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Abstract

Predicting the properties of multi-component mixtures is a fundamental challenge1

in chemistry and materials science. Unlike single-molecule systems, mixture be-2

havior emerges from nonlinear interactions and excess properties, making addi-3

tive rules ineffective. Existing datasets are sparse, fragmented, and lack nega-4

tive results or standardized metadata, limiting machine learning (ML) models that5

generalize across formulation spaces. We propose the Foundational Molecular6

Formulation Database, an open dataset generated using modular self-driving lab-7

oratories (SDLs) for automated, high-throughput experimentation. Spanning four8

domains—battery electrolytes, thermofluids, fragrances, and solution-processed9

semiconductors—the dataset captures key functional properties (e.g., ionic con-10

ductivity, volatility, stability) with structured metadata. It enables ML benchmarks11

in property prediction, generative design, active learning, and cross-domain12

transfer, establishing a foundation for data-driven formulation science analogous13

to ImageNet or AlphaFold in their fields.14

1 Introduction15

ML for molecular design has transformed domains such as proteins [1] and drug formulations [2],16

but chemical mixtures remain a bottleneck. Mixture properties—conductivity, volatility, viscosity,17

film stability—arise from nonlinear interactions and cannot be inferred from single components.18

Existing resources are sparse and inconsistent, while the combinatorial design space (∼ 1055 binary19

mixtures) makes systematic exploration infeasible without automation.20

Recent advances in self-driving laboratories (SDLs)—robotic platforms guided by ML—have en-21

abled autonomous electrolyte optimization [3, 4] and are broadly transforming chemistry [5]. We22

leverage this paradigm to build a large, standardized mixture dataset across critical domains.23

2 Motivation and Impact24

Electrolytes require mixture and electrode-interface properties rather than only molecular data [6].25

Thermofluids suffer from limited characterization (only 8 refrigerants and 4 HFO blends) despite26

urgent low-GWP needs [7, 8, 9]. Fragrance datasets (∼5k molecules) are subjective, inconsistent,27

and lack physicochemical metadata [10, 11, 12]. Semiconductor additive studies remain piecemeal,28

with little negative data and no standardized reporting [13, 14]. The proposed dataset will enable29

researchers to predict the functional, perceptual, and performance properties of multi-component30

mixtures from their compositions and constituent properties. Mapping a given formulation to emer-31

gent macroscopic behavior remains a pertinent unsolved problem across disciplines — from elec-32

trochemistry and materials science to psychophysics. The key challenge is all the functionality is33

determined by the excess property, the deviation from linear mixing. Most mixtures exhibit highly34
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non-linear response: for example, the conductivity of an electrolyte, volatility of a fragrance accord,35

or viscosity of a thermofluid. To approximate this nonlinear, often discontinuous, manifold of mix-36

ture properties machine learning models need many examples across a wide parameter range, which37

necessitates an expansive and dense dataset.38

Property prediction surrogates trained on this dataset could be used in high-throughput screening39

pipelines accelerating the exploration of high-dimensional, combinatorial mixture space. Surrogate-40

driven screening can simultaneously evaluate multiple objectives and map Pareto fronts, enabling41

informed design decisions to be made in an accelerated and cost effective manner. Additionally,42

probing clusters in the embedding space of models trained on large datasets make it easier to find43

safer or cheaper substitutions for existing formulations.44

3 Dataset Description45

Domains: (a) Electrolytes—conductivity, viscosity, stability; (b) Thermofluids—thermal conduc-46

tivity, vapor pressure; (c) Fragrances—volatility, odor descriptors; (d) Semiconductors—film con-47

ductivity, mechanical stability. Collection: Flow-through SDLs share a backbone (liquid handling,48

balances, temperature control) with domain-specific modules.49
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Self-driving Labs

Figure 1: Modular self-driving lab for foundational mixture dataset collection.

4 Tasks and Benchmarks50

The mixture dataset collected through our SDLs will supports four core ML tasks:51

1. Property Prediction: Predict emergent properties (e.g., conductivity, viscosity, volatility) from52

composition and metadata. Metrics: RMSE, MAE, ranking for multi-objective scenarios.53

2. Generative Design: Inverse design of mixtures to meet target properties under constraints (e.g.,54

maximize conductivity, minimize cost). Metrics: success rate, diversity, computational efficiency.55

3. Active Learning: Propose experiments to efficiently explore combinatorial space under budget56

constraints. Metrics: error reduction vs. iterations, sample efficiency.57

4. Cross-Domain Transfer: Benchmark zero-shot and fine-tuned performance across domains.58

Metrics: transfer accuracy, adaptation speed.59

Standardized splits, baseline models, and leaderboards will ensure reproducibility.60

5 Ethical Considerations61

Data is generated in controlled environments with open licensing (CC-BY 4.0). No human or sensi-62

tive data is involved.63

6 Limitations64

The dataset initially focuses on SDLs for liquid-phase mixtures and may underrepresent rare additive65

chemistries. Future work will expand to more domains and testing conditions.66
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A Data Card67

