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Abstract

While Attention has come to be an important mechanism in deep learning, there
remains limited intuition for why it works so well. Here, we show that Transformer
Attention can be closely related under certain data conditions to Kanerva’s Sparse
Distributed Memory (SDM), a biologically plausible associative memory model.
We confirm that these conditions are satisfied in pre-trained GPT2 Transformer
models. We discuss the implications of the Attention-SDM map and provide new
computational and biological interpretations of Attention.

Introduction

Used most notably in the Transformer, Attention has helped deep learning to arguably approach
human level performance in various tasks with larger models continuing to boost performance
[1, 2, 3, 4, 5, 6, 7, 8, 9]. However, the heuristic motivations that produced Attention leave open the
question of why it performs so well [1, 10]. Insights into why Attention is so effective would not
only make it more interpretable but also guide future improvements.

Much has been done to try and explain Attention’s success, including work showing that Transformer
representations map more closely to human brain recordings and inductive biases than other models
[11, 12]. Our work takes another step in this direction by showing the potential relationship between
Attention and biologically plausible neural processing at the level of neuronal wiring, providing a
novel mechanistic perspective behind the Attention operation. This potential relationship is created
by showing mathematically that Attention closely approximates Sparse Distributed Memory (SDM).

SDM is an associative memory model developed in 1988 to solve the “Best Match Problem”, where
we have a set of memories and want to quickly find the “best” match to any given query [13, 14]. In
the development of its solution, SDM respected fundamental biological constraints, such as Dale’s
law, that synapses are fixed to be either excitatory or inhibitory and cannot dynamically switch (see
Section 1 for an SDM overview and [13] or [15] for a deeper review). Despite being developed
independently of neuroanatomy, SDM’s biologically plausible solution maps strikingly well onto the
cerebellum [13, 16].1

Abstractly, the relationship between SDM and Attention exists because SDM’s read operation uses
intersections between high dimensional hyperspheres that approximate the exponential over sum of
exponentials that is Attention’s softmax function (Section 2). Establishing that Attention approximates
SDM mathematically, we then test it in pre-trained GPT2 Transformer models [3] (Section 3) and
simulations (Appendix B.7). We use the Query-Key Normalized Transformer variant [22] to directly
show that the relationship to SDM holds well. We then use original GPT2 models to help confirm
this result and make it more general.

1This cerebellar relationship is additionally compelling by the fact that cerebellum-like neuroanatomy exists
in many other organisms including numerous insects (eg. the Drosophila Mushroom Body) and potentially
cephalopods [17, 18, 19, 20, 21].
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Using the SDM framework, we are able to go beyond Attention and interpret the Transformer
architecture as a whole, providing deeper intuition (Section 4). Motivated by this mapping between
Attention and SDM, we discuss how Attention can be implemented in the brain by summarizing
SDM’s relationship to the cerebellum (Section 5). In related work (Section 6), we link SDM to other
memory models [23, 24], including how SDM is a generalization of Hopfield Networks and, in turn,
how our results extend work relating Hopfield Networks to Attention [25, 26]. Finally, we discuss
limitations, and future research directions that could leverage our work (Section 7).

1 Review of Kanerva’s SDM

Here, we present a short overview of SDM. A deeper review on the motivations behind SDM and
the features that make it biologically plausible can be found in [13, 15]. SDM provides an algorithm
for how memories (patterns) are stored in, and retrieved from, neurons in the brain. There are three
primitives that all exist in the space of n dimensional binary vectors:

Patterns (p) - have two components: the pattern address, pµ
a 2 {0, 1}n, is the vector representation

of a memory; the pattern “pointer”, pµ
p 2 {0, 1}n, is bound to the address and points to itself when

autoassociative or to a different pattern address when heteroassociative. A heteroassociative example
is memorizing the alphabet where the pattern address for the letter a points to pattern address b, b
points to c etc. For tractability in analyzing SDM, we assume our pattern addresses and pointers are
random. There are m patterns and they are indexed by the superscript µ 2 {1, . . . ,m}.

Neurons (x) - in showing SDM’s relationship to Attention it is sufficient to know there are r neurons
with fixed addresses x⌧

a 2 {0, 1}n that store a set of all patterns written to them. Each neuron will
sum over its set of patterns to create a superposition. This creates minimal noise interference between
patterns because of the high dimensional nature of the vector space and enables all patterns to be
stored in an n dimensional storage vector denoted x⌧

v 2 Zn
+, constrained to the positive integers.

