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Abstract

Despite the scarcity of employing transformer
approaches for toponym resolution, this study
leverages oral and transcribed text data to ad-
dress the disambiguation of diverse named en-
tities, including place names such as camps,
ghettos, and streets. We utilise generative Al
techniques, incorporating prompt engineering,
to effectively disambiguate these named enti-
ties within geographical contexts.

Our methodology aims to demonstrate how
leveraging prompt engineering from general
large language models (LLMs) can be effec-
tively employed for less commonly addressed
topics, such as toponym resolution in the field
of Natural Language Processing (NLP). We
have evaluated the few-shot chain of thought
(COT) prompting approach combining the
knowledge base (KB) as a retriever to provide
the fewshots required for the reasoning pro-
cess of LLM. This technique illustrates the ef-
ficacy of these advanced approaches in accu-
rately identifying and resolving toponyms in
complex textual datasets, thereby contributing
valuable insights to the field of geographic in-
formation systems and digital humanities.

1 Introduction

In the geospatial domain, ambiguities in words are
widespread and can present significant challenges,
particularly in sensitive historical contexts such as
the Holocaust. Spoken language, with its diverse di-
alects, accents, and linguistic nuances, further com-
plicates the resolution of toponyms, placenames or
geographic locations. Identifying these toponyms
accurately is crucial for understanding historical
events. Over time, geographic locations may have
been referred to by different names in textual doc-
uments, adding to the complexity. These discrep-
ancies pose formidable obstacles to the analysis
of historical documents, underscoring the need for
robust toponym resolution methods in Holocaust
research. In the process of automatic information

extraction, resolving toponyms presents a signif-
icant challenge that remains largely unaddressed.
This task is particularly crucial in the context of
named entity recognition (NER), where accurately
identifying and categorising geographic locations
mentioned in transcribed text, especially within
sensitive historical domains like the Holocaust, is
paramount.

In comparing spoken and transcribed data with
written language, various ambiguities arise in
speech data. Disambiguating location-based named
entity tags in speech data is particularly challenging
compared to written text due to the inherent com-
plexities of speech, including variations in pronun-
ciation, accents, and dialects, as well as the absence
of punctuation and grammatical cues found in writ-
ten language. These factors contribute to difficul-
ties in accurately identifying and resolving named
entities related to locations in speech data. In Holo-
caust research, oral testimonies play a pivotal role
in preserving survivors’ experiences. These testi-
monies often mention concentration camps, ghet-
tos, and other geographical locations, using con-
sistent naming conventions. This consistency in
naming conventions accentuates the need for ro-
bust NER systems capable of resolving toponyms
accurately, thereby enhancing our understanding
of historical narratives. While there has been some
related research, we found that most of the exist-
ing approaches are unable to deliver satisfactory
results because of the following reasons. For a
clearer explanation, please refer to Figure 1.

* Referring the same name for different contexts
* Different spelling referring to the same place
* Symbols refer the geographical location

With the recent advancement of Large Language
Models (LLMs), which are trained using billions of
parameters, promising results have been achieved



for various Natural Language Processing (NLP)
tasks compared to previously existing machine
learning models in the general domain. These
models, primarily developed with contextual under-
standing, have shown (including in recent studies
conducted by the authors) that they outperform
rule-based approaches. However, more research
needs to be conducted within domain-specific ap-
proaches to evaluate the adaptability of context-
specific methodologies. In this study, we experi-
ment with the adaptability of the LLMs and trans-
former models for the toponym resolution.

More specifically, we propose a novel approach
which employs LL.Ms for toponym resolution, com-
paring different traditional approaches and seeking
to answer the following research questions.

* RQ1: Does structural similarity of sentences
effect in toponym resolution?

* RQ2: Are general task LLMs able to iden-
tify the toponyms discussed in the oral and
transcribed texts?

* RQ3: Can advanced prompt engineering tech-
niques, combined with lexicon knowledge,
recognise domain-specific toponyms?

The rest of this paper is organised as follows.
We describe previous studies in Section 2. We
present our methodology in Section 3. In Section
4, we describe our experiments and report the re-
sults. Section 5 offers an error analysis, and a brief
conclusion is provided in Section 6.

