix in which (i, j)-th entry ztij represents a
signal from Agent i to Agent j at t. The i-th diagonal entry of Zt, hti := ztii represents the pre-state,
an internal state of i-th agent before receiving the singals from the others. A game in Comm-POSG is
denoted as G := 〈n, T,S,A,X , T ,P,R,Z〉.
The objective of Comm-POSG is social welfare (Arrow, 1963) defined by the following,

J :=

n∑
i=1

V πi ; V πi := Eπi

[
T∑
t=1

γt−1rti

]
, (1)

where γ ∈ [0, 1] is discount rate, rti is reward πi is a stochastic policy, and V πi is the value function.

In extensive-form games including Comm-POSG, in addition to the information in the environment,
the information of other agents cannot be observed. In the optimization problem under these assump-
tions, a policy converges to a solution called the Bayesian Nash equilibrium (BNE) (Fudenberg,
1993). We denote the social welfare at the BNE is J∗, and the global maximum Ĵ . In general, J∗ 6= Ĵ
holds, which is closely related to the information asymmetry.

3.2 COMMUNICATIVE RECURRENT AGENTS

In order to propose an optimization algorithm in this paper, we do not propose a concrete structure
of the network, but we propose an abstract structure that can cover existing neural communication
models (Sukhbaatar et al., 2016; Singh et al., 2019), namely communicative recurrent agents (CRAs)
〈fφ, σφ, qφ, πθ〉, where
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• fφ(ĥt−1,i, xti) 7→ Z is a deep RNN for the high-dimensional input xti ∈ X and the
previous post-state ĥt−1,i ∈ Z , with a parameter φ and an initial state ĥ0 ∈ Z ,

• σφ(zti|hti) is a stochastic messaging policy for a pre-state hti := fφ(ĥt−1,i, xti),

• qφ(ĥti|ẑti) is a stochastic model for a post-state ĥti ∈ Z and the received messages
ẑti := ZT

t:i = (zt1i, . . . , zt,i−1,i, hti, zt,i+1,i, . . . , ztni)
T, and

• πθ(ati|ĥti) is the stochastic action policy with a parameter θ.

These agents are trained through self-play using on-policy learning such as REINFORCE (Williams,
1992). All n-agents share the same weight per episode, and the weights are updated based on the
cumulative reward after the episode.

In addition to the recurrent agent’s output of actions with the observation series as input, the CRA has
signals for communication as input and output. CRAs estimate current state of the environment and
current value of the agent herself based on the post-state model with the pre-state hti in the hidden
layer of the RNN and the received signals ẑti,−i from other agents. Hence, the veracity of the signals
zti is the point of contention.

3.3 TRUTHFULNESS

In mechanism design, a truthful game (Vickrey, 1961) is a game in which all agents make an honest
reporting in the Bayesian Nash equilibrium. In Comm-POSGs, the truthfulness of the game is
achieved if all the sent signal equals the pre-state ztij = hti i.e., all the agent share a complete
information. In such case, every agent has the same information ẑti = hti := (ht1, . . . , htn)T for all
i’s and the same post-state model probability distribution, and hence the mean of the cross entropy
between the distributions below will be minimized.

Dφ(Zt) :=
1

n

n∑
i=1

H
[
qφ(ĥti|ẑti)

]
+

1

n2

n∑
i=1

n∑
j=1

DKL

(
qφ(ĥti|ẑti) || qφ(ĥtj |ẑtj)

)
. (2)

The first term represents the entropy of knowledge each agent has about the environment, and the
second the information asymmetry between the agents. Dφ is a lower bound on the amount of
true information the environment has H [p(st)]. Since achieving truthfulness is essentially the same
problem as minimizing Dφ, it also maximizes J∗ simultaneously.
Proposition 3.1. (global optimality) For any games G in Comm-POSG, if Dφ(Zt) = H [p(st)] for
0 ≤ t ≤ T andRi is symmetric for any permutation of i ∈ JnK, J∗(G) = Ĵ(G) holds.

Proof. Let w := 〈θ, φ〉 on a parameter space W(G), and W∗(G) the BNE. Since J is obviously
maximized if σφ is truthful, we prove σφ must be truthful under a given condition. To this end, we
show the following Pareto-optimality.
Lemma 3.1. For any G in Comm-POSG and given w, if J(w) ≥ J(w′) holds for any w′ ∈ W(G),
then either of U(w) ≥ U(w′) or DKL (p || qφ) ≤ DKL (p || qφ′) holds, where

U(w) := Eqφ [V πθ ] =

∫
st∈S,ẑt∈Zn

V πθ (st) dqφ(st|hti, zt,−i) dσφ(ẑt). (3)

Proof. The first inequality U(w) ≥ U(w′) indicates that w is on the BNEW∗(G) given φ, and of
the second that the belief state qφ is as close to the true state p as possible. On a fully-observable
environment, from the theorem of value iteration, there exists the solution π?(st) w.r.t. V π

?

(st) for
any st ∈ S. We name π? and V ? := V π

?

the unbiased policy and value, respectively.

