
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SUPERVISED BATCH NORMALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Batch Normalization (BN), a widely-used technique in neural networks, enhances
generalization and expedites training by normalizing each mini-batch to the same
mean and variance. However, its effectiveness diminishes when confronted with
diverse data distributions. To address this challenge, we propose Supervised Batch
Normalization (SBN), a pioneering approach. We expand normalization beyond
traditional single mean and variance parameters, enabling the identification of data
modes prior to training. This ensures effective normalization for samples sharing
common features. We define contexts as modes, categorizing data with similar
characteristics. These contexts are explicitly defined, such as domains in domain
adaptation or modalities in multimodal systems, or implicitly defined through
clustering algorithms based on data similarity. We illustrate the superiority of
our approach over BN and other commonly employed normalization techniques
through various experiments on both single and multi-task datasets. Integrating
SBN with Vision Transformer results in a remarkable 15.13% accuracy enhance-
ment on CIFAR-100. Additionally, in domain adaptation scenarios, employing
AdaMatch demonstrates an impressive 22.25% accuracy improvement on MNIST
and SVHN compared to BN.

1 INTRODUCTION

In the realm of deep learning, input normalization is essential for optimizing the training process of
deep neural networks (DNNs) by addressing the variations in feature magnitudes. This method has
been shown to accelerate convergence in neural networks with a single hidden layer, as highlighted
by LeCun et al. LeCun et al. (2002). However, its efficacy diminishes in more complex architectures
with multiple hidden layers. This decline is due to the progressive transformation of data through
successive layers, which causes activations to diverge from the properties of the initially normalized
inputs. To address this challenge, normalizing activations during training has become a critical ap-
proach. By ensuring that the statistical properties of activations remain consistent across all layers,
this strategy facilitates stable and efficient training of deep neural networks. Consequently, this prac-
tice not only enhances the convergence rate but also significantly improves the overall performance
of the model.
Batch Normalization (BN) Ioffe & Szegedy (2015), a popular activation normalization technique,
stabilizes the optimization process by normalizing feature statistics within a batch. Despite its
widespread success, Batch Normalization (BN) has notable drawbacks due to its reliance on mini-
batch statistics. While the variability in batch statistics can enhance robustness and generalization, it
also leads to issues when the mean and variance estimates are inaccurate. This is particularly prob-
lematic with heterogeneous data and small batch sizes, which can cause BN to fail in effectively
normalizing activations. In such cases, BN struggles to normalize activations using a single mean
and variance Wu & He (2018); Bilen & Vedaldi (2017); Deecke et al. (2018).
To overcome these limitations, we introduce Supervised Batch Normalization (SBN). SBN assigns
samples in a mini-batch to different modes using predefined groups called contexts, then normalizes
each sample based onin neural networks, enhances generalization and expedites train- the statistics
of its corresponding context. Instead of relying on random mini-batches, SBN utilizes contexts
that group similar samples through domain knowledge or clustering algorithms. The proposed
method can be seamlessly integrated as layers in standard deep learning libraries. We evaluated
SBN on various classification tasks and demonstrated that it consistently outperforms BN and other
widely used normalization techniques.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2 RELATED WORK

