BESTOpt: A Physics-Informed Neural Network Based Building Simulation,
Control and Optimization Platform — A Case Study on Dynamic Model
Evaluation

Anonymous Authors'

Abstract

This paper presents BESTOpt, a modular simu-
lation platform for building energy systems mod-
eling. Unlike traditional tools that treat build-
ing dynamics, HVAC systems, and grid interac-
tions in isolation, BESTOpt provides an integrated
framework for dynamic modeling and control co-
optimization. At its core is a physics-informed
modularized neural network (PI-ModNN) that
incorporates state-space-informed structural pri-
ors and hard physical constraints, enabling accu-
rate, interpretable, and generalizable predictions
of space air temperature. We evaluate the dy-
namic modeling module of BESTOpt against a
purely data-driven baseline (LSTM) using syn-
thetic datasets generated from EnergyPlus. While
LSTM achieves lower prediction errors under
normal conditions, BESTOpt demonstrates supe-
rior generalization in abnormal scenarios such as
HVAC shutdowns, highlighting its effectiveness
in control-oriented tasks where response fidelity is
critical. The platform enables integrated building-
to-grid applications at a large scale.

1. Introduction

Buildings account for 30% of global final energy consump-
tion and 27% of global energy-related emissions (IEA,
2022). Among various building energy consumers, Heating,
Ventilation, and Air-Conditioning (HVAC) systems account
for more than half of the used energy (File, 2015). However,
40% of this energy is wasted due to inappropriate HVAC
control, mismatched operation schedules, and other ineffi-
ciencies (Meyers et al., 2010). Therefore, improving the
energy efficiency of buildings has become a key strategy for
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mitigating climate change and achieving decarbonization
targets.

In addition to energy efficiency, buildings are increasingly
expected to support grid flexibility—the ability to shift or
regulate energy demand to balance power supply and de-
mand (Luo et al., 2022). With the growing penetration
of renewable energy sources such as solar and wind, the
mismatch between distributed energy resource (DER) gen-
eration and load demand can result in unstable photovoltaic
(PV) power exports to the utility grid, leading to grid insta-
bility and voltage violations (Gandhi et al., 2020). There-
fore, grid-interactive buildings that can dynamically adapt
their energy usage patterns are essential for maintaining grid
stability and reducing peak loads.

Simultaneously, the increasing frequency of extreme
weather events and weather-related grid disturbances high-
lights the importance of thermal resilience—the capability
of buildings to maintain safe indoor temperatures during
power outages or equipment failures (Liu et al., 2023). En-
hancing thermal resilience is critical for protecting occupant
health and safety, especially in vulnerable populations.

Effectively addressing the above-mentioned challenges of
energy efficiency, grid flexibility, and thermal resilience re-
quires a holistic approach to modeling and controlling both
building energy systems and DERs. However, current tools
often treat these aspects in isolation, lacking an integrated
platform to simulate system-level interactions and evaluate
performance trade-offs under various scenarios.

1.1. Literature Review of Current Simulation Platforms

At the energy system level, a commonly used tool is Mod-
elica (Mattsson et al., 1998), which is built upon a set of
physics-based equations and provides high-fidelity mod-
els suitable for system-level energy modeling, control, and
optimization.

At the building level, widely adopted tools include Energy-
Plus (Crawley et al., 2001) and its derivatives such as De-
signBuilder (Garg et al., 2020) and OpenStudio (Gugliel-
metti et al., 2011). These are also physics-based models
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grounded in energy balance equations. However, such mod-
els often suffer from: 1) Extensive data requirements, 2)
Significant modeling effort for individual buildings, and 3)
Substantial computational burden.

On the other hand, data-driven building dynamic models
typically face challenges such as: 1) sensitivity to data
quality and quantity, 2) lack of interoperability, 3) limited
generalization capabilities, and 4) absence of guarantees for
physical consistency.

At the grid level, CityLearn (Vazquez-Canteli et al., 2019)
is a well-developed tool that supports grid-level control and
optimization. However, it relies on pre-calculated building
dynamics from EnergyPlus, which are based on fixed sched-
ules and do not dynamically interact with real-time building
or HVAC system responses.

