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Abstract001

Despite the scarcity of employing transformer002
approaches for toponym resolution, this study003
leverages oral and transcribed text data to ad-004
dress the disambiguation of diverse named en-005
tities, including place names such as camps,006
ghettos, and streets. We utilise generative AI007
techniques, incorporating prompt engineering,008
to effectively disambiguate these named enti-009
ties within geographical contexts.010

Our methodology aims to demonstrate how011
leveraging prompt engineering from general012
large language models (LLMs) can be effec-013
tively employed for less commonly addressed014
topics, such as toponym resolution in the field015
of Natural Language Processing (NLP). We016
have evaluated the few-shot chain of thought017
(COT) prompting approach combining the018
knowledge base (KB) as a retriever to provide019
the fewshots required for the reasoning pro-020
cess of LLM. This technique illustrates the ef-021
ficacy of these advanced approaches in accu-022
rately identifying and resolving toponyms in023
complex textual datasets, thereby contributing024
valuable insights to the field of geographic in-025
formation systems and digital humanities.026

1 Introduction027

In the geospatial domain, ambiguities in words are028

widespread and can present significant challenges,029

particularly in sensitive historical contexts such as030

the Holocaust. Spoken language, with its diverse di-031

alects, accents, and linguistic nuances, further com-032

plicates the resolution of toponyms, placenames or033

geographic locations. Identifying these toponyms034

accurately is crucial for understanding historical035

events. Over time, geographic locations may have036

been referred to by different names in textual doc-037

uments, adding to the complexity. These discrep-038

ancies pose formidable obstacles to the analysis039

of historical documents, underscoring the need for040

robust toponym resolution methods in Holocaust041

research. In the process of automatic information042

extraction, resolving toponyms presents a signif- 043

icant challenge that remains largely unaddressed. 044

This task is particularly crucial in the context of 045

named entity recognition (NER), where accurately 046

identifying and categorising geographic locations 047

mentioned in transcribed text, especially within 048

sensitive historical domains like the Holocaust, is 049

paramount. 050

In comparing spoken and transcribed data with 051

written language, various ambiguities arise in 052

speech data. Disambiguating location-based named 053

entity tags in speech data is particularly challenging 054

compared to written text due to the inherent com- 055

plexities of speech, including variations in pronun- 056

ciation, accents, and dialects, as well as the absence 057

of punctuation and grammatical cues found in writ- 058

ten language. These factors contribute to difficul- 059

ties in accurately identifying and resolving named 060

entities related to locations in speech data. In Holo- 061

caust research, oral testimonies play a pivotal role 062

in preserving survivors’ experiences. These testi- 063

monies often mention concentration camps, ghet- 064

tos, and other geographical locations, using con- 065

sistent naming conventions. This consistency in 066

naming conventions accentuates the need for ro- 067

bust NER systems capable of resolving toponyms 068

accurately, thereby enhancing our understanding 069

of historical narratives. While there has been some 070

related research, we found that most of the exist- 071

ing approaches are unable to deliver satisfactory 072

results because of the following reasons. For a 073

clearer explanation, please refer to Figure 1. 074

• Referring the same name for different contexts 075

• Different spelling referring to the same place 076

• Symbols refer the geographical location 077

With the recent advancement of Large Language 078

Models (LLMs), which are trained using billions of 079

parameters, promising results have been achieved 080
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for various Natural Language Processing (NLP)081