2.1 NORMALIZATION METHODS

Batch normalization (BN) Ioffe & Szegedy (2015) is the most common normalization technique
in cutting-edge classification architectures. Recently, new alternatives have emerged to broaden its
applicability and enhance its generalizability. Batch Renormalization Ioffe (2017) is an extension
of BN that addresses the issue of varying mini-batch statistics during training. Weight Normaliza-
tion Salimans & Kingma (2016) reparameterizes the weight vectors in a neural network by sepa-
rating their magnitude and direction. This technique simplifies the optimization process and often
results in faster convergence during training. It introduces additional parameters to stabilize training
by aligning the statistics of the current mini-batch with the moving averages of the training data.
Layer Normalization Ba et al. (2016) is a technique that normalizes samples across the features for
each individual example, rather than across the min-batch. This approach helps stabilize the hidden
states in recurrent neural networks and improves training efficiency by eliminating the dependency
on mini-batch size. Instance Normalization Ulyanov et al. (2016) normalizes samples across each
feature map for individual examples, making it particularly effective for style transfer tasks. By
focusing on the statistics of single instances, it helps preserve stylistic details and achieve more con-
sistent visual outputs. Group Normalization Wu & He (2018) divides the channels of each layer into
smaller groups and normalizes the features within each group. This method provides stable training
benefits similar to BN but is less sensitive to mini-batch size, making it suitable for tasks with small
mini-batch sizes. Mode Normalization Luo et al. (2019) adjusts the normalization process based
on the mode of the feature distributions instead of their mean. This method aims to better handle
skewed data distributions, resulting in improved training stability and model performance. Mixture
Normalization Kalayeh & Shah (2019) addresses the limitations of BN in capturing the complex
variations present in deep neural network activations. By leveraging Gaussian Mixture Models to
assign samples to components and normalize based on multiple means and standard deviations,
MN adapts to the diverse modes of variation inherent in the data distribution. RMSNorm Zhang &
Sennrich (2019) extends Layer Normalization by utilizing the root mean square (RMS) of the acti-
vations within each layer. This method aims to stabilize training by normalizing activations based
on their magnitudes, providing a robust normalization technique for deep neural networks. Unsuper-
vised Batch Normalization Koçyigit et al. (2020) (UBN) leverages unlabeled examples to compute
mini-batch statistics, addressing the challenge of bias on small datasets and offering regularization
benefits from data manifold exploration. UBN demonstrates efficacy in tasks like monocular depth
estimation, particularly beneficial where obtaining dense labeled data is challenging and costly.
While all these variants enhance the usability and stability of BN, our approach appears to be the first
to extend BN by incorporating contexts, predefined groups of samples with shared characteristics,
for normalization purposes.

2.2 INCORPORATING MULTIPLE MODES FOR EFFECTIVE NORMALIZATION

BN has been widely adopted in deep learning architectures to improve training stability and conver-
gence. However, BN’s assumption that the entire mini-batch should be normalized with the same
mean and variance poses challenges, especially in the face of diverse data distributions. This as-
sumption can lead to suboptimal performance, particularly on datasets with varying characteristics.
Recent research has highlighted the limitations of this assumption, emphasizing the importance of
accommodating multiple modes of variation within the data distribution. Approaches such as Mix-
ture Normalization Kalayeh & Shah (2019), which employs Gaussian Mixture Models to capture
multiple means and variances associated with different modes of variation, have been proposed to
address this issue. Similarly, studies like Luo et al. Luo et al. (2019) have underscored the necessity
of considering diverse data distributions and employing multiple mean and variance estimates for
effective normalization. These insights emphasize the importance of moving beyond the simplistic
assumptions of BN to better accommodate the complexities of real-world datasets.

3 METHOD

We begin by examining the formulations of BN with a single mode in Section 3.1, followed by an
exploration of BN with multiple modes in Section 3.2. Finally, we present our method in Section 3.3.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3.1 BATCH NORMALIZATION WITH SINGLE MODE

Given an input mini-batch of height H and width W with N samples and C channels, represented
as x ∈ RN×C×H×W , BN normalizes each sample along the channel dimensions as follows:

x̂n = γ

(
xn − µ√
σ2 + ϵ

)
+ β, (1)

where µ and σ2 represent the mean and variance respectively. Parameters γ and β are C-dimensional
vectors aimed at learning an affine transformation along the channel dimensions, thereby preserving
the representative capacity of each layer. while ϵ > 0 serves as a small value to mitigate numerical
instability.
The moving average of the mean µ̄ and variance σ̄2 are updated using a momentum rate α during
training and used to normalize feature maps during inference:

µ̄ = αµ̄+ (1− α)µ (2)

σ̄2 = ασ̄2 + (1− α)σ2 (3)
When the samples within the mini-batch are drawn from the same distribution, the operation
outlined in Equation 1 results in a distribution characterized by a mean of zero and a variance of
one. This requirement for zero mean and unit variance acts to stabilize the activation distribution,
thereby facilitating the training process. However, in scenarios where the samples stem from
diverse distributions, a single mean and variance may prove insufficient, necessitating the adoption
of strategies involving multiple modes (i.e., employing multiple means and variances) to achieve
optimal results Kalayeh & Shah (2019); Luo et al. (2019).