Since the unbiased policy solves the objective as J(w) = nEp(st) [V πθ (st)] from Eq (1), the goal
intrinsicly is to find the policy π∗ as close as π? for 〈π∗, φ∗〉 ∈ W(G), that maximizes U(w). The
π∗ further can be represented as a mixed policy made of a couple of the unbiased policy π? and a
biased policy π′ 6= π? as follows,

π∗(ati|xti, φ) = Eqφ(sti|xti) [π?(ati|sti)]
= qφ(st0|xti)π?(ati|st0) + (1− qφ(st0|xti))π′(ati|φ,xti), (4)
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for the observations xti ∈ Xn, where st0 ∈ S is the true state. Hence

V π
∗
(st0|φ) = EP(xti|st0) [qφ(st0|xti)V ?(st0) + (1− qφ(st0|xti))V ′(xti|φ))]

= qφ(st0)V ?(st0) + EP(xti|st0) [(1− qφ(st0|xti))V ′(xti|φ))]

= qφ(st0)V ?(st0) + (1− qφ(st0))V̄ ′(st0|φ), (5)

where

V ′(xti|φ) :=

∫
st∈Sn+1,at∈An

Ri(st0,at)
n∏
i=1

dπ′(ati|sti)qφ(sti|xti), (6)

and

V̄ ′(st0|φ) := EP(xti|st0)

[
V ′(xti|φ)

1− qφ(st0|xti)
1− qφ(st0)

]
. (7)

Thus, the error from the unbiased value function can be written as V ?(st0) − V π∗(st0|φ) = (1 −
qφ(st0))(V ?(st0)− V̄ ′(st0|φ)), which is minimized if qφ(st0) = 1 as V ?(st0) > V̄ ′(st0|φ) by the
definition. From the Jensen’s equation,

logEp(st0) [qφ(st0)] ≥ Ep(st0) [log qφ(st0)]

= −DKL (p || qφ)−H [p] . (8)

The right-hand side of the inequation corresponds to the negative cross-entropy to be maximized.
Therefore, as the second term H [p] depends not on φ, the optimization is achieved by minimizing
DKL (p || qφ). �

Suppose that Ĵ(G) = J(w) > J∗(G) for a non-truthful reporting policy s.t. σφ(h|h) < 1.
From lemma 3.1, qφ(st|hti) for an internal state hti = f(xti) of Agent i with an encoder f
minimizes DKL (p || qφ(st|hti)). As that qφ(st|zti) 6= qφ(st|hti) and DKL (p || qφ(st|zti)) >
DKL (p || qφ(st|hti)) contradicts the Pareto-optimality, σφ must be truthful. �

4 PROPOSED FRAMEWORK

An obvious way to achieve truthful learning is to add Dφ as a penalty term of the objective, but there
are two obstacles to this approach. One is that the new regularization term also adds a bias to the
social welfare J , and the other is that Dφ contains the agent’s internal state, post-state ĥti, so the
exact amount cannot be measured by the designer of the learner. If post-states are reported correctly,
then pre-states should also be reported honestly, and thus truthfulness is achieved. Therefore, it must
be assumed that the post-states cannot be observed during optimization.

Our framework, truthful self-play (TSP), consists of two elements: one is the introduction of imaginary
rewards, a general framework for unbiased regularization in Comm-POSG, and the other is the
introduction of peer prediction method (Miller et al., 2005), a truthful mechanism to encourage honest
reporting based solely on observable variables. In the following, each of them is described separately
and we clarify that the proposed framework converges to the global optimum in Comm-POSG. We
show the whole procedure in Algorithm 1.

4.1 IMAGINARY REWARD

Imaginary rewards are virtual rewards passed from an agent and have a different basis i than rewards
passed from the environment, with the characteristic that they sum to zero. Since the most of RL
environments, including Comm-POSG, are of no other entities than agent and environment, two-
dimensional structure are sufficient to describe them comprehensively if we wish to distinguish the
sender of the reward. To remain the social welfare of the system is real, the system must be designed
so that the sum of the imaginary rewards, i.e., imaginary part of the social welfare, is zero. In other
words, it is not observed macroscopically and affects only the relative expected rewards of agents.
The real and imaginary parts of the complex rewards are ordered by the mass parameter β during
training, which allows the weights of the network to maintain a real structure.

5



Published as a conference paper at ICLR 2023

The whole imaginary reward is denoted as iY = (iyij)i,j∈JnK
1 where iyij is the imaginary reward

passed from Agent i to Agent j, and the complex reward for the whole game is R+ := R + iY
where R is a diagonal matrix with the environmental reward ri as (i, i)-th entry. We write G[iY] as
the structure in which this structure is introduced. In this case, the following proposition holds.
Proposition 4.1. For any G in Comm-POSG, if G[iY] is truthful and R+ is an Hermitian matrix,
J∗(G[iY]) = Ĵ(G) holds.

Proof. Since G[iY] is truthful, J∗(G[iY]) = Ĵ(G[iY]) holds from Proposition 3.1. Further, since
R+ is Hermitian, iyij = −iyji, and hence Im Ĵ(G[iY]) = 0 holds; Ĵ(G[iY]) = Ĵ(G) holds. �

This indicates that the BNE could be improved by introducing imaginary rewards: J∗(G[iY]) ≥
J∗(G). Also, since

∑n
i=1

∑n
j=1 iyij = 0 from the condition that R+ is Hermitian, the imaginary

rewards affect not the social welfare of the system, which is a macroscopic objective, but only the
expected rewards of each agent. The baseline in policy gradient (Williams, 1992) is an example of a
function that affects not the objective when the mean gets zero. However, the baseline function is
a quantity that is determined based on the value function of a single agent, whereas the imaginary
reward is different in that (1) it affects the value function of each agent and (2) it is a meaningful
quantity only when n ≥ 2 and is not observed when n = 1.

