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ABSTRACT

In many real-world applications, the distribution of data is skewed. The stan-
dard models, which are designed to optimize the accuracy, have poor prediction
performance when they are applied to imbalanced data tasks because the model
could be dramatically biased toward its major class. Therefore, areas under ROC
curves (AUROC) was proposed as a useful metric to assess how well prediction
models performed on unbalanced data sets. On the other hand, federated learn-
ing (FL) has attracted increasing attention with the emergence of distributed data
due to its communication efficiency. To address the challenge of distributed imbal-
anced data, research on Federated Deep AUC Maximization (FDAM) is necessary.
However, the FDAM problem currently is understudied and is more complex than
traditional federated learning (FL) techniques since its minimization objective is
non-decomposable over individual examples. In this study, we solve FDAM al-
gorithms for heterogeneous data by reformulating it as the popular non-convex
strongly-concave min-max formulation and propose the federated stochastic re-
cursive momentum gradient ascent (FMGDA) algorithm , which can also be ap-
plied to general federated non-convex-strongly-concave minimax problems. Im-
portantly, our method does not rely on strict assumptions, such as the PL condition
and we proved that it can achieve the O(ϵ−3) sample complexity, which reaches
the best-known sample complexity of centralized methods. It also achieves the
O(ϵ−2) communication complexity and a linear speedup in terms of the number
of clients. Additionally, extensive experimental results show that our algorithm
(i.e. FMGDA) performs empirically superior to other algorithms, supporting its
effectiveness.

1 INTRODUCTION

Deep Neural Networks (DNN) have achieved remarkable success in a number of practical applica-
tions, such as computer vision (Krizhevsky et al., 2017; He et al., 2016), natural language processing
(Devlin et al., 2018; Vaswani et al., 2017) and speech recognition (Mohamed et al., 2011; Zhou et al.,
2022). Standard deep learning models have been mainly designed for balanced data datasets. For
example, for the image classification task, the accuracy is chosen to evaluate the classifier and the
cross entropy between the predicted probability distribution from forward propagation of the deep
learning models and ground-truth target labels is used as a surrogate loss of the misclassification
rate. However, the data distribution is often skewed in many real-world applications, such as activ-
ity recognition (Gao et al., 2016) and healthcare applications (Joachims, 2005; Davis & Goadrich,
2006). In these cases, the prediction performance of models may be subpar if models are trained
based on optimization of accuracy for unbalanced data tasks because the minor class has minimal
impact in this situation and the data from the majority class virtually entirely define the model. Thus,
area under the ROC curve (AUROC) attracts wide attention as a better measure metric because it
shows excellent capability in identifying the models with high predictive power in imbalanced data
tasks (Cortes & Mohri, 2003).

Statistically, AUROC is the likelihood that a positive example will have a higher prediction score
than a negative one (Hanley & McNeil, 1982). Recent research has made incredible strides toward
maximizing AUROC and several online or stochastic algorithms for AUC maximization have been
proposed with a convex surrogate for linear models (Zhao et al., 2011; Ying et al., 2016; Natole et al.,
2018; Liu et al., 2018). Subsequently, Liu et al. (2019b) applied the AUC to neural networks and
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they cast the problem into a non-convex strongly-concave minimax stochastic optimization problem
to optimize a surrogate loss of AUC with a deep neural network. Nevertheless, their algorithms only
consider the single-machine setting and are inadequate for dealing with massive amounts of data in
the distributed setting.

Meanwhile, as the sizes of model parameters and training datasets keep increasing, machine learning
tasks heavily rely on distributed training. Given the quick rise in processing power, communication
overhead increasingly becomes the bottleneck of deep learning training. Therefore, it is crucial
to research communication-efficient distributed optimization. One important direction is federated
learning (FL) (McMahan et al., 2017) since it can reduce communication overhead in large-scale
machine learning. In the FL setting, multiple worker nodes are coordinated by a central server to
train a global model with periodic model averaging utilizing just the local data from each worker
node. The computational loads are shared by all worker nodes and frequent communication is also
avoided. Given that data remains locally at clients, FL also provides some level of data privacy.
These characteristics make FL appealing to many institutes with valuable data, not only the internet
companies, but traditional sectors like those who provide services to hospitals and banks in the big
data era (Rieke et al., 2020). In these institutes, information is typically gathered from those who are
sensitive about data privacy. However, reducing model bias requires large-scale machine learning
from a variety of data sources to offer improved services. In addition, the data in these institutes
are often imbalanced. For instance, the majority of illnesses have significantly fewer sufferers than
there are healthy persons. Therefore, research on Federated Deep AUC Maximization (FDAM) is
necessary.

However, the research on FDAM is still limited. To the best of our knowledge, Guo et al. (2020)
and Yuan et al. (2021) are the only works to address FDAM and they reformulated the problems as
the non-convex strongly-concave min-max problem in a distributed setting. However, their analyses
of FL methods heavily depend on the Polyak-Łojasiewicz (PL) condition, which is not satisfied for
neural networks in deep learning. In subsection 5.3, by providing a counter-example, we present
that even a naive neural network is not satisfied with the PL condition. Therefore, this paper aims to
provide more general analysis results for FDAM. Moreover, we provide the method with advanced
complexities under the mild assumption. Our method (i.e. FMGDA) is applicable for cross-silo
setting, where the majority of clients engage in computation every round and can preserve state be-
tween rounds, such as collaborative learning on financial data across multiple firms and stakeholders
or health data among various medical institutions (Guo et al., 2021).

Contributions The main contributions of this work are listed below:

• First, we propose a federated stochastic algorithm named federated stochastic recursive
momentum gradient ascent method (FMGDA) for solving a min-max optimization in het-
erogeneous data settings under the mild assumption, which is applicable to deep AUC
maximization. We design the method based on the momentum-based variance reduced
technique and provide an effective convergence analysis of our method. Our method (i.e.
FMGDA) can also be applied to solve general distributed nonconvex strongly-concave min-
max optimization problems.

• Our algorithm (i.e. FMGDA) reaches the best-known sample complexity O(ϵ−3) and
O(ϵ−2) communication complexity to find an ϵ-stationary point without large batches. The
sample complexity reaches the optimal results of centralized min-max methods and it also
achieves a linear speedup with respect to the number of worker nodes. To the best of our
knowledge, this is the first work that analyzes stochastic distributed stochastic AUC maxi-
mization without relying on the PL condition. The extensive experimental results confirm
the effectiveness of our proposed algorithm.

2 RELATED WORKS

In this section, we review some existing AUC maximization, minmax optimization and FL methods,
respetively.
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Table 1: Complexity comparison of the typical FL minimax algorithms for Non-Convex- Strongly-
Concave optimization to find an ε-stationary point. Sample complexity is the total number of the
First-order Oracle (IFO) made by all worker nodes in order to arrive at a ε-stationary point. Commu-
nication complexity denotes the total number of rounds of back-and-forth communication between
each worker node and the central server to arrive at a ε-stationary point.

Algorithm Reference Sample Communication
Federated Local SGDA Sharma et al. (2022) O

(
ϵ−4
)

O
(
ϵ−3
)

Federated Momentum Local SGDA Sharma et al. (2022) O
(
ϵ−4
)

O
(
ϵ−3
)

FMGDA Our work Õ
(
ϵ−3
)

Õ
(
ϵ−2
)

2.1 STOCHASTIC AUC MAXIMIZATION

Due to its paired structure, stochastic AUC maximization is difficult. Zhao et al. (2011) kept rep-
resentative samples in a buffer and use the reservoir sampling approach, and then update the model
with these samples as input. Ying et al. (2016) overcame the scalability issue of optimizing AUC
by providing a min-max reformulation of the AUC square surrogate loss and solving it based on a
stochastic gradient descent ascent approach. With the addition of a strongly convex regularizer to
the initial formulation, Natole et al. (2018) increased the convergence rate. By creating a multi-stage
approach and utilizing the problem’s quadratic growth condition, Liu et al. (2018) enhanced conver-
gence rates based on the min-max formulation. Nevertheless, all of these studies are limited to the
linear model. Subsequently, Liu et al. (2019b) reformulated deep AUC as a minimax problem and
provided a method to solve the stochastic AUC maximization problem with a deep neural network
as the predictive model.

2.2 MINIMAX

The AUC maximization could be reformulated as the non-convex strongly-concave minimax prob-
lem. More generally, the minimax optimization can also be applied to many machine learning
problems, such as robust federated learning, reinforcement learning, and adversarial training Liu
et al. (2019a). Many gradient-based minimax methods were proposed for solving these minimax
optimization problems (Lin et al., 2019; Luo et al., 2020). Rafique et al. (2021) design a proximal
guided algorithm based on the inexact proximal point method to solve the weakly-convex-concave
optimization. Additionally, some works developed accelerated gradient descent ascent algorithms
with the variance-reduced techniques. Huang et al. (2022) proposed a class of accelerated zeroth-
order and first-order momentum methods for nonconvex minimax optimization. More recently, some
adaptive or non-adaptive methods are proposed to solve non-convex non-concave min-max problems
(Liu et al., 2019a), such as generative adversarial networks (GANs). Some mirror descent ascent
methods are proposed in (Huang et al., 2021) to solve the nonsmooth nonconvex-strongly-concave
minimax problems based on dynamic mirror functions.

2.3 FEDERATED LEARNING

The first FL algorithm is FedAvg proposed in McMahan et al. (2017). It is an SGD-based algo-
rithm that has regular model averaging and can significantly lower communication costs. Earlier
federated learning studies explored algorithms in the homogeneous data context (Woodworth et al.,
2020; Wang & Joshi, 2018). When the datasets across several work nodes are homogenous, Fe-
dAvg reduces to local SGD (Zinkevich et al., 2010). Recent research extends federated learning to
heterogeneous data (or non-iid data) setups, as well as non-convex models. In Yu et al. (2019a;b),
the authors proposed Parallel Restarted SGD and Momentum SGD, and show that they both have
O(ε−4) samples and O(ε−3) rounds of communication to reach a ε-stationary solution. Addition-
ally, Karimireddy et al. (2020b) proposed SCAFFOLD, which uses control variates (variance re-
duction) to deal with the ’client drift’ when the data is heterogeneous. Li et al. (2020) introduced
the penalty-based technique FedProx to lower communication complexity to O(ε−2). However, the
analysis of FedProx relies on the gradient similarity assumption to limit the heterogeneity of the
data. Later, FedPD (Zhang et al., 2020) proposed FedPD to relaxes this presumption.
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Recently, some momentum-based methods are proposed, such as MIME algorithm (Karimireddy
et al., 2020a) and Fed-GLOMO (Das et al., 2020). They both need O(ε−3) sample complexity and
O(ε−3) communication complexity to achieve an ϵ-stationary solution. More recently, Khanduri
et al. (2021) proposed STEM, which updates the momentum-assisted stochastic gradient direction
for both the worker nodes and the central server. It further reduces the communication rounds to
O(ε−2) and keeps the same samples cost of O(ε−3), where the sample complexity matches the
optimal complexity of the centralized non-convex stochastic optimization algorithms (Fang et al.,
2018; Cutkosky & Orabona, 2019). In addition, some adaptive FL methods (Reddi et al., 2020;
Wang et al., 2022) are proposed, which are out of the scope of our discussion.