3.2 BATCH NORMALIZATION WITH MULTIPLE MODES

The heterogeneous nature of complex datasets necessitates extending BN to multiple modes, en-
abling a more flexible and effective approach to normalization. A popular method that facilitates
this is Mixture Normalization (MN) Kalayeh & Shah (2019). MN approaches BN from the perspec-
tive of Fisher kernels, derived from generative probability models. Instead of computing a single
mean and variance across all samples within a mini-batch, MN employs a Gaussian Mixture Model
(GMM) to assign each sample in the mini-batch to a component, then normalizes using multiple
means and variances associated with different modes of variation in the underlying data distribution.
Considering K components, MN is implemented in two stages:

• Estimation of the mixture model’s parameters θ = {λk, µk, σ
2
k : k = 1, . . . ,K} using the

Expectation-Maximization (EM) algorithm Dempster et al. (1977).
• Normalization of each sample based on the estimated parameters and aggregation using

posterior probabilities.

For a given input mini-batch x ∈ RN×C×H×W , each sample xn is normalized along the channel
dimensions as follows:

x̂n = γ

(
K∑

k=1

p(k|xn)√
λk

.
xn − µk√
σ2
k + ϵ

)
+ β, (4)

where

p(k|xn) =
λkp(xn|k)∑K
j=1 λjp(xn|j)

represents the probability that xn has been generated by the kth Gaussian component, with p(xn|k)
and λk denoting the density function of the Gaussian distribution and the mixture coefficient, respec-
tively. The estimators for the mean µk and variance σ2

k are computed by weighting the contributions
of xn (p(k|xn)∑

j p(j|xn)
) with respect to the mini-batch when estimating the statistical measures of the k-th

Gaussian component. Specifically, the k-th mean and variance are estimated from the mini-batch as
follows:

µk =
∑
n

p(k|xn)∑
j p(j|xn)

· xn (5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

σ2
k =

∑
n

p(k|xn)∑
j p(j|xn)

· (xn − µk)
2 (6)

Multiple modes normalization methods extend Batch Normalization (BN) to heterogeneous com-
plex datasets and often yield superior performance in supervised learning tasks. However, they are
frequently computationally expensive due to tasks such as estimating different modes, such as the
EM algorithm in Mixture Normalization (MN), and employing mixtures of experts Jordan & Jacobs
(1994); Jacobs et al. (1991) in Mode Normalization.
To address the challenge of multiple modes and reduce computational costs compared to existing
methods, we propose an approach that leverages prior knowledge to construct modes. This method
significantly reduces costs while maintaining or even enhancing performance.

3.3 SUPERVISED BATCH NORMALIZATION

Our proposed method, SBN, introduces a novel approach to enhance neural network training
efficiency. SBN operates by initially grouping samples into K distinct contexts prior to training.
Subsequently, during the training process, samples belonging to the same context k within a given
mini-batch are normalized using identical parameters µk and σ2

k. By leveraging these predefined
contexts, each comprising samples with similar characteristics, SBN effectively introduces multiple
modes without incurring the computational overhead associated with estimating them during neural
network training. This approach streamlines the normalization process and significantly reduces
computational costs, thereby enhancing training efficiency and overall model performance.

3.3.1 UNDERSTANDING CONTEXT: DEFINITION AND CONSTRUCTION METHODS

Context serves as the foundational element within SBN, representing groups of samples sharing
similar characteristics. Our approach offers diverse methods for context construction:

• For domain adaptation tasks Zhang et al. (2021); Qi et al. (2020); Li et al. (2020), each
domain is treated as a distinct context.

• In datasets featuring additional hierarchical structures, such as CIFAR-100 Krizhevsky
et al. (2009a) or the Oxford-IIIT Pet dataset Parkhi et al. (2012), we designate each
superclass as a separate context.