tasks compared to previously existing machine082

learning models in the general domain. These083

models, primarily developed with contextual under-084

standing, have shown (including in recent studies085

conducted by the authors) that they outperform086

rule-based approaches. However, more research087

needs to be conducted within domain-specific ap-088

proaches to evaluate the adaptability of context-089

specific methodologies. In this study, we experi-090

ment with the adaptability of the LLMs and trans-091

former models for the toponym resolution.092

More specifically, we propose a novel approach093

which employs LLMs for toponym resolution, com-094

paring different traditional approaches and seeking095

to answer the following research questions.096

• RQ1: Does structural similarity of sentences097

effect in toponym resolution?098

• RQ2: Are general task LLMs able to iden-099

tify the toponyms discussed in the oral and100

transcribed texts?101

• RQ3: Can advanced prompt engineering tech-102

niques, combined with lexicon knowledge,103

recognise domain-specific toponyms?104

The rest of this paper is organised as follows.105

We describe previous studies in Section 2. We106

present our methodology in Section 3. In Section107

4, we describe our experiments and report the re-108

sults. Section 5 offers an error analysis, and a brief109

conclusion is provided in Section 6.110

2 Related Work111

Even though different traditional approaches, such112

as hand-crafted rules and heuristics, heuristics of113

rule-based systems as features in supervised ma-114

chine learning models to predict geospatial labels115

for place names were employed. In previous stud-116

ies, deep learning methodologies have been em-117

ployed for toponym resolution to model the textual118

elements by combining bidirectional Long Short-119

Term Memory (LSTM) units with pre-trained con-120

textual word embeddings (i.e., static features ex-121

tracted using either the Embeddings from Lan-122

guage Models (ELMo) or the Bidirectional En-123

coder Representations from Transformers (BERT)124

methods. A limitation of these studies is that they125

discuss only the general named entity tags such126

as LOC GPE but not the domain-specific enti-127

ties such as concentration camps (CAMP), ghettos128

(GHETTO), streets (STREET), etc.129

Additionally, several studies have leveraged deep 130

neural network architectures for toponym resolu- 131

tion (Cardoso et al., 2019; Kulkarni et al., 2021). 132

For example, Gritta et al. proposed a network archi- 133

tecture called the CamCoder system, which aims to 134

disambiguate place references by detecting lexical 135

clues within the context surrounding the mention. 136

The authors also introduced a sparse vector rep- 137

resentation named MapVec, which encodes prior 138

geographic probabilities associated with locations 139

based on coordinates and population counts (Car- 140

doso et al., 2019). Similarly, Cardoso et al. (Kulka- 141

rni et al., 2021) utilised a combination of context- 142

aware word embeddings (Peters et al., 1802) and 143

a recurrent neural network based on Bidirectional 144

LSTMs (Huang et al., 2015). The above studies 145

have covered not only English but also other lan- 146

guages such as Spanish. 147

Transformer-based techniques have recently had 148

a substantial impact on toponym resolution method- 149

ologies. The current approaches can be broadly 150

classified into two categories: localisation-based 151

and ranking-based. The localisation-based ap- 152

proach primarily focuses on the direct prediction 153

of geographic coordinates or areas from the given 154

textual input. For instance, Radford’s method 155

(Radford, 2021) utilises DistilRoBERTa for end- 156

to-end probabilistic geocoding. Similarly, Cardoso 157

et al. (Cardoso et al., 2022) employ Long Short- 158

Term Memory (LSTM) networks with BERT em- 159

beddings to predict probability distributions over 160

spatial regions. In a sequence-to-sequence frame- 161

work, Solaz and Shalumov (Solaz and Shalumov, 162

2023) use the T5 Transformer model to translate 163

text into hierarchical encodings of geographic cells. 164

Another notable study by Gomes et al. (Gomes 165

et al., 2024) proposes a method that leverages the 166

adaptation of SentenceTransformer models, ini- 167

tially designed for sentence similarity tasks, for 168

toponym resolution. The authors fine-tune the mod- 169

els on geographically annotated English news arti- 170

cle datasets, including Local Global Lexicon, Ge- 171

oWebNews, and TR-News. 172

One of the major challenges in transformer- 173

based toponym resolution methods is the absence 174

of domain-specific fine-tuning. Pre-trained trans- 175

former models such as BERT (Devlin et al., 2019) 176

are optimised to generate embedding for tasks like 177

masked language modelling and next-sentence pre- 178

diction. Therefore, it is plausible that models 179

trained on larger datasets have a greater capacity to 180

identify the correct toponym. 181
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Figure 1: Sample examples for each scenario.