2 Related Work

Even though different traditional approaches, such
as hand-crafted rules and heuristics, heuristics of
rule-based systems as features in supervised ma-
chine learning models to predict geospatial labels
for place names were employed. In previous stud-
ies, deep learning methodologies have been em-
ployed for toponym resolution to model the textual
elements by combining bidirectional Long Short-
Term Memory (LSTM) units with pre-trained con-
textual word embeddings (i.e., static features ex-
tracted using either the Embeddings from Lan-
guage Models (ELMo) or the Bidirectional En-
coder Representations from Transformers (BERT)
methods. A limitation of these studies is that they
discuss only the general named entity tags such
as LOC GPE but not the domain-specific enti-
ties such as concentration camps (CAMP), ghettos
(GHETTO), streets (STREET), etc.

Additionally, several studies have leveraged deep
neural network architectures for toponym resolu-
tion (Cardoso et al., 2019; Kulkarni et al., 2021).
For example, Gritta et al. proposed a network archi-
tecture called the CamCoder system, which aims to
disambiguate place references by detecting lexical
clues within the context surrounding the mention.
The authors also introduced a sparse vector rep-
resentation named MapVec, which encodes prior
geographic probabilities associated with locations
based on coordinates and population counts (Car-
doso et al., 2019). Similarly, Cardoso et al. (Kulka-
rni et al., 2021) utilised a combination of context-
aware word embeddings (Peters et al., 1802) and
a recurrent neural network based on Bidirectional
LSTMs (Huang et al., 2015). The above studies
have covered not only English but also other lan-
guages such as Spanish.

Transformer-based techniques have recently had
a substantial impact on toponym resolution method-
ologies. The current approaches can be broadly
classified into two categories: localisation-based
and ranking-based. The localisation-based ap-
proach primarily focuses on the direct prediction
of geographic coordinates or areas from the given
textual input. For instance, Radford’s method
(Radford, 2021) utilises DistilRoBERTa for end-
to-end probabilistic geocoding. Similarly, Cardoso
et al. (Cardoso et al., 2022) employ Long Short-
Term Memory (LSTM) networks with BERT em-
beddings to predict probability distributions over
spatial regions. In a sequence-to-sequence frame-
work, Solaz and Shalumov (Solaz and Shalumov,
2023) use the TS Transformer model to translate
text into hierarchical encodings of geographic cells.
Another notable study by Gomes et al. (Gomes
et al., 2024) proposes a method that leverages the
adaptation of SentenceTransformer models, ini-
tially designed for sentence similarity tasks, for
toponym resolution. The authors fine-tune the mod-
els on geographically annotated English news arti-
cle datasets, including Local Global Lexicon, Ge-
oWebNews, and TR-News.

One of the major challenges in transformer-
based toponym resolution methods is the absence
of domain-specific fine-tuning. Pre-trained trans-
former models such as BERT (Devlin et al., 2019)
are optimised to generate embedding for tasks like
masked language modelling and next-sentence pre-
diction. Therefore, it is plausible that models
trained on larger datasets have a greater capacity to
identify the correct toponym.



Example 01: Referring the same name for different contexts

We | were taken to Theresienstadt transit camp to Majdanek
0 o 0] 0] B-CAMP 0] o} 0] B-CAMP

All of us stayed in Theresienstadt for three nights
8} 0] 0] 0] (0] B-GHETTO (0] 0 o}

Example 02: Different spelling referring to the same place example (Auschwitz- Birkenau is a one camp)

who | had | to come to Auschwitz in 1942 from Slovakia
O 0] 0 0O 0] B-CAMP 0 B-DATE 0] B-GPE
those | unfit | for | further | experiments | were | sent | back | to | Birkenau | or | gassed
0 0] (o] 0] 0] 0 0 0] o] B-CAMP [0} 9]
Example 03: Symbols refer the geographical location
They | were | transported | to KZ Flossenbuerg | in | Bavaria
0] (0] o Q B-CAMP I-CAMP 0} B-GPE

Figure 1: Sample examples for each scenario.