• For datasets lacking predefined contextual structures, we employ clustering algorithms like
k-means Arthur & Vassilvitskii (2007) to partition samples into clusters, with each cluster
forming an individual context.

This multifaceted approach ensures flexible and comprehensive context formation, vital for the
effective implementation of SBN across various domains and datasets.

3.3.2 TRAINING AND INFERENCE WITH SUPERVISED BATCH NORMALIZED NETWORKS

Consider x ∈ RN×C×H×W as a given input mini-batch and K as the number of defined contexts.
To normalize x, we first partition the samples in x into K groups based on their contexts, with each
group x(k) containing samples that belong to context k. Each sample xn in x(k) is normalized using
the same mean µk and variance σ2

k as given by Equation 4. Since each xn belongs to a single known
context, p(k|xn) = 1 if xn is in context k and p(k|xn) = 0 otherwise. Consequently, Equation 4
simplifies to:

x̂n = γ

(
1√
λk

.
xn − µk√
σ2
k + ϵ

)
+ β, (7)

where λk represents the proportion of samples in the dataset belonging to context k. The mean and
variance are then defined as follows:

µk =
1

Nk
·

Nk∑
n=1

xn (8)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1: Supervised Batch Normalization, training and inference phases

Input : x = {xn}Nn=1 : mini-batch of N samples; K: number of contexts; {γ, β}: scale and
shift learnable parameters; ϵ: small value; α: momentum; {λk}Kk=1: proportion of
samples in each context k; mode={Training, Inference}

Output: Normalized mini-batch {x̂n}Nn=1
// Training phase
if mode = Training then

for k ← 1 to K do
• Select the Nk samples x(k) from x that

belong to context k
• Compute the mean and variance:

µk =
1

Nk
·

Nk∑
n=1

xn

σ2
k =

1

Nk
·

Nk∑
n=1

(xn − µk)
2

• Normalize each xn in x(k) :

x̂n = γ(
1√
λk

.
xn − µk√
σ2
k + ϵ

) + β

• Compute the moving average of the mean
and variance:

µ̄k = αµ̄k + (1− α)µk

σ̄2
k = ασ̄2

k + (1− α)σ2
k

end
Replace the input mini-batch with the normalized mini-batch
Return: {x̂n}Nn=1

end
// Inference phase
if mode = Inference then

if contexts are known then
for k ← 1 to K do

• Select all xn from x
that belong to context k

• x̂n = γ

(
1√
λk

. xn−µ̄k√
σ̄2
k+ϵ

)
+ β

end
end
if contexts are not known then

• Select all xn from x

• x̂n = γ

(∑K
k=1

p(k|xn)√
λk

. xn−µ̄k√
σ̄2
k+ϵ

)
+ β

end
Replace the input mini-batch with the normalized mini-batch
Return: {x̂n}Nn=1

end

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

σ2
k =

1

Nk
·

Nk∑
n=1

(xn − µk)
2 (9)

where Nk is the number of samples in the mini-batch that belong to context k.
The moving averages of the mean µ̄ and variance σ̄2 are updated with a momentum rate α during
training. These updated values are then utilized to normalize feature maps during inference:

µ̄k = αµ̄k + (1− α)µk (10)

σ̄2
k = ασ̄2

k + (1− α)σ2
k (11)

In the case where K = 1, it can be noted that SBN is equivalent to BN with a single mode.

During inference, for a given sample xn, there are two possible normalization approaches. If the
context of xn is known and identified as k, we normalize it using Equation 7 with the context-
specific mean µ̄k and variance σ̄2

k. On the other hand, if the context of xn is unknown, we normalize
it using Equation 4, which aggregates the normalization parameters across all K contexts. This en-
sures that the sample is appropriately normalized regardless of whether its specific context is known.

The detailed steps for the training and inference phases of SBN are provided in Algorithm 1.
This algorithm meticulously outlines the procedures for both phases, demonstrating how SBN
normalizes mini-batches by leveraging context-specific grouping.

