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ABSTRACT

This paper proposes novel binarized convolutional neural networks (BCNNs)
named QB-Net and QSB-Net, specifically designed to Quadruple the number of
channels and incorporate a so-called Smooth downsampling in BCNNs for low-
cost mobile environments. The proposed models combine FP32 depthwise sep-
arable (DS) convolutions with binarized 1 × 1 pointwise convolutions, offering
reduced computational costs in the pointwise convolutions. To enhance the de-
graded performance of the above naive combination, the proposed models start
with a small number of channels in shallow layers and expand them during down-
sampling by a factor of four, effectively managing model complexity in the down-
sampling. The proposed model structure maintains low computational costs in
the shallow blocks and increases model complexity in the deep blocks, provid-
ing a wider dynamic range to manage information in the frequency domain. As a
result, the proposed models overcome the limitations of existing BCNNs, deliver-
ing improved performance while reducing the total computational costs. For fur-
ther performance enhancements, we propose a novel smooth downsampling with
heightwise and widthwise sequential downsampling steps, doubling the number of
channels at each step. Besides, we show that the channelwise self-attention (SE)
is applicable with minimal additional computational costs in the proposed mod-
els. Besides, multiple binarized convolutions in the fully-connected (FC) layer
reduce storage costs without requiring 8-bit quantized convolutions. Experimen-
tal results demonstrate the efficiency of the proposed models in terms of perfor-
mance, computational costs, and inference latency on real hardware. Notably,
the QSB-Net-Large with SE achieve 71.2% Top-1 accuracy on ImageNet-1K and
69.2 mean intersection over union (mIoU) in the semantic segmentation on the
PASCAL VOC dataset, outperforming other counterparts.

1 INTRODUCTION

Although substantial parallelism in GPUs or specialized accelerators can achieve a considerable
speedup, edge devices lack sufficient parallelism for accommodating the increasing model com-
plexity. BCNNs binarize both weights and activations into −1 and +1 in binarized convolutions. As
a result, multiply-accumulate operations are replaced by bitwise XNOR and bit-counting operations,
leveraging bit-level parallelism in CPU-based devices. While earlier BCNNs experienced significant
accuracy drops compared with their FP32 counterparts, recent BCNNs achieve good performance
comparable to mobile-friendly CNNs. However, as computational costs increase within BCNNs, the
expected inference speedup could not be satisfactory. For example, whereas ReActNetA (Liu et al.,
2020) adopts binarized 3 × 3 spatial convolutions, its FP32 counterpart, MobileNetV1 (Howard
et al., 2017) utilizes FP32 DS spatial convolutions. Compared with FP32 DS convolutions, bina-
rized 3 × 3 spatial convolutions require more computations, failing to provide faster inference on
real hardware. Therefore, novel lightweight structures should be studied to minimize computational
costs while avoiding significant performance degradation in BCNNs.

Conventional CNNs typically double the number of channels or adopt customized channel expan-
sion during downsampling (He et al., 2016; Ridnik et al., 2021) to mitigate information loss. In
BCNNs, however, we expect that the binarization error and low resolution of BCNNs require a dif-
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(a). Illustration of main idea (b). Comparison with other works

Figure 1: Main idea and comparison in terms of Top-1 accuracy and OPs on ImageNet-1K (Russakovsky et al.,
2015). In Figure 1 (b), the model in parentheses is the FP32 counterpart of its binarized model.

ferent strategy for performing the channel expansion and downsampling. Our hypothesis suggests
that the performance of BCNNs can be significantly influenced by the complexity of deep blocks
and the configuration of downsampling. Although increasing the number of channels of all blocks
by the same ratio can mitigate the issue, computational costs dramatically increase. Therefore, we
think that developing a novel strategy for channel expansion and downsampling has the potential
to achieve significant benefits in BCNNs. The approach in the conceptual illustration of Figure 1
(a) quadruply increases the number of channels in deeper blocks during downsampling. By hav-
ing a small number of channels in the shallow block, the proposed strategy can reduce the total
computations compared with existing BCNNs.

This paper proposes novel BCNNs named QB-Net and QSB-Net, quadrupling the number of chan-
nels in channel expansion and configuring smooth downsampling in the new structures of BCNNs.
The newly developed designs and main contributions are as follows:

1. New Structure for Channel Quadrupling: To reduce the computations in pointwise con-
volutions, the proposed models utilize 3 × 3 DS convolutions and binarized pointwise
convolutions. However, the existing channel expansion with the above structure shows sig-
nificant performance degradation. To overcome the problem, the proposed models have
a small number of channels in the shallow blocks and increase the number of channels
by a factor of four during downsampling. The small number of channels in the shallow
blocks reduces the total computations, as shown in Figure 1 (b). The channel quadrupling
can provide a wider dynamic range in deep blocks, enhancing the ability to manage the
information in the frequency domain and achieving good performance in BCNNs.

2. Smooth Downsampling and Techniques for Better Models: In QSB-Net, the proposed
smooth downsampling processes two sequential steps involving heightwise and widthwise
1-D downsampling, producing noticeable performance enhancements. Each 1-D down-
sampling layer can double the number of channels, resulting in quadrupled channels after
the two steps of downsampling in Figure 1 (a). Experimental results show that channelwise
self-attention in DS convolutions is effective, as shown in Figure 1 (b). Besides, 8-bit quan-
tization can be valid for the FP32 DS convolutional and FC layers. Notably, the usage of
multiple binarized convolutions in the FC layer can reduce storage costs, which can solve
the issue of the increasing number of channels in the FC layer.

3. Experiments on Various Datasets and Real Hardware: We evaluated the proposed mod-
els for image classification and semantic segmentation. The experiments on a Raspberry Pi
4B (RPi 4B) and a Samsung Exynos processor using Larq Compute Engine (LCE) (Ban-
nink et al., 2021) show that the proposed models have significant inference speedup com-
pared with the baseline model and mobile-friendly CNNs.

The proposed model reaches up to 71.2% Top-1 accuracy on ImageNet-1K. and 69.2 mIoU in se-
mantic segmentation on the PASCAL VOC dataset, outperforming other counterparts. The above
results prove that the proposed channel quadrupling and smooth downsampling can be effective in
BCNNs.
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2 RELATED WORKS

Courbariaux et al. (2016) showed that BCNNs can reduce memory usage and energy consumption by
nearly 32× compared with baselined FP32 models. Many existing works have focused on improv-
ing the performance of BCNNs due to their significant performance drops. XNOR-Net (Rastegari
et al., 2016) adopted a scaling factor for both weights and input features of binarized convolutional
layers, achieving 51.4% Top-1 accuracy with binarized ResNet18 (He et al., 2016) on ImageNet-1K.
Bi-RealNet (Liu et al., 2018) utilized the single skipped shortcut, enhancing the Top-1 accuracy of
binarized ResNet18 up to 56.4%. XNOR-Net++ (Bulat et al., 2019) advanced BCNNs by introduc-
ing heightwise and widthwise scaling factors for the output features. Real-to-Bin (Martinez et al.,
2019) enhanced the performance up to 65.4% by incorporating a self-attention block.

Whereas the above BCNNs are based on ResNet (He et al., 2016), MobiNet (Phan et al., 2020a)
and ReActNetA (Liu et al., 2020) followed the structure of MobileNetV1 (Howard et al., 2017).
However, MobiNet produced only 53.5% Top-1 accuracy on ImageNet-1K. ReActNetA (Liu et al.,
2020) achieved 69.4% Top-1 accuracy by deploying binarized 3 × 3 convolutions instead of us-
ing FP32 DS convolutions. The outstanding performance of Real-to-Bin and ReActNetA showed
the effectiveness of teacher-student training (Hinton et al., 2015) in BCNNs. There have been sev-
eral works to develop specific activation functions and training methods for BCNNs. IR-Net (Qin
et al., 2020) introduced a binarization method and so-called error decaying estimator for the train-
ing. SI-BNN (Wang et al., 2020) proposed a binarization function with trainable thresholds. BNSC-
Net (Wu et al., 2021) decomposed 2-D convolutions to employ additional skip connections. RB-
Net (Liu et al., 2022) reshaped pointwise convolutions and incorporated a balanced activation func-
tion. ReCU (Xu et al., 2021) employed a rectified clamp unit to improve its training results. SA-
BNN (Liu et al., 2021) mitigated the weight flip issues in BCNNs. AdaBin (Tu et al., 2022) adap-
tively optimized weights and features to follow the value distributions of its FP32 baseline model.
ReBNN (Xu et al., 2023) introduced weighted reconstruction loss to reduce the weight oscillation
during training. Whereas PokeBNN (Zhang et al., 2022) achieved impressive results by adopting
ResNet50 as its baseline and teacher models, its hyperparameter for the clipping bound and stride
configuration in the first convolutional layer introduced a different optimization strategy. Different
from Zhang et al. (2022), the proposed QSB-Net shows a novel strategy for channel quadrupling and
smooth downsampling. Therefore, we conclude that the fundamental techniques and contributions
of the proposed models are totally different from those of PokeBNN.