Another significant issue with machine learning-182

based toponym resolution methods is the geo-183

graphic bias, which arises due to the imbalance184

in the geographic distribution of training datasets.185

Liu et al. (Liu et al., 2022) make the point that mod-186

els tend to favour locations that are overrepresented187

in the training corpora. The scarcity and lack of188

diversity in geotagged datasets further intensifies189

this bias (Gritta et al., 2018).190

Our review revealed a notable gap in the cur-191

rent body of research: no studies have employed192

state-of-the-art generative language models for to-193

ponym resolution. Despite the advancements in194

generative language models like GPT, which have195

demonstrated significant potential in other natu-196

ral language processing tasks, their application to197

toponym resolution and disambiguation of place198

names remains unexplored.199

3 Methodology200

According to the previous studies, it is evident201

that knowledge of Large Language models is effec-202

tive and can be used for domain-specific tasks us-203

ing proper computational techniques (Chang et al.,204

2024; Zhao et al., 2023). In the present study, we205

designed the prompts to leverage the general task206

language model for the name-entity recognition207

task in the geospatial arena. The absence of fine-208

tuning or training of base models in our approach209

is intentional, and we attempt to utilise prompt aug- 210

mentation techniques to reframe the prompts to suit 211

the downstream tasks, such as toponyms resolution. 212

3.1 Data and Dataset creation 213

Oral and transcribed versions of Holocaust testi- 214

monies were used for the following experiments 215

described in this study. These data were manually 216

annotated according to the BIO (Beginning-Inside- 217

Outside) tagging scheme. For the annotation pro- 218

cess we employed UBIAI tool. The training sam- 219

ples were manually annotated by human annotators, 220

resulting in an inter-annotator agreement of 0.76. 221

More details about the data used for this study are 222

reported in (Anuradha Nanomi Arachchige et al., 223

2023). Refer Figure 1 for annotation style. 224

3.2 Baseline Approaches 225

The baseline approaches were designed from 226

scratch to determine whether it is possible to iden- 227

tify toponyms correctly without considering con- 228

textual knowledge. 229

Rule-Based Approach: For this approach, we 230

selected the SpaCy NER model and augmented it 231

with vocabularies specific to concentration camps 232

and ghettos. Additionally, we defined rules to ex- 233

tract street names and ghettos, which were com- 234

bined with the SpaCy transformer (trf) NLP model 235

to form domain-specific NER model. Some of 236

these defined rules are shown in Table 1. 237
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Table 1: Examples for the defined regular expression
for entity mining.

Entity Regex Expression Match

Street

If name followed by street semantically
identical word ([A-Z][a-z]*(strasse|straße|
straat)|

¯
([A-Z][a-z]*(Street|St|Boulevard|Blvd|

Avenue|Ave|Place|Pl)()̇*))

Hauptstraße

Ghetto
Search on the lexicon consist Ghetto
names or either name followed by
ghetto [A-Z]w+((-| )*[A-Z]w+)* (g|G)hetto

Anyksciai

Structural similarity:238

N-Gram Approach: In this approach, we con-239

sider the n-grams surrounding the target word. We240

experiment with different window sizes and various241

n-gram combinations. Subsequently, we attempt to242

identify the most similar n-grams in conjunction243

with our target word to determine the most common244

and probable entity. However, this approach does245

not perform well due to the nature and unstructured246

of the dataset.247

Part-of-Speech Tags: In this approach, we gen-248

erate part-of-speech (POS) tags for every word in249

the corpus, along with their respective sentences.250

We then analyse the presence of similar POS tag251

patterns in sentences containing the target word252

associated with a toponym. By identifying sen-253

tences with the most similar POS tag combinations254

to the target word, we select the most frequently255

occurring sentences with similar POS tags and use256

them to calculate the probability of the word being257

the correct toponym. Unfortunately, the proposed258

method proved ineffective due to the highly un-259

structured nature of oral and transcribed text data.260

Although we could identify common POS tag com-261

binations with the target word, it was challenging262

to find a sufficient number of instances meeting our263

threshold. Specifically, we required at least three264

similar sentences to predict the label as a particular265

toponym based on the POS tag structure, but this266

criterion was seldom met within the dataset.267

3.3 Prompt creation268

The labelling of geo-entities in relation to histor-269

ical data remains largely unexplored. Incorporat-270

ing a proper KB that includes both historical and271

geospatial data is crucial for accurate modelling.272

However, data scarcity and the unavailability of273

properly labelled data are significant issues in the274

Holocaust domain. To address these challenges, we275

have explored the integration of Large Language276

Models (LLMs) with different prompt engineering277

techniques to bridge the knowledge gap.278

We evaluated our approaches in two pri-279

mary phases: zero-shot Chain-of-Thought (COT) 280

prompting to explore the model’s accuracy and es- 281

tablish a baseline value, and few-shot COT prompt- 282

ing using a labelled KB as the retriever to refine 283

the model based on the value of geospatial data. 284

Throughout the evaluation, GPT-4o served as the 285

base model. It was set to operate with a tempera- 286

ture of 0 and a maximum token limit of 1500 per 287

output, primarily functioning as a ’helpful assistant’ 288

for identifying geospatial entities in Holocaust tes- 289

timonies. 290

3.3.1 Zero-shot COT prompting 291

Identifying an optimal prompt is considered to be 292

a crucial point in the prompt engineering process 293

related to LLM inferencing. The leading researcher 294

of the study incorporated multiple prompt augmen- 295

tation techniques to identity the optimal prompt 296

required for the initial study. Task-specific prompt- 297

ing approaches and fact-checking approaches are 298

thoroughly explored. The used prompt is depicted 299

in the Table 2. 300

Table 2: Zero-shot COT Prompt.