Another significant issue with machine learning-
based toponym resolution methods is the geo-
graphic bias, which arises due to the imbalance
in the geographic distribution of training datasets.
Liuetal. (Liu et al., 2022) make the point that mod-
els tend to favour locations that are overrepresented
in the training corpora. The scarcity and lack of
diversity in geotagged datasets further intensifies
this bias (Gritta et al., 2018).

Our review revealed a notable gap in the cur-
rent body of research: no studies have employed
state-of-the-art generative language models for to-
ponym resolution. Despite the advancements in
generative language models like GPT, which have
demonstrated significant potential in other natu-
ral language processing tasks, their application to
toponym resolution and disambiguation of place
names remains unexplored.

3 Methodology

According to the previous studies, it is evident
that knowledge of Large Language models is effec-
tive and can be used for domain-specific tasks us-
ing proper computational techniques (Chang et al.,
2024; Zhao et al., 2023). In the present study, we
designed the prompts to leverage the general task
language model for the name-entity recognition
task in the geospatial arena. The absence of fine-
tuning or training of base models in our approach

is intentional, and we attempt to utilise prompt aug-
mentation techniques to reframe the prompts to suit
the downstream tasks, such as toponyms resolution.

3.1 Data and Dataset creation

Oral and transcribed versions of Holocaust testi-
monies were used for the following experiments
described in this study. These data were manually
annotated according to the BIO (Beginning-Inside-
Outside) tagging scheme. For the annotation pro-
cess we employed UBIAI tool. The training sam-
ples were manually annotated by human annotators,
resulting in an inter-annotator agreement of 0.76.
More details about the data used for this study are
reported in (Anuradha Nanomi Arachchige et al.,
2023). Refer Figure 1 for annotation style.

3.2 Baseline Approaches

The baseline approaches were designed from
scratch to determine whether it is possible to iden-
tify toponyms correctly without considering con-
textual knowledge.

Rule-Based Approach: For this approach, we
selected the SpaCy NER model and augmented it
with vocabularies specific to concentration camps
and ghettos. Additionally, we defined rules to ex-
tract street names and ghettos, which were com-
bined with the SpaCy transformer (trf) NLP model
to form domain-specific NER model. Some of
these defined rules are shown in Table 1.


https://ubiai.tools/

Table 1: Examples for the defined regular expression
for entity mining.

Entity Regex Expression Match
If name followed by street semantically

identical word ([A-Z][a-z]*(strasselstraBel

Street straat)|([A-Z][a-z]*(Street|StIBoulevard|Blvdl Hauptstrafie
AvenuelAvelPlacelP)()*))
Search on the lexicon consist Ghetto

Ghetto names or either name followed by Anyksciai

ghetto [A-Z]w+((-| )*[A-Z]w+)* (glG)hetto

Structural similarity:

N-Gram Approach: In this approach, we con-
sider the n-grams surrounding the target word. We
experiment with different window sizes and various
n-gram combinations. Subsequently, we attempt to
identify the most similar n-grams in conjunction
with our target word to determine the most common
and probable entity. However, this approach does
not perform well due to the nature and unstructured
of the dataset.

Part-of-Speech Tags: In this approach, we gen-
erate part-of-speech (POS) tags for every word in
the corpus, along with their respective sentences.
We then analyse the presence of similar POS tag
patterns in sentences containing the target word
associated with a toponym. By identifying sen-
tences with the most similar POS tag combinations
to the target word, we select the most frequently
occurring sentences with similar POS tags and use
them to calculate the probability of the word being
the correct toponym. Unfortunately, the proposed
method proved ineffective due to the highly un-
structured nature of oral and transcribed text data.
Although we could identify common POS tag com-
binations with the target word, it was challenging
to find a sufficient number of instances meeting our
threshold. Specifically, we required at least three
similar sentences to predict the label as a particular
toponym based on the POS tag structure, but this
criterion was seldom met within the dataset.

3.3 Prompt creation

The labelling of geo-entities in relation to histor-
ical data remains largely unexplored. Incorporat-
ing a proper KB that includes both historical and
geospatial data is crucial for accurate modelling.
However, data scarcity and the unavailability of
properly labelled data are significant issues in the
Holocaust domain. To address these challenges, we
have explored the integration of Large Language
Models (LLMs) with different prompt engineering
techniques to bridge the knowledge gap.