3 BACKGROUNDS

For a binarized convolution in BCNNs, both filter weights and input features are quantized into
binary values. For given binarized input features Ib and binarized K×K filters Fb, the conventional
binarized convolution, denoted as Ib ∗ Fb, can be formulated as:

(Ib ∗ Fb)(i, j) = γ ·
C−1∑
c=0

K−1∑
m=0

K−1∑
n=0

Ib(c, i+m, j + n) · Fb(c,m, n), (1)

where i, j are the spatial indices of the output feature map in a channel. The term γ is the scaling
factor of the binarized convolutional outputs. During inference, whereas pre-binarized weights Fb

can be pre-stored, input features I are binarized into Ib during feedforwarding. While so-called
binarization-aware training updates real-valued weights in the backpropagation during training, the
updated real-valued weights are binarized during feedforwording. Let ϵ(a, b) be the error between
a and b. Binarization errors of ϵ(F (c,m, n), Fb(c,m, n)) exist between the real-valued updated
weights and the binarized weights used during feedforwarding.

Several works studied better value distributions for the binarized convolution (Helwegen et al., 2019;
Liu et al., 2021; Tu et al., 2022; Xu et al., 2023; Zhang et al., 2022). However, the calibration of
value distributions requires specific hyperparameters, so we think that there could be no consistently
valid rules. A customized sign function (Liu et al., 2018; 2020) requires a long model training time
due to the complex derivatives of the customized sign function. We do not focus on new methods
for calibrating value distributions and customized activation functions. Without using the above new
methods and hyperparameters, we adopt a straight-through estimator (STE) (Bengio et al., 2013) to
approximate the derivatives of the sign conversion. Besides, we assume that the output features of
the binarized convolution are scaled with channelwise learnable scaling factors.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

In order to show the computational complexity, the number of floating-point operations (FLOPs) has
been generally used. In BCNNs, when BOPs denote the number of binarized multiply-accumulate
operations, OPs = FLOPs + BOPs

64 are used to estimate the total computations. However, the
latencies on real hardware platforms were not reduced by a factor of 1

64 (Bannink et al., 2021). On
the other hand, entropy is commonly used to quantify the average amount of information produced
by a stochastic data source. Although the entropy could not be directly related to the model perfor-
mance, we believe that it could demonstrate the information characteristics in the proposed models.
To explain the information characteristics of the proposed model, the entropy of the output features
in each block is analyzed in Appendix A.3.

In BCNNs, increasing model complexity has been proven to produce better model performance,
suppressing negative effects of the binarization error (Lin et al., 2017). In other words, when the
number of values to be summed increases in the binarized convolution in Eq.(1), the output repre-
sentation capacity can be enhanced, offsetting the binarization errors. The enhanced representation
capacity can capture different aspects of features that exist in a wide range of the frequency domain.
Although the information loss due to the low resolution of the binarized convolutions can be mit-
igated by capturing the features in the high-frequency domain, additional computational costs are
required. By increasing the depth multiplier (Howard et al., 2017), the number of channels in all
blocks is multiplied, which can enhance the performance of BCNNs. However, the total computa-
tions quadruply increase, which can be a burden in mobile-friendly BCNNs.

4 QSB-NET WITH CHANNEL QUADRUPLING & SMOOTH DOWNSAMPLING

4.1 MOTIVATIONS

The depth multiplier for multiplying the number of channels in all blocks dramatically increases the
total computations, having long inference latency in mobile-friendly BCNNs. Whereas most exist-
ing BCNNs have focused on training techniques and specific blocks on the baseline model structure,
the efficient BCNN structures were not sufficiently studied. To reduce the total computations, the
structural development of BCNNs should mainly increase the model complexity of the efficient part
that significantly contributes to model performance. On the other hand, we hypothesize that informa-
tion loss during downsampling can impact model performance. Although channel expansion during
downsampling can improve representation capacity, it is questionable whether the doubled or cus-
tomized channel expansions in conventional CNNs are the most effective in BCNNs. Besides, the
binarization error could compound the effects of information loss during downsampling. Therefore,
we develop a novel strategy for configuring channel expansion and downsampling in BCNNs.

4.2 BLOCKS FOR CHANNEL QUADRUPLING AND SMOOTH DOWNSAMPLING

Depending on the configurations of the number of channels and smooth downsampling, we develop
four models named QB-Net-Small, QB-Net-Large, QSB-Net-Small, and QSB-Net-Large. Figure 2
illustrates the block structures used in QB-Net. The structure of MobileNetV1 (Howard et al., 2017)
inspires the usage of DS convolutions in BCNNs. MobileNetV1 (Howard et al., 2017) deploys
both DS convolutions and 1 × 1 pointwise convolutions. Besides, DS convolutions account for
only 3% of the total computations in MobileNetV1. Several existing BCNNs were motivated by
the structure of MobileNet (Phan et al., 2020a;b; Liu et al., 2020). However, these works adopted
binarized 3×3 convolution (Liu et al., 2020) or grouped binarized convolution (Phan et al., 2020a;a)
instead of using FP32 DS convolution. In Liu et al. (2020), as the number of channels increased, the
binarized 3× 3 convolutions dramatically increase the total computations compared with the usage
of DS convolutions. In Phan et al. (2020a;b), the grouped binarized DS convolutions did not achieve
acceptable accuracy compared with MobileNetV1.

Considering the small computational portion of the DS convolutions in MobileNetV1, we do not
prioritize the binarization of DS convolutions. Therefore, we determine that the proposed models
deploy FP32 3 × 3 DS convolutional layer (DSCONV) in a block. However, a naive modification
of the baseline model can show significant performance degradation. When applying FP32 DS con-
volutions instead of binarized 3× 3 convolutions in ReActNetA (Liu et al., 2020), the modification
of ReActNetA only achieved 64.2% Top-1 accuracy on ImageNet-1K using teacher-student train-
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(a). TypeN (b). TypeD (c). TypeQ

Figure 2: Illustration of blocks used in QS-Net. Terms DSCONV and BCONV refer to the DS convolutional
and binarized convolutional layers, respectively. Suffixes N, D, and Q mean normal, double in downsampling,
and quadruple in downsampling, respectively. While block TypeN does not change the shape of output
features, blocks TypeD and TypeQ expand channels along with downsampling feature maps. When the number
of input channels C is small (e.g., 16 or 32), 3 × 3 BCONV is used instead of 1 × 1 BCONV. The values in
parentheses are the heightwise and widthwise strides, respectively. Terms H and W denote the height and
width of feature maps. During downsampling, the shortcut connection utilizes the 2-D average pooling layer
with a stride of (2, 2). The learnable bias layer (Liu et al., 2020) is deployed just before its convolutional layer.
BPReLU layers are used after the shortcut is added.

(a). TypeDS (b). TypeQS

Figure 3: Illustration of blocks used in QSB-Net. Suffixes DS and QS denote double in smooth downsam-
pling and quadruple in smooth downsampling, respectively. For the smooth downsampling, DS convolutions
are sequentially performed with strides of (2, 1) and (1, 2). In the second DSCONV, whereas the number of
channels is doubled in TypeQS, TypeDS does not expand the channels.

ing (Hinton et al., 2015). Therefore, a novel structural breakthrough is required to achieve better
performance while maintaining small total computational costs.

Figure 2 illustrates TypeN, TypeD, and TypeQ blocks deployed in QB-Net. In the TypeD and
TypeQ blocks, after performing downsampling with a stride of (2, 2) in DSCONVs, the output
channels from DSCONVs are concatenated to expand the number of channels. After performing the
convolutions, batch normalization (BN) is performed in both DSCONV and BCONV, which is not
shown in Figure 2 for clarity.

While QB-Net deploys TypeN, TypeD, and TypeQ blocks, the proposed QSB-Net can utilize other
blocks named TypeDS and TypeQS during downsampling. Figure 3 illustrates the block structures
in QSB-Net, which support so-called smooth downsampling. Whereas QB-Net performs conven-
tional downsampling with a stride of (2, 2), QSB-Net adopts two-stage downsampling to provide
additional model complexity during downsampling. In TypeQS, two DSCONVs are performed se-
quentially with strides of (2, 1) and (1, 2). A BCONV is deployed after performing each DSCONV.
In a block, after performing the first DSCONV and channel concatenation, the shape of feature maps
can be 2 × C × H

2 × W . Then, the downsampling in the second DSCONV produces the feature
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Table 1: Comparison of model structures. QB-Net-Small and QSB-Net-Small quadruple the number of chan-
nels in TypeQ and TypeQS blocks. In the Input and Output columns, each term denotes C×H×W in Figure 2.