Their biologically plausible features are outlined in [13, 15]. When we assume our patterns are
random, we also assume our neuron addresses are randomly distributed. Of the 2n possible vectors in
our binary vector space, SDM is “sparse” because it assumes that r ⌧ 2n neurons exist in the space.

Query (⇠) - is the input to SDM, denoted ⇠ 2 {0, 1}n. The goal in the Best Match Problem is to return
the pattern pointer stored at the closest pattern address to the query. We will often care about the
maximum noise corruption that can be applied to our query, while still having it read out the correct
pattern. An autoassociative example is wanting to recognize familiar faces in poor lighting. Images
of faces we have seen before are patterns stored in memory and our query is a noisy representation of
one of the faces. We want SDM to return the noise-free version of the queried face, assuming it is
stored in memory.

SDM uses the Hamming distance metric between any two vectors defined: d(a,b) := 1T
n |a � b|.

The all ones vector 1n is of n dimensions and |a� b| takes the absolute value of the element-wise
difference between the binary vectors. When it is clear what two vectors the Hamming distance is
between, we will sometimes use the shorthand dv := d(a,b).

The Hamming distance is crucial for determining how many neurons read and write operations are
distributed across. The optimal Hamming distance for the read and write circles denoted d

⇤, depends
upon the number and distribution of patterns in the vector space and what the memories are being
used for (e.g. maximizing the number of memories that can be stored versus the memory system’s
robustness to query noise). We provide three useful reference d

⇤ values, using equations outlined in
Appendix B.5. The Signal-to-Noise Ratio (SNR) optimal d⇤SNR maximizes the probability a noise-free
query will return its target pattern [15]. The memory capacity optimal d⇤Mem maximizes the number of
memories that can be stored with a certain retrieval probability and also assumes a noise-free query.
The critical distance d

⇤
CD maximizes, for a given number of patterns, the amount of noise that can be

applied to a query such that it will converge to its correct pattern [15].

These d⇤s are only approximate reference points for later comparisons to Transformer Attention, first
and foremost because they assume random patterns to make their derivations tractable. In addition,
Transformer Attention will not be optimizing for just one of these objectives, and likely interpolates
between these optimal d⇤s as it wants to have both a good critical distance to handle noisy queries and
a reasonable memory capacity. These optimal d⇤ are a function of n, r and m. For the Transformer
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Attention setting [1], where n = 64, r = 2n and m  1024, d⇤SNR = 11, d⇤Mem = 5, d⇤CD = 15, as
derived in Appendix B.5.

Figure 1: Summarizing the SDM read and write operations. Top Row three patterns being written
into nearby neurons. 1. The first write operation; 2. Patterns are stored inside nearby neurons and the
original pattern location is shown; 3. Writing a second pattern; 4. Writing a third pattern and neurons
storing a superposition of multiple patterns. Bottom Row shows two isomorphic perspectives of
the read operation. Neuron view (left) shows the query reading from nearby neurons with the inset
showing the number of times each pattern is read. The four blue patterns are a majority which would
result in one step convergence. Pattern view (right) is crucial to relating SDM to Attention and defined
in Eq. 1 below. We abstract away the neurons by assuming they are uniformly distributed through the
space. This allows us to consider the circle intersection between the query and the original locations
of each pattern where blue has the largest circle intersection.

1.1 SDM Read Operation

For the connection to Attention we focus on the SDM read operation and briefly summarize the
write operation: all patterns write their pointers pp in a distributed fashion to all neuron addresses
located within Hamming distance d. This means that each neuron will store a superposition of
pattern pointers from those pattern addresses within d: x⌧

v =
P

{p:d(pµ
a ,x⌧

a)d,8µ} pp. Having stored
patterns in a distributed fashion across nearby neurons, SDM’s read operation retrieves stored pattern
pointers from all neurons within distance d of the query and averages them. This average is effectively
weighted because the same patterns have distributed storage across multiple neurons being read from.
The pattern weighting will be higher for those patterns with addresses nearer the query because they
have written their pointers to more neurons the query reads from. Geometrically, this weighting of
each pattern can be interpreted as the intersection of radius d circles2 that are centered on the query
and each pattern address pµ

a for all µ. A high level overview of the SDM read and write operations is
shown in Fig. 1.