We evaluated our approaches in two pri-

mary phases: zero-shot Chain-of-Thought (COT)
prompting to explore the model’s accuracy and es-
tablish a baseline value, and few-shot COT prompt-
ing using a labelled KB as the retriever to refine
the model based on the value of geospatial data.
Throughout the evaluation, GPT-40 served as the
base model. It was set to operate with a tempera-
ture of 0 and a maximum token limit of 1500 per
output, primarily functioning as a ’helpful assistant’
for identifying geospatial entities in Holocaust tes-
timonies.

3.3.1 Zero-shot COT prompting

Identifying an optimal prompt is considered to be
a crucial point in the prompt engineering process
related to LLM inferencing. The leading researcher
of the study incorporated multiple prompt augmen-
tation techniques to identity the optimal prompt
required for the initial study. Task-specific prompt-
ing approaches and fact-checking approaches are
thoroughly explored. The used prompt is depicted
in the Table 2.

Table 2: Zero-shot COT Prompt.

Zero-shot COT Prompt

Consider the year from 1936-1944. You are go-
ing to identify name entity tags for holocaust-
specific tags. The list of name entity tags
should be {list_of_tags}. Each tag is as fol-
lows: {tags_meaning}. Now do the below
tasks.

1. Try to identify the most suitable Name en-
tity tag for the word 'NAMEENTITY’ in the
GIVEN SENTENCE based on the below crite-
ria:

e Analyse the word in front of the
"NAMEENTITY’ tag before you tag.

» Understand the complete sentence and try
to identify specific factors discussing the
word you want to tag.

The GIVEN SENTENCE: {sentence}.

2. Return only the GIVEN SENTENCE af-
ter assigning the identified tags instead of the
word 'NAMEENTITY’. Do not add additional
data.

Use the following format for the output:
"<Updated sentence with correctly identified
name entity tags>"

In the prompt, {tag meaning} contains informa-



tion related to geospatial entities. We have used
the following information to enhance geospatial
knowledge within the prompt during the inference
process:

* LOC: Locations except countries or cities.

* GPE: Geographical locations such as coun-
tries or cities.

* CAMP: Concentration camps (Extermination,
Transit, Labour)

* GHETTO: Ghettos, the Jewish quarters in
cities.

* STREET: Pathways or roads.

{sentence} is the sentence that contains values that
need to be tagged with geospatial entities. Dur-
ing the evaluation process, it was noticed that
GHETTO, LOC, and CAMP need notable improve-
ment. Therefore, we proposed a few-shot COT
prompt to address this issue.

3.3.2 Retrieval Augmented Generation (RAG)

The zero-shot approach or the baseline study
fails to evaluate the entity labelling accurately
for Geospatial labels like GHETTOS (see Table
2). To overcome this issue, we used a retrieval-
augmented generation (RAG) pipeline to share the
geospatial knowledge during the prompting pro-
cess. The RAG approach is mainly designed using
two phases: vector store generation and the re-
triever with response generation with the GPT 40
model.

* Vector store generation and Embedding

The *BGE small’” model from Huggingface
has been used as the embedding for the study,
while Chroma DB is utilised to store the vec-
tors related to the labelled geospatial data. To
preserve contextual meaning during chunk-
ing, a recursive character text splitter from
LangChain has been incorporated to create the
necessary data chunks with 2500 tokens, over-
lapping 50 tokens. These chunks are stored
in the vector store once embedded using the
embedding model.

* Retriever and prompting

Retrieval QA has been utilised to build the
retriever, with search_kwargs(k) set to *2’ and
the search_type set to ’similarity’. The similar-
ity search uses cosine similarity to extract the

vectors closest to the input sentence we want
to tag. This approach allows us to feed data
with a similar labelled context to the model,
enriching the response generation task with
geospatial knowledge. The designed few-shot
COT prompt is employed here, with minor
adjustments to fit it into the process.

The major drawback of this approach is that the
retriever relies on similarity score measurements to
retrieve related data based on the context provided
in the sentence. Consequently, it may retrieve sam-
ple chunks where the target word is absent. We
have redesigned the word level retriever to tackle
this concern using a KB.