SBN extends BN to multiple modes without added cost by leveraging pre-defined contexts before
training. Experiments on small datasets and classification tasks show improved convergence and
performance compared to BN and other multi-mode normalization methods.

4 ANALYZING SBN IN A SIMPLIFIED SCENARIO

To demonstrate the principles behind SBN and its distinctions from BN, we conduct an experiment
using a toy example. We train a simple 4-layer convolutional network with BN layers on the
CIFAR-10 dataset Krizhevsky et al. (2009b). This dataset’s simplicity allows for a deeper analysis,
which would be challenging with a more complex task. For comparison, we create another model by
replacing BN layers with SBN layers. To construct contexts for SBN, we use k-means clustering and
vary the number of contexts across K = {2, 4, 6, 8}. Training is conducted on 50,000 data points
with a fixed mini-batch size of 256. All models are trained for 100 epochs using the AdamW opti-
mizer Loshchilov & Hutter (2017); Kingma & Ba (2014), with a weight decay parameter set to 10−4.

Table 1 demonstrates that SBN outperforms standard BN, indicating that incorporating multiple
contexts is an effective method for normalizing intermediate features, even when the data is not
heterogeneous.

Increasing the number of contexts K does not affect performance, unlike other normalization

model 25 epochs 50 epochs 75 epochs 100 epochs
BN 84,34 86,49 86,41 86,90
SBN-2 85.56 87.62 87.70 87.70
SBN-4 86.78 87.94 87.94 88.02
SBN-6 86.79 88.00 88.48 88.56
SBN-8 87.01 87.90 88.90 89.06

Table 1: Test set accuracy rates (%) of batch normalization (BN) and supervised batch normalization
(SBN) on the CIFAR-100 dataset. SBN-k denotes SBN with k contexts.

methods with multiple modes where increasing the number of modes can decrease performance.
This is likely due to finite estimation, where estimates are computed from increasingly smaller batch
partitions, a known issue in traditional BN.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

We evaluate our methods in two experimental settings: (i) multi-task (heterogeneous dataset) and
(ii) single task. To contrast with our proposed method SBN, we will utilize Batch Normalization
(BN), Layer Normalization (LN), Instance Normalization (IN), Mixture Normalization (MN), and
Mode Normalization (ModeN).

5.1 MULTI-TASK: UTILIZE EACH DOMAIN AS A CONTEXT

In this experiment, we demonstrate how SBN can significantly enhance domain adaptation by
improving local representations. Domain adaptation involves leveraging knowledge from a related
domain, where labeled data is abundant, to enhance model performance in a target domain with
limited labeled data. We use two contexts (K = 2): the ”source domain” and the ”target domain”.
We apply normalization methods with AdaMatch, which combines unsupervised domain adaptation
(UDA), semi-supervised learning (SSL), and semi-supervised domain adaptation (SSDA). In UDA,
we use labeled data from the source domain and unlabeled data from the target domain to train
a model that generalizes effectively to the target dataset. Notably, the source and target datasets
have different distributions, with MNIST as the source dataset and SVHN as the target dataset,
encompassing various factors of variation such as texture, viewpoint, and appearance.

A model, referred to as AdaMatch Paul (2019) (using BN layers), is trained from the ground up
using wide residual networks Zagoruyko & Komodakis (2016) on pairs of datasets, serving as the
baseline model. The training of this model involves utilizing the Adam optimizer Kingma & Ba
(2014) with a cosine decay schedule, gradually reducing the initial learning rate initialized at 0.03.
For comparison purposes, we substitute BN layers with LN, IN, MN, ModeN, and SBN. For MN
and ModeN, determining the appropriate number of components and modes, respectively, involves
conducting multiple tests. We retain the best results obtained with K = 4 for MN and K = 3 for
ModeN.