The 2n possible neurons that have both stored this pattern’s pointer pp and been read by ⇠ is:
|On(pa, d) \ On(⇠, d)|, where | · | is the cardinality operator and On(⇠, d) = {xa 2 {0, 1}n :
d(⇠,xa)  d} is the set of all possible neuronal addresses xa within radius d of ⇠. Mathematically,

2In this binary space, the Hamming distance around a vector is in fact a hypercube but the vertices of an n
dimensional unit cube lie on the surface of an n dimensional sphere with radius

p
n/2 and we refer to this as a

circle because of our two dimensional diagrams. We adopt this useful analogy, taken from Kanerva’s book on
SDM [13], throughout the paper.
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SDM’s read operation sums over each pattern’s pointer, weighted by its query circle intersection:

⇠new = g

 P
p2P |On(pa, d) \On(⇠, d)|ppP
p2P |On(pa, d) \On(⇠, d)|

!
, g(e) =

(
1, if e >

1

2
0, else

, (1)

and g acts elementwise on vectors. The denominator normalizes all of the weights so they sum to
1 in the numerator and enables computing if the element-wise majority value is a 0 or 1, using the
function g(·). Intuitively, the query will converge to the nearest “best” pattern because it will have
the largest circle intersection weighting. The output of the SDM read operation is written as updating
the query ⇠ ! ⇠new so that it can (but is not required to) apply the read operation iteratively if full
convergence to its “best match” pattern is desired and was not achieved in one update.

The circle intersection (derived in Appendix B.1) is calculated as a function of the Hamming radius
for the read and write operations d, the dimensionality n, and the vector distance between the query
and pattern: dv = d(pa, ⇠), so we use the shorthand I(dv, d, n):

I(dv, d, n) := |On(pa, d) \On(⇠, d)| =
n�dvX

a=n�d�b dv
2 c

dv�(n�d�a)X

c=max(0,n�d�a)

 ✓
n� dv

a

◆
·

✓
dv

c

◆!
(2)

Eq. 2 sums over the number of possible binary vectors that can exist at every location inside the circle
intersection. Taking inspiration from [27], this is a new and more interpretable derivation of the circle
intersection than that originally developed [13]. Eq. 2 is approximately exponential for the closest,
most important patterns where d(pa, ⇠)  2d, which is crucial to how SDM approximates Attention.
This is shown for a representative instance of SDM in Fig. 2. The details of this approximation
are provided in Appendix B.2, but at a high level the binomial coefficients can be represented as
binomial distributions and then approximated by normal distributions that contain exponentials. With
the correctly chosen constants, c1 and c2, that are independent of the vector distance d(pa, ⇠), we
can make the following approximation:

I
�
d(pa, ⇠), d, n

�
⇡ c1 exp

�
� c2 · d(pa, ⇠)

�
(3)

Figure 2: (Left) SDM’s read operation using the Hamming radius d (for reading and writing) and
the vector distance dv = d(⇠,pµ

a). Recall that during the write operation, pattern addresses pµ
a write

their pattern pointer pµ
p to neurons located at the addresses x⌧

a (denoted here as black dots) within
radius d. During the read operation, the query ⇠ reads from each neuron within radius d, thus creating
an intersection. (Right) As dv between the query and pattern increases (x-axis), the size of their circle
intersection falls approximately exponentially (y-axis). We use Eq. 2 with n = 64 and d

⇤
SNR = 11,

while varying dv up to the distance of dv = 2d beyond which point there is no circle intersection.
We plot the y-axis on a log scale to show how, because the curve is approximately linear, the circle
intersection is approximately exponential. See Appendix B.2 for a formal analysis of the exponential
approximation the circle intersection creates that is robust across parameters n, d, and r.
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2 Attention Approximates SDM

To be able to handle a large number of patterns, we let the pattern address matrix with each pattern as
a column be: Pa = [p1

a,p
2
a, ...,p

m
a ] with pointers Pp = [p1

p,p
2
p, ...,p

m
p ].