For urban-scale modeling, CityBES (Hong et al., 2016) is
commonly used, but it is primarily a physics-based, design-
oriented tool and is not designed for control optimization or
integration with city-level energy systems.

In summary, there is a lack of simulation platforms that
enable co-simulation and optimization across multiple com-
ponents—namely buildings, HVAC systems, and grid com-
ponents in an integrated and dynamic manner.

To fill this gap, this paper presents a simulation platform
BESTOpt that integrates modular building dynamic mod-
els with DER components such as PV and batteries. This
platform supports control optimization and forward emula-
tion of energy performance, flexibility, and resilience across
diverse building types and weather conditions. As a case
study, we evaluate the building dynamic model performance
using synthetic datasets generated by EnergyPlus software.

2. Methodology

2.1. Data Generation

We conduct our simulation in EnergyPlus based on a single-
family prototype building (Mendon & Taylor, 2014) devel-
oped by Pacific Northwest National Laboratory. We use the
EnergyPlus Runtime API to collect data from the space and
HVAC system. This API allows a client to interface with
EnergyPlus at runtime, enabling data sensing and actuation
during a running simulation.

At each time step (15 minutes), we collect data on outdoor
air temperature, solar radiation, occupancy level, HVAC
power, and space air temperature via the EnergyPlus vari-
able handle. We then send control signals via the actuator
handle to adjust the supply air flow rate according to the
control policy. Detailed simulation settings are summarized
in Table 1.

Table 1. Simulation settings for EnergyPlus virtual testbed

Parameter Value

Weather Condition Denver, Climate 5, Cool
Dry

Timestep 15 minutes

Cooling Setpoint (occu- U(22°C, 25°C)

pied)

Cooling Setpoint (unoc- U(24°C, 31°C)

cupied)

Heating Setpoint (occu- U(18°C, 21°C)

pied)

Heating Setpoint (unoc- U(13°C, 16°C)

cupied)

Baseline On-Off control with dead-
band

Deadband 0.5°C

Depart Time U(7:00, 10:00)

Arrive Time U(16:00, 20:00)

Supply Air Temperature 13°C

Supply Air Flow Rate 0to 0.16 m*/s

Simulation Period Whole year simulation

Peak Hour 15:00 to 18:00

2.2. Dataset and Baseline

The baseline used in this case study is the Long Short-Term
Memory (LSTM) neural network. Four datasets are used
to evaluate model performance. The first three datasets are
generated using different sampled setpoints and occupancy
schedules based on Table 1, to test the model under normal
operating conditions. The fourth dataset simulates an HVAC
shutdown after July 30th to evaluate the generalization abil-
ity of the proposed model.

2.3. Physics-Informed Modularized Neural Network

The thermal dynamic model in this study is based on
a Physics-informed Modularized Neural Network (PI-
ModNN) (Jiang & Dong, 2024; Jiang et al., 2025), which
estimates space air temperature by modeling each heat trans-
fer component through dedicated neural network modules
as shown in Figure 1. This is a multi-step time stepper
model structured around a discretized state-space formu-
lation. The network takes in ambient temperature, solar
radiation, time features, HVAC control inputs, and historical
zone air temperature to predict future space air temperature
over a specified horizon. Each module estimates a specific
heat transfer component: the external module uses a recur-
rent neural network to capture envelope thermal inertia and
solar gains; the internal gain module employs a multi-layer
perceptron (MLP) driven by time-based features and oc-
cupancy data; the HVAC module maps control signals to
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Figure 1. Physics-Informed Building Dynamic Model used in BESTOpt

heat input using either MLP or RNN-based architectures;
and a residual module learns the unknown thermal capac-
ity and integrates temperature dynamics over time. These
components together support both accuracy and physical
interpretability.

To improve the model’s responsiveness to HVAC-driven
fluctuations and mitigate the common over-smoothing is-
sue in neural networks, we adopt a physics-informed loss
function that penalizes discrepancies in both absolute tem-
perature and per-step fluctuation. This approach encourages
the model to better capture rapid changes without sacrificing
long-term trend accuracy. The proposed loss combines a
traditional mean-squared error term with a fluctuation-based
penalty weighted by a tunable coefficient.