4.2 PEER PREDICTION MECHANISM

The peer prediction mechanism (Miller et al., 2005) is derived from a mechanism design using proper
scoring rules (Gneiting & Raftery, 2007), which aims to encourage verifiers to honestly report their
beliefs by assigning a reward measure score to their responses when predicting probabilistic events.
These mechanisms assume at least two agents, a reporter and a verifier.

The general scoring rule can be expressed as F(ps‖s) where ps is the probability of occurrence
reported by the verifier for the event s, and F(ps‖s) is the score to be obtained if the reported event s
actually occurred. The scoring rule is proper if an honest declaration consistent with the beliefs of the
verifier and the reported ps maximizes the expected value of the earned score, and it is strictly proper
if it is the only option for maximizing the expected value. A representative example that is strictly
proper is the logarithmic scoring rule F(ps‖s) = log ps, where the expected value for a 1-bit signal
is the cross-entropy p∗s log ps + (1− p∗s) log(1− ps) for belief p∗s . One can find that ps = p∗s is the
only report that maximizes the score.

Since the proper scoring rule assumes that events s are observable, it is not applicable to problems
such as partial observation environments where the true value is hidden. Miller et al. (2005), who first
presented a peer prediction mechanism, posed scoring to a posterior of the verifiers that are updated
by the signal, rather than the event. This concept is formulated by a model that assumes that an event
s emits a signal z stochastically and infers the type of s by the signal of the reporters who receive it.
The peer prediction mechanism (Miller et al., 2005) is denoted as F(p(s|z)‖s) under the assumption
that (1) the type of event s and the signal z emitted by each type follow a given prior, (2) the priors
are shared knowledge among verifiers, and (3) the posterior is updated according to the reports.

We apply the mechanism to RL, i.e., the problem of predicting the agent’s optimal behavior ati ∼
πθ|st for the true state st ∈ S. In self-play, the conditions of 1 and 2 can be satisfied because the
prior πθ is shared among the agents, and furthermore, the post-state in Comm-POSG corresponds to
3, so that the peer prediction mechanism can be applied to the problem of predicting agent behavior.
To summarize the above discussion, we can see that we can allocate a score matrix Lt as follows,

Lt := (`(ati|ztji))i,j∈JnK; `(ati|ztji) := F(πθ(ati|ztji)‖ati) = log πθ(ati|ztji), (9)

which is an n-order square matrix representing the score from Agent i to Agent j.

4.3 THE TRUTHFUL SELF-PLAY

In TSP, a truthful system is constructed by introducing a proper scoring rule into imaginary rewards.
However, since the score matrix obtained from the proper scoring rule does not satisfy Hermitianity,
we perform zero-averaging by subtracting the mean of the scores from each element of the matrix,

1Note the use of i for imaginary units and i for indices.
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Algorithm 1 The truthful self-play (TSP).
Require: Comm-POSG G = 〈n, T,S,A+,X , T ,P,R+〉, recurrent neural network 〈σφ, qφ, πθ〉

with initial weight w0 = 〈θ0, φ0〉 and initial state h0, learning rate α > 0, and mass parameter
β ≥ 0.

Initialize w← w0.
for each episode do

Genesis: s1 ∼ p(s), ĥ0i ← h0 ∀i ∈ JnK.
for t = 1 to T do

1. Self-Play Observe xt ∼ Pn(·|st),
Update pre-state hti ← fφ(ĥt−1,i, xti), ∀i ∈ JnK.
Generate message zti ∼ σφ(·|hti), ∀i ∈ JnK.
Send message Zt ← (zt1, . . . , ztn)
Receive the message ẑti ← ZT

t:i, ∀i ∈ JnK.
Update post-state ĥti ∼ qφ(·|ẑti), ∀i ∈ JnK.
Act ati ∼ πθ(·|ĥti), ∀i ∈ JnK.
Get the real reward rt ← R(st,at),

2. Compute the score matrix with peer prediction mechanism (Miller et al., 2005),

`ij ←
{

log πθ(aj |zi) (i 6= j)

0 (i = j)
∀i, j ∈ JnK; (12)

3. Combine real and imaginary rewards and construct a complex reward.

R+
t ← Rt + ı∆L . (13)

4. Update the weights by policy gradient (Williams, 1992),

gt ←
n∑
i=1

r+
ti ∇w

[
log πθ(ati|ĥti) + log qφ(ĥti|ẑti) + log σφ(zti|ĥt−1,i, xti)

]
(14)

w← w + αRegt + αβImgt

5. Proceed to the next state st+1 ∼ T (·|st,at).
end for

end for
return w

thereby making the sum to zero. This can be expressed as follows using the graph Laplacian
∆ := E − 11T/n.

Y = ∆Lψ =
1

n


n− 1 −1 . . . −1
−1 n− 1 . . . −1

...
...

. . .
...

−1 −1 . . . n− 1




0 `ψ(at2|zt1) . . . `ψ(atn|zt1)
`ψ(at1|zt2) 0 . . . `ψ(atn|zt2)

...
...

. . .
...

`ψ(at1|ztn) `ψ(at2|ztn) . . . 0

 ,
(10)

to get
R+ = R + i∆Lψ, (11)

which is the formula that connects reinforcement learning and mechanism design.