The Attention update rule [1] using its original notation is:

⇠new = V softmax(�KT
Q) = (WvY )softmax

�
�(WkY )T (Wqq)

�
,

where K, V , and Q symbolize the "key", "value", and “query” matrices, respectively. q is a single
query vector and Y represents the raw patterns to be stored in memory. The softmax(�x) =
exp(�x)/

Pn
i=1 exp(�xi), where the exponential acts element-wise and Attention sets � = 1/

p
n.

Softmax normalizes a vector of values to sum to 1 and gives the largest values the most weight due to
the exponential function, to what extent depending on �. We can re-write this using our notation,
including distinguishing continuous vectors in Rn from binary ones by putting a tilde above them:

⇠̃
new

= P̃psoftmax(�P̃a
T
⇠̃). (4)

We write K = WkY = P̃a as the raw input patterns Y are projected by the learnt weight matrix
Wk into the SDM vector space to become the addresses P̃a. Similarly, V = WvY = P̃p and
Q = Wqq = ⇠̃.

Showing the approximation between SDM Eq. 1 and Attention Eq. 4 requires two steps: (i) Attention
must L2 normalize its vectors. This is a small step because the Transformer already uses LayerNorm
[28] before and after its Attention operation that we later relate to L

2 normalization; (ii) A �

coefficient for the softmax exponential must be chosen such that it closely approximates the almost
exponential decay of SDM’s circle intersection calculation.

To proceed, we define a map from binary vectors a, b to L
2 normalized continuous vectors â, b̂,

h(a) = â, such that for any pair of pattern addresses the following holds:

d(a,b) = b
n

2

�
1� âT b̂

�
c, (5)

where b·c is the floor operator. We assume that this map exists, at least approximately. This map
allows us to relate the binary SDM circle intersection (Eq. 2) to the exponential used in Attention
(Eq. 4) by plugging it into the exponential approximation of Eq. 3:

I
�
d(pa, ⇠), d, n

�
= I

⇣
b
n

2
(1� p̂T

a ⇠̂)c, d, n
⌘
⇡ c1 exp

⇣
� c2b

n

2

�
1� p̂T

a ⇠̂
�
c

⌘

⇡ c3 exp
�
�p̂T

a ⇠̂
�
, (6)

where c3 encompasses the constants outside of the exponential. We replaced the remaining constants
in the exponential with �, that is a function of n and d and is an approximation due to the floor
operation.

Finally, these results allow us to show the relationship between Attention and SDM:

⇠̃
new

= P̂psoftmax(�P̂T
a ⇠̂) =

P
p2P exp(�p̂T

a ⇠̂)p̂p
P

p2P exp(�p̂T
a ⇠̂)

⇡

P
p2P I

⇣
b
n
2 (1� p̂T

a ⇠̂)c, d, n
⌘
p̂p

P
p2P I

⇣
b
n
2 (1� p̂T

a ⇠̂)c, d, n
⌘ . (7)

Alternatively, instead of converting cosine similarity to Hamming distance to use the circle intersection
Eq. 2 in binary vector space, we can extend SDM to operate with L

2 normalized pattern and neuron
addresses (Appendix B.3).3 This continuous SDM circle intersection closely matches its binary
counterpart in being approximately exponential:

Ic

⇣
p̂T
a ⇠̂, 1�

2d

n
, n

⌘
⇡ c4 exp

�
�cp̂

T
a ⇠̂
�
. (8)

3Pattern pointers can point to a different vector space and thus do not need to be L2 normalized. However, in
canonical SDM they point to pattern addresses in the same space so we write them as also being L2 normalized
in our equations.
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We use Ic to denote this continuous intersection, use Eq. 5 to map our Hamming d to cosine similarity,
and use coefficients c4 and �c to acknowledge their slightly different values. Then, we can also relate
Attention as we did in Eq. 7 to continuous SDM as follows:

⇠̃
new

= P̂psoftmax(�P̂T
a ⇠̂) =

P
p2P exp(�p̂T

a ⇠̂)p̂p
P

p2P exp(�p̂T
a ⇠̂)

⇡

P
p2P Ic

⇣
p̂T
a ⇠̂, 1�

2d
n , n

⌘
p̂p

P
p2P Ic

⇣
p̂T
a ⇠̂, 1�

2d
n , n

⌘ . (9)

We have written Attention with L
2 normalized vectors and expanded out the softmax operation

to show that it is approximated when we replace the exponential weights by either the binary or
continuous SDM circle intersections (Eqs. 7 and 9, respectively). The right hand side of Eq. (7) is
identical to Eq. 2 aside from using continuous, L2 normed vectors and dropping the elementwise
majority function g(·) that ensured our output was a binary vector. In the Transformer, while the
Attention equation does not contain any post-processing function to its query update ⇠̃

new
, it is then

post-processed by going through a linear projection and LayerNorm [1] and can be related to g(·).