Zero-shot COT Prompt
Consider the year from 1936-1944. You are go-
ing to identify name entity tags for holocaust-
specific tags. The list of name entity tags
should be {list_of_tags}. Each tag is as fol-
lows: {tags_meaning}. Now do the below
tasks.
1. Try to identify the most suitable Name en-
tity tag for the word ’NAMEENTITY’ in the
GIVEN SENTENCE based on the below crite-
ria:

• Analyse the word in front of the
’NAMEENTITY’ tag before you tag.

• Understand the complete sentence and try
to identify specific factors discussing the
word you want to tag.

The GIVEN SENTENCE: {sentence}.
2. Return only the GIVEN SENTENCE af-
ter assigning the identified tags instead of the
word ’NAMEENTITY’. Do not add additional
data.
Use the following format for the output:
"<Updated sentence with correctly identified
name entity tags>"

In the prompt, {tag meaning} contains informa- 301
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tion related to geospatial entities. We have used302

the following information to enhance geospatial303

knowledge within the prompt during the inference304

process:305

• LOC: Locations except countries or cities.306

• GPE: Geographical locations such as coun-307

tries or cities.308

• CAMP: Concentration camps (Extermination,309

Transit, Labour)310

• GHETTO: Ghettos, the Jewish quarters in311

cities.312

• STREET: Pathways or roads.313

{sentence} is the sentence that contains values that314

need to be tagged with geospatial entities. Dur-315

ing the evaluation process, it was noticed that316

GHETTO, LOC, and CAMP need notable improve-317

ment. Therefore, we proposed a few-shot COT318

prompt to address this issue.319

3.3.2 Retrieval Augmented Generation (RAG)320

The zero-shot approach or the baseline study321

fails to evaluate the entity labelling accurately322

for Geospatial labels like GHETTOS (see Table323

2). To overcome this issue, we used a retrieval-324

augmented generation (RAG) pipeline to share the325

geospatial knowledge during the prompting pro-326

cess. The RAG approach is mainly designed using327

two phases: vector store generation and the re-328

triever with response generation with the GPT 4o329

model.330

• Vector store generation and Embedding331

The ’BGE small’ model from Huggingface332

has been used as the embedding for the study,333

while Chroma DB is utilised to store the vec-334

tors related to the labelled geospatial data. To335

preserve contextual meaning during chunk-336

ing, a recursive character text splitter from337

LangChain has been incorporated to create the338

necessary data chunks with 2500 tokens, over-339

lapping 50 tokens. These chunks are stored340

in the vector store once embedded using the341

embedding model.342

• Retriever and prompting343

Retrieval QA has been utilised to build the344

retriever, with search_kwargs(k) set to ’2’ and345

the search_type set to ’similarity’. The similar-346

ity search uses cosine similarity to extract the347

vectors closest to the input sentence we want 348

to tag. This approach allows us to feed data 349

with a similar labelled context to the model, 350

enriching the response generation task with 351

geospatial knowledge. The designed few-shot 352

COT prompt is employed here, with minor 353

adjustments to fit it into the process. 354

The major drawback of this approach is that the 355

retriever relies on similarity score measurements to 356

retrieve related data based on the context provided 357

in the sentence. Consequently, it may retrieve sam- 358

ple chunks where the target word is absent. We 359

have redesigned the word level retriever to tackle 360

this concern using a KB. 361

3.3.3 Few-shot COT prompting 362

During this phase, our primary aim was to improve 363

prediction accuracy by incorporating pre-labelled 364

knowledge into the inference process. We organ- 365

ised the labelled data in a knowledge graph based 366

on value and geospatial entities, from which the 367

few-shots required for inference are retrieved. The 368

tree structure of the knowledge graph is designed 369

with the place as the root node and geospatial en- 370

tities as the first-level parent nodes. Leaf nodes 371

are implemented using a list structure containing 372

sample instances of labelled datasets. This ap- 373

proach has effectively improved the retrieval time 374

of example phrases required for few-shot learning, 375

which can be performed in a constant time. This 376

knowledge-sharing method has enhanced the geo- 377