Feature Description
Domains Electrolytes, Thermofluids, Fragrances, Semiconductors
Properties Conductivity, viscosity, volatility, stability, spectra
Format CSV with metadata JSON
License CC-BY 4.0
Collection Method Automated self-driving lab workflows

B Detailed Description of Domains68

B.1 Battery Electrolytes69

Electrolytes are central to battery performance, yet their design remains challenging. Unlike single-70

molecule systems, properties depend on mixture interactions and electrode interfaces, not molec-71

ular data alone [6]. Linear mixing rules fail because key behaviors arise from excess properties72

and cross-term effects. Recent work combining differentiable mixture models (e.g., DiffMix [4])73

with robotic experimentation shows small changes in the formulation can dramatically shift ionic74

conductivity [6]. With an astronomical design space (1055 binary mixtures), systematic exploration75

is infeasible without standardized datasets and ML. A foundational database will enable predictive76

design of electrolytes optimized for conductivity, stability, safety, and cost.77

B.2 Thermofluids78

Next-generation HVAC systems require low-GWP refrigerants, yet no single fluid meets both per-79

formance and regulatory demands [8]. Mixtures offer a path forward, but current databases cover80

only eight fully characterized fluids and four HFO blends [7, 9]. This lack of systematic data across81

composition space slows innovation and deployment. A comprehensive thermofluid dataset will82

close this gap and accelerate sustainable refrigerant design [15].83

B.3 Fragrances84

Predicting odor from structure remains unsolved across chemistry and neuroscience. Odor percep-85

tion is nonlinear: small chemical changes can dramatically alter scent, while unrelated molecules86

may smell alike [11]. Existing datasets (∼5k molecules) are subjective, inconsistent, and lack87

physicochemical metadata [10, 12]. A large, standardized dataset with chemical coverage and struc-88

tured descriptors will enable ML for predictive olfaction and electronic nose applications in health,89

food, and environment [16].90

B.4 Semiconductors91

Solution-processed semiconductors—metal oxides, conjugated polymers, perovskites—benefit92

from additives that enhance performance and stability in OLEDs, OFETs, OECTs, and solar cells93

[17, 18, 19]. Yet progress is hindered by fragmented studies, lack of negative data, and no stan-94

dardized metadata. Using a self-driving lab, we will build a large, high-quality dataset of addi-95

tive/semiconductor mixtures spanning broad parameter space. ML-guided sampling will uncover96

principles governing additive effects, accelerating design of next-generation semiconductors with97

tunable properties.98

C Market Opportunity of the Four Domains99

Domain 2023–2024 Value Projected 2030–2032 Value CAGR
Battery Electrolytes [20] $12.1B $35.0B ∼14.2%
Thermofluids [21] $11.1B $14.2B ∼3.7%
Fragrances [22] $23.4B $35.0B ∼6.8%
Semiconductor Additives [23] $11.2B $17.6B ∼6.7%

100
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D Required Instrumentation List for SDLs Development101

Battery Electrolytes: viscometer, balance, potentiostat.102

Thermofluids: viscometer, thermal conductivity probe, vapor pressure sensor.103

Fragrances: microbalance (for volatility), refractometer104

Semiconductor Additives: spin coater, semiconductor parameter analyzer, contact angle goniome-105

ter, FTIR spectrometer, viscometer106

E Estimation of the cost per data point107

As stated in the main text, SDLs enable high-throughput experimentation, and ML algorithms108

enable scientists to optimize experiments that include multiple parameters and conditions. However,109

ML models require very large experimental datasets in order to be trained. Hence, in order to assess110

the feasibility of acquiring large mixture datasets with SDLs it is important to estimate the cost111

involved in the process.112

113

In this section, we take as an example the field of solution-processed semiconductors, and114

estimate the cost per data point by doing back-of-the-envelope calculations. We use a typical115

semiconductor (C14-PBTTT) and a typical additive (F4-TCNQ), dissolved in a typical solvent116

(1,2-Dichlorobenzene), with microscope slides used as substrate. The costs per unit were calculated117

using the prices listed in mainstream vendors (Merck, TCI Chemicals, Fisher). As shown in118

the following table, even with a conservative estimate of 10 samples per experimental session,119

the cost of consumables per sample is less than a dollar. This is because of the small quanti-120

ties of materials required to fabricate an individual sample. In order to deal with integers, we121

round this number up to ($0.25). Assuming a budget of $100, 000, this amounts to 400, 000 samples.122

123

Component Cost/unit Quantity/exp Samples/exp Quantity/sample Cost/sample
Semiconductor $2/mg 500 ug 10 50 ug $0.1
Additive $1.5/mg 10 ug 10 1 ug $0.0015
Solvent $1/mL 500 uL 10 50 uL $0.05
Substrate $0.65/slide 1 10 10 samples/slide $0.065

124

125

The cost per data point can be approximated if we account for the number of properties to be mea-126

sured and the number of measurements per sample. Assuming that 4 properties will be measured127

and each property measurement will be performed a total of 3 times for reproducibility reasons, this128

results in 12 measurements per sample, and hence in 4, 800, 000 measurements, whose square root129

(since we consider binary mixtures) results in approximately 2191 data points. Dividing the budget130

with this number results in an approximate cost of $45 per data point.131
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