To fit � to binary SDM, we convert the Hamming distances into cosine similarity using Eq. 5 and use
a univariate log linear regression:

log
⇣
I
�
d(pa, ⇠), d, n

�⌘
⇡ log(c3) + �(p̂T

a ⇠̂). (10)

We expect the exponential behavior to break at some point, if only for the reason that if d(pa, ⇠) � 2d
the circle intersection becomes zero. However, closer patterns are those that receive the largest
weights and “attention” such that they dominate in the update rule and are the most important.

In Fig. 3, we plot the softmax approximation to binary and continuous SDM for our smallest optimal
d
⇤
Mem = 5 and largest d⇤CD = 15 to show not only the quality of the approximations but also how

many orders of magnitude smaller the normalized weights are when d(pa, ⇠) > d. For these plots,
we plug into our binary circle intersection equation each possible Hamming distance from 0 to
64 when n = 64 and converting Hamming distance to cosine similarity, doing the same for our
continuous circle intersection. Here use our binary intersection values to fit �, creating the exponential
approximation. To focus our exponential approximation on the most important, closest patterns, we
fit our regression to those patterns d(pa, ⇠) < d and allow it to extrapolate to the remaining values.
We then normalize the values and plot them along with an smaller inset plot in log space to better
show the exponential relationship. In both plots, looking at the log inset plot first, the point at which
the circle intersection in blue ceases to exist or be exponential corresponds to a point in the main
normalized plot where the weights are ⇡ 0.

The number of neurons r and how well they cover the pattern manifold are important considerations
that will determine SDM’s performance and degree of approximation to Attention. Increasing the
number of neurons in the circle intersection can be accomplished by increasing the number of
neurons in existence, ensuring they cover the pattern manifold, and reducing the dimensionality of the
manifold to increase neuron density.4 In SDM’s original formulation, it was assumed that neuronal
addresses were randomly distributed and fixed in location, however, extensions to SDM [29] have
proposed biologically plausible competitive learning algorithms to learn the manifold [30]. To ensure
the approximations to SDM are tight, we test random and correlated patterns in an autoassociative
retrieval task across different numbers of neurons and SDM variants (Appendix B.7). These variants
include SDM implemented using simulated neurons and the Attention approximation with a fitted
�.5 To summarize, Attention closely approximates the SDM update rule when it uses L2 normed
continuous vectors and a correctly chosen �.

3 Trained Attention Converges with SDM

For many instantiations of SDM, there exists a � that can be found via the log linear regression Eq.
10 that makes Attention approximate it well. However, depending on the task at hand, there are
instantiations of SDM that are better than others as highlighted by the different d⇤ optimal values. If

4This can be done by learning weight projection matrices like in Attention to make the manifold lower
dimensional and also increase separability between patterns.

5The code for running these experiments, other analyses, and reproducing all figures is available at https:
//github.com/trentbrick/attention-approximates-sdm.
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Figure 3: Representative plots showing the relationships in Eqs. 7 and 9 between the softmax
approximation (green) and the normalized binary (blue) and continuous (orange) circle intersections
using Transformer Attention parameters. Here the softmax approximation uses the Eq. 10 regression
to fit its � to binary SDM. We use Eq. 5 to relate Hamming distance and cosine similarity for
our vector distances on the x-axis. The insets use a log y-axis to show the circle intersections
are approximately exponential when d(pa, ⇠)  2d. (Left) Uses d⇤Mem = 5, corresponding to the
Hamming distance reading and writing to p = 4e� 13 of the vector space. (Right) Uses d⇤CD = 15.
These results hold well for other values of n and d but we focus on the Attention setting.

Attention in the Transformer model is implementing SDM, we should expect for trained Attention to
use �s that correspond to reasonable instances of SDM. We use as reference points these optimal d⇤s.