In addition, we impose physics-inspired constraints to en-
sure that model responses follow the physical principle that
increased cooling or heating should lead to monotonic de-
creases or increases in temperature, respectively. This is
achieved by enforcing positivity on the gradients of zone
temperature with respect to heat inputs, which can be sat-
isfied by constraining network weights to be positive and
using activation functions like ReLU. These constraints are
especially applied to the HVAC and envelope modules to
maintain consistency with the heat balance equation.

2.4. Model Training and Validation

The model training process begins with data cleaning, if the
space air temperature remains unchanged for four consecu-

tive hours, that period is considered missing. To preserve
temporal continuity, training data loaders are created within
each clean segment. To enhance generalization across dif-
ferent prediction intervals, multi-horizon forecasting (e.g.,
2, 4, 8 to 24 hours) is incorporated into training batches.
Two techniques are used to improve training: early stopping,
which stops training when validation loss plateaus to pre-
vent overfitting, and a mixed-data training strategy, where
the encoder is trained using both ground truth and predicted
temperatures to better learn the dynamic module. Hyper-
parameter tuning is performed using Optuna, with learning
rates, hidden dimensions, and sequence lengths optimized.
The final configuration for each case is selected based on
validation performance and used for evaluation.

3. Results and Discussion

3.1. Model Performance under Normal Condition

Table 2. Model performance (MAE in °C) over one-month evalua-
tion_across different datasets.

Model Dataset 1 Dataset 2 Dataset 3
LSTM 0.19 0.11 0.14
BESTOpt 0.33 0.26 0.28

Model performance under normal operating conditions is
compared in Table 2. The LSTM model outperforms the
physics-informed BESTOpt model across all three datasets,
achieving mean absolute errors (MAEs) of 0.19, 0.11, and
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Figure 2. LSTM under unseen condition.
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Figure 3. BESTOpt under unseen condition.

0.14 °C compared to 0.33, 0.26, and 0.28 °C for BESTOpt.
One possible explanation is that the datasets were gener-
ated using EnergyPlus, where certain heat gains—such as
internal heat gains—are driven by the occupancy schedule,
which is a predefined constant value and follows repetitive
temporal patterns. As a result, the LSTM model can effec-
tively utilize time-related features (e.g., hour of day) to learn
these patterns and produce accurate forecasts. In contrast,
BESTOpt integrates physics-based constraints, which can
enhance generalizability and interpretability under abnor-
mal conditions, but may also restrict the model’s flexibility
during training.

3.2. Model Performance under Unseen Conditions

To evaluate generalization ability of proposed model, we
tested its performance under unseen conditions, as illus-
trated in Figure 2 and Figure 3. In these figures, the green
line represents the ground truth, while the red lines show the
predicted space air temperature over a 24-hour horizon with
15-minute intervals. Both models perform well on July 30,
when the system operates under normal conditions. How-
ever, after the air conditioning system is shut off on July 31,
the indoor temperature continues to rise due to summer heat.
The LSTM baseline fails to capture this behavior, whereas
the physics-informed dynamic model in BESTopt success-
fully reflects the thermal dynamics and yields significantly
lower prediction errors. This result highlights the advan-
tage of embedding physical priors into data-driven models,
particularly for safety-critical scenarios and abnormal oper-
ations where training data is limited or unavailable.

4. Conclusion

This study proposes a building dynamic simulation platform,
BESTOpt, which leverages physics-informed machine learn-
ing to enhance model generalization compared to traditional
purely data-driven approaches. BESTOpt can serve as a
virtual testbed for advanced controller design and enables in-
tegration across building, HVAC, and grid-connected DERs,
paving the way for future multi-component, complex build-
ing energy system control and optimization.
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This study highlights the transformative potential of embed-
ding physical knowledge into data-driven models to enhance
their generalizability, interpretability, and robustness. By
enabling seamless integration with modular system compo-
nents, the proposed approach offers a scalable, hierarchical
framework that supports coordinated interaction, control,
and optimization across diverse layers of future building-
grid energy systems. This work paves the way for more intel-
ligent, resilient, and efficient energy management strategies
in complex cyber-physical infrastructures.
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