We show the truthful self-play (TSP) in Algorithm 1. The only modification required from self-play
is the imaginary reward.
Theorem 4.1. (global optimality) For any G in Comm-POSG, TSP converges to the global optimum
Ĵ(G) if the following convergence condition are met,

sup
φ

∣∣∣∣∂ ReV πθ

∂ ImV πθ

∣∣∣∣ < β, (15)
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Table 1: Social welfare J in five Comm-POSG tasks. PP-n: Predator prey and TJ-n: Traffic junction.
All the scores are negatives. The experiment was repeated thrice. The average and standard deviation
are listed. Bold is the highest score. The models listed in the top three rows show the models optimized
by SP, and the bottom row shows IC3Net optimized by TSP.

PP-3 PP-5 TJ-5 TJ-10 TJ-20
SP LSTM 1.92 ± 0.35 4.97 ± 1.33 22.32 ± 1.04 47.91 ± 41.2 819.97 ± 438.7

CommNet 1.54 ± 0.33 4.30 ± 1.14 6.86 ± 6.43 26.63 ± 4.56 463.91 ± 460.8
IC3Net 1.03 ± 0.06 2.44 ± 0.18 4.35 ± 0.72 17.54 ± 6.44 216.31 ± 131.7

TSP IC3Net 0.69 ± 0.14 2.34 ± 0.21 3.93 ± 1.46 12.83 ± 2.50 132.60 ± 17.91

where β <∞ is bounded mass parameter.

Proof (in summary2) From Proposition A.2, [β∆Lψ] is unbiased truthful. Therefore, from Proposition
A.1, convergence to the global optima is achieved. �

5 NUMERICAL EXPERIMENT

In this section, we establish the convergence of TSP through the results of numerical experiments
with deep neural nets. We consider three environments for our analysis and experiments (→ Fig. 1).
(a) a predator prey environment (PP) in which predators with limited vision look for a prey on a
square grid. (b) a traffic junction environment (TJ) similar to Sukhbaatar et al. (2016) in which agents
with limited vision learn to signal in order to avoid collisions. (c) StarCraft: Brood Wars (SC) explore
and combat tasks which test control on multiple agents in various scenarios where agent needs to
understand and decouple observations for multiple opposing units.

a b c

Figure 1: Experimental environments. a: Predator Prey (PP-n) (Barrett et al., 2011). Each agent
receives rti = −0.05 at each time step. After reaching the prey, they receive rti = 1/m, where m
is the number of predators that have reached the prey. b: Traffic Junction (TJ-n) (Sukhbaatar et al.,
2016; Singh et al., 2019). n cars with limited sight inform the other cars of each position to avoid a
collision. The cars continue to receive a reward of rti = −0.05 at each time as an incentive to run
faster. If cars collide, each car involved in the collision will receive rti = −1. c: Combat task in
StarCraft: Blood Wars (SC) (Synnaeve et al., 2016).

We compare the performances of TSP with self-play (SP) and SP with curiosity (Houthooft et al.,
2016) using three tasks belonging to Comm-POSG, comprising up to 20 agents. The hyperparameters
are listed in the appendix. With regard CRAs, three models namely LSTM, CommNet (Sukhbaatar
et al., 2016), and IC3Net (Singh et al., 2019), were compared. The empirical mean of the social welfare
function J was used as a measure for the comparison. IC3Net is an improvement over CommNet,
which is a continuous communication method based on LSTM. Actor-critic and value functions were
added to the baselines in all the frameworks. We performed 2,000 epochs of experiment with 500
steps, each using 120 CPUs; the experiment was conducted over a period of three days.

PP and TJ: Table 1 lists the experimental results for each task. We can see that IC3Net with TSP
outperforms the one with SP for all tasks. Fig. 2 (a) shows that TSP elicits truthful information, and

2Refer Section A for the proofs.
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a b c

Figure 2: Learning curves in three-agent predator prey (PP-3). a Truthfulness, the fraction of steps
that the agent shares a true pre-state (zij = hi), b the real part of the reward, and c the imaginary part.

Table 2: StarCraft Results: TSP beats the baselines. The experiment was repeated thrice. All the
scores are negatives. The average and standard deviation are listed. Bold is the highest score.

StarCraft task CommNet IC3Net IC3Net w/ TSP
Explore-10Medic 50×50 1.592 ± 0.169 2.276 ± 1.427 1.364 ± 0.107
Combat-10Mv3Ze 50×50 3.202 ± 1.382 3.815 ± 0.392 1.717 ± 1.548

(b) confirms that the social welfare of TSP exceeds that of the SPs. (c) confirms that the average of
the imaginary part is zero. From these experimental results, we conclude that the TSP successfully
realized truthful learning and state-of-the-art in tasks comprising 3 to 20 agents.

StarCraft: Table 2 shows a comparison of social welfare in the exploration and combat tasks in
StarCraft. (i) In the search task, 10 Medics find one enemy medic on a 50×50-cell grid; similar to PP,
the reward is a competitive task where the reward is divided by the number of medics found. (ii) In
the combat task, 10 Marines versus 3 Zealots fight on a 50×50 cell grid. The maximum step of the
episode is set at 60. We find that IC3Net, with its information-hiding gate, performs less well than
CommNet but performs better when trained in TSP due to the truthful mechanism.

6 CONCLUDING REMARK

Our objective was to construct a general framework for emergent unbiased state representation
without any supervision. Firstly, we proposed the TSP and theoretically clarified its convergence
to the global optimum in the general case. Secondly, we performed experiments involving up to 20
agents and achieved the state-of-the-art performance for all the tasks. Herein, we summarize the
advantages of our framework.