Figure 4: Histogram showing learned � coeffi-
cients for all Attention heads across layers for the
5 translation tasks used in [22]. We plot the � val-
ues for Attention that approximate the different d⇤
definitions showing how the �s are interpolating
between them. �CD is optimal for critical distance
(maximum noise for each query); �SNR is optimal
for Signal-to-Noise ratio. This assumes there is
no query noise and SDM wants to minimize noise
from other queries. �Mem maximizes memory ca-
pacity and also assumes no query noise.

Attention learns useful pattern representations
that are far from random so this SDM � that fits
the optimal d⇤s are only a weak reference for
what � values might be reasonable. However,
because these d

⇤ definitions of optimality span
from maximizing convergence with query noise,
to maximizing memory capacity with noise free
queries, we should expect the Transformer deal-
ing with noisy queries and wanting reliable re-
trieval to interpolate between these d

⇤ values.
Here, we provide empirical evidence that this
is indeed the case. We analyze the � coeffi-
cients learnt by the “Query-Key Normalization”
Transformer Attention variant [22]. Query-Key
Normalization makes it straightforward to find
� because it is learnt via backpropagation and
easy to interpret because it uses cosine similarity
between the query and key vectors. To further
evaluate the convergence between Attention and
SDM � coefficients and make it more general,
we also investigate the GPT2 architecture [3].
However, in this case we need to infer “effective”
� values from the size of query key dot products
in the softmax. This makes these results, out-
lined in Appendix A.2, more approximate but
they remain largely in agreement with the learnt �s of Query-Key Norm.

The Query-Key Norm Attention heads learn � 2 [10, 25] as shown in Fig. 4.6 Note that the whole
range of � 2 [10, 25] interpolates between the d

⇤ values well, in particular with the critical distance
optimal that realistically assumes noisy queries and the SNR optimal, where having a high signal to
noise ratio is desirable for both memory capacity and critical distance (see Appendix B.5).

6These values were graciously provided by the authors of [22] in private correspondence for their trained
Transformer models.
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In requiring that Attention vectors be L
2 normalized and � fitted, SDM predicted Query-Key Norm.

This is interesting because Query-Key Norm has evidence of improving Transformer performance
and training speed [22, 31]. We say more about its advantages and caveats in Appendix A.1.

4 Transformer Components Interpreted with SDM

We can leverage how Attention approximates SDM to interpret many components of the Transformer
architecture.7 This exercise demonstrates the explanatory power of SDM and, in relating it to
additional unique Transformer components, widens the bridge upon which ideas related to SDM and
neuroscience can cross into deep learning and vice versa.

A crucial component of the Transformer is its Feed Forward (FF) layer that is interleaved with the
Attention layers and uses approximately 2/3rds of the Transformer’s parameter budget [1]. Attention’s
Transformer implementation and SDM deviate importantly in Attention’s use of ephemeral patterns
from the current receptive field. In order to model temporal dependencies beyond the receptive field,
we want Attention to be able to store persistent memories. Work has compellingly shown that the FF
layers store these persistent memories [32, 33, 34]. SDM can be interpreted as this FF layer because
in [32] the FF layer was substituted with additional, persistent key and value vectors that Attention
learnt independently rather than projecting from its current inputs. This substitution performed on par
with the FF layer which, combined with deeper analysis in [33], shows the FF layers are performing
Attention with long term memories and thus can be directly interpreted as SDM.

Another crucial component of the Transformer is its use of LayerNorm [28, 35, 1]. LayerNorm has a
natural interpretation by SDM as implementing a similar constraint to L

2 normalization. However,
while it ensures all of the vectors are on the same scale such that their dot products are comparable
to each other, it does not constrain these dot products to the interval [�1, 1] like cosine similarity.
In addition to providing an interpretation for the importance of LayerNorm, this discrepancy has
led to two insights: First, as previously mentioned, it predicted that Query-Key Normalization
could be a useful inductive bias (more details in Appendix A.1). Second, it has provided caution to
interpretations of Attention weights. Fig. 8 of Appendix A.3 shows that there are many value vectors
that receive very small amounts of attention but have large L

2 norms that dominate the weighted
summation of value vectors. This makes it misleading to directly interpret Attention weights without
L
2 normalization of the value vectors and this has not been done in work including [1, 36, 37, 38].