Table 2 presents the test set performance rates (%) for various normalization methods in a

MNIST (source domain)
model accuracy precision recall f1-score
BN 97.36 87.33 79.39 78.09
LN 96.23 88.26 76.20 81.70
IN 99.41 99.41 99.41 99.41
MN 98.90 98.45 98.89 98.93
ModeN 98.93 98.3 98.36 98.90
SBN (ours) 99.17 99.17 99.17 99.17

SVHN (target domain)
model accuracy precision recall f1-score
BN 25.08 31.64 20.46 24.73
LN 24.10 28.67 22.67 23.67
IN 28.15 35.26 23.45 27.35
MN 32.14 50.12 37.14 39.26
ModeN 32.78 49.87 38.13 40.20
SBN (ours) 47.63 60.90 47.63 9.50

Table 2: Test set performance rates (%) for BN, LN, IN, MN, ModeN, and SBN on multi-task with
heterogeneous dataset SVHN+MNIST for domain adaptation.

multi-task setting with the heterogeneous SVHN+MNIST dataset for domain adaptation. Notably,
our proposed method, SBN, demonstrates significant improvements, particularly in the challenging
SVHN target domain. Compared to BN, SBN achieves a remarkable gain in accuracy, with a
22.25% increase. This highlights the efficacy of SBN in adapting to diverse datasets, even outper-
forming other normalization methods like MN and ModeN, which are based on multiple modes
assumption. These results underscore the effectiveness of SBN in enhancing model performance
across heterogeneous domains, making it a promising choice for domain adaptation tasks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5.2 SINGLE TASK: UTILISE EACH SUPERCLASS AS A CONTEXT.

This experiment’s main focus is on leveraging CIFAR-100 superclasses as contexts (K = 20) to
predict the dataset’s 100 classes, particularly with SBN. We utilize the base Vision Transformer
model Dosovitskiy et al. (2020) obtained from Keras Salama (2021) as our baseline. To conduct
comparisons, we modify this baseline by substituting different normalization layers. The training
process includes early stopping based on validation performance, and image preprocessing involves
normalization with respect to the dataset’s mean and standard deviation. Additionally, data
augmentation techniques such as horizontal flipping and random cropping are applied to enrich the
dataset. To optimize model parameters and prevent overfitting, we employ the AdamW optimizer
with a learning rate of 10−3 and a weight decay of 10−4 Loshchilov & Hutter (2017); Kingma &
Ba (2014). Training is carried out for 100 epochs.

For Mixture Normalization (MN) and Mode Normalization (ModeN), determining the appropriate
number of components and modes respectively involves conducting multiple tests. We save the best
results (ref. Table 3) achieved with K = 5 for MN and K = 3 for ModeN.
Table 3 highlights the significant performance gains achieved by SBN compared to other normal-

model accuracy precision recall f1-score
BN 55.63 8.96 90.09 54.24
LN 54.05 11.82 85.05 53.82
IN 54.85 11.63 86.05 54.71
MN 53.2 11.20 87.10 54.23
ModeN 54.10 12.12 87.23 54.98
SBN (ours) 70.76 27.59 98.60 70.70

Table 3: Test set performance rates (%) for BN, LN, IN, MN, ModeN, and SBN on a single-task
classification task using the CIFAR-100 dataset.

ization techniques (BN, LN, IN, MN, and ModeN). SBN shows a remarkable accuracy improvement
of approximately 15.113% over BN. It’s worth noting that multiple modes normalization methods
(MN, ModeN) do not perform well in this single-task scenario. However, by leveraging super-
classes as contexts and normalizing accordingly, SBN outperforms all known ViT models trained
from scratch on CIFAR-100. Figure 1 shows that SBN accelerates learning. These results indicate
that SBN stabilizes data distributions, mitigates internal covariate shift, and significantly reduces
training time for better outcomes.

(a) Training Error (b) Validation Error

Figure 1: Contrasting Training and Validation Error Curves in CIFAR-100 dataset

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

6 CONCLUSION

Our study introduces a groundbreaking normalization technique called Supervised Batch Normal-
ization (SBN), which extends the capabilities of traditional Batch Normalization (BN) to effectively
handle heterogeneous datasets characterized by diverse data distributions. Unlike BN, which
normalizes each mini-batch using a single mean and variance, SBN addresses the challenge posed
by varied data distributions within a mini-batch by normalizing based on grouped data with similar
characteristics, referred to as contexts. We present three methods to accurately define these contexts.