More recently, some methods are proposed for federated minimax optimization. Yuan et al. (2021)
and Guo et al. (2020) reformulate the FDAM as non-convex-strongly-concave in the federated set-
ting. However, the analyses of methods in Yuan et al. (2021) and Guo et al. (2020) rely on the PL
condition. However, it cannot be applied to the neural networks in deep learning. In the subsection
5.3, by providing a counter example, we verify that a simple neural network is not satisfied for the PL
condition. Therefore, though Yuan et al. (2021) and Guo et al. (2020) proposed AUC maximization
methods with superior sample complexity and communication complexity, the convergence results
cannot be used in the deep learning. Sharma et al. (2022) consider the non-convex-strongly-concave,
non-convex-PL, non-convex-concave and non-convex 1-point-concave cases. For the non-convex-
strongly-concave optimization, the best communication complexity and sample complexity they
achieve are O(ε−3) and O(ε−4), respectively without PL condition.

3 PRELIMINARIES AND ASSUMPTIONS

Notations: For two vectors x and y, ⟨x, y⟩ denotes their inner product. ∥ · ∥ denotes the ℓ2 norm
for vectors. ∥ · ∥op denotes operator norm for matrices. I(·) is the indicator function. ∇θf(θ, w)
is the partial derivative w.r.t. variables θ and ∇wf(θ, w) is the partial derivative w.r.t. variables w.
a = O(b) denotes that a ≤ Cb for some constant C > 0, and the notation Õ(·) hides logarithmic
terms. Given the mini-batch samples B = {ξi}Bi=1, we let ∇fi(θ, w;B) = 1

B

∑B
i=1 ∇fi(θ, w; ξi).

Let ξ = (x, y) ∼ D denote a random data drawn from an unknown distribution D, where x ∈ X
represents the data features and y ∈ Y = {−1,+1}. The area under the ROC curve on a population
level for a scoring function h : X → R is defined as

AUROC(h) = Pr(h(x1) ≥ h(x2)|y1 = 1, y2 = −1), (1)

where ξ1 = (x1, y1) and ξ2 = (x2, y2) are drawn independently from the distribution D. We also
employ the squared loss as the surrogate for the indicator function as Ying et al. (2016); Liu et al.
(2019b), so the AUC maximization problem can be written as

min
m

P (m) := Eξ1,ξ2 [(1− h(m;x1) + h(m;x2))
2|y1 = 1, y2 = −1], (2)

where h(m;x) is the prediction score for a data point x calculated by a deep neural network with
model parameter m. Following Yuan et al. (2021) and Guo et al. (2020), the equation 2 could be
reformulated as the non-convex-strongly-concave minimax optimization.

min
m∈Rd

(a,b)∈R2

max
w∈R

{F (m, a, b, w) = Eξ∼D [f (m, a, b, w; ξ)]} (3)

where

f (m, a, b, w; ξ) =(1− p) (h (m;x)− a)
2 I[y=1] + p (h (m;x)− b)

2 I[y=−1]

+ 2(1 + w)[ph (m;x) I[y=−1] − (1− p)h (m,x) I[y=1]]

− p(1− p)w2 (4)

where p = Pr(y = 1) = Ey[I[y=1]] denotes the prior probability that an example belongs to the
positive class. It should be mentioned that the min-max version equation 3 is more flexible than the
original version equation 2 since we could train the model based on a single data point or a small
batch of data instead of data pairs. For stochastic optimization of equation 2, one must carefully
pick both positive and negative samples and every score depends on both positive data points and
negative data points, which is not permitted in an online environment.
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Algorithm 1 FMGDA Algorithm

1: Input: T , Parameters: ĉ, c, ηt, αt, βt, the number of local updates q, and mini-batch size b0;
2: initialize: Initialize: θ0,i = θ̄0 = 1

N

∑N
i=1 θ0,i, w0,i = w̄0 = 1

N

∑N
i=1 w0,i, u1,i =

∇θf(θ0,i, w0,i;B0,i) and v1,i = ∇wf(θ0,i, w0,i;B0,i) where |B0,i| = B are drwan from Di

for i ∈ [N ].
3: for t = 1, 2, . . . , T do
4: for i = 1, 2, . . . , N do
5: if mod (t, q) = 0 then
6: ut,i = ūt =

1
N

∑N
i=1 ut,i

7: vt,i = v̄t =
1
N

∑N
i=1 vt,i

8: θt,i = θ̄t =
1
N

∑N
i=1(θt−1,i − ĉηtut,i)

9: wt,i = w̄t =
1
N

∑N
i=1(wt−1,i + cηtvt,i)

10: else
11: θt,i = θt−1,i − ĉηtut,i

12: wt,i = wt−1,i + cηtvt,i
13: end if
14: Draw mini-batch samples Bt,i = {ξji }bj=1 with |Bt,i| = b from Di locally
15: ut+1,i = ∇θfi(θt,i, wt,i;Bt,i) + (1− αt)(ut,i −∇θfi(θt−1,i, wt−1,i;Bt,i))
16: vt+1,i = ∇wfi(θt,i, wt,i;Bt,i) + (1− βt)(vt,i −∇wfi(θt−1,i, wt−1,i;Bt,i))
17: end for
18: end for
19: Output: θ and w chosen uniformly random from {(θ̄t, w̄t)}Tt=1.

In this paper, we consider the following min-max formulation in the distributed setting,

min
m∈Rd

(a,b)∈R2

max
w∈R

{
F (m, a, b, w) =

1

N

N∑
i=1

Fi(m, a, b, w)

}
(5)

where Fi(m, a, b, w) = Eξi [fi (m, a, b, w; ξi)], ξi = (xi, yi) ∼ Di. Di is the data distribution on
machine i, and N is the total number of machines. If we set θ = (m, a, b) ∈ Rd1 , where d1 = d+2,
we get the general FL mininax problem, as below:

min
θ∈Rd1

max
w∈Rd2

{
F (θ, w) =

1

N

N∑
i=1

Fi(θ, w) =
1

N

N∑
i=1

Eξi∼Di
[fi(θ, w; ξi)]

}
(6)

where fi is mainly related to the model and loss function. Therefore, fi on different machines is
usually the same. We will propose the method and analyze the convergence based on the equation 6
since it covers a class of non-convex strongly-concave minimax problems, not specifically for the
AUC maximization.

4 ALGORITHM

In the subsection, we propose a federated stochastic recursive momentum gradient descent ascent
algorithm (FMGDA) based on the momentum-based variance reduced technique under the hetero-
geneous data setting. Algorithm 1 shows the algorithmic framework of the method.

We first initialize all parameters at step 2 of Algorithm 1. Each worker node calculate the gradient
estimators u1,i and v1,i with stochastic gradients. After the initialization step, we also use the
standard gradient descent and ascent to update the model parameters with gradient estimators at
steps 11-12 of Algorithm 1. In addition, following the scheme of Federated Learning, all worker
nodes conduct communication with the central server every q iteration at steps 6-9 of Algorithm 1.
Here, the communication period q is greater than 1, and the number of communication rounds is
reduced to t/q. Given that we consider the cross-silo setting, where the majority of clients engage
in computation every round and can preserve the state between rounds. In addition, many standard
FL methods, such as local SGD (Yu et al., 2019a) and SCAFFOLD (Karimireddy et al., 2020b),
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also requires communicating momentum. Therefore, the communication strategy in our method is
reasonable

At the steps 15 and 16 of Algorithm 1, we use the momentum-based variance reduced gradient
estimator ut,i and vt,i, to track the gradient and update the model, defined as:

ut+1,i = ∇θfi(θt,i, wt,i;Bt,i) + (1− αt)(ut,i −∇θfi(θt−1,i, wt−1,i;Bt,i)

vt+1,i = ∇wfi(θt,i, wt,i;Bt,i) + (1− βt)(vt,i −∇wfi(θt−1,i, wt−1,i;Bt,i)

where αt, βt ∈ (0, 1). Overall, the key idea of our proposed method is to utilize recursive mo-
mentum to update local model parameters for both parameters θ and w on each device for multiple
iterations. Then the global server aggregates the model parameters θ, w, and gradient estimator
ut,i, vt,i every q steps. In the next section, we will establish the theoretical convergence guarantee
of the proposed algorithm.

5 CONVERGENCE ANALYSIS

5.1 ASSUMPTIONS

In the subsection, we give some mild assumptions about the problem equation 6.
Assumption 1. (i) Unbiased Gradient. The gradient of each component function fi(θ, w; ξ) com-
puted at each worker node is unbiased for all ξ(i) ∼ Di, i ∈ [N ]:

E[∇fi(θ, w; ξ
(i))] = ∇Fi(θ, w),

(ii) Intra- and inter- node Variance Bound. The following inequalities hold for all ξ(i) ∼ Di,
i, j ∈ [N ]:

E∥∇fi(θ, w; ξ
(i))−∇Fi(θ, w)∥2 ≤ σ2

∥∇Fi(θ, w)−∇Fj(θ, w)∥2 ≤ ζ2 (7)

In FL algorithms, the Assumption 1-(ii) is frequently employed to restrict the data heterogeneity.
The heterogeneity parameter, ζ, indicates the degree of data heterogeneity. The homogeneous data
configuration has ζ = 0 if the datasets on each worker node have the same distributions, i.e., Di =
Dj and fi = fj for all i, j ∈ [N ] (i.i.d setting). In this paper, we take into account the heterogeneous
data setup with ζ > 0.
Assumption 2. Sample Gradient Lipschitz Smoothness. Each component function fi(θ, w; ξ) has a
Lf -Lipschitz gradient, i.e., for all θ1, θ2 and w1, w2, we have

E∥∇θfi(θ1, w; ξ)−∇θf(θ2, w; ξ)∥ ≤ L11∥θ1 − θ2∥
E∥∇θfi(θ, w1; ξ)−∇θf(θ, w2; ξ)∥ ≤ L12∥w1 − w2∥
E∥∇wfi(θ1, w; ξ)−∇wf(θ2, w; ξ)∥ ≤ L21∥θ1 − θ2∥
E∥∇wfi(θ, w1; ξ)−∇wf(θ, w2; ξ)∥ ≤ L22∥w1 − w2∥

and we let Lf = max{L11, L12, L21, L22}.