Index ReActNet, MobileNetV1 QB-Net-Small1 QSB-Net-Small1

Block Input Output Block Input Output Block Input Output

1 Conv2 3×224×224 32×112×112 Conv2 3×224×224 16×112×112 Conv2 3×224×224 16×112×112

2 Reduction3 32×112×112 64×112×112 TypeN 16×112×112 16×112×112 TypeN 16×112×112 16×112×112
3 Reduction 64×112×112 128×56×56 TypeD 16×112×112 32×56×56 TypeDS 16×112×112 32×56×56
4 Normal 128×56×56 128×56×56 TypeN 32×56×56 32×56×56 TypeN 32×56×56 32×56×56
5 Reduction 128×56×56 256×28×28 TypeQ 32×56×56 128×28×28 TypeQS 32×56×56 128×28×28
6 Normal 256×28×28 256×28×28 TypeN 128×28×28 128×28×28 TypeN 128×28×28 128×28×28
7 Reduction 256×28×28 512×14×14 TypeQ 128×28×28 512×14×14 TypeQS 128×28×28 512×14×14
8 Normal 512×14×14 512×14×14 TypeN 512×14×14 512×14×14 TypeN 512×14×14 512×14×14
9 Normal 512×14×14 512×14×14 TypeN 512×14×14 512×14×14 TypeN 512×14×14 512×14×14

10 Normal 512×14×14 512×14×14 TypeN 512×14×14 512×14×14 TypeN 512×14×14 512×14×14
11 Normal 512×14×14 512×14×14 TypeN 512×14×14 512×14×14 TypeN 512×14×14 512×14×14
12 Normal 512×14×14 512×14×14 TypeN 512×14×14 512×14×14 TypeN 512×14×14 512×14×14
13 Reduction 512×14×14 1024×7×7 TypeQ 512×14×14 2048×7×7 TypeQS 512×14×14 2048×7×7
14 Normal 1024×7×7 1024×7×7 TypeN 2048×7×7 2048×7×7 TypeN 2048×7×7 2048×7×7
15 AvgPool 1024×7×7 1024×1×1 AvgPool 2048×7×7 2048×1×1 AvgPool 2048×7×7 2048×1×1
16 FC 1024×1×1 1000 FC 2048×1×1 1000 FC 2048×1×1 1000

1 Whereas QB-Net-Small and QSB-Net-Small adopt TypeQ and TypeQS in the 13-th block, QB-Net-Large and QSB-Net-Large deploy them in the 9-th
block and set the number of channels as 2048 from the 10-th block.

2 The first block denoted as Conv consists of the conventional FP32 convolution, batch normalization, and ReLU layers.
3 There is a channel expansion without downsampling in the first Reduction block.

(a). OPs of spatialwise convolutions (b). OPs of pointwise convolutions

Figure 4: OPs of convolutions in each block. Yellow regions indicate the blocks that perform downsampling.
Whereas Figure 4 (a) shows the OPs of the DS convolution in the proposed models, Figure 4 (b) visualizes
the OPs of the next binarized pointwise convolution. In Figure 4, the proposed QB-Net-Small, QB-Net-Large,
QSB-Net-Small, and QSB-Net-Large do not decrease OPs in the downsampling blocks. Other counterparts
such as MobileNetV1 (Howard et al., 2017) and ReActNetA (Liu et al., 2020) have small OPs in the downsam-
pling blocks. It is noted that only QB-Net-Large and QSB-Net-Large perform downsampling in the 9-th block.

maps of 4×C × H
2 × W

2 after performing the second channel concatenation. On the other hand, in
the second DSCONV of TypeDS, the number of channels is not doubled.

Several layers in the blocks are based on previous works as follows: the single skipped shortcut (Liu
et al., 2018) is used for each DSCONV and BCONV, where symbol ⊕ denotes the elementwise
addition. A learnable bias (Liu et al., 2020) is used to calibrate the distribution of input features
in each channel. The activation layer with PReLU-BN, denoted as BPReLU, is deployed after
the addition with a shortcut. In Phan et al. (2020a), the activation layer with PReLU-BN is used.
However, its effects were not compared with other works such as RPReLU (Liu et al., 2020). In our
experiments, BPReLU slightly outperformed RPReLU by 0.1%-0.3% in the image classification on
ImageNet-1K.

4.3 MODEL STRUCTURE WITH CHANNEL QUADRUPLING

In order to achieve better performance, the number of channels can be expanded to increase the rep-
resentative capacity. However, when the numbers of channels in all blocks are naively multiplied,
its computational costs dramatically increase. Therefore, the model structure is important to deter-
mine which block has more channels, considering both computational costs and model performance.
In existing FP32 models, the channel expansion during downsampling is either doubled (He et al.,
2016) or customized (Sandler et al., 2018; Huang et al., 2019; Tan & Le, 2019). However, many
existing BCNNs are based on the structure of ResNet (He et al., 2016) or MobileNetV1 (Howard
et al., 2017), so previous studies about new structures seem to be insufficient. Table 1 shows the
model structures of the proposed QS-Net-Small and QSB-Net-Small, comparing with MobileNetV1

6
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(a). ResNet50 (b). MobileNetV3 (c). ResNet18 (d). ReActNetA

(e). QB-Net-Small (f). QSB-Net-Small (g). QSB-Net-Large (h). QSB-Net-Large(SE1)

Figure 5: Frequency domain histograms of proposed models and counterparts in the outputs of the third (left)
and final (right) downsampling blocks. The output features of a goose image are hooked and used to obtain
the frequency domain histograms. In FP32 models, wide dynamic ranges are shown in the output of the final
downsampling blocks. Whereas ReActNetA (Liu et al., 2020) shows a narrow range in the frequency domain
in the output of the final downsampling block, the proposed models have wide dynamic ranges. The proposed
Large models have wider dynamic ranges than the Small models in the frequency domain.

and ReActNet (Liu et al., 2020). Because QB-Net-Small and QSB-Net-Small adopt TypeQ and
TypeQS in the 13-th block, TypeQ and TypeQS blocks have 2048 × 7 × 7 output feature maps.
Compared with MobileNetV1 and ReActNet, when H and W of feature maps are large, the number
of channels C is small. On the other hand, when H and W of feature maps are small, C increases
by quadrupling channels during downsampling. QB-Net-Large and QSB-Net-Large adopt TypeQ
and TypeQS in the 9-th block and set the number of output channels as 2048. The model structures
of QB-Net-Large and QSB-Net-Large are summarized in Appendix A.1.

4.4 INCREASED REPRESENTATION CAPACITY IN DEEP BLOCKS

Figure 4 illustrates the OPs of the convolutions in each block, representing the main idea of the
QB-Net and QSB-Net. Whereas the counterparts such as MobileNetV1 (Howard et al., 2017) and
ReActNetA (Liu et al., 2020) reduce OPs in the downsampling blocks, the channel expansion in
QB-Net does not decrease OPs in the downsampling block. Moreover, additional computations are
performed in the TypeDS and TypeQS blocks. We expect that the representation capacity in a block
of BCNNs during downsampling can have a significant impact on the model performance. The
low resolution of binarized convolutions could degrade representation capacity, so it is thought that
the low resolution can be compensated with additional model complexity in the proposed blocks.
The proposed model structures increase model complexity for deep blocks during downsampling.
Several existing works show that increasing representation capacity during downsampling is helpful
for achieving better performance in BCNNs. For example, XNOR-Net (Rastegari et al., 2016) and
Bi-RealNet (Liu et al., 2018) deploy FP32 1 × 1 convolutional layer for the shortcut connection.
However, the shortcut connection with FP32 1 × 1 convolutions significantly increases the total
OPs, showing long latencies on real mobile hardware (Bannink et al., 2021). We note that the
channel quadrupling can increase the representation capacity during downsampling without using
the FP32 1×1 convolutions. It is expected that the proposed structure using the channel quadrupling
can have a wider dynamic range in the frequency domain from the increased complexity in deep
blocks. Although the number of channels in the deep blocks increases, the total computations are
significantly reduced by having a small number of channels in shallow blocks.

