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Abstract

Predicting the properties of multi-component mixtures is a fundamental challenge
in chemistry and materials science. Unlike single-molecule systems, mixture be-
havior emerges from nonlinear interactions and excess properties, making addi-
tive rules ineffective. Existing datasets are sparse, fragmented, and lack nega-
tive results or standardized metadata, limiting machine learning (ML) models that
generalize across formulation spaces. We propose the Foundational Molecular
Formulation Database, an open dataset generated using modular self-driving lab-
oratories (SDLs) for automated, high-throughput experimentation. Spanning four
domains—battery electrolytes, thermofluids, fragrances, and solution-processed
semiconductors—the dataset captures key functional properties (e.g., ionic con-
ductivity, volatility, stability) with structured metadata. It enables ML benchmarks
in property prediction, generative design, active learning, and cross-domain
transfer, establishing a foundation for data-driven formulation science analogous
to ImageNet or AlphaFold in their fields.

1 Introduction

ML for molecular design has transformed domains such as proteins [1] and drug formulations [2],
but chemical mixtures remain a bottleneck. Mixture properties—conductivity, volatility, viscosity,
film stability—arise from nonlinear interactions and cannot be inferred from single components.
Existing resources are sparse and inconsistent, while the combinatorial design space (~ 10°° binary
mixtures) makes systematic exploration infeasible without automation.

Recent advances in self-driving laboratories (SDLs)—robotic platforms guided by ML—have en-
abled autonomous electrolyte optimization [3| 4] and are broadly transforming chemistry [S)]. We
leverage this paradigm to build a large, standardized mixture dataset across critical domains.

2 Motivation and Impact

Electrolytes require mixture and electrode-interface properties rather than only molecular data [6].
Thermofluids suffer from limited characterization (only 8 refrigerants and 4 HFO blends) despite
urgent low-GWP needs [7, 18, 9]. Fragrance datasets (~5k molecules) are subjective, inconsistent,
and lack physicochemical metadata [10, 11} 12]. Semiconductor additive studies remain piecemeal,
with little negative data and no standardized reporting [[13, [14]]. The proposed dataset will enable
researchers to predict the functional, perceptual, and performance properties of multi-component
mixtures from their compositions and constituent properties. Mapping a given formulation to emer-
gent macroscopic behavior remains a pertinent unsolved problem across disciplines — from elec-
trochemistry and materials science to psychophysics. The key challenge is all the functionality is
determined by the excess property, the deviation from linear mixing. Most mixtures exhibit highly
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non-linear response: for example, the conductivity of an electrolyte, volatility of a fragrance accord,
or viscosity of a thermofluid. To approximate this nonlinear, often discontinuous, manifold of mix-
ture properties machine learning models need many examples across a wide parameter range, which
necessitates an expansive and dense dataset.

Property prediction surrogates trained on this dataset could be used in high-throughput screening
pipelines accelerating the exploration of high-dimensional, combinatorial mixture space. Surrogate-
driven screening can simultaneously evaluate multiple objectives and map Pareto fronts, enabling
informed design decisions to be made in an accelerated and cost effective manner. Additionally,
probing clusters in the embedding space of models trained on large datasets make it easier to find
safer or cheaper substitutions for existing formulations.

3 Dataset Description

Domains: (a) Electrolytes—conductivity, viscosity, stability; (b) Thermofluids—thermal conduc-
tivity, vapor pressure; (c) Fragrances—volatility, odor descriptors; (d) Semiconductors—film con-
ductivity, mechanical stability. Collection: Flow-through SDLs share a backbone (liquid handling,
balances, temperature control) with domain-specific modules.
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Figure 1: Modular self-driving lab for foundational mixture dataset collection.

4 Tasks and Benchmarks

The mixture dataset collected through our SDLs will supports four core ML tasks:

1. Property Prediction: Predict emergent properties (e.g., conductivity, viscosity, volatility) from
composition and metadata. Metrics: RMSE, MAE, ranking for multi-objective scenarios.

2. Generative Design: Inverse design of mixtures to meet target properties under constraints (e.g.,
maximize conductivity, minimize cost). Metrics: success rate, diversity, computational efficiency.

3. Active Learning: Propose experiments to efficiently explore combinatorial space under budget
constraints. Metrics: error reduction vs. iterations, sample efficiency.

4. Cross-Domain Transfer: Benchmark zero-shot and fine-tuned performance across domains.
Metrics: transfer accuracy, adaptation speed.

Standardized splits, baseline models, and leaderboards will ensure reproducibility.

5 Ethical Considerations

Data is generated in controlled environments with open licensing (CC-BY 4.0). No human or sensi-
tive data is involved.

6 Limitations

The dataset initially focuses on SDLs for liquid-phase mixtures and may underrepresent rare additive
chemistries. Future work will expand to more domains and testing conditions.