Experimental results from both multi-task scenarios with heterogeneous datasets and single-task
scenarios with homogeneous datasets demonstrate that SBN consistently outperforms BN and its
variants, including methods based on multiple modes such as Mixture Normalization and Mode
Normalization. SBN offers ease of implementation and versatility, serving as a powerful layer in
neural networks to enhance performance and accelerate convergence.

Looking ahead, our future research will delve into exploring the robustness of SBN in multimodal
systems, such as those involving text, image, audio, and other modalities, where contexts are well-
defined and critical for effective normalization strategies.

REFERENCES

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. Proceedings
of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 1027–1035, 2007.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Hakan Bilen and Andrea Vedaldi. Universal representations:the missing link between faces, text,
planktons, and cat breeds, 2017.

Lucas Deecke, Iain Murray, and Hakan Bilen. Mode normalization, 2018.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via
the EM algorithm. JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B, 39(1):1–38,
1977.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Sergey Ioffe. Batch renormalization: Towards reducing minibatch dependence in batch-normalized
models. In Advances in Neural Information Processing Systems, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.
Neural computation, 6(2):181–214, 1994.

Mahdi M Kalayeh and Mubarak Shah. Training faster by separating modes of variation in batch-
normalized models. IEEE transactions on pattern analysis and machine intelligence, 42(6):1483–
1500, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Mustafa Taha Koçyigit, Laura Sevilla-Lara, Timothy M Hospedales, and Hakan Bilen. Unsuper-
vised batch normalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pp. 918–919, 2020.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. CIFAR-100 (canadian institute for advanced
research). 2009a. URL http://www.cs.toronto.edu/˜kriz/cifar.html.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. CIFAR-10 (canadian institute for advanced
research). 2009b. URL http://www.cs.toronto.edu/˜kriz/cifar.html.

Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural networks: Tricks of the trade, pp. 9–50. Springer, 2002.

Yang Li, Kevin Swersky, and Richard Zemel. Universal domain adaptation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10318–10327, 2020.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Ping Luo, Kai Zhong, Yuntao Liu, Jiamin Zhang, Yi Zhang, and Xiaogang Xu. Mode normalization.
In International Conference on Machine Learning, pp. 4203–4212, 2019.

O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. V. Jawahar. Cats and Dogs. In IEEE Conference on
Computer Vision and Pattern Recognition, 2012.

Sayak Paul. Unifying semi-supervised learning and unsupervised domain adaptation with adamatch,
2019. https://github.com/keras-team/keras-io/tree/master.

Siyuan Qi, Wenguan Wang, Runpeng Liu, Chunyan Xu, Yong Zhu, Jianping Shi, and Thomas S
Huang. Hierarchical meta-transfer learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 12156–12165, 2020.

Khalid Salama. Implementing the vision transformer (vit) model for image classification, 2021.
https://github.com/keras-team/keras-io/tree/master.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. Advances in neural information processing systems, 29, 2016.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing in-
gredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on
computer vision (ECCV), pp. 3–19, 2018.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Biao Zhang and Rico Sennrich. Root mean square layer normalization, 2019.

Yu-Xiong Zhang, Hui Peng, Jianlong Fu, Timothy M Hospedales, Tao Xiang, and Yong Zhang.
Learning to learn from noisy labeled data. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 3832–3841, 2021.

10

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

	Introduction
	Related Work
	Normalization methods
	Incorporating Multiple Modes for Effective Normalization

	Method
	Batch Normalization with Single Mode
	Batch Normalization with Multiple Modes
	Supervised Batch Normalization
	Understanding Context: Definition and Construction Methods
	Training and Inference with Supervised Batch Normalized Networks

	Analyzing SBN in a Simplified Scenario
	Experiments
	Multi-task: Utilize each domain as a context
	Single task: Utilise each superclass as a context.

	Conclusion