To show the effects of the increased representation capacity and wider dynamic range in deep blocks,
the frequency domain histograms are compared. Figure 5 shows the frequency domain histograms
of proposed models and counterparts in the outputs of the third (left) and final (right) downsampling
blocks. Notably, the proposed models have wider dynamic ranges than ReActNetA (Liu et al.,
2020). The proposed QSB-Net-Large and QSB-Net-Large(SE1) have dynamic ranges comparable
to those of FP32 models. However, the similarity between Figures 5 (g) and (h) indicates that the
self-attention block does not widen the dynamic range in the frequency domain. Therefore, we
conclude that the role of the channel quadrupling is critical to obtain wide dynamic ranges in the
frequency domain. Besides, the feature maps of deep blocks are visualized in Appendix A.8.
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Table 2: Comparison with existing BCNNs on ImageNet-1K. The names of the baseline FP32 models are in
parentheses.

Model Top-1 FLOPs BOPs OPs Model Top-1 FLOPs BOPs OPs
(%) (×108) (×108) (×108) (%) (×108) (×108) (×108)

ResNet18 69.6 18.2 - 18.2 MobileNetV1 70.6 5.75 - 5.75
MobileNetV2 71.8 3.0 - 3.0 SuffleNetV2 69.4 1.46 - 1.46
GhostNet 73.9 1.41 - 1.41 AlphaNet-A0 77.8 2.03 - 2.03

XNOR-Net(ResNet18) 51.2 1.41 17.0 1.67 MobiNet-Mid(MobileNetV1)1 54.4 0.52 - 0.52
Bi-RealNet(ResNet18) 56.4 1.54 16.8 1.63 SI-BNN(Bi-RealNet) 59.7 1.54 16.8 1.63
XNOR-Net++(ResNet18) 57.1 1.41 17.0 1.67 BNSC-Net(ResNet18) 59.9 - - 1.40
RB-Net(ResNet18) 66.8 - - 0.52 RB-Net(ResNet34) 70.2 - - 0.71
IR-Net(ResNet18) 58.1 - - 1.63 SA-BNN(ResNet18) 61.7 - - 1.69
Real-to-Bin(ResNet18) 65.4 1.56 1.68 1.83 AdaBin(ResNet18) 66.4 - - 0.88
ReBNN(ResNet18) 66.9 - - 1.63 ReActNetA(MobileNetV1)1 69.4 0.12 48.2 0.87
PokeBNN×0.75(ResNet50)2 70.5 0.10 20.3 0.42 ReCU(ResNet18) 66.4 - - 1.63

QB-NET-Small 66.9 0.28 9.3 0.43 QSB-NET-Small 68.8 0.36 10.8 0.53
QB-NET-Large 69.8 0.29 15.5 0.53 QSB-NET-Large 70.6 0.36 16.9 0.62
QSB-NET-Large(SE13) 71.1 0.37 16.9 0.64 QSB-NET-Large(SE23) 71.2 0.42 16.9 0.69

1 Instead of DS convolutions in MobileNetV1 (Howard et al., 2017), MobiNet-Mid (Phan et al., 2020a) and ReActNetA (Liu et al.,
2020) adopted grouped convolutions and binarized 3 × 3 convolutions, respectively.

2 Both the baseline and teacher models are ResNet50 (He et al., 2016). In PokeBNN (Zhang et al., 2022), the first convolution
adopted a stride of 4, which made PokeBNN have small FLOPs. We did not consider n-bit quantized operations in this compari-
son, counting n-bit quantized operations as FLOPs.

3 While term SE2 denotes that self-attention (SE) blocks are deployed after all DS convolutions, term SE1 indicates that SE blocks
are deployed only after the DS convolutions during downsampling.

4.5 APPLICABILITY OF TECHNIQUES FOR BETTER MODELS

The applicability of the techniques for achieving enhanced performance can be considered with
small additional computations. Whereas DSCONVs during downsampling reduce the computa-
tional costs by removing channelwise operations, existing BCNNs (Phan et al., 2020a; Liu et al.,
2020) adopted the channelwise spatial convolutions. However, the channelwise operations signifi-
cantly increase computational costs, so it could be better to deploy the self-attention (SE) block (Hu
et al., 2018) after the DSCONVs, applying the attention mechanism to different channels with small
computational costs. Because the number of channels is 2048 in the FC layer, its parameters are
doubled compared with MobileNetV1 (Howard et al., 2017) and ReActNetA (Liu et al., 2020). Any
fixed-point format in the FC layer can reduce storage costs, so we performed an experiment to know
whether the FC layer with 8-bit quantized weights is applicable, which is explained in Ablations
Studies. Besides, the FC layer with 8-bit quantized weights can be implemented with 8 binarized
convolutions, which is described in Appendix A.2. The usage of binarized convolutions in the FC
layer reduces storage costs of the FC layer by ×4 without using 8-bit fixed-point operations.

5 EXPERIMENTAL RESULTS AND ANALYSIS

5.1 IMAGE CLASSIFICATION AND LATENCY ON REAL HARDWARE

We experimented with the proposed models on ImageNet-1K. Like ReActNetA (Liu et al.,
2020), experiments adopted the two-stage teacher-student training using pretrained ResNet34 as
a teacher (Hinton et al., 2015). In the first stage with 256 epochs, whereas the input features for
BCONVs were binarized, weights were FP32 values. In the second stage, the pretrained weights
from the first stage were used in the initialization. Both input features and weights for BCONVs were
binarized during 256 training epochs. The detailed training process is described in Appendix A.4.

Table 2 shows the comparison with several mobile-friendly CNNs and BCNNs on ImageNet-1K,
where a dash (-) denotes that the value was not reported in the reference. The FP32 models and their
accuracies are listed above the first midline. The proposed models can significantly reduce OPs
compared with ShuffleNetV2 (Ma et al., 2018) and GhostNet (Han et al., 2020). Mostly, the pro-
posed models outperformed existing BCNNs above the second midline in terms of OPs. Although
MobiNet-Mid (Phan et al., 2020a) had small OPs, Top-1 accuracy was only 54.4%. ReActNetA (Liu
et al., 2020) needed additional OPs due to the usage of binarized 3 × 3 convolutions instead of DS
convolutions. PokeBNN×0.75 (Zhang et al., 2022) only had 0.42 ×108 OPs. Unlike the proposed
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Table 3: Comparison of parameters and latency for ImageNet-
1K images.

Model Parameters OPs Latency(ms) Latency(ms) Top-1
(Mbyets) (×108) RPi 4B Exynos (%)

MobileNetV1 16.9 5.75 160.8 34 70.6
MobileNetV2 14.0 3.0 117.4 23 71.8
XNOR-Net(ResNet18) 4.2 1.67 87.0 21 51.2
Bi-RealNet(ResNet18) 4.2 1.63 80.2 19 56.4
Real-to-Bin(ResNet18) 5.4 1.83 100.9 - 65.4
ReActNetA 7.7 0.87 120.4 30 69.4
QuickNet-Small 4.0 - 17.5 9 59.4
QuickNet 4.2 - 27.4 13 63.3

QB-Net-Small 9.8(3.5) 2 0.43 55.5 14 66.9
QB-Net-Large 12.0(5.8) 2 0.53 65.5 14 69.8
QSB-Net-Small 10.0(3.9) 2 0.53 76.1 18 68.8
QSB-Net-Large 12.3(6.2) 2 0.62 86.2 21 70.6
QSB-Net-Large(SE1) 12.4(6.3) 2 0.69 89.7 22 71.2

1 In Bannink et al. (2021), QuickNet-Small and QuickNet had 59.4% and 63.3%
Top-1 accuracies on ImageNet-1K.

2 The value in parentheses denotes the storage costs when 8-bit quantization was
applied to the FC layer. 8 binarized convolutions can replace the 8-bit quan-
tized FC layer. In the ablation studies, the quantization showed no significant
accuracy drop.

Table 4: Comparison of semantic segmentations
on PASCAL VOC dataset.

Model W/F 1 mIoU Model W/F 1 mIoU
ResNet18 32/32 64.9 LQ-Net 3/3 62.5
GroupNet 1/1 60.5 GroupNet+BPAC 2 1/1 65.1
CBNN(Sum) 3 1/1 66.2 CBNN(Cat) 3 1/1 66.5
ReActNetA 1/1 61.8

QB-Net-Small 1/1 62.3 QSB-Net-Small 1/1 66.2
QB-Net-Large 1/1 68.1 QSB-Net-Large 1/1 69.2

1 Terms W and F indicate n-bit quantization of weights and
features.

2 Term BPAC represents binary parallel atrous convolution.
3 Terms Sum and Cat denote the summation and concatenation

and other existing models, PokeBNN adopted a stride of 4 in the first FP32 convolutional layer,
which was the main reason for having the small OPs.