Based on the convexity of norm and Assumption 2, we have

∥∇θFi(θ1, w)−∇θFi(θ2, w)∥ = ∥E
[
∇θfi(θ1, w; ξ)−∇θfi(θ2, w; ξ)

]
∥

≤ E∥∇θfi(θ1, w; ξ)−∇θfi(θ2, w; ξ)∥
≤ Lf∥θ1 − θ2∥

It demonstrates that Assumption 2 is a little stronger than just assuming that Fi(x), where i ∈ [N ],
is Lipschitz smooth. Nevertheless, assumption 2 is still commonly utilized in optimization analysis.
This assumption is used by several common centralized stochastic algorithms, including SPIDER
Fang et al. (2018), and STORM Cutkosky & Orabona (2019). Similarly, many FL algorithms such
as MIME Karimireddy et al. (2020a), Fed-GLOMO Das et al. (2020) and STEM Khanduri et al.
(2021) also use this assumption.
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Assumption 3. Strongly-Concave. Each component function Fi(θ, w) is µ-strongly concave in w,
i.e., for all θ and w1, w2, we have

∥∇wFi(θ, w1)−∇wFi(θ, w2)∥ ≥ µ∥w1 − w2∥. (8)

Then the following inequality holds

Fi(θ, w1) ≤ Fi(θ, w2) + ⟨∇wFi(θ, w2), w1 − w2⟩ −
µ

2
∥w1 − w2∥2

F (θ, w1) ≤ F (θ, w2) + ⟨∇wF (θ, w2), w1 − w2⟩ −
µ

2
∥w1 − w2∥2

Therefore, the function F (θ, w) is also strongly concave in w, and there exists a unique solution
to the problem maxw F (θ, w) for any θ. Here we define w∗(θ) = argmaxw F (θ, w) and Φ(θ) =
F (θ, w∗(θ)) = maxw F (θ, w).
Assumption 4. The function Φ(θ) is bounded below, i.e., Φ∗ = infθ Φ(θ) > −∞.

5.2 CONVERGENCE ANALYSIS OF OUR ALGORITHM

In this section, we study the convergence properties of our new algorithm under Assumptions 1, 2,
3, and 4.

We use ε-stationary point of Φ(θ), i.e. ∥∇Φ(θ)∥ ≤ ε as the convergence metric. In non-convex-
strongly-concave optimization, we know Φ(θ) is differentiable and (L + κL)-smooth and w∗(·) is
κ-Lipschitz from Lemma 4.3 in Lin et al. (2019). Given that ∇wF

(
θ̄t, w

∗(θt)
)
= 0, we have

∇Φ
(
θ̄t
)
= ∇θF

(
θ̄t, w

∗(θt)
)
+∇wF

(
θ̄t, w

∗(θt)
)
· ∂w∗ (θ̄t) = ∇θF

(
θ̄t, w

∗(θt)
)

(9)

which is widely used in the analysis of non-convex-strongly-concave minimax optimization
Thekumparampil et al. (2019); Lin et al. (2019). The proofs are provided in the supplementary
materials. Then, we provide the convergence result for Algorithm 1 in the following theorem.
Theorem 1. Suppose that sequence {θ̄t, w̄t}Tt=0 is generated from Algorithm 1. Under the above
Assumptions (1,2,3,4), given αt = c1η

2
t , βt = c2η

2
t , c1 = c2 = 1

20Lqh̄3 + 60L2

bN ≤ 90L2

bN if b ≤

600qN , h̄ = N2/3

L , max{ĉ, c} < min{ 1
6 ,

1
6L ,

µ
6L}, and ĉ ≤

√
11

2880κ4 c we have

T∑
t=1

ĉηt
2

E
∥∥∇Φ

(
θ̄t−1

)∥∥2
≤ E

[
Φ(θ̄0)− Φ∗]+ 6ĉL2

f

cµ
∥w̄0 − w∗(θ̄0)∥2 +

ĉbN

40L2

∥ū1 −∇θF̄t∥2

η0
+

5ĉbNL2
f

4µ2L2

∥v̄1 −∇wF̄t∥2

η0

+ [
5ĉσ2c22
µ2L2

f

+
ĉσ2c21
20L2

+
σ2ĉ(c21 + c22)

20bL2
+

ζ2ĉ(c21 + c22)

8L2
]

T∑
t=1

η3t (10)

Corollary 1. Suppose Assumptions (1,2,3,4) hold, by setting ηt = h̄
(et+t)1/3

for all t ≥ 0, and

et = max( 32 , 1728L
3q3h̄3 − t), we have

1

T

T−1∑
t=0

E
∥∥∇Φ

(
θ̄t
)∥∥2

≤[
20Lq

T
+

L

(NT )2/3
][
2E
[
Φ(θ̄0)− Φ∗]

ĉ
+

12L2
f∥w̄0 − w∗(θ̄0)∥2

cµ
] + [

20qσ2

T
+

20σ2

(NT )2/3
][1 +

50L2
f

µ2
]

+ [
5σ2

µ2
+

σ2

20
+

σ2

10b
+

ζ2

4
]2 ln(T + 1)[

122 × 2000q

b2T
+

14400

b2(NT )2/3
] (11)

Remark 1. (Complexity) Without losing generality, we let B = bq and b to be O(1) and b ≥ 1,
and choose q =

(
T/N2

)1/3
. Based on the definition of the ε-stationary point, if we let the right

hand side of the inequality less then ε2, we get T = Õ(N−1ε−3), and T
q = (NT )2/3 = Õ(ε−2).
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Because the sample size b is a constant, the total sample cost is Õ(N−1ε−3) and communication
round is Õ(ε−2) for finding an ε-stationary point which matches the best complexity result achieved
by the centralized optimal algorithms, such as SPIDER and STORM Fang et al. (2018); Cutkosky
& Orabona (2019). And Õ(N−1ε−3) exhibits a linear speed-up compared with the aforementioned
centralized optimal algorithms.
Remark 2. (Data Heterogeneity) We use the ζ to present the data heterogeneity. From the final
results in equation 11, it is shown that larger ζ (or higher data heterogeneity) will slow down the
training.

5.3 NON CONVEX NATURE OF DEEP AUC MAXIMIZATION

-1.0 -0.5 0.0 0.5 1.0

m1

-1.0

-0.5

0.0

0.5

1.0

m
2

mina,b Φ(m, a, b)

saddle point

Figure 1: Objective of a toy model.

The objective for deep AUC maximization is a non-
convex strongly-convex function. In order to simplify
their analysis, previous works (Guo et al., 2020; Yuan
et al., 2021) imposed Polyak-Łojasiewicz (PL) condition
to the function Φ(m, a, b) = maxw F (m, a, b, w). Al-
though Φ(m, a, b) is a quadratic function of a, b, it is
highly non-convex with respect to neural network model
with parameter m, thus the PL condition is too strong.

In order to show that, we will consider the following
“simplest neural network”:

h(m,x) = m1sigmoid(m2x) (12)

This neural network only use one hidden neuron with a
sigmoid activation function and no bias, thus relies on
only two parameters. Then, we also choose “the simplest
dataset” D with only two data points: x1 = 1, y1 = 1 and
x2 = −1, y2 = −1.

By inspecting the loss surface of Φ(m, a, b), we can find a saddle point which has zero gradient, but
in the mean time is far from optimal. Therefore, the PL condition is not satisfied for the simplest
case, and thus does not hold in any real-world deep AUC maximization.

In this work, we distinguish our results from previous works by not imposing any assumptions on the
non-convexity of the objective. It should be noted that although deep AUC maximization algorithms
in Guo et al. (2020); Yuan et al. (2021) appear to have better sample complexity and communication
complexity than this paper, it is actually a spurious acceleration from strong assumption.

6 EXPERIMENTAL RESULTS

In this section, we conduct ROC maximization task to validate the efficiency of our algorithms on
different datasets. And the objective function is formulated as equation 6. To illustrate the effi-
ciency of our methods, in this part, we will use various data sets and various model structures to
evaluate methods. Meanwhile, we compare our algorithms with the existing state-of-the-art algo-
rithms, including CODA Guo et al. (2020), Momentum Local SGDASharma et al. (2022) and CO-
DASCAYuan et al. (2021). The experiments are run on machines with AMD EPYC 7513 32-Core
Processor as well as NVIDIA RTX A6000 GPU.

Datasets.: We conduct numerical experiments on three typical datasets: Fashion-MNIST dataset,
CIFAR-10 dataset and Tiny-ImageNet with 16 worker nodes in the network. Fashion-MNIST dataset
consists of 60, 000 training images and 10, 000 testing images. 70, 000 28 × 28 gray images are
classified into 10 categories. CIFAR-10 dataset contains 50, 000 training images and 10, 000 testing
images. Each image includes 3 × 32 × 32 arrays of color images. Tiny-ImageNet dataset contains
100,000 (64× 64) colored images. It has 200 classes, where each class has 500 training images, 50
validation images, and 50 test images.

Imbalanced and Heterogeneous.: Following Guo et al. (2020); Yuan et al. (2021), we convert
datasets into imbalanced binary-class versions. It is constructed as follows: firstly, the first half of
the classes (0 - 4) in the original Fashion-MNIST, CIFAR10 and classes (0 - 99) in Tiny-ImageNet

8
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Table 2: Final ROC scores on the test datasets.

Algorithm Fashion-MNIST CIFAR10 Tiny ImageNet
CODA 0.9366 0.6009 0.6864
Momentum SGDA 0.9369 0.60378 0.6896
CODASCA 0.9369 0.5608 0.6791
FMSGDA 0.9382 0.6093 0.6905

datasets are designated to be the negative class, and the rest half of classes are considered to be a
positive class. Then, we randomly remove 80% of the negative data points in the datasets to make it
imbalanced. Then the datasets are evenly divided into disjoint sets across all worker nodes. In this
case, each worker nodes share completely different imbalanced datasets.

Configurations.: For Fashion-MNIST data sets and CIFAR10, we choose model architectures from
Huang et al. (2021) as imbalanced binary classifiers. For Tiny-ImageNet, we choose ResNet-18 He
et al. (2016) as the neural network. Each worker node holds the same Convolutional Neural Network
(CNN) model as the classifier. The details of network structures are provided in the supplementary
material.

Parameters: In experiments, we carefully tune hyperparameters for all methods. We run grid search
for step size, and choose the step size for primal variable in the set {0.001, 0.005, 0.01} and that for
dual variable in the set {0.0001, 0.001, 0.01}. We set the global learning rate as 1 for CODASCA.
We choose the momentum parameter in Momentum Local SGDA in the set {0.1, 0.9}. The α and
β in FMSGDA are chosen from {0.1, 0.9}. The batch-size b is in {50} and the inner loop number
q ∈ {10, 20}.

Results: The goal of our experiments is two-fold: (1) To compare the performance of FMSGDA
with other algorithms during the training phase with different datasets; (2) To demonstrate the model
performance on the test datasets.

In Figure 2, we compare the performance of FMSGDA and other baseline methods against the num-
ber of communication rounds, namely back-and-forth communication rounds between the central
server and each worker node on three datasets. Figure 2 shows that our algorithms consistently
outperform the other baseline algorithms. Finally, we focus on the final performance on the testing
datasets. In tables 2, we present the ROC scores of all methods on the test dataset after training with
the same epochs. FMGDA performs well under datasets. It shows the our method (i.e. FMGDA)
has a good performance compared with other methods.

(a) Fashion-MNIST (b) CIFAR-10 (c) Tiny ImageNet

Figure 2: ROC scores on the test datasets vs the number of communication rounds during the training
phase.

7 CONCLUSION

In this paper, we proposed a novel federated minimax algorithm, federated stochastic recursive mo-
mentum gradient ascent algorithm (i.e. FMGDA) to solve the Federated Deep AUC Maximization
optimization problems. We prove that our new method obtains sample complexity of O(ε−3) and
communication complexity of O(ε−2) under mild assumption, which outperforms the existing re-

9
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sults in federated minimax optimization. The sample complexity matches state-of-the-art result in
centralized minimax optimization. Our method also achieves a linear speedup with respect to the
number of worker nodes, which present its superiority to solve large-scale problems. We also con-
duct experiments on Federated Deep AUC Maximization optimization task to validate the efficiency
of our algorithm.
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Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger R Roth, Shadi Albarqouni, Spyri-
don Bakas, Mathieu N Galtier, Bennett A Landman, Klaus Maier-Hein, et al. The future of digital
health with federated learning. NPJ digital medicine, 3(1):1–7, 2020.