3.3.3 Few-shot COT prompting

During this phase, our primary aim was to improve
prediction accuracy by incorporating pre-labelled
knowledge into the inference process. We organ-
ised the labelled data in a knowledge graph based
on value and geospatial entities, from which the
few-shots required for inference are retrieved. The
tree structure of the knowledge graph is designed
with the place as the root node and geospatial en-
tities as the first-level parent nodes. Leaf nodes
are implemented using a list structure containing
sample instances of labelled datasets. This ap-
proach has effectively improved the retrieval time
of example phrases required for few-shot learning,
which can be performed in a constant time. This
knowledge-sharing method has enhanced the geo-
spatial knowledge during the response generation
process.

The presence of the target word in the retrieved
sentences is considered mandatory for efficient la-
belling in the few-shot approach. Utmost five in-
stances for each entity are retrieved from KB. If
the word is absent, the prompt will function in a
zero-shot manner. The detailed workflow of the
approach is presented in figure 4.

The prompt in the table 2 is amended by sharing
the additional information retrieved for the second
phase. The below line is introduced as the first
chain of thought to the prompt.

* Examine the below examples and learn about
the appropriate Name entity tags for the words
based on the context. Examples are ’ {result}’.

{result} tag contains the extracted knowledge
from the KB. This approach has shown promising
results in handling the GHETTO, LOC and CAMP.
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Figure 2: Data-flow of the RAG pipeline.

Figure 3: Knowledge base arrangement.

The detailed analysis of the results is discussed in
the 4 section.

The code associated with this research will be
made publicly available as part of the supplemen-
tary materials accompanying the final version of
this paper upon its acceptance for presentation at
the conference.

4 Results and Discussion

Due to the nature of oral interviews and testimonies,
it is often necessary to disambiguate toponyms
rather than perform straightforward geocoding.
Many people were transported to or travelled
through various locations, often unknown or un-
specified, which complicates the identification of

Table 3: Performance of baseline study using Rule-
based approach (Spacy Transformer Model).

Entities Baseline: Rule based
Precision Recall Flscore
LOC 1.0 0.10 0.18
GPE 0.64 0.83 0.72
CAMP 0.77 0.51 0.62
GHETTO 0.00 0.00 0.00
STREET 0.67 0.51 0.58

precise geographic references.

As a baseline for the study, we evaluated a rule-
based approach using SpaCy to perform geospatial
entity labelling. During the initial baseline study,
we concluded that contextual and pragmatic rela-
tions between words are crucial for disambiguating
geospatial entities like GHETTO and LOC. This is
evident from the results shown in the table 3. From
the results, it is evident that GHETTO and LOC
are misinterpreted as GPE in most cases, highlight-
ing the importance of identifying the contextual
meaning and the involvement of the word in the
testimony.

Table 4 presents the evaluation of the baseline
model with zero-shot prompting, RAG pipeline and
the Hybrid approach with few-shot prompting and
KB. For each approach, a carefully crafted prompt
was selected through an iterative evaluation process
employing prompt augmentation techniques. The
GPT-40 model modestly classifies GPE, CAMP,
and STREET entities in the zero-shot prompting
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approach. However, it significantly underperforms
at classifying GHETTO, showing a notable predic-
tion loss. To address this issue, we propose an RAG
pipeline which targets sentence-level retrievers us-
ing the cosine distance. Compared to the baseline
approach, GHETTO tagging shows a 0.15 improve-
ment in F1 score while other entities show a slight
improvement in the tagging. This approach has
shown that proper retrieval would improve the per-
formance of the tagging process. A few-shot chain-
of-thought (COT) based approach is proposed to
handle the geospatial knowledge scarcity. The tar-
get word-orientated retriever, which uses a tree
structure, is incorporated to extract the most appro-
priate few-shots required to infer GPT 4o0. The few-
shot COT approach has shown significant improve-
ments, particularly for the GHETTO category, with
an increase of 0.19 in the F1 score, and for the LOC
category, with an increase of 0.08 in the F1 score.
These results show that well-crafted prompts, along
with a knowledge-sharing approach, can drive the
general purpose language models to specific tasks
like Name entity recognition in the Geo-spacial
domain.
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Figure 6: Confusion Matrix for RAG based Approach.