Table 3 summarizes the comparison in terms of parameters and latency using Larq Compute Engine
(LCE) (Bannink et al., 2021) on a single thread of RPi 4B and a Samsung Exynos-9820 processor.
We note that the supported layers in LCE were limited, so only several mobile-friendly CNNs and
BCNNs based on ResNet18 and MobileNetV1 were compared in Table 3. All proposed models
were faster than FP32 models in Table 3. QB-Net showed good efficiency in terms of Top-1 accu-
racy and latency. For example, QB-Net-Large can achieve 69.8% Top-1 accuracy on ImageNet-1K,
having 0.53 × 108 OPs and 65.5 ms latency on the RPi 4B. Although QSB-Net-Large can enhance
Top-1 accuracy by 0.8%, its latency increased by 20.7 ms. Because QSB-Net-Large(SE1) only
adopted SE blocks during downsampling, the increasing latency was small. Compared with Re-
ActNetA (Liu et al., 2020), the proposed Large models provided better performances, having faster
inference speed. QuickNet-Small showed fast inference speed because QuickNet models were op-
timized considering the mechanism of LCE (Bannink et al., 2021). However, its performance was
only 59.4% Top-1 accuracy on ImageNet-1K.

On the other hand, the experiments with the Samsung Exynos-9820 processor adopted TensorFlow
Lite interpreter via Android app. The latencies of the models in Table 3 were measured by averaging
the results of 300 runs. In the experiments, all proposed models were faster than the listed FP32
models. Furthermore, the proposed models achieved significant speedups compared to the baseline
ReActNetA. Besides, QSB-Net-Large(SE1) provided the highest Top-1 accuracy of 71.1%, having
22 ms inference latency. As shown in Table 3, the main weakness of the proposed models is the
increasing storage costs for the final FC layer. The final FC layer consumed about 8 Mbytes storage,
which was more than 2

3 storage costs of the proposed models. As explained in subsection 4.5, the
quantization of the FC layer can mitigate the problem, so the values in parentheses in Table 3 prove
the reduction of storage costs using the quantization of the FC layer. The effects of quantization on
the FC layer in terms of model performance will be discussed in Ablation Studies.

5.2 SEMANTIC SEGMENTATION

We evaluated the proposed models on the PASCAL VOC 2012 dataset (Everingham et al., 2010)
for semantic segmentation. The detailed information about the dataset is in Appendix A.10. We
measured mIoU on 20 object classes and 1 background class, following the training recipe de-
scribed in DeepLabv3 (Chen et al., 2017). ReActNetA (Liu et al., 2020) had 0.5 mIoU lower result
compared with QB-Net-Small. Besides, QSB-Net-Large was the best-performing binarized seg-
mentation model, outperforming FP32 ResNet18 (He et al., 2016) and CBNN (Zhou et al., 2023).
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Furthermore, the QSB-Net-Small and Large models significantly enhanced performance compared
with LQ-Net (Zhang et al., 2018) using 3-bit quantization.

5.3 ABLATION STUDIES

Deployments of 1×1 convolutions: In a modification of QB-Net-Large, when the number of input
channels was 16 or 32, binarized pointwise convolutions were adopted after DS convolutions. In
this case, the Top-1 accuracy on ImageNet-1K was 68.0%, which was significantly degraded by
1.8%. In another modification of QB-Net-Large, when the number of input channels was 16, 32,
or 128, binarized 3 × 3 convolutions were adopted after DS convolutions. In this case, its Top-1
accuracy was 70.0%, which was only increased by 0.2%. Based on the above empirical findings,
we concluded that when the number of channels in shallow blocks was small, the accuracy can be
significantly degraded. Therefore, we determined that instead of binarized pointwise convolutions,
binarized 3× 3 convolutions were used when the number of input channels was 16 or 32.

Effects of ×8 channel expansion in deep blocks: A modification of QB-Net-Small changed the
number of output channels of the last 13-th and 14-th blocks to 4048 (C = 4048). The modification
produced 69.5% Top-1 accuracy, having 2.6% performance enhancement. This study shows that
the increasing complexity of deep blocks can significantly enhance model performance. However,
we thought that the storage costs of the FC layer and computational costs of binarized pointwise
convolutions were significant, so we did not consider the case with C = 4048.

Learnable bias deployed before DS convolutions: In a modification of QB-Net-Large, when the
learnable bias layer was not deployed just before DS convolutions, Top-1 accuracy was degraded by
2.1% on ImageNet-1K. The above result indicates that the calibration using the learnable bias can
be effective in the DS convolutions of the proposed models.

Quantization of DS convolutions and FC layer: In a modification of QSB-Net-Large(SE2), we
applied 8-bit quantization to the weights and input features for DS convolutions in each block.
In the two-stage training, its training result surprisingly achieved up to 71.5% Top-1 accuracy on
ImageNet-1K. Then, we applied 8-bit quantization to the weights and input features for the DS con-
volution and FC layers, where the tuning adopted the learning rate of 10−4 and 25 epochs on the
pretrained model. In the evaluation, Top-1 accuracy was 70.8%, demonstrating that 8-bit quantiza-
tion was applicable to the proposed models.

Training from scratch without teacher: To know the model performance without using the
teacher-student training, the proposed models were trained from scratch with the scheduler of co-
sine annealing with warmup during 600 epochs, which was based on the recipe of QuickNet (Ban-
nink et al., 2021). QB-Net-Large, QSB-Net-Large, and QSB-Net-Large(SE1) had 65.8%, 67.0%,
and 67.5% Top-1 accuracies on ImageNet-1K, which indicates that the teacher-student training was
critical for enhancing model performance. Whereas the proposed models were slower than Quick-
Net (Bannink et al., 2021), Top-1 accuracies of the proposed models without using the teacher-
student training significantly outperformed 63.3% Top-1 accuracy of QuickNet in Table 3.

6 CONCLUSION

This paper proposes new BCNNs having low computational costs and high performance using chan-
nel quadrupling and smooth downsampling. The proposed structure using the channel quadrupling
has low-cost computations in shallow blocks and a wider dynamic range in the frequency domain
due to the increased model complexity in deep blocks. The techniques for achieving better models,
such as the self-attention (Hu et al., 2018) and the quantization of DS convolutional and FC layers,
are applicable to the proposed models. Using multiple binarized convolutions in the FC layer, the
proposed models can significantly reduce storage costs without using an 8-bit quantized FC layer.
When the self-attention is applied to the DS convolutions during downsampling, its performance on
ImageNet-1K reaches up to 71.1% Top-1 accuracy, only requiring 0.63× 108 OPs. The small laten-
cies on an RPi 4B and a Samsung Exynos processor prove that the proposed models are suitable for
implementing high-speed inference on real hardware. Considering the above performance enhance-
ments and structural benefits, it is concluded that the proposed models are efficient for mobile-based
applications. Additional explanations and visualizations of the proposed models are included in
Appendixes A.8, A.9, and A.10.
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ETHIC STATEMENT

This paper proposes new binarized convolutional neural network (BCNN) models, introducing novel
architectures to enhance model performance and inference speed on real hardware. In this study, we
have kept the following ethical principles of ICLR 2025 as:

1. Contribute to Society and Human Well-being: The aim of this study is to develop effi-
cient BCNNs by reducing computational costs in shallow blocks and increasing represen-
tation capacity in deep blocks. The development of the proposed mobile-friendly models
has the potential to benefit a wide range of societal applications, including healthcare, edu-
cation, and environmental monitoring, particularly in resource-constrained applications.

2. Uphold High Standards of Scientific Excellence: We have intensively performed ex-
periments to validate our proposed models. The motivations, ideas, and conclusions are
presented to contribute to the scientific community.

3. Avoid Harm: The study does not include any human subjects or sensitive personal data.
We strongly discourage any misuse of our work that could harm individuals, although there
is no explicit information about the misuse in the manuscript.

4. Be Honest, Trustworthy, and Transparent: We have honestly reported our research find-
ings, including both strengths and limitations. We sincerely reported the weak points of
the proposed models and the method to achieve better models. All data sources, model
structures, and experimental environments are fully disclosed to ensure transparency.

5. Be Fair and Take Action to Avoid Discrimination: Because we adopt public datasets
such as ImageNet-1K and public Pytorch library, experiments can be fair without any dis-
crimination.

6. Respect the Work Required to Produce New Ideas and Artefacts: We cite all relevant
references in the manuscript to respect existing works. This paper is written considering
the previous works and knowledge.

7. Respect Privacy: The datasets adopted in our experiments, such as ImageNet-1K and
PASCAL VOC, are publicly available and do not contain critical personal information.