Pranay Sharma, Rohan Panda, Gauri Joshi, and Pramod Varshney. Federated minimax optimiza-
tion: Improved convergence analyses and algorithms. In International Conference on Machine
Learning, pp. 19683–19730. PMLR, 2022.

Kiran K Thekumparampil, Prateek Jain, Praneeth Netrapalli, and Sewoong Oh. Efficient algorithms
for smooth minimax optimization. Advances in Neural Information Processing Systems, 32, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

11



Under review as a conference paper at ICLR 2023

Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified framework for the design and analysis of
communication-efficient sgd algorithms. arXiv preprint arXiv:1808.07576, 2018.

Yujia Wang, Lu Lin, and Jinghui Chen. Communication-efficient adaptive federated learning. arXiv
preprint arXiv:2205.02719, 2022.

Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan Mcma-
han, Ohad Shamir, and Nathan Srebro. Is local sgd better than minibatch sgd? In International
Conference on Machine Learning, pp. 10334–10343. PMLR, 2020.

Yiming Ying, Longyin Wen, and Siwei Lyu. Stochastic online auc maximization. Advances in
neural information processing systems, 29, 2016.

Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication efficient mo-
mentum sgd for distributed non-convex optimization. In International Conference on Machine
Learning, pp. 7184–7193. PMLR, 2019a.

Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted sgd with faster convergence and less
communication: Demystifying why model averaging works for deep learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33, pp. 5693–5700, 2019b.

Zhuoning Yuan, Zhishuai Guo, Yi Xu, Yiming Ying, and Tianbao Yang. Federated deep auc max-
imization for hetergeneous data with a constant communication complexity. In International
Conference on Machine Learning, pp. 12219–12229. PMLR, 2021.

Xin Zhang, Jia Liu, Zhengyuan Zhu, and Elizabeth Serena Bentley. Gt-storm: taming sample,
communication, and memory complexities in decentralized non-convex learning. In Proceedings
of the Twenty-second International Symposium on Theory, Algorithmic Foundations, and Protocol
Design for Mobile Networks and Mobile Computing, pp. 271–280, 2021.

Xinwei Zhang, Mingyi Hong, Sairaj Dhople, Wotao Yin, and Yang Liu. Fedpd: A federated learning
framework with optimal rates and adaptivity to non-iid data. arXiv preprint arXiv:2005.11418,
2020.

Peilin Zhao, Steven CH Hoi, Rong Jin, and Tianbo YANG. Online auc maximization. 2011.

Ying Zhou, Xuefeng Liang, Yu Gu, Yifei Yin, and Longshan Yao. Multi-classifier interactive learn-
ing for ambiguous speech emotion recognition. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 30:695–705, 2022.

Martin Zinkevich, Markus Weimer, Lihong Li, and Alex Smola. Parallelized stochastic gradient
descent. Advances in neural information processing systems, 23, 2010.

12



Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 BASIC LEMMA

In this section, we provide the detailed convergence analysis of our algorithm. For conve-
nience, in the subsequent analysis, we define Ft,i = Fi(θt,i, wt,i), ∇θFt,i = ∇θFi(θt,i, wt,i)

and ∇wFt,i = ∇wFi(θt,i, wt,i). at = [a⊤t,1, a
⊤
t,2, · · · , a⊤t,N ]⊤ and āt = 1

N

∑N
i=1 at,i for at ∈

{θt,wt,ut,vt,∇θFt,∇wFt}. To be precise,

θ̄t =
1

N

N∑
i=1

θt,i w̄t =
1

N

N∑
i=1

wt,i ūt =
1

N

N∑
i=1

ut,i v̄t =
1

N

N∑
i=1

vt,i

∇θF̄t =
1

N

N∑
i=1

∇θFt,i =
1

N

N∑
i=1

∇θFi(θt,i, wt,i) ∇wF̄t =
1

N

N∑
i=1

∇wFt,i =
1

N

N∑
i=1

∇wFi(θt,i, wt,i)

∇θF (θ̄t, w̄t) =
1

N

N∑
i=1

∇θFi(θ̄t, w̄t) ∇wF (θ̄t, w̄t) =
1

N

N∑
i=1

∇wFi(θ̄t, w̄t)

⊗ denotes the Kronecker product and st denotes the st = ⌊t/q⌋. Lf = max{L11, L12, L21, L22, 1}
Lemma 1. (Lin et al., 2019) Under the above Assumptions 2 and 3, the function Φ(θ) =
maxw f(θ, w) = f(θ, w∗(θ)) and the mapping w∗(θ) = argmaxw f(θ, w) have L-Lipschitz con-
tinuous gradient and κ-Lipschitz continuous respectively, such as for all θ1, θ2 ∈ Rd1

∥∇Φ(θ1)−∇Φ(θ2)∥ ≤ L∥θ1 − θ2∥, ∥w∗(θ1)− w∗(θ2)∥ ≤ κ∥θ1 − θ2∥, (13)

where L = Lf (1 + κ) and κ = Lf/µ.

Lemma 2. (From Zhang et al. (2021)) x is the concatenation of [x⊤
1 , x

⊤
2 , . . . , x

⊤
N ]⊤ ∈ RNd, and

x̄t ∈ Rd, denoting 1 ∈ RN as the vector of all ones, we have

∥x− 1⊗ x̄∥2 ≤ ∥x∥2 (14)

Proof. Denoting Id ∈ Rd×d and INd ∈ RNd×Nd as identity matrices. Then we have

∥x− 1⊗ x̄∥2 = ∥x− (
11T

N
⊗ Id)x∥2 = ∥(INd −

11T

N
⊗ Id)x∥2

(a)

≤ ∥x∥2 (15)

where (a) follows that matrix norm ∥INd − 11T

N ⊗ Id∥op ≤ 1 where ∥ · ∥op denotes operator norm.
To be precise, operator norm of L2 norm is spectral norm.

A.2 IMPORTANT CONCLUSIONS

Lemma 3. For i ∈ [N ], we have

E∥∇θfi(θt,i, wt,i;Bt,i)−∇θFt,i∥2 ≤ σ2

b
(16)

E∥∇wfi(θt,i, wt,i;Bt,i)−∇wFt,i∥2 ≤ σ2

b
(17)

E∥∇θFt − 1⊗∇θF̄t∥2 ≤ 12L2
f

N∑
i=1

[E∥θt−1,i − θ̄t−1∥2 + E∥wt−1,i − w̄t−1∥2] + 3Nζ2 (18)

E∥∇wFt − 1⊗∇wF̄t∥2 ≤ 12L2
f

N∑
i=1

[E∥θt−1,i − θ̄t−1∥2 + E∥wt−1,i − w̄t−1∥2] + 3Nζ2 (19)
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Proof. (1) we have

E∥∇θfi(θt,i, wt,i;Bt,i)−∇θFt,i∥2

=E∥1
b

∑
ξt,i∈Bt,i

(∇θfi(θt,i, wt,i; ξt,i)−∇θFt,i)∥2

=
1

b2

∑
ξt,i∈Bt,i

E∥∇θfi(θt,i, wt,i; ξt,i)−∇θFt,i∥2

≤σ2

b
(20)

where the third equality is due to Eξt,i [∇θfi(θt,i, wt,i; ξt,i) − ∇θFt,i] = 0 and the last inequality
follows Assumptions 1. Similarly, we get the equation 17

(2)E∥∇θFt − 1⊗∇θF̄t∥2 =

N∑
i=1

E∥∇θFt,i −∇θF̄t∥2

≤3

N∑
i=1

E
[
∥∇θFt,i −∇θFi(θ̄t, w̄t)∥2 + ∥∇θF (θ̄t, w̄t)−∇θF̄t∥2 + ∥∇θFi(θ̄t, w̄t)−∇θF (θ̄t, w̄t)∥2

]
≤3

N∑
i=1

E[∥∇θFt,i −∇θFi(θ̄t, w̄t)∥2 +
1

N

N∑
j=1

∥∇θFj(θ̄t, w̄t)−∇θFt,j∥2

+
1

N

N∑
j=1

∥∇θFi(θ̄t, w̄t)−∇θFj(θ̄t, w̄t)∥2]

≤12L2
fE∥θt − 1⊗ θ̄t∥2 + 12L2

fE∥wt − 1⊗ w̄t∥2 + 3

N∑
i=1

1

N

N∑
j=1

E∥∇θFi(θ̄t, w̄t)−∇θFj(θ̄t, w̄t)∥2

≤12L2
f

N∑
i=1

[E∥θt−1,i − θ̄t−1∥2 + E∥wt−1,i − w̄t−1∥2] + 3Nζ2 (21)

where the third inequality is due to Assumption 2 and the last inequality is due to Assumption 1.
Similarly, we get the equation 19

Lemma 4. For t ∈ [stq, (st +1)q), and sequences {θt, wt}Tt=0 are generated from Algorithm 1, we
have

N∑
i=1

∥∥θt,i − θ̄t
∥∥2 ≤ (q − 1)

t∑
s=stq+1

ĉ2η2s

N∑
i=1

∥us,i − ūs∥2 (22)

N∑
i=1

∥wt,i − w̄t∥2 ≤ (q − 1)

t∑
s=stq+1

c2η2s

N∑
i=1

∥vs,i − v̄s∥2 (23)

Proof. (1) if t = stq, we have

N∑
i=1

∥∥θstq,i − θ̄stq
∥∥2 = 0 (24)

(2) if t ≥ stq, we have

θt,i = θstq,i −
t−1∑

s=stq

ĉηs+1us+1,i θ̄t = θ̄stq −
t−1∑

s=stq

ĉηs+1ūs+1
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N∑
i=1

∥∥θt,i − θ̄t
∥∥2 =

N∑
i=1

∥∥∥∥∥θstq,i − θ̄stq −

(
t−1∑

s=stq

ĉηs+1us+1,i −
t−1∑

s=stq

ĉηs+1ūs+1

)∥∥∥∥∥
2

=

N∑
i=1

∥∥∥∥∥
t−1∑

s=stq

ĉηs+1 [us+1,i − ūs+1]

∥∥∥∥∥
2

≤ (q − 1)

t−1∑
s=stq

ĉ2η2s+1

N∑
i=1

∥us+1,i − ūs+1∥2 (25)

Similarly, we get equation 23.