Beyond helping future interpretations of Attention, we tested L
2 normalized value vectors as a

potentially useful inductive bias by training a GPT2 model with it. Our results showed that this did
not change performance but L2 normalization should still be performed in cases where the Attention
weights will be interpreted. See Appendix A.3 for a full discussion.

Finally, multi-headed Attention is a Transformer component where multiple instantiations of Attention
operate at the same hierarchical level and have their outputs combined. Multi-heading allows SDM to
model probabilistic outputs, providing an interpretation for why it benefits Attention. For example, if
we are learning a sequence that can go "A ! B" and "A ! Z" with equal probability, we can have
one SDM module learn each transition. By combining their predictions we correctly assign equal
probability to each. This probabilistic interpretation could explain evidence showing that Attention
heads pay attention to different inputs and why some are redundant post training [39, 40, 10].

An important difference between SDM and the Transformer that remains to be reconciled is in the
Transformer’s hierarchical stacking of Attention. This is because, unlike in the traditional SDM
setting where the pattern addresses (keys) and pattern pointers (values) are known in advance and
written into memory, this cannot be done for layers of SDM beyond the first that will need to learn
latent representations for its pattern addresses and pointers (keys and values). Transformer Attention
solves this problem by learning its higher level keys and values, treating each input token as its own
query to generate a new latent representation that is then projected into keys and values [1]. This does
not mean SDM would fail to benefit from hierarchy. As a concrete example, the operations of SDM
are related to the hierarchical operations of [41]. More broadly, we believe thinking about how to learn
the latent keys and values for the higher levels of SDM could present new Transformer improvements.
A key breakthrough of the recent Performer architecture that highlights the arbitrariness of the original
Transformer solution is its use of a reduced set of latent keys and values [42].

7For a summary of the components that make up the full Transformer architecture see Fig. 9 of Appendix
A.4.
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5 A Biologically Plausible Implementation of Attention

Here, we provide an overview of SDM’s biological plausibility to provide a biologically plausible
implementation of Attention. SDM’s read and write operations have non trivial connectivity require-
ments described in [13, 15]. Every neuron must: (i) know to fire if it is within d Hamming distance
of an input; (ii) uniquely update each element of its storage vector when writing in a new pattern; (iii)
output its storage vector during reading using shared output lines so that all neuron outputs can be
summed together.

Unique architectural features of the cerebellar cortex can implement all of these requirements,
specifically via the three way convergence between granule cells, climbing fibers and Purkinje
cells: (i) all granule cells receive inputs from the same mossy fibers to check if they are within
d of the incoming query or pattern; (ii) each granule cell has a very long parallel fiber that stores
memories in synapses with thousands of Purkinje cells [43], updated by LTP/LTD (Long Term
Potentiation/Depression) from joint firing with climbing fibers; (iii) all granule cells output their
stored memories via their synapses to the Purkinje cells that perform the summation operation and use
their firing threshold to determine if the majority bit was a 1 or 0, outputting the new query [13, 15].
Moreover, the Drosophila mushroom body is highly similar to the cerebellum and the previous cell
labels for each function can be replaced with Kenyon cells, dopaminergic neurons, and mushroom
body output neurons, respectively [17].

While SDM fits the unique features of the cerebellum well, this connection has limitations. Expla-
nations for some of the original model’s limitations have been put forward to account for sparse
dendritic connections of Granule cells [44] and the functions of at least two of the three inhibitory
interneurons: Golgi, Stellate and Basket cells [29, 45]. However, there are futher challenges that
remain, including better explanations of the inputs to the mossy and climbing fibers and outputs from
the Purkinje cells; in particular, how the mossy and climbing fiber inputs synchronize for the correct
spike time dependent plasticity [46]. Another phenomenon that SDM does not account for is the
ability of Purkinje cells to store the time intervals associated with memories [47]. Further research is
necessary to update the state of SDM’s biological plausibility with modern neuroscientific findings.