1. Strong convergence: TSP guarantees convergence to the global optimum theoretically and
experimentally; self-play cannot provide such a guarantee. Besides, the imaginary reward
i∆L satisfies the baseline condition.

2. Simple solution: The only modification required for TSP is that i∆L should be added to
the baseline in order to easily implement it for deep learning software libraries such as
TensorFlow and PyTorch.

3. Broad coverage: TSP is a general framework, the same as self-play. Since TSP is indepen-
dent of both agents and environments and supports both discrete and continuous control, it
can be applied to a wide range of domains. No supervision is required.

To the best of our knowledge, introducing mechanism design to MARL is a new direction for
the deep-learning community. In future work, we will consider fairness (Sen, 1984) as the social
choice function. We expect that many other frameworks will be developed by using the methodology
employed in this study.
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A THEORY

“. . . a human brain can learn such high-level abstractions if guided by the messages
produced by other humans, which act as hints or indirect supervision for these
high-level abstractions; and, language and the recombination and optimization of
mental concepts provide an efficient evolutionary recombination operator, and this
gives rise to rapid search in the space of communicable ideas that help humans
build up better high-level internal representations of their world.” (Bengio, 2012)

Proposition A.1. If [C] is an unbiased truthful mechanism of G, self-play with G[C] converges to
Ĵ(G).

Proof.

Since [C] is unbiased, Eπθ [Ci] = 0 holds. Hence, for an arbitrary baseline b, b+ Ci also satisfies the
baseline condition. Therefore, from the policy gradient theorem (Sutton & Barto, 1998), self-play
converges to J∗(G[C]). Further, since [C] is an unbiased truthful mechanism, J∗(G[C]) = Ĵ(G[C]) =

Ĵ(G) holds from Proposition 3.1. �

A general loss function `ψ : A × Z → R∞ for any strictly concave nonnegative function ψ :
P(A)→ R∞ is defined as follows:

`ψ := Dψ (πθ(aj |zi)‖δ(aj |·)) , (16)

where δ(aj |·) is a point-wise probability that satisfies limε→0

∫
B(ε;ãj)

dδ(aj |ãj) = 1 for an open
ball B(ε; ãj), and Dψ is Bregman divergence (Bregman, 1967) defined by the following equation.

Dψ(p‖q) := ψ(p)− ψ(q) +

∫
∇ψ(q) d(p− q). (17)

Sending a truthful signal is the best response to minimize the expectation of the general loss function.
For example, KL-diveregence is a special case of Bregman divergence when ψ = −H [·], and the
following equation holds.

Eπθ [`ψ] =

∫
Dψ (πθ(aj |zi)‖δ(aj |·)) dπθ(aj |hi)

= DKL (πθ(ai|zi) || πθ(ai|hi)) ≥ 0. (18)

The equality holds if and only if zi = hi. Notice that πθ(ai|hi) = πθ(aj |hi). Now, we generalize the
zero-one mechanism to arbitrary signaling games.

Proposition A.2. (Bregman mechanism) For any signaling games, if supφ ‖ dV πθ/dβIψ‖ < 1,
[ıIψ] is an unbiased truthful mechanism of G ∈ G for a general cost function:

Iψ(a|z) := ∆Lψ(a|z)1 =
n− 1 −1 . . . −1
−1 n− 1 . . . −1

...
...

. . .
...

−1 −1 . . . n− 1

 ·


0 `ψ(a2|z1) . . . `ψ(an|z1)
`ψ(a1|z2) 0 . . . `ψ(an|z2)

...
...

. . .
...

`ψ(a1|zn) `ψ(a2|zn) . . . 0




1
1
...
1

 , (19)

where ∆ := nE − 11T is a graph Laplacian.

Proof.

The problem we dealt with is designing a scoring rule for information that satisfies two properties: 1)
regularity, the score should be finite if the information is sufficiently correct, and 2) properness, the
score should be maximized if and only if the information is true. The well-known example of the
scoring rule is mutual information (MI), which compares a pair of probabilistic distributions p and q
in the logarithmic domain. However, MI cannot apply to continuous actions. Instead, we introduce a
more general tool, the regular proper scoring rule as defined below.
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Definition A.1. (Gneiting & Raftery, 2007) For a set Ω, F(·‖·) : P (Ω) × Ω → R∞ is a regular
proper scoring rule iff there exists a strictly concave, real-valued function f on P (Ω) such that

F (p‖x) = f(p)−
∫

Ω

f∗(p(ω), x) dp(ω) + f∗(p, x) (20)

for p ∈ P (Ω) and x ∈ Ω, where f∗ is a subgradient of f that satisfies the following property,

f(q) ≥ f(p) +

∫
Ω

f∗(p, ω) d(q − p)(ω) (21)

for q ∈ P (Ω). We also define F for q ∈ P (Ω) as F (p‖q) :=
∫

Ω
F (p‖x) dq(x), and describe a set

of regular proper scoring rules B.

For F ,F1,F2 ∈ B, the following property holds (Gneiting & Raftery, 2007).

1. Strict concavity: if q 6= p, then F(q‖q) > F(p‖q).
2. F1(p‖q) + aF2(p‖q) + f(q) ∈ B where a > 0 and f are not dependent on p.
3. −Dψ ∈ B, where Dψ is the Bregman divergence.

Lemma A.1. For any F ∈ B and a function `F defined as shown below, if supφ ‖ dV πθ /dβ`ψ‖ < 1,
then [ı`F ] is a truthful mechanism of G.