Lemma 5. Under the above assumptions, and set 0 < ηt ≤ 1 and c ≤ 1
6Lf

, for the Algorithm 1, we
have∥∥w̄t+1 − w∗ (θ̄t+1

)∥∥2 − ∥∥w̄t − w∗ (θ̄t)∥∥2 ≤− cηt+1µ

4

∥∥wt − w∗ (θ̄t)∥∥2 − 3c2ηt+1

4
∥v̄t+1∥2

+
25cηt+1

6µ

∥∥∇wF
(
θ̄t, w̄t

)
− v̄t+1

∥∥2 + 5κ2

cµηt+1

∥∥θ̄t+1 − θ̄t
∥∥2 (26)

Proof. The function F (θ, w) is Lf -smooth w.r.t w, and define ŵt+1 = w̄t + cv̄t+1, we have

F
(
θ̄t, ŵt+1

)
− F

(
θ̄t, w̄t

)
−
〈
∇wF

(
θ̄t, w̄t

)
, ŵt+1 − w̄t

〉
≥ −Lf

2
∥ŵt+1 − w̄t∥2 (27)

Since the function F (θ, w) is µ-strongly concave w.r.t w, we also have

F
(
θ̄t, w

∗(θ̄t)
)
≤F

(
θ̄t, w̄t

)
+
〈
∇wF

(
θ̄t, w̄t

)
, w∗(θ̄t)− w̄t

〉
− µ

2

∥∥w∗(θ̄t)− w̄t

∥∥2
=F

(
θ̄t, w̄t

)
+
〈
v̄t+1, w

∗(θ̄t)− ŵt+1

〉
+
〈
∇wF

(
θ̄t, w̄t

)
− v̄t+1, w

∗(θ̄t)− ŵt+1

〉
+
〈
∇wF

(
θ̄t, w̄t

)
, ŵt+1 − w̄t

〉
− µ

2

∥∥w∗(θ̄t)− w̄t

∥∥2 . (28)

Combining above two inequalities, we obtain

0 ≤
〈
v̄t+1, w

∗(θ̄t)− ŵt+1

〉
+
〈
∇wF

(
θ̄t, w̄t

)
− v̄t+1, w

∗(θ̄t)− ŵt+1

〉
− µ

2

∥∥w∗(θ̄t)− w̄t

∥∥2
+

Lf

2
∥ŵt+1 − w̄t∥2 (29)

where we also use the fact that F
(
θ̄t, w

∗(θ̄t)
)
≥ F

(
θ̄t, ŵt+1

)
. According to the definition of ŵt+1,

we have 〈
v̄t+1, w

∗(θ̄t)− ŵt+1

〉
= −1

c
∥ŵt+1 − w̄t∥2 +

〈
v̄t+1, w

∗(θ̄t)− w̄t

〉
(30)

Putting the inequality equation 30 into equation 29, we have
0 ≤

〈
v̄t+1, w

∗(θ̄t)− w̄t

〉
+
〈
∇wF

(
θ̄t, w̄t

)
− v̄t+1, w

∗(θ̄t)− ŵt+1

〉
− 1

c
∥ŵt+1 − w̄t∥2 −

µ

2

∥∥w∗(θ̄t)− w̄t

∥∥2 + Lf

2
∥ŵt+1 − w̄t∥2 (31)

By w̄t+1 − w̄t = ηt+1(ŵt+1 − w̄t), we have
∥w̄t+1 − w∗(θ̄t)∥2 =∥w̄t − w∗(θ̄t)∥2 + 2ηt+1⟨ŵt+1 − w̄t, w̄t − w∗(θ̄t)⟩

+ η2t+1∥ŵt+1 − w̄t∥2. (32)
And by Cauchy-Schwartz inequality we also have〈

∇wF
(
θ̄t, w̄t

)
− v̄t+1, w

∗ (θ̄t)− ŵt+1

〉
=
〈
∇wF

(
θ̄t, w̄t

)
− v̄t+1, w

∗ (θ̄t)− w̄t

〉
+
〈
∇wF

(
θ̄t, w̄t

)
− v̄t+1, w̄t − ŵt+1

〉
≤ 1

µ

∥∥∇wF
(
θ̄t, w̄t

)
− w̄t

∥∥2 + µ

4

∥∥w∗ (θ̄t)− w̄t

∥∥2 + 1

µ

∥∥∇wF
(
θ̄t, w̄t

)
− v̄t+1

∥∥2
+

µ

4
∥w̄t − ŵt+1∥2

=
2

µ

∥∥∇wF
(
θ̄t, w̄t

)
− v̄t+1

∥∥2 + µ

4

∥∥w∗ (θ̄t)− w̄t

∥∥2 + µ

4
∥w̄t − ŵt+1∥2 (33)

15



Under review as a conference paper at ICLR 2023

Then equation 31 is equivalent to

1

2cηt+1

∥∥w̄t+1 − w∗ (θ̄t)∥∥2
≤
(

1

2cηt+1
− µ

4

)∥∥w̄t − w∗ (θ̄t)∥∥2 + (ηt+1

2c
+

µ

4
+

Lf

2
− 1

c

)
∥ŵt+1 − w̄t∥2

+
2

µ

∥∥∇wF
(
θ̄t, w̄t

)
− v̄t+1

∥∥2
≤
(

1

2cηt+1
− µ

4

)∥∥w̄t − w∗ (θ̄t)∥∥2 + (3Lf

4
− 1

2c

)
∥ŵt+1 − w̄t∥2 +

2

µ

∥∥∇wF
(
θ̄t, w̄t

)
− v̄t+1

∥∥2
≤
(

1

2cηt+1
− µ

4

)∥∥w̄t − w∗ (θ̄t)∥∥2 − 3

8c
∥ŵt+1 − w̄t∥2 +

2

µ

∥∥∇wF
(
θ̄t, w̄t

)
− v̄t+1

∥∥2
where the second inequality holds by Lf ≥ µ and 0 < ηt ≤ 1, and the last inequality is due to
0 < c ≤ 1

6Lf
. It can be reformulated as∥∥w̄t+1 − w∗ (θ̄t)∥∥2 ≤

(
1− cηt+1µ

2

)∥∥w̄t − w∗ (θ̄t)∥∥2 − 3ηt+1

4
∥ŵt+1 − w̄t∥2

+
4cηt+1

µ

∥∥∇wF
(
θ̄t, w̄t

)
− v̄t+1

∥∥2
According to young’s inequality we have:∥∥w̄t+1 − w∗ (θ̄t+1

)∥∥2 ≤
(
1 +

cηt+1µ

4

)∥∥w̄t+1 − w∗ (θ̄t)∥∥2 + (1 + 4

cηt+1µ

)∥∥w∗ (θ̄t)− w∗ (θ̄t+1

)∥∥2
≤
(
1 +

cηt+1µ

4

)∥∥w̄t+1 − w∗ (θ̄t)∥∥2 + (1 + 4

cηt+1µ

)
κ2
∥∥θ̄t+1 − θ̄t

∥∥2
where the first inequality holds by the Cauchy-Schwarz inequality and Young’s inequality, and the
last equality is due to Lemma 2. By combining the above inequalities, we have

∥∥w̄t+1 − w∗ (θ̄t+1

)∥∥2
≤
(
1 +

cηt+1µ

4

)(
1− cηt+1µ

2

)∥∥w̄t − w∗ (θ̄t)∥∥2 − (1 + cηt+1µ

4

) 3c2ηt+1

4
∥v̄t∥2

+
(
1 +

cηt+1µ

4

) 4cηt+1

µ

∥∥∇wF
(
θ̄t, w̄t

)
− w̄t

∥∥2 + (1 + 4

cηt+1µ

)
κ2
∥∥θ̄t+1 − θ̄t

∥∥2 (34)

Since 0 < c ≤ 1
6Lf

and Lf ≥ µ, we have(
1 +

cηt+1µ

4

)(
1− cηt+1µ

2

)
= 1− cηt+1µ

2
+

cηt+1µ

4
−

c2η2t+1µ
2

8
≤ 1− cηt+1µ

4

−
(
1 +

cηt+1µ

4

) 3c2ηt+1

4
≤ −3cηt+1

4(
1 +

cηt+1µ

4

) 4cηt+1

µ
≤
(
1 +

1

24

)
4cηt+1

µ
=

25cηt+1

6µ

Finally, we have∥∥w̄t+1 − w∗ (θ̄t+1

)∥∥2 − ∥∥w̄t − w∗ (θ̄t)∥∥2 ≤− cηt+1µ

4

∥∥wt − w∗ (θ̄t)∥∥2 − 3c2ηt+1

4
∥v̄t+1∥2

+
25cηt+1

6µ

∥∥∇wF
(
θ̄t, w̄t

)
− v̄t+1

∥∥2 + 5κ2

cµηt+1

∥∥θ̄t+1 − θ̄t
∥∥2 (35)
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Lemma 6. Suppose sequences {θt, wt}Tt=0 are generated from Algorithms 1. We have

Φ(θ̄t+1) ≤ Φ(θ̄t)−
(
ĉηt+1

2
−

ĉ2η2t+1L

2

)
∥ūt+1∥2 +

3ĉηt+1

2
∥ūt+1 −

1

N

∑
i=1

∇θF (θt,i, wt,i) ∥2

− ĉηt+1

2

∥∥∇Φ
(
θ̄t
)∥∥2 + 3ĉηt+1L

2
f

N

N∑
i=1

[∥θt,i − θ̄t∥2 + ∥wt,i − w̄t∥2] +
3ĉηt+1L

2
f

2

∥∥w∗(θ̄t)− w̄t

∥∥2
Proof.

Φ(θ̄t+1)

≤ Φ(θ̄t) + ⟨∇Φ(θ̄t), θ̄t+1 − θ̄t⟩+
L

2

∥∥θ̄t+1 − θ̄t
∥∥2

≤ Φ(θ̄t) + ĉηt+1⟨∇Φ(θ̄t), ūt+1⟩+
Lĉ2η2t+1

2
∥ūt+1∥2

= Φ(θ̄t)−
ĉηt+1

2
∥ūt+1∥2 −

ĉηt+1

2

∥∥∇Φ
(
θ̄t
)∥∥2 + ĉηt+1

2

∥∥ūt+1 −∇Φ
(
θ̄t
)∥∥2 + ĉ2η2t+1L

2
∥ūt+1∥2

≤ Φ
(
θ̄t
)
− ĉηt+1

2

∥∥∇Φ
(
θ̄t
)∥∥2 − ( ĉηt+1

2
−

ĉ2η2t+1L

2

)
∥ūt+1∥2

+
3ĉηt+1

2
∥ūt+1 −

1

N

∑
i=1

∇θFi (θt,i, wt,i) ∥2 +
3ĉηt+1

2
∥∇θF (θ̄t, w̄t)−

1

N

∑
i=1

∇θF (θt,i, wt,i) ∥2

+
3ĉηt+1

2

∥∥∇Φ
(
θ̄t
)
−∇θF

(
θ̄t, w̄t

)∥∥2
Taking expectation on both sides and considering

E∥∇θF (θ̄t, w̄t)−∇θF̄t∥2 ≤ 1

N

N∑
i=1

E∥∇θFi(θ̄t, w̄t)−∇θFt,i∥2

≤
2L2

f

N

N∑
i=1

∥θt,i − θ̄t∥2 +
2L2

f

N

N∑
i=1

∥wt,i − w̄t∥2 (36)

E∥∇Φ(θ̄t)−∇θF (θ̄t, w̄t)∥2 ≤ L2
f∥w∗(θ̄t)− w̄t∥2 (37)