6 Related Work

Previous work showed that the modern Hopfield Network, when made continuous and optimized
differently, becomes Attention [25, 26]. This result was one motivation for this work because
Hopfield Networks are another associative memory model. In fact, it has been shown that SDM is a
generalization of the original Hopfield Network (Appendix B.6) [29]. While SDM is a generalization
of Hopfield Networks, their specific discrepancies provide different perspectives on Attention. Most
notably, Hopfield Networks assume symmetric weights that create an energy landscape, which can be
powerfully used in convergence proofs, including showing that one step convergence is possible for
the modern Hopfield Network, and by proxy, Attention and SDM when it is a close approximation
[25, 26]. However, these symmetric weights come at the cost of biological plausibility that SDM
provides in addition to its geometric framework and relation to Vector Symbolic Architectures
[29, 48].

Other works have tried to reinterpret or remove the softmax operation from Attention because the
normalizing constant can be expensive to compute [49, 50]. However, while reducing computational
cost, these papers show that removing the softmax operation harms performance. Meanwhile, SDM
not only shows how Attention can be written as a Feedforward model [15] but also reveals that through
simple binary read and write operations, (the neuron is either within Hamming/cosine distance or it’s
not) the softmax function emerges with no additional computational cost.

Since the publication of SDM, there have been a number of advancements not only to SDM specif-
ically, but also through the creation of related associative memory algorithms under the name of
“Vector Symbolic Architectures” [51]. Advancements to SDM include using integer rather than binary
vectors [52], handling correlated patterns [29], and hierarchical data storage [53]. Vector Symbolic
Architectures, most notably Holographic Reduced Representations, have ideas that can be related
back to SDM and the Transformer in ways that may be fruitful [54, 55, 56, 57, 58, 59].

The use of external memory modules in neural networks has been explored most notably with the
Neural Turing Machine (NTM) and its followup, the Differentiable Neural Computer (DNC) [23, 60].
In order to have differentiable read and write operations to the external memory, they use the softmax
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function. This, combined with their use of cosine similarity between the query and memory locations,
makes both models closely related to SDM. A more recent improvement to the NTM and DNC
directly inspired by SDM is the Kanerva Machine [24, 61, 62, 63]. However, the Kanerva Machine
remains distinct from SDM and Attention because it does not apply the a Hamming distance threshold
on the cosine similarity between its query and neurons. Independent of these discrepancies, we
believe relating these alternative external memory modules to SDM presents a number of interesting
ideas that will be explored in future work.

7 Discussion

The result that Attention approximates SDM should enable more cross pollination of ideas between
neuroscience, theoretical models of associative learning, and deep learning. Considering avenues for
future deep learning research, SDM’s relationship to Vector Symbolic Architectures is particularly
compelling because they can apply logical and symbolic operations on memories that make SDM
more powerful [55, 64, 65, 66, 67]. SDM and its relation to the brain can inspire new research in not
only deep learning but also neuroscience, because of the empirical success of the Transformer and its
relation to the cerebellum, via SDM.

Our results serve as a new example for how complex deep learning operations can be approximated
by, and mapped onto, the functional attributes and connectivity patterns of neuronal populations. At
a time when many new neuroscientific tools are mapping out uncharted neural territories, we hope
that more discoveries along the lines of this work connecting deep learning to the brain will be made
[68, 69, 70].

Limitations While our work shows a number of convergences between SDM, Attention, and full
Transformer models, these relationships remain approximate. The primary approximation is the link
between SDM and Attention that exists not only in SDM’s circle intersection being approximately
exponential but also its use of a binary rather than continuous space. Another approximation is
between optimal SDM Hamming radii d⇤ and Attention � coefficients. This is because we assume
patterns are random to derive the d

⇤ values. Additionally, in the GPT2 Transformer models we must
infer their effective � values. Finally, there is only an approximate relationship between SDM and
the full Transformer architecture, specifically with its Feed Forward and LayerNorm components.

8 Conclusion

We have shown that the Attention update rule closely approximates SDM when it L2 norms its
vectors and has an appropriate � coefficient. This result has been shown to hold true in both
theory and empirical evaluation of trained Transformer models. SDM predicts that Transformers
should normalize their key, query and value vectors, preempting the development of Query-Key
Normalization and adding nuance to the interpretation of Attention weights. We map SDM onto
the Transformer architecture as a whole, relate it to other external memory implementations, and
highlight extensions to SDM. By discussing how SDM can be mapped to specific brain architectures,
we provide a potential biological implementation of Transformer Attention. Thus, our work highlights
another link between deep learning and neuroscience.
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