`F (aj |zi) :=

{
−F (πθ(aj |zi)‖aj) (i 6= j)

0 (i = j)
. (22)

Proof. We prove that the surrogate objective of G[ı`F ], V πθβ := V πθ − β`F is strictly concave, and
if ∇φV πθβ = 0, then zi = hi with probability 1. We denote φ̂ as the truthful parameter where
σφ̂(hi|hi) = 1. The policy gradient for φ is

∇φV πθβ dqφ =∇φV πθ dqφ + β∇φ
∫
F (πθ(aj |zi)‖aj) dπθ dqφ

=∇φV πθ dqφ + β∇φF (πθ(aj |zi)‖πθ(aj |hi)) dqφ. (23)

First, we consider the local optima, i.e., ∇φV πθ dqφ = 0 and φ 6= φ̂. For Gâteaux differential with
respect to ~φ := (φ̂−φ)T/‖φ̂−φ‖, ~φ∇V πθβ = β ~φ∇`ψ > 0 holds from the strict concaveity. At the

global optima i.e., ∇φV πθ dqφ = 0 and φ = φ̂, ∇φV πθβ = β∇`ψ = 0 holds. Next, if ~φ∇V πθ < 0,
as supφ ‖dV πθ / d`F‖ < β, the following equation holds for φ 6= φ̂.

~φ∇V πθβ dqφ = ~φ (∇V πθ + β∇`F ) dqφ

> ~φ∇V πθ dqφ + sup
φ

∥∥∥∥ dV

d`F

∥∥∥∥ ~φ∇`F dqφ

≥ ~φ∇V πθ dqφ − inf
φ

(~φ∇V πθ ) dqφ ≥ 0. (24)

Hence, ~φ∇V πθβ ≥ 0 holds, and the equality holds if and only if φ = φ̂. Therefore, V πθβ is strictly
concave, and the following equation holds for αk ∈ o(1/k).

lim
K→∞

K∑
k=1

∇φV πθβ (φk)

‖∇φV πθβ (φk)‖
αk = φ̂. (a.s.) � (25)

Iψ is defined for both discrete and continuous actions. Table 3 lists examples of scoring rules `ψ for
arbitrary actions. In particular, minimizing `ψ for continuous action is known as probability density
estimation (Gneiting & Raftery, 2007).

−Iψ is a proper scoring rule (Gneiting & Raftery, 2007) since it is a linear combination of Bregman
divergence. Hence, from Lemma A.1, [iIψ] is truthful. Besides, since 1TIψ = 1T∆Lφ1 = 0, [iIψ]
is unbiased. �
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Table 3: Examples of the scoring rules, where κ > 1, ‖p‖κ = (
∫
p(a)κ da)1/κ. Readers can refer to

(Gneiting & Raftery, 2007) for examples of many other functions.
A Z ψ(p) `ψ(a|z)

Zero-one Discrete Discrete −p −πθ(a|z)
Logarithmic Discrete Continuous −H [p] − log πθ(a|z)
Quadratic Discrete D/C

∑
a∈A p(a)2 − 1 2πθ(a|z)− ψ(πθ(·|z))− 2

(Brier, 1950) Continuous D/C ‖p‖22 2πθ(a|z)− ‖πθ(·|z)‖22
Pseudospherical Discrete Continuous (

∑
a∈A p(a)κ)1/κ πθ(a|z)κ−1/ψ(πθ(·|z))κ−1

(Good, 1952) Continuous Continuous ‖p‖κ−1
κ πθ(a|z)κ−1/‖πθ(·|z)κ‖κ−1

κ

Figure 3: Left: One-bit two-way communication game G2
com. S = A = {0, 1},X = S ∪ {◦},

and p(s) = 1/2. Agents are given correct information from the environment with a probability of
λ > 0: P(s|s) = λ, P(◦|s) = 1− λ. qi(s|xi, zj) follows a Bernoulli distribution and estimates the
state p(s) of the environment from observations and signals zj ∈ Z = X . Let hi = xi. Right: An
example of the non-cooperative solutions: s = 1, x = 〈◦, 1〉, z = 〈◦, 0〉, a = 〈0, 1〉, r = 〈−1, 1〉 and
r1 + r2 = 0 < 2c.

Theorem A.1. (global optimally) For any G in Comm-POSG, TSP converges to the global optimum
Ĵ(G) if the following convergence condition are met,

sup
φ

∣∣∣∣∂ ReV πθ

∂ ImV πθ

∣∣∣∣ < β, (26)

where β <∞ is bounded mass parameter.

Proof.

From Proposition A.2, [ıIψ] is unbiased truthful. Therefore, from Proposition A.1, convergence to
the global optima is achieved. �

A.1 SELF-PLAY CONVERGES TO LOCAL OPTIMA

Theorem A.2. If G ∈ G is non-truthful, self-play does not converge to the global optimum Ĵ(G).

Proof.

Example A.1. (One-bit two-way communication game) Fig. 4 shows an example of a non-cooperative
partially observable environment with 1-bit state. The reward structure is presented in Table 4. The
sum of rewards is maximized when both agents report the correct state to the environment,

n∑
i=1

Rni (s,a) =

{
2c (a1 = a2 = s)

0 (otherwise)
.

Hence, the objective varies in the range 0 ≤ J(G2
com) ≤ 2c.