Therefore, we obtain

Φ(θ̄t+1) ≤ Φ(θ̄t)−
(
ĉηt+1

2
−

ĉ2η2t+1L

2

)
∥ūt+1∥2 +

3ĉηt+1

2
∥ūt+1 −

1

N

∑
i=1

∇θF (θt,i, wt,i) ∥2

− ĉηt+1

2

∥∥∇Φ
(
θ̄t
)∥∥2 + 3ĉηt+1L

2
f

N

N∑
i=1

[∥θt,i − θ̄t∥2 + ∥wt,i − w̄t∥2] +
3ĉηt+1L

2
f

2

∥∥w∗(θ̄t)− w̄t

∥∥2

Lemma 7. For every t ∈ [0, T ] the iterates generated by Algorithm 1 satisfy

E∥ūt+1 −∇θF̄t∥2 = (1− αt)
2E∥ūt −∇θF̄t−1∥2 +

4(1− αt)
2L2

f

N2b

N∑
i=1

E[∥θt,i − θt−1,i∥2

+ ∥wt,i − wt−1,i∥2] +
2α2

tσ
2

Nb

E∥v̄t+1 −∇wF̄t∥2 = (1− βt)
2E∥v̄t −∇wF̄t−1∥2 +

4(1− βt)
2L2

f

N2b

N∑
i=1

E[∥θt,i − θt−1,i∥2

+ ∥wt,i − wt−1,i∥2] +
2β2

t σ
2

Nb
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Proof. Recall ūt+1 = 1
N

∑N
i=1[∇θfi(θt,i, wt,i;Bt,i) + (1 − αt)(ūt −∇θfi(θt−1,i, wt−1,i;Bt,i))],

we have

E∥ūt+1 −∇θF̄t∥2

=E∥ 1

N

N∑
i=1

[∇θfi(θt,i, wt,i;Bt,i) + (1− αt)(ūt −
1

N

N∑
i=1

∇θfi(θt−1,i, wt−1,i;Bt,i))]−∇θF̄t∥2

=E∥ 1

N

N∑
i=1

[(∇θfi(θt,i, wt,i;Bt,i)−∇θFt,i)− (1− αt)(fi(θt−1,i, wt−1,i;Bt,i)−∇θFt−1,i]

+ (1− αt)(ūt −∇θF̄t−1)∥2

Given that E[(∇θfi(θt,i, wt,i;Bt,i)−∇θFt,i)− (1−αt)(fi(θt−1,i, wt−1,i;Bt,i)−∇θFt−1,i)] = 0

E∥ūt+1 −∇θF̄t∥2

=(1− αt)
2E∥ūt −∇θF̄t−1∥2 +

1

N2

N∑
i=1

E∥(∇θfi(θt,i, wt,i;Bt,i)−∇θFt,i)

− (1− αt)(fi(θt−1,i, wt−1,i;Bt,i)−∇θFt−1,i)∥2

=(1− αt)
2E∥ūt −∇θF̄t−1∥2 +

1

N2

N∑
i=1

E∥(1− αt)[(∇θfi(θt,i, wt,i;Bt,i)−∇θFt,i)

− (∇θfi(θt−1,i, wt−1,i;Bt,i)−∇θFt−1,i)] + αt(∇θfi(θt,i, wt,i;Bt,i)−∇θFt,i)∥2

≤(1− αt)
2E∥ūt −∇θF̄t−1∥2 +

2(1− αt)
2

N2

N∑
i=1

E∥(∇θfi(θt,i, wt,i;Bt,i)−∇θFt,i)

− (∇θfi(xt−1,i;Bt,i)−∇θFt−1,i)∥2 +
2α2

t

N2

N∑
i=1

E∥∇xfi(xt,i, wt,i;Bt,i)−∇θFt,i∥2

≤(1− αt)
2E∥ūt −∇θF̄t−1∥2 +

2(1− αt)
2

N2b2

N∑
i=1

∑
ξt,i∈Bt,i

E∥∇fi(xt,i, wt,i; ξt,i)

−∇fi(xt−1,i, wt−1,i; ξt,i)∥2 +
2α2

t

N2

N∑
i=1

E∥∇xfi(xt,i, wt,i;Bt,i)−∇θFt,i∥2

≤(1− αt)
2E∥ūt −∇θF̄t−1∥2 +

4(1− αt)
2L2

f

N2b

N∑
i=1

E[∥θt,i − θt−1,i∥2 + ∥wt,i − wt−1,i∥2]

+
2α2

tσ
2

Nb

where the last inequality is due to the Assumption 2 and Lemma 3. Similarly, we get the second
inequalities.

Lemma 8. Assume that the stochastic partial derivatives ut and vt are generated from Algorithm
1, we have

3ĉ

10N

s̄∑
t=st

ηt

N∑
i=1

E[∥ut,i − ūt∥2 + ∥vt,i − v̄t∥2] ≤
5ĉ

64

s̄∑
t=st

ηtE[∥ūt∥2 + ∥v̄t∥2]

+[
σ2ĉ(c21 + c22)

40bL2
+
ζ2ĉ(c21 + c22)

16L2
]

s̄∑
t=st

η3t (38)
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Proof.

N∑
i=1

E∥ut+1,i − ūt+1∥2

=

N∑
i=1

E∥∇θfi(θt,i, wt,i;Bt,i) + (1− αt)(ut,i −∇θfi(θt−1,i, wt−1,i;Bt,i))

− 1

N

N∑
j=1

[∇θfj(θt,j , wt,j ;Bt,j) + (1− αt)(ut,j −∇θfj(θt−1,j , wt−1,j ;Bt,j))]∥2

=

N∑
i=1

E∥(1− αt)(ut,i − ūt) + [∇θfi(θt,i, wt,i;Bt,i)−
1

N

N∑
i=1

∇θfj(θt,j , wt,j ;Bt,j)

− (1− αt)[∇θfi(θt−1,i, wt−1,i;Bt,i)−
1

N

N∑
j=1

∇θfj(θt−1,j , wt−1,j ;Bt,j)]∥2

≤(1 + γ)(1− αt)
2

N∑
i=1

E∥ut,i − ūt∥2

+(1 +
1

γ
)E∥[∇θfi(θt,i, ut,i;Bt,i)−

1

N

N∑
j=1

∇θfj(θt,j , wt,j ;Bt,j)]

−(1− αt)[∇θfi(θt−1,i, wt−1,i;Bt,i)−
1

N

∑
∇θfj(θt−1,j , wt−1,j ;Bt,j)]∥2

where the first inequality is due to Young’s inequality. For the second term, we have

N∑
i=1

E∥∇θfi(θt,i, wt,i;Bt,i)−
1

N

N∑
j=1

∇θfj(θt,j , wt,j ;Bt,j)

− (1− αt)[∇θfi(θt−1,i, wt−1,i;Bt,i)−
1

N

N∑
j=1

∇θfj(θt−1,j , wt−1,j ;Bt,j)]∥2

≤2

N∑
i=1

E∥[∇θfi(θt,i, wt,i;Bt,i)−
1

N

N∑
j=1

∇θfj(θt,j , wt,j ;Bt,j)]

− [∇θfi(θt−1,i, wt−1,i;Bt,i)−
1

N

N∑
j=1

∇θfj(θt−1,j , wt−1,j ;Bt,j)]∥2

+ 2α2
t

N∑
i=1

E∥∇θfi(θt−1,i, wt−1,i;Bt,i)−
1

N

N∑
j=1

∇θfj(θt−1,j , wt−1,j ;Bt,j)∥2

≤2

N∑
i=1

E∥∇θfi(θt,i, wt,i;Bt,i)−∇θfi(θt−1,i, wt−1,i;Bt,i)∥2

+ 2α2
t

N∑
i=1

E∥∇θfi(θt−1,i, wt−1,i;Bt,i)−
1

N

N∑
j=1

∇θfj(θt−1,j , wt−1,j ;Bt,j)∥2

≤4L2
f

N∑
i=1

E[∥θt,i − θt−1,i∥2 + ∥wt,i − wt−1,i∥2] + 2α2
t

N∑
i=1

E∥∇θfi(θt−1,i, wt−1,i;Bt,i)

− 1

N

N∑
j=1

∇θfj(θt−1,j , wt−1,j ;Bt,j)∥2
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where the second inequality is due to Lemma 2. The last inequality is due to Assumption 2. For the
last term, we have

N∑
i=1

E∥∇θfi(θt−1,i, wt−1,i;Bt,i)−
1

N

N∑
j=1

∇θfj(θt−1,j , wt−1,j ;Bt,j)∥2

=

N∑
i=1

E∥[∇θfi(θt−1,i, wt−1,i;Bt,i)−∇θFt−1,i]−
1

N

N∑
j=1

[∇θfj(θt−1,j , wt−1,j ;Bt,j)−∇θFt−1,j ]

+ [∇θFt−1,i −∇θF̄t−1]∥2

≤2

N∑
i=1

E∥[∇θfi(θt−1,i, wt−1,i;Bt,i)−∇θFt−1,i]−
1

N

N∑
j=1

[∇θfj(θt−1,j , wt−1,j ;Bt,j)−∇θFt−1,j ]∥2

+ 2

N∑
i=1

E∥∇θFt−1,i −∇θF̄t−1∥2

≤2

N∑
i=1

E∥∇θfi(θt−1,i, wt−1,i;Bt,i)−∇θFt−1,i∥2 + 2

N∑
i=1

E∥∇θFt−1,i −∇θF̄t−1∥2

≤2Nσ2

b
+ 6Nζ2 + 24L2

f

N∑
i=1

E∥θt−1,i − θ̄t−1∥2 + 24L2
f

N∑
i=1

E∥wt−1,i − w̄t−1∥2 (39)

where the second inequality is due to Lemma 2 and the last inequality is due to Lemma 3. Therefore,
by combining above inequalities, we have

N∑
i=1

E∥ut+1,i − ūt+1∥2 ≤ (1− αt)
2(1 + γ)

N∑
i=1

E∥ut,i − ūt∥2 +
4Nσ2

b
(1 +

1

γ
)α2

t

+ 12Nζ2(1 +
1

γ
)α2

t + 4L2
f (1 +

1

γ
)

N∑
i=1

E[∥θt,i − θt−1,i∥2 + ∥wt,i − wt−1,i∥2]

+ 48L2
f (1 +

1

γ
)α2

t

N∑
i=1

E[∥θt−1,i − θ̄t−1,i∥2 + ∥wt−1,i − w̄t−1,i∥2]

≤(1− αt)
2(1 + γ)

N∑
i=1

E∥ut,i − ūt∥2 +
4Nσ2

b
(1 +

1

γ
)α2

t + 12Nζ2(1 +
1

γ
)α2

t

+ 8L2
f (1 +

1

γ
)

N∑
i=1

E
[
∥ĉηt(ut,i − ūt)∥2 + ∥ĉηtūt∥2 + ∥cηt(vt,i − v̄t)∥2 + ∥cηtv̄t∥2

]
+ 48L2

f (1 +
1

γ
)α2

t (q − 1)

t−1∑
s=st+1

η2s

N∑
i=1

E[∥ĉ(us,i − ūs)∥2 + ∥c(vs,i − v̄s)∥2] (40)

where the inequality is due to Lemma 4. Given that αt, β, ĉ, c ≤ 1, then we have
N∑
i=1

E[∥ut+1,i − ūt+1∥2 + ∥vt+1,i − v̄t+1∥2]

=[(1 + γ) + 16L2
f (1 +

1

γ
)η2t ]