8. Honour Confidentiality: This paper does not have any confidentiality agreements.

REPRODUCIBILITY STATEMENT

We adopt conventional ImageNet-1K and PASCAL VOC datasets for easy reproduction. The at-
tached code as supplementary materials can run when Pytorch dataset formats are prepared. The
detailed model structures are described in the main body of this paper and Appendix A.1. Detailed
explanations of experimental environments and training processes are included in Appendix A.4.
Besides, the environments for evaluating inference speed on real hardware are described in Ap-
pendix A.7.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 MODEL STRUCTURES OF QB-NET-LARGE AND QSB-NET-LARGE

Table 5: Model structures of QB-Net-Large and QSB-Net-Large for ImageNet-1K.

Index QB-Net-Large QSB-Net-Large

Block Input Output Block Input Output

1 Conv 3×224×224 16×112×112 Conv 3×224×224 16×112×112
2 TypeN 16×112×112 16×112×112 TypeN 16×112×112 16×112×112
3 TypeD 16×112×112 32×56×56 TypeDS 16×112×112 32×56×56
4 TypeN 32×56×56 32×56×56 TypeN 32×56×56 32×56×56
5 TypeQ 32×56×56 128×28×28 TypeQS 32×56×56 128×28×28
6 TypeN 128×28×28 128×28×28 TypeN 128×28×28 128×28×28
7 TypeQ 128×28×28 512×14×14 TypeQS 128×28×28 512×14×14
8 TypeN 512×14×14 512×14×14 TypeN 512×14×14 512×14×14
9 TypeQ 512×14×14 2048×7×7 TypeQS 512×14×14 2048×7×7

10 TypeN 2048×7×7 2048×7×7 TypeN 2048×7×7 2048×7×7
11 TypeN 2048×7×7 2048×7×7 TypeN 2048×7×7 2048×7×7
12 TypeN 2048×7×7 2048×7×7 TypeN 2048×7×7 2048×7×7
13 TypeN 2048×7×7 2048×7×7 TypeN 2048×7×7 2048×7×7
14 TypeN 2048×7×7 2048×7×7 TypeN 2048×7×7 2048×7×7
15 AvgPool 2048×7×7 2048×1×1 AvgPool 2048×7×7 2048×1×1
16 FC 2048×1×1 1000 FC 2048×1×1 1000

A.2 BINARIZED CONVOLUTIONS IN FINAL FC LAYER

Let us assume that xi denotes a feature in input channel i. A n-bit quantized weight wi for
input channel i is denoted as wi = wn−1

i 2n−1 + wn−2
i 2n−2 + · · · + w1

i 2
1 + w0

i 2
0. When

w7
i , w

6
i , · · · , w1

i , w
0
i ∈ {−1,+1}, wi ∈ {−255,−253, · · · ,+253,+255}, showing the uniform

interval between quantized weights of wi. When we assume n = 8 for 8-bit quantized operations, a
multiply operation is formulated as xi · wi = w7

i xi2
7 + w6

i xi2
6 + · · ·+ w1

i xi2
1 + w0

i xi2
0.

When the number of input channels is C, an output feature xout of a binarized pointwise convolution
can be calculated as:

xout = scale ·
C∑
i=1

(w7
i xi2

7 + w6
i xi2

6 + · · ·+ w1
i xi2

1 + w0
i xi2

0), (2)

where the index of an output channel is not shown for clarity. Term scale is the scaling factor for a
binarized convolution. Eq.(2) can be represented as:

xout = scale · (27
C∑
i=1

w7
i xi︸ ︷︷ ︸

1×1 BCONV

+26
C∑
i=1

w6
i xi︸ ︷︷ ︸

1×1 BCONV

+ · · ·+ 21
C∑
i=1

w1
i xi︸ ︷︷ ︸

1×1 BCONV

+20
C∑
i=1

w0
i xi︸ ︷︷ ︸

1×1 BCONV

). (3)

While the binarized convolution in Rastegari et al. (2016); Bulat et al. (2019) is formulated as xout =

scale·
∑C

i=1 w
0
i x

0
i , xi ∈ {−1,+1} , 8 binarized convolutions denoted as 1×1 BCONV are required

in Eq.(3). Considering Eq.(2), the FC layer with 8-bit quantized weights can be decomposed into
8 binarized convolutions. The change of the latency using the decomposed binarized convolutions
was negligible on real hardware because the amount of computations in the FC layer was very small.
However, the costs for storing the parameters for the FC layer can be significantly reduced. In the
proposed QSB-Net, the number of input channels for the FC layer was 2048. When ImageNet-
1K was used as the dataset, the FP32 FC layer consumed 8.19 Mbytes in the proposed models.
However, when 8 binarized convolutions were deployed in the FC layer, the storage costs were only
2.05 Mbytes, having ×4 memory efficiency. When the mixed precision using both FP32 and 8-
bit fixed-point operations was not available in the hardware platform for BCNNs, the decomposed
binarized convolutions in the FC layer are effective in reducing the total storage costs.
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(a). Entropies of ReActNetA, QB-Net-Small, and
QSB-Net-Small

(b). Entropies of QB-Net-Large, QSB-Net-Large, and
QSB-Net-Large(SE1)

Figure 6: Visualized entropies of block outputs from ReActNetA and proposed models.

A.3 DETAILED PRESENTATION OF ENTROPY IN PROPOSED MODELS

We think that the downsampling of feature maps and binarization error of BCNNs could affect the
information loss. Entropy can be exploited to design the behavior of a specific layer (Wan et al.,
2019; Chen et al., 2020b; Zhao & Zhang, 2021). The above existing works motivate us to believe
that entropy can be used to explain the information characteristics of output features in BCNNs.

The formula for entropy H(X) is specifically for discrete variable xi ∈ X =
{x1, x2, · · · , xn−1, xn}, which is expressed as follows:

H(X) = −
n∑

i=1

p(xi) log2 p(xi), (4)

where p(xi) is the probability of each possible value xi ∈ X . With Eq.(4), the entropy for a block
was calculated as: firstly, because the values were continuous, the values of output feature maps in
a layer were discretized by binning the values using a histogram. The probability distribution was
determined by the relative frequency of each bin from the histogram. Then, the above probability
distribution was used to calculate the entropy using the discrete entropy formula in Eq.(4).

We adopted five images from the validation dataset of ImageNet-1K. The images were used as the
inputs for the pretrained models. In the inference, the output features were hooked and used to cal-
culate the entropy of each block. Figure 6 (a) illustrates that the entropy of each block significantly
fluctuated in baselined ReActNetA, QB-Net-Small, and QSB-Net-Small. On the other hand, Fig-
ure 6 (b) shows that the fluctuation of entropy is reduced. We think that the above trends show that
feature distributions can change smoothly during feedforwarding. Besides, it is concluded that the
increasing representation capacity in deep blocks of QB-Net-Large and QSB-Net-Large can make
the change of feature distributions more stable.

A.4 DETAILED DESCRIPTION OF TRAINING PROCESS IN IMAGE CLASSIFICATION

ImageNet-1K contains 1.3M training and 50K validation images with 1,000 classes. During training
on the ImageNet-1K dataset, 224×224 images based on the augmentations in Liu et al. (2020) were
adopted. In inference, 224 × 224 center-cropped images from the validation dataset were adopted
without any specific image augmentation.

Like other BCNN models, the first convolutional and final FC layers adopted FP32 weights and
activations. In order to reduce the storage costs of the final FC layer, 8-bit quantization can be
applied. For an apple-to-apple comparison, we adopted ADAM (Kingma & Ba, 2014) optimizer
in all cases, having β1 = 0.9 and β2 = 0.999. When training during Eepochs epochs, the initial
learning rate lrbase = 0.001 was assigned. During training, the learning rate lr in the eepochs-th
epoch decreased based on poly policy, which limited the maximum learning rate of the ADAM
optimizer (Kingma & Ba, 2014) by lrbase × (1 − eepochs/Eepochs). In the two-stage training, a
teacher-student training method (Hinton et al., 2015) was adopted using the pretrained ResNet34 (He
et al., 2016) from Pytorch official site as a teacher.
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In order to know the effects of structural benefits, the training recipe of ReActNetA (Liu et al.,
2020), which was a well-known BCNN model motivated by MobileNetV1 (Phan et al., 2020a), was
adopted. By employing the same training recipe, our analysis demonstrates that the proposed model
structures achieve comparable or enhanced performance with reduced computational costs. Based
on the above apple-to-apple comparison, we mainly focused on the demonstration of enhancements
by adapting model structures. In the first stage with 256 epochs, whereas the input features for
BCONVs were binarized, weights were FP32 values. The weight decay in the first stage was set as
10−5. In the second stage, the pretrained weights from the first stage were used in the initialization.
Both input features and weights for BCONVs were binarized during 256 training epochs. The weight
decay in the second stage was set as zero. All experiments were conducted on a machine having an
AMD Ryzen Threadripper PRO 5955WX 16-Core CPU, 2 NVIDIA RTX 4090 GPUs, and 256 GB
RAM. Although the exact training time depended on the status of computing resource usage, the
total training times of QSB-Net-Large and QB-Net-Small on our machine were up to about 6 and
7.5 days, respectively. For the approximation of the gradient of sign function