Proposition A.3. If c < 1, J∗(G2
com) < Ĵ(G2

com) holds.

Proof.
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Table 4: G2
com’s reward functionR2(s,a). c > 0 is a constant that determines the nature of the game.

a2

True False
(r1, r2) s 1− s

a1
T s (c, c) (1,−1)
F 1− s (−1, 1) (0, 0)

Since p(s) = 1/2, we can assume s = 1 without loss of generality. Besides, we discuss only
Agent 1 because of symmetry. From Z = {0, 1}, Agent 1’s messageling policy σ1 sends the correct
information x or false information 1 − x when it knows x. Hence, we can represent the policy by
using parameter φ ∈ [0, 1] as follows.

σφ(z|x) =

{
φz(1− φ)1−z (x = 1)

1/2 (x = ◦) , (27)

Differentiating σφ with φ gives the following.

dσφ
dφ

=

{
2z − 1 (x = 1)

0 (x = ◦) G
2
com. (28)

Therefore, from Eq (??), if 〈π∗, ·〉 ∈ W∗(G2
com), then the policy gradient for φ is as follows.

d

dφ
U(π∗, φ) =

d

dφ

∫
V ∗1 dq1 dσ1 dP dp =

∫
V ∗1 dq1

dσ1

dφ
dP dp

=λ

∫
V ∗1 (2z1 − 1) dz1

∣∣∣∣
s=x1=1

=λ

∫
(2z1 − 1)R1 dπ∗1 dπ∗2 dq2 dz1 dP

∣∣∣∣
s=x1=1

=λ(1− λ)

∫
(2z1 − 1)R1 dπ∗1 dπ∗2 dq2 dz1

∣∣∣∣
s=x1=1,x2=◦

=λ(1− λ)

1∑
z1=0

(2z1 − 1)R1(s, 〈x1, z1〉)

∣∣∣∣∣
s=x1=1

=λ(1− λ) [R1(1, 〈1, 1〉)−R1(1, 〈1, 0〉)]
=λ(1− λ)(c− 1) < 0. (29)

As the policy gradient is negative from the assumption of c ∈ (0, 1), φ∗ = 0 gets the Nash equilibrium
from φ ≥ 0, thereby resulting in always sending false information to the opposite:

σφ∗(z|x) =

{
1− z (x = 1)

1/2 (x = ◦) . (30)

Let J〈x1, x2〉 := J |x=〈x1,x2〉. We can get J∗ and Ĵ as follows.

J∗ =

∫
J∗〈x1, x2〉dP2 dp

= J∗〈1, 1〉λ2 + J∗〈1, ◦〉 · 2λ(1− λ) + J∗〈◦, ◦〉(1− λ)2

= 2cλ2 + 0 + 2c/22 · (1− λ)2

= 2c

[
λ2 +

1

4
(1− λ)2

]
, (31)
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and

Ĵ =

∫
Ĵ〈x1, x2〉dP2 dp

= Ĵ〈1, 1〉λ2 + Ĵ〈1, ◦〉 · 2λ(1− λ) + Ĵ〈◦, ◦〉(1− λ)2

= 2cλ2 + 2c · 2λ(1− λ) + 2c/22 · (1− λ)2

= 2c

[
λ2 + 2λ(1− λ) +

1

4
(1− λ)2

]
, (32)

respectively. Therefore, Ĵ − J∗ = 4cλ(1− λ) > 0, and J∗ < Ĵ holds. �

From Proposition A.1, G = G2
com is the counterexample that global optimally does not occur. �

A.2 ZERO-ONE MECHANISM SOLVES G2
com .

Proposition A.4. (zero-one mechanism) Let ` : A × Z → {0, 1} be a zero-one loss between an
action and a message `(ai|zj) := aj(1− zi) + (1− ai)zi, and

I(a|z) :=

[
1 −1
−1 1

] [
0 `(a2|z1)

`(a1|z2) 0

] [
1
1

]
. (33)

If β > (1 − c)(1 − λ)/λ, then [iI] is an unbiased truthful mechanism of G2
com, and self-play with

G2
com[ıI] converges to the global optima Ĵ(G2

com) = 2c[1− 3/4 · (1− λ)2].

Proof.

The following equation holds.

d

dφ
V ∗β,1 dq1 =

d

dφ

∫
(V ∗1 − βI1 dπ∗2 dq2) dq1

=− λ(1− λ)(1− c)− β
∫
I1 dπ∗2 dq1 dq2

dσ1

dφ
dσ2 dP2 dp

=− λ(1− λ)(1− c)− βλ
∫
I1 dπ∗2 dq2(2z1 − 1) dz1 dσ2 dP

∣∣∣∣
s=x1=1

=− λ(1− λ)(1− c)− βλ2

∫
(2z1 − 1)`(a2|z1) dπ∗2 dq2 dz1

∣∣∣∣
s=x1=x2=1

=− λ(1− λ)(1− c)− βλ2
1∑

z1=0

(2z1 − 1)`(1|z1)

=− λ(1− λ)(1− c)− βλ2(`(1|1)− `(1|0))

=− λ(1− λ)(1− c) + βλ2

=λ2

[
ı− (1− c)1− λ

λ

]
. (34)

Therefore, if β > (1− c)(1− λ)/λ, then φ∗ = 1 holds, and J∗ = Ĵ holds. The value of Ĵ is clear
from the proof of Lemma A.1. �

[ıI] is also known as the peer prediction method (Miller et al., 2005), which is inspired by peer review.
This process is illustrated in Fig. 4 Left, and the state-action value functions are listed in Fig. 4 Right.