5 Discussion

In this section, we will discuss the findings from
our experiments.

5.1 RQI1: Does structural similarity of
sentences effect in toponym resolution?

Since this is a novel problem, we explored vari-
ous methods to assess whether structural similarity
can be leveraged to identify toponyms and disam-
biguate the given named entities accurately. We em-
ployed several tasks, as discussed in the *Methodol-
ogy’ section; however, none yielded robust results.
This indicates that structural similarity alone is in-
sufficient for effectively detecting highly unstruc-
tured oral and transcribed data.



Table 4: Performance comparison between Models.

Entities Baseline GPT 4o RAG with GPT 4o Few-shot COT Prompting
Precision Recall Flscore Precision Recall Flscore Precision Recall Flscore
LOC 0.57 0.74 0.64 0.54 0.81 0.64 0.63 0.84 0.72
GPE 0.77 0.85 0.81 0.83 0.77 0.80 0.89 0.82 0.85
CAMP 0.95 0.74 0.83 0.90 0.76 0.82 0.88 0.79 0.83
GHETTO 0.62 0.31 0.41 0.59 0.53 0.56 0.61 0.59 0.60
STREET 0.94 0.84 0.88 0.97 0.94 0.95 0.91 0.91 0.91
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Figure 7: Confusion Matrix for Few-shot prompting
approach.

5.2 RQ2: Will general task LLMs be able to
identify the toponyms discussed in the
oral and transcribed texts?

According to our second research question (RQ2),
our experiments demonstrate that general-purpose
LLMs were highly effective in identifying to-
ponyms within domain-specific contexts. Despite
the presence of code-mixing, where terms from
different languages are interspersed within the
transcribed texts, these LL.Ms successfully iden-
tified and accurately labelled the correct geospatial
named entities. This capability highlights the ro-
bustness of general-purpose LLMs in handling mul-
tilingual and mixed-language scenarios, providing
reliable results. We plan to extend this approach
to open-source LLMs such as Mistral, Falcon and
Llama.

5.3 RQ3: Can advanced prompt engineering
techniques, combined with lexicon
knowledge, recognise domain-specific
toponyms?

Our experiments indicate that advanced prompt
engineering techniques significantly enhance per-
formance in domain-specific geo-spatial named en-

tity disambiguation. Employing these advanced
prompts not only improves accuracy but also re-
duces computational costs. This cost efficiency
is particularly beneficial during both the initial
pretraining of models and subsequent fine-tuning
processes. By optimising prompt design, we can
achieve more effective model training with lower
computational requirements, thus streamlining the
entire model development lifecycle.

In the future, this study can also be extended and
generalised to prompts to address the disambigua-
tion of other geographical named entities, including
natural landmarks such as rivers, forests, and moun-
tains. By expanding the scope to include a broader
range of toponyms, we can enhance the model’s
ability to accurately identify and differentiate be-
tween various types of geographical entities. This
extension will contribute to a more comprehensive
and robust system for geographical named entity
resolution, benefiting applications in fields such
as geographic information systems (GIS), environ-
mental monitoring, and digital humanities.

6 Conclusion

In this paper, we have explored the evolution from
traditional methods to state-of-the-art LLMs for
toponym resolution in oral and transcribed texts,
particularly within the context of Holocaust stud-
ies. Our discussion highlights how these advanced
approaches significantly improve accuracy and ef-
ficiency. We demonstrate how using labelled data
as a knowledge base enriches the inference pro-
cess, turning few-shot examples into a wealth of
information to handle corner cases in geospatial
disambiguation. Moreover, as detailed in the pre-
ceding sections, leveraging prompts within these
models can yield high-quality results at a reduced
cost, thereby enhancing the overall feasibility and
effectiveness of toponym resolution efforts in this
specialised domain.



Limitations

In our study, we have demonstrated promising re-
sults in an unexplored domain. However, several
limitations exist. The study is exclusively centered
on GPT-40 without any training or fine-tuning. The
characteristics of the data used in GPT’s initial
training may have directly impacted the outcomes.
Further refinement through fine-tuning the model
with oral and transcribed data could enhance the
process. Due to the constraints of the datasets, we
utilized a limited number of records for the evalua-
tion process, which warrants further exploration.
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