In order to know the effects of the teacher-student training, the proposed models were trained from
scratch with the scheduler of cosine annealing with warmup during 600 epochs. In this experiments,
we adopted ADAM (Kingma & Ba, 2014) optimizer, having β1 = 0.9 and β2 = 0.999. The initial
learning rate of lrbase = 0.001 was assigned, having 5 warmup steps with 0.001 maximum learning
rate and zero minimum learning rate. After performing warmup steps, the learning rate decreased.
The total training times of QB-Net-Large and QSB-Net-Large(SE1) in our machine were up to about
8 and 9 days, respectively.
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A.5 DETAIL DISCUSSION FOR ABLATION STUDIES

Effects of Channel Expansion and Computational Complexity in Shallow and Deep Layers:
Firstly, by deploying TypeN and TypeD blocks and considering the channel expansion of Mo-
bileNetV1 and ReActNetA in Table 1, the model performance without channel quadrupling was
investigated. In the above ablation model denoted as Ablation 1, the classification on ImageNet
achieved only 64.2% Top-1 accuracy.

In order to know the effects of model complexity in the shallow layer, the following experiments
were performed as: Firstly, in order to know the effects of 3 × 3 binarized convolutions in shallow
layers, when the number of output channels 16 and 32, we adopted binarized 1 × 1 pointwise con-
volutions in QB-Net-Small instead of 3 × 3 binarized convolutions. In the above ablation model
denoted as Ablation 2, the classification on ImageNet achieved only 66.7% Top-1 accuracy. Com-
pared with 66.9% Top-1 accuracy of QB-Net-Small in Table 1, there was only 0.2% Top-1 accuracy
drop. Secondly, as shown in Table 6, we evaluated an ablation model by decreasing the number of
channels in the shallow layer, which is denoted as Ablation 3. In Ablation 3, the classification on
ImageNet-1K achieved 66.3% Top-1 accuracy. The evaluation in Ablations 2 and 3 indicated that
the model complexity in the shallow layer could not be critical.

In another ablation study, we increased the model complexity in deep layers as: Firstly, instead of
binarized 1 × 1 pointwise convolutions, binarized 3 × 3 convolutions were used in a modification
of QB-Net-Small when the numbers of output channels were 16, 32, and 128. In the above ablation
model denoted as Ablation 4, the classification on ImageNet-1K achieved 67.9% Top-1 accuracy,
which outperformed QB-Net-Small by 1%. On the other hand, when the numbers of output channels
were 16, 32, and 128, a modification of QB-Net-Large adopted binarized 3× 3 convolutions instead
of binarized 1 × 1 pointwise convolutions. In the above ablation model denoted as Ablation 5, the
classification on ImageNet-1K achieved 70.0% Top-1 accuracy, which outperformed QB-Net-Large
only by 0.2%. Moreover, when a modification of QB-Net-Small denoted as Ablation 6 had 4096
output channels in the last two depthwise separable convolutions and binarized pointwise convolu-
tions in Table 6, it achieved 69.5% Top-1 accuracy on ImageNet-1K. In the comparison between
Ablations 4, 5, and 6, as the computational complexity in the deeper layers increased, it was con-
cluded that the increasing computational complexity in shallow layers has no significant impact on
the model performance.

Table 6: Model structures from ablation studies on ImageNet-1K.

Index Ablation 3 Ablation 6

Block Input Output Block Input Output

1 Conv 3×224×224 8×112×112 Conv 3×224×224 16×112×112
2 - 8×112×112 16×112×112 TypeN 16×112×112 16×112×112
3 TypeD 16×112×112 32×56×56 TypeD 16×112×112 32×56×56
4 TypeN 32×56×56 32×56×56 TypeN 32×56×56 32×56×56
5 TypeQ 32×56×56 128×28×28 TypeQ 32×56×56 128×28×28
6 TypeN 128×28×28 128×28×28 TypeN 128×28×28 128×28×28
7 TypeQ 128×28×28 512×14×14 TypeQ 128×28×28 512×14×14
8 TypeN 512×14×14 512×14×14 TypeN 512×14×14 512×14×14
9 TypeN 512×14×14 512×14×14 TypeN 512×14×14 512×14×14

10 TypeN 512×14×14 512×14×14 TypeN 512×14×14 512×14×14
11 TypeN 512×14×14 512×14×14 TypeN 512×14×14 512×14×14
12 TypeN 512×14×14 512×14×14 TypeN 512×14×14 512×14×14
13 TypeQ 512×14×14 2048×7×7 - 512×14×14 4096×7×7
14 TypeN 2048×7×7 2048×7×7 TypeN 4096×7×7 4096×7×7
15 AvgPool 2048×7×7 2048×1×1 AvgPool 4096×7×7 4096×1×1
16 FC 2048×1×1 1000 FC 4096×1×1 1000

Effects of Smooth Downsampling: As shown in Figure 3, the smooth downsampling was only
performed in TypeDS and TypeQS, so that the effects of smooth downsampling can be discussed
with the performance gap between QB-Net and QSB-Net. In a modification of Ablation 1 having
the channel expansion of MobileNetV1 and ReActNetA, the TypeD block was applied. In the above
modification denoted as Ablation 7, Top-1 accuracy was enhanced by 70.5%, which showed that
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the smooth downsampling is effective in both the existing baseline and proposed models. However,
the computational costs were greater than those of ReActNetA due to the additional computation
from the smooth downsampling. In the comparison between QB-Net and QSB-Net models, QSB-
Net-Small and QSB-Net-Large enhanced Top-1 accuracy by 1.9% and 0.8% over QB-Net-Small
and QB-Net-Large, respectively. The above experimental results indicated that as the computational
complexity in deep layers increased, the effects of the smooth downsampling were limited. The
below Table 7 summarizes the performance of the ablation models in the image classifications on
ImageNet-1K.

Table 7: Summary of ablation studies with additional experiments on ImageNet-1K.

Index Modification Top-1(%) Notice

1 Ablation 1 64.2 Channel expansion from MobileNetV1 and ReActNet without smooth downsampling
2 Ablation 2 66.7 Binarized 1 × 1 convolutions for # channels with 16 and 32(QB-Net-Small)
3 Ablation 3 66.3 8 output channels for the first convolution(QB-Net-Small)
4 Ablation 4 67.9 Binarized 3 × 3 convolutions when # output channels are 16, 32, and 128 (QB-Net-Small)
5 Ablation 5 70.0 Binarized 3 × 3 convolutions when # output channels are 16, 32, and 128 (QB-Net-Large)
6 Ablation 6 69.5 4096 output channels in the last two DS layers(QB-Net-Small)
7 Ablation 7 70.5 Modification of Ablation 1 with smooth downsampling
8 QB-Net-Small 66.9 Small computational complexity in deep layers without smooth downsampling
9 QSB-Net-Small 68.8 Small computational complexity in deep layers with smooth downsampling

10 QB-Net-Large 69.8 Large computational complexity in deep layers without smooth downsampling
11 QSB-Net-Large 70.6 Large computational complexity in deep layers with smooth downsampling
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A.6 EXPERIMENTAL RESULTS ON COCO-STUFF

To demonstrate the generalization ability of the proposed models, we conducted semantic segmen-
tation experiments on the large-scale dataset COCO-Stuff Caesar et al. (2018). In Table 8, QSB-
Net-Large and QB-Net-Large achieved higher performance than the FP32 precision models with a
similar number of parameters while using 1-bit weights and features.

Table 8: Comparison of semantic segmentation on COCO-Stuff dataset.

Model Params W/F mIoU

BiSeNetv2-L (Yu et al., 2021) - 32/32 28.7
DDRNet23 (Hong et al., 2021) 20.1M 32/32 32.1
PSPNet50 (Zhao et al., 2017) - 32/32 32.6
RTFormer-B (Wang et al., 2022) 16.8M 32/32 35.3
QB-Net-Large 12.0M 1/1 36.4
QSB-Net-Large 12.3M 1/1 37.5

Notably, QSB-Net-Large outperformed the Transformer-based RTFormer-B (Wang et al. (2022)) by
2.2 mIoU. It can be seen that the proposed model has good generalization performance even on large
datasets and has a high potential for practical applications.