B COMPLEXITY ANALYSIS

Although the computational complexity of βIψ per iteration is O(n3) as it involves the multiplication
of n-order square matrices, we can reduce it to O(n2) to obtain Iψ = nLψ − 1TLψ1. The spatial
complexity is O(n2), and the sample size is O(n).
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z2
True False Unobserved

T (c, c) (c+ β, c− β) (c, c)
z1 F (c− β, c+ β) (c, c) (1,−1)

U (c, c) (−1, 1) (c/4, c/4)

Figure 4: Left: The information released by one agent i is verified by another agent, and if the infor-
mation is incorrect, a penalty is given. Right: State-action value function of G2

com[iI]: Qi(si, 〈zi, ·〉).

C EXPERIMENTAL ENVIRONMENTS

In the experiment, we used two partial observation environments. This setting is the same as that
adopted in existing studies (Sukhbaatar et al., 2016; Singh et al., 2019). Fig. 1 shows the environments.

C.1 PREDATOR PREY (PP)

Predator-Prey (PP) is a widely used benchmark environment in MARL (Barrett et al., 2011;
Sukhbaatar et al., 2016; Singh et al., 2019). Multiple predators search for prey in a randomly
initialized location in the grid world with a limited field of view. The field of view of a predator is
limited so that only a few blocks can be seen. Therefore, for the predator to reach the prey faster, it
is necessary to inform other predators about the prey’s location and the locations already searched.
Thus, the prey’s location is conveyed through communication among the predators, but predators can
also send false messages to keep other predators away from the prey.

In this experiment, experiments are performed using PP-3 and PP-5, which have two difficulty levels.
In PP-3, the range of the visual field is set to 0 in a 5× 5 environment. In PP-5, the field of view is
set to 1 in a 10× 10 environment. The numbers represent the number of agents.

C.2 TRAFFIC JUNCTION (TJ)

Traffic Junction (TJ) is a simplified road intersection task. An n body agent with a limited field of
view informs the other bodies of its location to avoid collisions. In this experiment, the difficulty
level of TJ is changed to three. TJ-5 solves the task of crossing two direct one-way streets. For TJ-10,
there are two lanes, and each body can not only go straight, but also turn left or right. For TJ-20,
the two-lane road will comprise two parallel roads, for a total of four intersections. Each number
corresponds to n.

In the initial state, each vehicle is given a starting point and a destination and is trained to follow a
determined path as fast as possible while avoiding collisions. The agent is in each body and takes two
actions, i.e., accelerator and brake, in a single time step. It is crucial to ensure that other vehicles do
not approach each other to prevent collision while making good use of multiagent communication.
That is similar to blinkers and brake lights.

C.3 STARCRAFT: BLOOD WARS (SC)

Explore: In order to complete the exploration task, the agent must be within a specific range (field
of view) of the enemy unit. Once the agent is within the enemy unit’s field of view, it does not take
any further action. The reward structure of the enemy unit is the same as the PP task, with the only
difference being that the agent The point is that instead of being in the same place, you explore the
enemy unit’s range of vision and get a non-negative reward. Medic units that do not attack enemy
units are used to prevent combat from interfering with the mission objective. For observation, for
each agent, it is the agent’s (absolute x, absolute y) and the enemy’s (relative x, relative y, visible),
where visiblea is a visual range. If the enemy is not in exploration range, the relative x and relative y
are zero. The agent has nine actions to choose from: eight basic directions and one stay action.
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Combat: Agents make their own observations (absolute x, absolute y, health point + shield, weapon
cooldown, previous action) and (relative x, relative y, visible, health point + shield, weapon cooldown).
Relative x and y are only observed when the enemy is visible, corresponds to a visible flag. All
observations are normalized to lie between (0, 1). The agent must choose from 9+M actions, including
9 basic actions and 1 action to attack M agents. The attack action is only effective if the enemy is
within the agent’s view, otherwise is a no-problem. In combat, the environment doesn’t compare to
Starcraft’s predecessors. The setup is much more difficult, restrictive, new and different, and therefore
not directly comparable.

In Combat task, we give a negative reward rtime = −0.01 at each time step to avoid delaying the
enemy team’s detection. When an agent is not participating in a battle, at each time step, the agent is
rewarded with (i) normalized health status at the current and previous time step, and (ii) normalized
health status at the previous time step displays the time steps of the enemies you have attacked so far
and the current time step. The final reward for each agent consists of (i) all remaining health * 3 as a
negative reward and (ii) 5 * m + all remaining health * 3 as a positive reward if the agent wins. Give
health*3 to all living enemies as a negative reward when you lose. In this task, a group of enemies is
randomly initialized in half of the map. Thus the other half making communication-demanding tasks
even more difficult.

D HYPERPARAMETERS

Table 5: Hyperparameters used in the experiment. β are grid searched in space {0.1, 1, 10, 100}, and
the best parameter is shown. The other parameters are not adjusted.

Notation Value
Agents n {3, 5, 10, 20}
Observation xti ∈ X R9

Internal state hti ∈ H R64

Message zti ∈ Z R64

Actions ati ∈ A {←, ↑, ↓,→, astop}
True state st ∈ S {0, 1}25∼400

Episode length T 20
Learning rate α 0.001
Truthful rate β 10
Discount rate γ 1.0
Metrics ψ −H [·]
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