67

69

70
71
72
73
74
75
76
77

78

79
80
81
82
83

84

85
86
87
88
89
90

91

92
93
94
95
96
97
98

99

100

A Data Card

Feature Description

Domains Electrolytes, Thermofluids, Fragrances, Semiconductors
Properties Conductivity, viscosity, volatility, stability, spectra
Format CSV with metadata JSON

License CC-BY 4.0

Collection Method | Automated self-driving lab workflows

B Detailed Description of Domains

B.1 Battery Electrolytes

Electrolytes are central to battery performance, yet their design remains challenging. Unlike single-
molecule systems, properties depend on mixture interactions and electrode interfaces, not molec-
ular data alone [6]. Linear mixing rules fail because key behaviors arise from excess properties
and cross-term effects. Recent work combining differentiable mixture models (e.g., DiffMix [4])
with robotic experimentation shows small changes in the formulation can dramatically shift ionic
conductivity [[6]. With an astronomical design space (10°® binary mixtures), systematic exploration
is infeasible without standardized datasets and ML. A foundational database will enable predictive
design of electrolytes optimized for conductivity, stability, safety, and cost.

B.2 Thermofluids

Next-generation HVAC systems require low-GWP refrigerants, yet no single fluid meets both per-
formance and regulatory demands [8]. Mixtures offer a path forward, but current databases cover
only eight fully characterized fluids and four HFO blends [7,19]. This lack of systematic data across
composition space slows innovation and deployment. A comprehensive thermofluid dataset will
close this gap and accelerate sustainable refrigerant design [[15].

B.3 Fragrances

Predicting odor from structure remains unsolved across chemistry and neuroscience. Odor percep-
tion is nonlinear: small chemical changes can dramatically alter scent, while unrelated molecules
may smell alike [11]. Existing datasets (~5k molecules) are subjective, inconsistent, and lack
physicochemical metadata [[10,[12]. A large, standardized dataset with chemical coverage and struc-
tured descriptors will enable ML for predictive olfaction and electronic nose applications in health,
food, and environment [[16].

B.4 Semiconductors

Solution-processed semiconductors—metal oxides, conjugated polymers, perovskites—benefit
from additives that enhance performance and stability in OLEDs, OFETs, OECTs, and solar cells
[17, 18 [19]. Yet progress is hindered by fragmented studies, lack of negative data, and no stan-
dardized metadata. Using a self-driving lab, we will build a large, high-quality dataset of addi-
tive/semiconductor mixtures spanning broad parameter space. ML-guided sampling will uncover
principles governing additive effects, accelerating design of next-generation semiconductors with
tunable properties.

C Market Opportunity of the Four Domains

Domain 2023-2024 Value | Projected 2030-2032 Value | CAGR
Battery Electrolytes [20]] $12.1B $35.0B ~14.2%
Thermofluids [21]] $11.1B $142B ~3.7%
Fragrances [22]] $23.4B $35.0B ~6.8%
Semiconductor Additives [23]] $11.2B $17.6 B ~6.7%




101

102
103
104
105
106

107

108
109
110
111
112
113

114
115
116
117
118
119
120
121
122
123

124

125

126
127
128
129
130
131

132

133
134
135
136
137
138
139
140

141
142
143

144
145
146
147

D Required Instrumentation List for SDLs Development

Battery Electrolytes: viscometer, balance, potentiostat.

Thermofluids: viscometer, thermal conductivity probe, vapor pressure sensor.

Fragrances: microbalance (for volatility), refractometer

Semiconductor Additives: spin coater, semiconductor parameter analyzer, contact angle goniome-
ter, FTIR spectrometer, viscometer

E Estimation of the cost per data point

As stated in the main text, SDLs enable high-throughput experimentation, and ML algorithms
enable scientists to optimize experiments that include multiple parameters and conditions. However,
ML models require very large experimental datasets in order to be trained. Hence, in order to assess
the feasibility of acquiring large mixture datasets with SDLs it is important to estimate the cost
involved in the process.

In this section, we take as an example the field of solution-processed semiconductors, and
estimate the cost per data point by doing back-of-the-envelope calculations. We use a typical
semiconductor (C14-PBTTT) and a typical additive (F4-TCNQ), dissolved in a typical solvent
(1,2-Dichlorobenzene), with microscope slides used as substrate. The costs per unit were calculated
using the prices listed in mainstream vendors (Merck, TCI Chemicals, Fisher). As shown in
the following table, even with a conservative estimate of 10 samples per experimental session,
the cost of consumables per sample is less than a dollar. This is because of the small quanti-
ties of materials required to fabricate an individual sample. In order to deal with integers, we
round this number up to ($0.25). Assuming a budget of $100, 000, this amounts to 400, 000 samples.

Component Cost/unit | Quantity/exp | Samples/exp | Quantity/sample | Cost/sample
Semiconductor $2/mg 500 ug 10 50 ug $0.1
Additive $1.5/mg 10 ug 10 1 ug $0.0015
Solvent $1/mL 500 uL. 10 50 uL $0.05
Substrate $0.65/slide 1 10 10 samples/slide $0.065

The cost per data point can be approximated if we account for the number of properties to be mea-
sured and the number of measurements per sample. Assuming that 4 properties will be measured
and each property measurement will be performed a total of 3 times for reproducibility reasons, this
results in 12 measurements per sample, and hence in 4, 800, 000 measurements, whose square root
(since we consider binary mixtures) results in approximately 2191 data points. Dividing the budget
with this number results in an approximate cost of $45 per data point.
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