Besides, object detection was performed on the COCO-Stuff dataset. Table 9 lists the comparison of
object detection, where QSB-Net-Large has achieved higher performance than the FP32 precision
lightweight models, using 1-bit weights and features. The results show that for vision tasks such as
classification, semantic segmentation, and object detection, the proposed model outperformed the
accuracy of FP32 precision models.

Table 9: Comparison of objection detection on COCO-Stuff dataset.

Model W/F mAP

Fast-RCNN (Girshick, 2015) 32/32 19.7
LeYOLO-Nano (Hollard et al., 2024) 32/32 25.2
MnasFPN (MobileNetv3) (Chen et al., 2020a) 32/32 25.5
YOLOX-Nano (GeZ et al., 2021) 32/32 25.8
ESPNetv2 (Mehta et al., 2019) 32/32 26.0
QSB-Net-Large 1/1 26.4

Considering the above semantic segmentation and object detection on the CoCo-Stuff dataset, it is
concluded that the proposed models can show an important achievement that overcame the limita-
tions of BCNNs and enhanced its applicability in real applications.
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A.7 EXPERIMENTAL ENVIRONMENTS ON REAL HARDWARE: LARQ

Target models were prepared using TensorFlow Keras framework. XNOR-Net (Rastegari et al.,
2016), Real-to-Bin (Martinez et al., 2019), Bi-RealNet (Liu et al., 2018), and QuickNet (Bannink
et al., 2021) Keras models were from Larq Zoo (Bannink et al., 2021). The proposed models and
other counterparts were coded based on the original Keras layers. The models can be converted
into TFLite (TensorFlow Lite) filebuffer files. When checking the inference speed of a model, we
adopted Larq Compute Engine (LCE) (Bannink et al., 2021), which provided a benchmark evalua-
tion program based on TensorFlow Lite (ten, 2023) and customized binarized convolutional layers.
The benchmark evaluation program ran on Manjaro 64-bit GNOME Desktop for an RPi 4B and An-
droid app for a Samsung Exynos-9820 processor. It was known that LCE provided a collection of
hand-optimized TFLite custom operators. Along with the full support of existing TFLite operators,
each binarized convolutional layer can be performed using its custom binarized convolution. In our
evaluations, the program showed the averaged latencies of 50 runs on the RPi 4B and 300 runs on
the Samsung Exynos-9820 processor with randomly generated inputs.
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A.8 VISUALIZATION OF FEATURE MAPS

Figures 7 and 8 visualize the first five feature maps from the downsampling blocks. The pretrained
model of the baseline ReActNetA (Liu et al., 2020) was downloaded from its official GitHub. Com-
pared with ReActNetA, the visualization shows a significant difference in the first and last downsam-
pling blocks. In QSB-Net models, the output feature maps after performing heightwise downsam-
pling are illustrated. The feature maps are denoted as the output of stride = (2, 1). Compared with
the feature maps after widthwise downsampling, the output feature maps after heightwise downsam-
pling also show the diversity of features after heightwise downsampling, which could indicate that
smooth downsampling in QSB-Net can enhance the representation capacity. In general, the visu-
alizations of the proposed models in Figures 7 and 8 show the diversity of features and increasing
representation capacity of deep blocks during downsampling. Also, the visualization in Figures 7
and 8 proves the wide dynamic range in the frequency domain of deep blocks illustrated in Figure 5.
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(a). Feature maps of ReActNetA for a goose
image

(b). Feature maps of ReActNetA for a vacuum
image

(c). Feature maps of QB-Net-Small for a goose
image

(d). Feature maps of QB-Net-Small for a vacuum
image

(e). Feature maps of QSB-Net-Small for a goose
image

(f). Feature maps of QSB-Net-Small for a
vacuum image

Figure 7: Visualizations of feature maps for ReActNetA and proposed Small models.
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(a). Feature maps of QB-Net-Large for a goose
image

(b). Feature maps of QB-Net-Large for a vacuum
image

(c). Feature maps of QSB-Net-Large for a goose
image

(d). Feature maps of QSB-Net-Large for a
vacuum image

(e). Feature maps of QSB-Net-Large(SE1) for a
goose image

(f). Feature maps of QSB-Net-Large(SE1) for a
vacuum image

Figure 8: Visualizations of feature maps for proposed Large models.
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A.9 T-SNE AS A TOOL FOR VISUALIZING AND INTERPRETING IMAGE CLASSIFICATION
RESULTS

The evaluations of models using t-distributed stochastic neighbor embedding (t-SNE) are illustrated
in Figure 9. In FP32 ResNet18 and MobileNetV2, the visual patterns show that the clustered features
are well separated. The visual patterns of ReActNetA (Liu et al., 2020) and proposed models indicate
that BCNNs suffer from difficulties in distinguishing between several classes. Compared with the
Small models, the Large models slightly reduced the intersection of clustered features. Therefore,
we conclude that the visualized patterns indirectly prove the performance enhancements in the Large
models.

(a). ResNet18 (b). MobileNetV2

(c). ReActNet (d). QB-Net-Small

(e). QSB-Net-Small (f). QB-Net-Large

(g). QSB-Net-Large (h). QSB-Net-Large(SE1)

Figure 9: Visualizations of t-SNE.
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A.10 VISUALIZED RESULTS OF SEMANTIC SEGMENTATION

We demonstrated that QSB-Net-Large could learn a good representation of objects in semantic seg-
mentation, where QSB-Net-Large combined with DeepLabv3+ was trained. The PASCAL VOC
2012 (Everingham et al., 2010) segmentation dataset contains 1,465 training, 1,449 validation, and
1,456 test images having pixel-level annotations. The dataset was augmented by the extra anno-
tations from the PASCAL VOC 2011, resulting in 10,582 augmented training images. Figures 10
and 12 show the visualized results of semantic segmentation using QSB-Net-Large on the VOC
PASCAL 2012 dataset (Everingham et al., 2010).

Figure 10: Semantic segmentation results of QSB-Net-Large. On the left, input images are illustrated. In the
middle, the segmentation masks overlayed on its input image are shown. On the right, the predicted segmenta-
tion masks are given.
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Figure 11: Semantic segmentation results of QSB-Net-Large. On the left, input images are illustrated. In the
middle, the segmentation masks overlayed on its input image are shown. On the right, the predicted segmenta-
tion masks are given.

A.11 ESTIMATION OF ENERGY CONSUMPTION ON REAL HARDWARE

We performed an energy consumption analysis on real hardware using an RPi 4B on Manjaro OS.
Due to the limitations of using the power management ICs (PMIC), we cannot use power profiling
tools. Therefore, we employed an alternative method, where we measured the current drawn from
the USB power line using a current probe over 500 test runs. To assess the impact of running a
benchmark evaluation program in Appendix A.7, we compared the current consumption under two
conditions: with and without executing the program on the RPi 4B. When the models were not
being evaluated, the current consumption was approximately 713 mA @ 5V. In contrast, during the
execution of the models listed in Table 3, the current consumption ranged from 912 mA to 936 mA.
Considering the resolution of the current probe, we thought that these variations were not significant.

While other system activities such as parameter uploading and log dumping were also performed
during the measurements, their impact on the comparison was not great, considering the negligible
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relative difference. Based on these observations, we conclude that the systematic energy consump-
tion is largely proportional to inference latency because no substantial differences in system power
consumption were detected during the evaluations.

Figure 12: A realistic environment for estimating energy consumption. Using a current probe with ± 1.5%
accuracy resolution, the amount of current in a USB power cable was measured.

28


	Introduction
	Related Works
	Backgrounds
	QSB-Net with Channel Quadrupling & Smooth Downsampling
	Motivations
	Blocks for Channel Quadrupling and Smooth Downsampling
	Model Structure with Channel Quadrupling
	Increased Representation Capacity in Deep Blocks
	Applicability of Techniques for Better Models

	Experimental Results and Analysis
	Image Classification and Latency on Real Hardware
	Semantic Segmentation
	Ablation Studies

	Conclusion
	Appendix / Supplemental Material
	Model Structures of QB-Net-Large and QSB-Net-Large
	Binarized Convolutions in Final FC layer
	Detailed Presentation of Entropy in Proposed Models
	Detailed Description of Training Process in Image Classification
	Detail Discussion for Ablation Studies
	Experimental Results on COCO-Stuff
	Experimental Environments on Real Hardware: Larq
	Visualization of Feature Maps
	t-SNE as a Tool for Visualizing and Interpreting Image Classification Results
	Visualized Results of Semantic Segmentation
	Estimation of Energy Consumption on Real Hardware