spatial knowledge during the response generation 378

process. 379

The presence of the target word in the retrieved 380

sentences is considered mandatory for efficient la- 381

belling in the few-shot approach. Utmost five in- 382

stances for each entity are retrieved from KB. If 383

the word is absent, the prompt will function in a 384

zero-shot manner. The detailed workflow of the 385

approach is presented in figure 4. 386

The prompt in the table 2 is amended by sharing 387

the additional information retrieved for the second 388

phase. The below line is introduced as the first 389

chain of thought to the prompt. 390

• Examine the below examples and learn about 391

the appropriate Name entity tags for the words 392

based on the context. Examples are ’{result}’. 393

{result} tag contains the extracted knowledge 394

from the KB. This approach has shown promising 395

results in handling the GHETTO, LOC and CAMP. 396
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Figure 2: Data-flow of the RAG pipeline.

Figure 3: Knowledge base arrangement.

The detailed analysis of the results is discussed in397

the 4 section.398

The code associated with this research will be399

made publicly available as part of the supplemen-400

tary materials accompanying the final version of401

this paper upon its acceptance for presentation at402

the conference.403

4 Results and Discussion404

Due to the nature of oral interviews and testimonies,405

it is often necessary to disambiguate toponyms406

rather than perform straightforward geocoding.407

Many people were transported to or travelled408

through various locations, often unknown or un-409

specified, which complicates the identification of410

Table 3: Performance of baseline study using Rule-
based approach (Spacy Transformer Model).

Entities Baseline: Rule based
Precision Recall F1score

LOC 1.0 0.10 0.18
GPE 0.64 0.83 0.72
CAMP 0.77 0.51 0.62
GHETTO 0.00 0.00 0.00
STREET 0.67 0.51 0.58

precise geographic references. 411

As a baseline for the study, we evaluated a rule- 412

based approach using SpaCy to perform geospatial 413

entity labelling. During the initial baseline study, 414

we concluded that contextual and pragmatic rela- 415

tions between words are crucial for disambiguating 416

geospatial entities like GHETTO and LOC. This is 417

evident from the results shown in the table 3. From 418

the results, it is evident that GHETTO and LOC 419

are misinterpreted as GPE in most cases, highlight- 420

ing the importance of identifying the contextual 421

meaning and the involvement of the word in the 422

testimony. 423

Table 4 presents the evaluation of the baseline 424

model with zero-shot prompting, RAG pipeline and 425

the Hybrid approach with few-shot prompting and 426

KB. For each approach, a carefully crafted prompt 427

was selected through an iterative evaluation process 428

employing prompt augmentation techniques. The 429

GPT-4o model modestly classifies GPE, CAMP, 430

and STREET entities in the zero-shot prompting 431
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Figure 4: Data-flow of the few-shot COT pipeline.

approach. However, it significantly underperforms432

at classifying GHETTO, showing a notable predic-433

tion loss. To address this issue, we propose an RAG434

pipeline which targets sentence-level retrievers us-435

ing the cosine distance. Compared to the baseline436

approach, GHETTO tagging shows a 0.15 improve-437

ment in F1 score while other entities show a slight438

improvement in the tagging. This approach has439

shown that proper retrieval would improve the per-440

formance of the tagging process. A few-shot chain-441

of-thought (COT) based approach is proposed to442

handle the geospatial knowledge scarcity. The tar-443

get word-orientated retriever, which uses a tree444

structure, is incorporated to extract the most appro-445

priate few-shots required to infer GPT 4o. The few-446

shot COT approach has shown significant improve-447

ments, particularly for the GHETTO category, with448

an increase of 0.19 in the F1 score, and for the LOC449

category, with an increase of 0.08 in the F1 score.450

These results show that well-crafted prompts, along451

with a knowledge-sharing approach, can drive the452

general purpose language models to specific tasks453

like Name entity recognition in the Geo-spacial454

domain.455

Figure 5: Confusion Matrix for zero-shot prompting
approach.

Figure 6: Confusion Matrix for RAG based Approach.