N∑
i=1

E[∥ut,i − ūt∥2 + ∥vt,i − v̄t∥2] + 12Nζ2(1 +
1

γ
)(α2

t + β2
t )

+16NL2
f (1 +

1

γ
)η2tE[ĉ2∥ūt∥2 + c2∥v̄t∥2] +

4Nσ2

b
(1 +

1

γ
)(α2

t + β2
t )

+48L2
f (1 +

1

γ
)(α2

t + β2)(q − 1)

t−1∑
s=st

η2s

N∑
i=1

E[ĉ2∥us,i − ūs∥2 + c2∥vs,i − v̄s∥2] (41)
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Set γ = 1
q and ηt ≤ 1

20Lq

(1 + γ) + 16L2
f (1 +

1

γ
)η2t ≤ 1 +

1

q
+ 16L2(1 + q)η2t

≤ 1 +
1

q
+

q + 1

25q2

≤ 1 +
27

25q
(42)

Putting the eq. (42) in eq. (41), and considering γ = 1
q and cηt ≤ 1

20Lq , we have

N∑
i=1

E[∥ut+1,i − ūt+1∥2 + ∥vt+1,i − v̄t∥2]

≤(1 +
27

25q
)

N∑
i=1

E[∥ut,i − ūt∥2 + ∥vt,i − v̄t∥2] + 16NL2
f (1 + q)η2tE[ĉ2∥ūt∥2 + c2∥v̄t∥2]

+
4Nσ2

b
(1 + q)(α2

t + β2) + 12Nζ2(1 + q)(α2
t + β2

t )

+ 48(α2
t + β2

t )L
2
f (1 + q)(q − 1)

t−1∑
s=stq

η2s

N∑
i=1

E[ĉ2∥(us,i − ūs)∥2 + c2∥(vs,i − v̄s)∥2]

≤(1 +
27

25q
)

N∑
i=1

E[∥ut,i − ūt∥2 + ∥vt,i − v̄t∥2] +
8NLηt

5
E[ĉ2∥ūt∥2 + c2∥v̄t∥2]

+
2Nσ2(c21 + c22)

5bL
η3t +

6Nζ2(c21 + c22)

5L
η3t

+ 48L2
fq

2(c21 + c22)η
4
t

t−1∑
s=st

η2s

N∑
i=1

E[ĉ2∥(us,i − ūs)∥2 + c2∥(vs,i − v̄s)∥2] (43)

When
∑N

i=1 ∥ut,i − ūt∥2 = 0 and
∑N

i=1 ∥vt,i − v̄t∥2 = 0. Applying equation 43 recursively for
t ∈ [stq, t− 1], we get

N∑
i=1

E[∥ut+1,i − ūt+1∥2 + ∥vt+1,i − v̄t+1∥2]

≤8NL

5

t∑
s=stq

(1 +
27

25q
)t−sηsE[∥ĉūs∥2 + ∥cv̄s∥2] +

(2Nσ2 + 6Nζ2b)(c21 + c22)

5bL

t∑
s=st

(1 +
27

25q
)t−sη3s

+48L2
fq

2(c21 + c22)

t∑
s=st

(1 +
27

25q
)t−sη4s

s∑
s̄=stq

η2s̄

N∑
i=1

E[ĉ2∥(us̄,i − ūs̄)∥2 + c2∥(vs̄,i − v̄s̄)∥2]

≤8NL

5

t∑
s=stq

(1 +
27

25q
)qηsE[∥ĉūs∥2 + ∥cv̄s∥2] +

(2Nσ2 + 6Nζ2b)(c21 + c22)

5bL

t∑
s=st

(
1 +

27

25q

)q

η3s

+ 48L2
fq

3(c21 + c22)(
1

20Lq
)5(1 +

27

25q
)q

t∑
s=st

ηs

N∑
i=1

E[ĉ2∥us,i − ūs∥2 + c2∥vs,i − v̄s∥2]

≤5NL

t∑
s=stq

ηsE[ĉ2∥ūs∥2 + c2∥v̄s∥2] +
(2Nσ2 + 6Nζ2b)(c21 + c22)

5bL

t∑
s=stq

η3s

+ 144L2
fq

3(c21 + c22)(
1

20Lq
)5

t∑
s=stq

ηs

N∑
i=1

E[ĉ2∥us,i − ūs∥2 + c2∥vs,i − v̄s∥2] (44)
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where the third inequality is due to (1 + 27/25q)q ≤ e27/25 ≤ 3. Multiplying ηt on both side and
summing over [stq, s̄] in one inner loop, we have

s̄∑
t=stq

ηt+1

N∑
i=1

E[∥ut+1,i − ūt+1∥2 + ∥vt+1,i − v̄t+1∥2]

≤5NL

s̄∑
t=stq

ηt+1

t∑
s=stq

ηsE[∥ĉūs∥2 + ∥cv̄s∥2] +
(6Nσ2 + 18Nζ2b)(c21 + c22)

5bL

s̄∑
t=stq

ηt+1

t∑
s=stq

η3s

+ 144L2
fq

3(c21 + c22)(
1

20Lq
)5

s̄∑
t=stq

ηt+1

t∑
s=stq

ηs

N∑
i=1

E[∥us,i − ūs∥2 + ∥vs,i − v̄s∥2]

≤5NL(

s̄∑
t=stq

ηt+1)

s̄∑
t=stq

ηtE[ĉ2∥ūt∥2 + c2∥v̄t∥2] +
(6Nσ2 + 18Nζ2b)(c21 + c22)

5bL
(

s̄∑
t=stq

ηt+1)

s̄∑
t=stq

η3t

+ 144L2
fq

3(c21 + c22)(
1

20Lq
)5(

s̄∑
t=stq

ηt+1)

s̄∑
t=stq

ηt

N∑
i=1

E[ĉ2∥ut,i − ūt∥2 + c2∥vt,i − v̄t∥2]

≤N

4

s̄∑
t=stq

ηtE[∥ūt∥2 + ∥v̄t∥2] +
[
2Nσ2(c21 + c22)

25bL2
+

Nζ2(c21 + c22)

5L2

] s̄∑
t=stq

η3t

+
144L2

fq
4(c21 + c22)

(20Lq)6

s̄∑
t=stq

ηt

N∑
i=1

E[∥(ut,i − ūt)∥2 + ∥vt,i − v̄t∥2] (45)

where the last inequality holds by the fact that ηt ≤ 1
20Lq . Therefore,

[1− 144L2q4(c21 + c22)(
1

20Lq
)6]

s̄∑
t=stq

ηt

N∑
i=1

E[∥ut,i − ūt∥2 + ∥vt,i − v̄t∥2]

≤ N

4

s̄∑
t=stq

ηtE[∥ūt∥2 + ∥v̄t∥2] +
[
2Nσ2(c21 + c22)

25bL2
+

Nζ2(c21 + c22)

5L2

] s̄∑
t=stq

η3t (46)

Given that c1 ≤ 90L2

bN and c2 ≤ 90L2

bN , and 1 − 144L2q4(c21 + c22)(
1

20Lq )
6 ≥ 24

25 . By multiply 5
16N ĉ

on both size, we have

3ĉ

10N

s̄∑
t=stq

ηt

N∑
i=1

E[∥(ut,i − ūt)∥2 + ∥(vt,i − v̄t)∥2] ≤
5ĉ

64

s̄∑
t=stq

ηtE[∥ūt∥2 + ∥v̄t∥2]

+

[
σ2ĉ(c21 + c22)

40bL2
+

ζ2ĉ(c21 + c22)

16L2

] s̄∑
t=stq

η3t (47)

B PROOF OF THEOREM

In this section, we show the Proof of Theorem 1.

Proof. Set ηt = h̄
(et+t)1/3

, αt = c1 · η2t , βt = c2 · η2t , c1 = c2 = 1
20Lqh̄3 + 60L2

bN , h̄ = N2/3

L and et =

max ( 32 , 800L
3q3h̄3 − t). So, it is clear that c1 = c2 ≤ 90L2

bN when b ≤ 600qN , ηt ≤ 1
20Lq and
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η−1
t − η−1

t−1 =
(et + t)1/3

h̄
− (et−1 + t− 1)1/3

h̄

≤ 1

3h̄(et + (t− 1))2/3

≤ 1

3h̄(et/3 + t)2/3
=

32/3

3h̄(et + t)2/3

=
32/3

3h̄3
· h̄2

(et + t)2/3
=

32/3

3h̄3
η2t

≤ ηt
20h̄3Lq

(48)

where the first inequality holds by the concavity of function f(x) = x1/3, i.e., (x + y)1/3 ≤
x1/3+ y

3x2/3 . The second inequality follows that et ≥ 3
2 . And the last inequality holds by ηt ≤ 1

20Lq .
When mod (t, q) ̸= 0, ∥θt,i − θt−1,i∥2 = ∥ĉηtut,i∥2 ≤ 2ĉ2η2t ∥ut,i − ūt∥2 +2ĉ2η2t ∥ūt∥2, ∥wt,i −
wt−1,i∥2 ≤ 2c2η2t ∥vt,i − v̄t∥2 + 2c2η2t ∥v̄t∥2. Therefore, we have

E∥ūt+1 −∇θF̄t∥2

ηt
− E∥ūt −∇θF̄t−1∥2

ηt−1

≤
[
(1− αt)

2

ηt
− 1

ηt−1

]
E∥ūt −∇θF̄t−1∥2 +

2α2
tσ

2

bNηt

+
4(1− αt)

2L2
f

bN2ηt

N∑
i=1

E[∥θt,i − θt−1,i∥2 + ∥wt,i − wt−1,i∥2]

≤
[
(1− αt)

2

ηt
− 1

ηt−1

]
E∥ūt −∇θF̄t−1∥2 +

8(1− αt)
2L2

fηt

bN2

N∑
i=1

E[ĉ2∥ut,i − ūt∥2

+c2∥vt,i − v̄t∥2] +
8(1− αt)

2L2
fηt

bN
E[ĉ2∥ūt∥2 + c2∥v̄t∥2] +

2α2
tσ

2

bNηt

≤[η−1
t − η−1

t−1 − c1ηt]E∥ūt −∇θF̄t−1∥2 +
8(1− αt)

2L2
fηt

bN2

N∑
i=1

E[ĉ2∥ut,i − ūt∥2]

+c2∥vt,i − v̄t∥2] +
8(1− αt)

2L2
fηt

bN
E[ĉ2∥ūt∥2 + c2∥v̄t∥2] +

2α2
tσ

2

bNηt

≤− 60L2

bN
ηtE∥ūt −∇θF̄t−1∥2 +

8L2
fηt

bN2

N∑
i=1

E[ĉ2∥(ut,i − ūt)∥2 + c2∥(vt,i − v̄t)∥2]

+
8L2

fηt

bN
E[ĉ2∥ūt∥2 + c2∥v̄t∥2] +

2σ2c21η
3
t

bN
(49)

Similar, we have

E∥v̄t+1 −∇wF̄t∥2

ηt
− E∥v̄t −∇wF̄t−1∥2

ηt−1

≤− 60L2

bN
ηtE∥v̄t −∇wF̄t−1∥2 +

8L2
f

bN2
ηt

N∑
i=1

E[ĉ2∥(ut,i − ūt)∥2 + c2∥(vt,i − v̄t)∥2]