5 Discussion 456

In this section, we will discuss the findings from 457

our experiments. 458

5.1 RQ1: Does structural similarity of 459

sentences effect in toponym resolution? 460

Since this is a novel problem, we explored vari- 461

ous methods to assess whether structural similarity 462

can be leveraged to identify toponyms and disam- 463

biguate the given named entities accurately. We em- 464

ployed several tasks, as discussed in the ’Methodol- 465

ogy’ section; however, none yielded robust results. 466

This indicates that structural similarity alone is in- 467

sufficient for effectively detecting highly unstruc- 468

tured oral and transcribed data. 469
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Table 4: Performance comparison between Models.

Entities Baseline GPT 4o RAG with GPT 4o Few-shot COT Prompting
Precision Recall F1score Precision Recall F1score Precision Recall F1score

LOC 0.57 0.74 0.64 0.54 0.81 0.64 0.63 0.84 0.72
GPE 0.77 0.85 0.81 0.83 0.77 0.80 0.89 0.82 0.85
CAMP 0.95 0.74 0.83 0.90 0.76 0.82 0.88 0.79 0.83
GHETTO 0.62 0.31 0.41 0.59 0.53 0.56 0.61 0.59 0.60
STREET 0.94 0.84 0.88 0.97 0.94 0.95 0.91 0.91 0.91

Figure 7: Confusion Matrix for Few-shot prompting
approach.

5.2 RQ2: Will general task LLMs be able to470

identify the toponyms discussed in the471

oral and transcribed texts?472

According to our second research question (RQ2),473

our experiments demonstrate that general-purpose474

LLMs were highly effective in identifying to-475

ponyms within domain-specific contexts. Despite476

the presence of code-mixing, where terms from477

different languages are interspersed within the478

transcribed texts, these LLMs successfully iden-479

tified and accurately labelled the correct geospatial480

named entities. This capability highlights the ro-481

bustness of general-purpose LLMs in handling mul-482

tilingual and mixed-language scenarios, providing483

reliable results. We plan to extend this approach484

to open-source LLMs such as Mistral, Falcon and485

Llama.486

5.3 RQ3: Can advanced prompt engineering487

techniques, combined with lexicon488

knowledge, recognise domain-specific489

toponyms?490

Our experiments indicate that advanced prompt491

engineering techniques significantly enhance per-492

formance in domain-specific geo-spatial named en-493

tity disambiguation. Employing these advanced 494

prompts not only improves accuracy but also re- 495

duces computational costs. This cost efficiency 496

is particularly beneficial during both the initial 497

pretraining of models and subsequent fine-tuning 498

processes. By optimising prompt design, we can 499

achieve more effective model training with lower 500

computational requirements, thus streamlining the 501

entire model development lifecycle. 502

In the future, this study can also be extended and 503

generalised to prompts to address the disambigua- 504

tion of other geographical named entities, including 505

natural landmarks such as rivers, forests, and moun- 506

tains. By expanding the scope to include a broader 507

range of toponyms, we can enhance the model’s 508

ability to accurately identify and differentiate be- 509

tween various types of geographical entities. This 510

extension will contribute to a more comprehensive 511

and robust system for geographical named entity 512

resolution, benefiting applications in fields such 513

as geographic information systems (GIS), environ- 514

mental monitoring, and digital humanities. 515

6 Conclusion 516

In this paper, we have explored the evolution from 517

traditional methods to state-of-the-art LLMs for 518

toponym resolution in oral and transcribed texts, 519

particularly within the context of Holocaust stud- 520

ies. Our discussion highlights how these advanced 521

approaches significantly improve accuracy and ef- 522

ficiency. We demonstrate how using labelled data 523

as a knowledge base enriches the inference pro- 524

cess, turning few-shot examples into a wealth of 525

information to handle corner cases in geospatial 526

disambiguation. Moreover, as detailed in the pre- 527

ceding sections, leveraging prompts within these 528

models can yield high-quality results at a reduced 529

cost, thereby enhancing the overall feasibility and 530

effectiveness of toponym resolution efforts in this 531

specialised domain. 532
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Limitations533

In our study, we have demonstrated promising re-534

sults in an unexplored domain. However, several535

limitations exist. The study is exclusively centered536

on GPT-4o without any training or fine-tuning. The537

characteristics of the data used in GPT’s initial538

training may have directly impacted the outcomes.539

Further refinement through fine-tuning the model540

with oral and transcribed data could enhance the541

process. Due to the constraints of the datasets, we542

utilized a limited number of records for the evalua-543

tion process, which warrants further exploration.544
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