+
8L2

fηt

bN
E[ĉ2∥ūt∥2 + c2∥v̄t∥2] +

2σ2c22η
3
t

bN
(50)

When mod (t, q) = 0, θt,i = θ̄t, then ∥θt,i−θt−1,i∥2 = ∥θt,i− θ̄t+ θ̄t− θ̄t−1+ θ̄t−1−θt−1,i∥2 =
∥θ̄t−θ̄t−1+θ̄t−1−θt−1,i∥2 ≤ 2∥θ̄t−θ̄t−1∥2+2∥θ̄t−1−θt−1,i∥2 = 2ĉ2η2t ∥ūt∥2+2∥θt−1,i−θ̄t−1∥2,
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and ∥wt,i − wt−1,i∥2 ≤ 2c2η2t ∥v̄t∥2 + 2∥vt−1,i − v̄t−1∥2. Therefore, we have

E∥ūt+1 −∇θF̄t∥2

ηt
− E∥ūt −∇θF̄t−1∥2

ηt−1
≤ −60L2

bN
ηtE∥ūt −∇θF̄t−1∥2 +

2σ2c21η
3
t

bN

+
8L2

f

bN2ηt

N∑
i=1

E[∥θt−1,i − θ̄t∥2 + ∥wt−1,i − w̄t−1∥2] +
8L2

fηt

bN
E[ĉ2∥ūt∥2 + c2∥v̄t∥2] (51)

Similar, we have

E∥v̄t+1 −∇wF̄t∥2

ηt
− E∥v̄t −∇wF̄t−1∥2

ηt−1
≤ −60L2

bN
ηtE∥v̄t −∇wF̄t−1∥2 +

2σ2c22η
3
t

bN

+
8L2

f

bN2ηt

N∑
i=1

E[∥θt−1,i − θ̄t∥2 + ∥wt−1,i − w̄t−1∥2] +
8L2

fηt

bN
E[ĉ2∥ūt∥2 + c2∥v̄t∥2] (52)

Next, we define a Lyapunov function, we have Γt = Φ(θ̄t) +
6ĉL2

f

cµ ∥w̄t − w∗(θ̄t)∥2 +

ĉbN
40L2 [

∥ūt+1−∇θF̄t∥2

ηt
] +

5ĉbNL2
f

4µ2L2 [∥v̄t+1−∇wF̄t∥2

ηt
]

When mod (t, q) ̸= 0, we have

E[Γt − Γt−1]

=E[Φ(θ̄t)− Φ(θ̄t−1) +
6ĉL2

f

cµ
(∥w̄t − w∗(θ̄t)∥2 − ∥w̄t−1 − w∗(θ̄t−1)∥2) +

ĉbN

40L2
(
∥ūt+1 −∇θF̄t∥2

ηt

− ∥ūt −∇θF̄t−1∥2

ηt−1
+

5ĉbNL2
f

4µ2L2
[
∥v̄t+1 −∇wF̄t∥2

ηt
− ∥v̄t −∇wF̄t−1∥2

ηt−1
)]

≤− (
ĉηt
2

− ĉ2η2tL

2
)E ∥ūt∥2 +

3ĉηt
2

E∥ūt −
1

N

∑
i=1

∇θF (θt−1,i, wt−1,i) ∥2 −
ĉηt
2

E
∥∥∇Φ

(
θ̄t−1

)∥∥2
+

3ĉηtL
2
f

N

N∑
i=1

E[∥θt−1,i − θ̄t−1∥2 + ∥wt−1,i − w̄t−1∥2] +
3ĉηtL

2
f

2
E
∥∥w∗(θ̄t−1)− w̄t−1

∥∥2
−

3ĉηtL
2
f

2
E∥w∗(θ̄t−1)− w̄t−1∥2 −

9cĉηtL
2
f

2µ
E∥v̄t∥2 +

25ĉηtL
2
f

µ2
E
∥∥∇wF

(
θ̄t−1, w̄t−1

)
− v̄t

∥∥2
+

30κ2L2
f ĉ

3ηt

c2µ2
E ∥ūt∥2 +

ĉbN

40L2
[−60L2

bN
ηtE∥ūt −∇θF̄t−1∥2 +

8L2
fηt

bN2

N∑
i=1

E[ĉ2∥ut,i − ūt∥2

+ c2∥vt,i − v̄t∥2] +
8L2

fηt

bN
E[ĉ2∥ūt∥2 + c2∥v̄t∥2] +

2σ2c21η
3
t

bN
]

+
5ĉbNL2

f

4µ2L2
[−60L2

bN
ηtE∥v̄t −∇wF̄t−1∥2] +

8L2
f

bN2
ηt

N∑
i=1

E[ĉ2∥ut,i − ūt∥2 + c2∥vt,i − v̄t∥2]

+
8L2

fηt

bN
E[ĉ2∥ūt∥2 + c2∥v̄t∥2] +

2σ2c22η
3
t

bN
]

≤− (
ĉηt
2

− ĉ2η2tL

2
−

30κ2L2
f ĉ

3ηt

c2µ2
) ∥ūt∥2 −

9ĉcηtL
2
f

2µ
∥v̄t∥2 −

ĉηt
2

∥∥∇Φ
(
θ̄t−1

)∥∥2
+ [

3ĉηtL
2
f

N
+

75ĉηtL
4
f

Nµ2
]

N∑
i=1

[∥θt−1,i − θ̄t−1∥2 +
N∑
i=1

∥wt−1,i − w̄t−1∥2]

+
ĉ

180N
ηt

N∑
i=1

E[∥(ut,i − ūt)∥2 + ∥(vt,i − v̄t)∥2] +
ĉηt
180

E[∥ūt∥2 + ∥v̄t∥2] +
ĉσ2c21η

3
t

20L2

+
5ĉ

18N
ηt

N∑
i=1

E[∥(ut,i − ūt)∥2 + ∥(vt,i − v̄t)∥2] +
5ĉ

18
ηtE[∥ūt∥2 + ∥v̄t∥2] +

5ĉσ2c22η
3
tL

2
f

2µ2L2
]

24



Under review as a conference paper at ICLR 2023

where the first inequality holds by Lemma 3. The second inequality holds by max{ĉ, c} <

min{ 1
6 ,

1
6L ,

µ
6L}, ∥∇wF (θ̄t−1, w̄t−1)− v̄t∥2 ≤ 3L2

f

N ∥θt−1− θ̄t−1∥2+
3L2

f

N ∥wt−1−w̄t−1∥2+3∥v̄t−
∇wF̄t−1∥2. Therefore, we have

E[Γt − Γt−1]

≤− (
13ĉηt
60

− ĉ2η2tL

2
−

30κ2L2
f ĉ

3ηt

c2µ2
)E ∥ūt∥2 − (

9ĉcL2
f

2µ
− 51ĉ

180
)ηtE∥v̄t∥2 −

ĉηt
2

E
∥∥∇Φ

(
θ̄t−1

)∥∥2
+

78ĉηtL
4
f

µ2N
(q − 1)[

t−1∑
s=stq

ĉ2η2s+1

N∑
i=1

E∥us+1,i − ūs+1∥2 +
t−1∑

s=stq

c2η2s+1

N∑
i=1

E∥vs+1,i − v̄s+1∥2]

+
51ĉ

180N
ηt

N∑
i=1

E[∥(ut,i − ūt)∥2 + ∥(vt,i − v̄t)∥2] +
5ĉσ2c22η

3
t

2µ2L2
f

+
ĉσ2c21η

3
t

20L2
] (53)

Similarly, when mod (t, q) = 0, we have

E[Γt − Γt−1]

≤− (
ĉηt
2

− ĉ2η2tL

2
)E ∥ūt∥2 +

3ĉηt
2

E∥ūt −
1

N

∑
i=1

∇θF (θt−1,i, wt−1,i) ∥2 −
ĉηt
2

E
∥∥∇Φ

(
θ̄t−1

)∥∥2
+

3ĉηtL
2
f

N

N∑
i=1

E[∥θt−1,i − θ̄t−1∥2 + ∥wt−1,i − w̄t−1∥2] +
3ĉηtL

2
f

2
E
∥∥w∗(θ̄t−1)− w̄t−1

∥∥2
−

3ĉηtL
2
f

2
E∥w∗(θ̄t−1)− w̄t−1∥2 −
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ĉηt
2

∥∥∇Φ
(
θ̄t−1

)∥∥2
+ [
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where the last inequality holds due to Lf ≥ 1 and Lf/µ ≥ 1. Considering max{ĉ, c} <
min{ 1

6 ,
1
6L ,

µ
6L}, and summing the above over t = st0q + 1 to s̄, s̄ ∈ (⌊t0/q⌋q + 1, (⌊t0/q⌋+ 1)q],
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− ĉ2η2tL

2
−

30κ2L2
f ĉ
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2
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3
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f
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3
t
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] (55)

where the last inequality holds by the fact that 13
2400 + 102

180 ≤ 3
5 . Then summing over from the

beginning and combining Lemma 8, we have
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E [ΓT − Γ0] ≤ −
T∑

t=1

(
29ĉηt
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− ĉ2η2tL

2
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30κ2L2
f ĉ

3ηt
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T∑
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(
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f
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ζ2ĉ(c21 + c22)
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2

E
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Then we move terms and obtain
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f
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where we need 29ĉηt

480 − ĉ2η2
tL
2 − 30κ2L2

f ĉ
3ηt

c2µ2 ≥ 0 and
9ĉcL2

f

2µ − 211ĉ
480 ≥ 0. Then we need 17ĉηt

480 ≥
30κ2L2

f ĉ
3ηt

c2µ2 . So ĉ ≤
√
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1440κ4 c

Then we show the proof of Corollary 1

Proof. Then consider that
∑T

t=1 η
3
t =

∑T
t=1

h̄3

et+t ≤
∑T

t=1
h̄3

1+t ≤ h̄3 ln(T + 1), since ct ≥ 3
2 > 1.

Taking equation 56 and dividing the above by ηTT , we have
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ĉηTT
E
[
Φ(θ̄0)− Φ∗]+ 12L2

f

cµηTT
∥w̄0 − w∗(θ̄0)∥2 +

bσ2

20L2ηTTBη0
+

5bL2
fσ

2

2µ2L2ηTTBη0

+ [
5σ2c22
µ2L2

f

+
σ2c21
20L2

+
σ2(c21 + c22)

20bL2
+

ζ2(c21 + c22)

8L2
]
2 ln(T + 1)h̄3

ηTT
(57)

For the first two terms in 57, we have

1
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=
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1/3
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≤
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T

h̄T
+

1
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≤ 20Lq
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+

L
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(58)

For the third and forth term in 57, set B = qb, we have
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For the last term in 57,

c21h̄
3

ηTTL2
≤
(
20Lq

T
+

L

(NT )2/3

)
×
(
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bN
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=
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+
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It should be mentioned that c1 = c2. Finally, we have
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T
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]

and, if we let b as O(1)(b ≥ 1), and choose q =
(
T/N2

)1/3
. To let the right hand is less than ε2,

we get T = O(N−1ε−3) and T
q = (NT )2/3 = ε−2.
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