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ABSTRACT

Precipitation nowcasting, a short-term (up to six hours) rain prediction, is ar-
guably one of the most demanding weather forecasting tasks. To achieve accurate
predictions, a forecasting model should consider miscellaneous meteorological
and geographical data sources. Currently available datasets provide information
only about precipitation intensity, vertically integrated liquid (VIL), or maximum
reflectivity on the vertical section. Such single-level or aggregated data lacks de-
scription of the reflectivity change in vertical dimension, simplifying or distorting
the corresponding models.
To fill this gap, we introduce an additional dimension of the precipitation mea-
surements in the RuDar dataset that incorporates 3D radar echo observations.
Measurements are collected from 30 weather radars located mostly in the European
part of Russia, covering multiple climate zones. Radar product updates every
10 minutes with a 2 km spatial resolution. The measurements include precipitation
intensity (mm/h) at an altitude of 600 m, reflectivity (dBZ) and radial velocity (m/s)
at 10 altitude levels from 1 km to 10 km with 1 km step. We also add the orog-
raphy information as it affects the intensity and distribution of precipitation. The
dataset includes over 50 000 timestamps over a two-year period from 2019 to 2021,
totalling in roughly 100 GB of data.
We evaluate several baselines, including optical flow and neural network models,
for precipitation nowcasting on the proposed data. We also evaluate the uncertainty
quantification for the ensemble scenario and show that the corresponding estimates
do correlate with the ensemble errors on different sections of data. We believe
that RuDar dataset will become a reliable benchmark for precipitation nowcasting
models and also will be used in other machine learning tasks, e.g., in data shift
studying, anomaly detection, or uncertainty estimation. Both dataset and code for
data processing and model preparation are publicly available 1.

1 INTRODUCTION

Precipitation nowcasting is the task of forecasting a rainfall situation (precipitation location and
strength) for a short period of time, usually up to six hours. Due to climate change the frequency
and magnitude of extreme weather events, e.g. sudden downpours, increase, and the techniques for
forecasting such events are needed. Precipitation nowcasting can provide information about such
events with a high spatiotemporal resolution. Such kind of weather forecasting plays an essential role
in resource planning in the agricultural industry, aviation, sailing, etc. as well as in daily life.

Incorrect precipitation forecasting could have a negative impact on human life activity, and data
with diverse meteorological and geographical characteristics are needed for improving precipitation
nowcasting models. The different benchmark dataset usage could improve the quality of precipitation
nowcasting models to minimize the risk of forecasting error.

Previously published benchmarks Holleman (2007); Shi et al. (2017); Ansari et al. (2018); Ramsauer
et al. (2018); Franch et al. (2020); Veillette et al. (2020) provide data collected with one or several

1URL is hidden for the blind review.
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Figure 1: The geographical area covered by the proposed weather radar dataset (light areas). The
covered area has a variety of geographic and climatic characteristics. The color indicates the height
above sea level.

weather radars. Some of those datasets only contain information about precipitation intensity, others
provide vertically integrated liquid value (VIL) or maximum reflectivity on the vertical section.

However, a single measurement type is often not enough for extreme weather events forecasting.
Thereby, we propose a RuDar dataset that contains several measurement products: reflectivity (dBZ)
and radial velocity (m/s) on ten altitude levels from 1 km to 10 km with 1 km step and intensity (mm/h)
on a 600 m altitude level. Each measurement was carried out with a 2 km spatial resolution and a
10 minute temporal resolution. The dataset from 30 dual-pol Doppler weather radars were collected
and processed at the Radar Center of the Central Aerological Observatory (CAO) of the Russian
Federal Service for Hydrometeorology and Environmental Monitoring (ROSGIDROMET) and is
used by our team within the conditions of commercial contract. For each radar, we additionally
provide information about the surrounding orography Becker et al. (2009). The radars are located
mostly in the European part of Russia as shown in Figure 1, therefore, a wide range of geographical
and climatic conditions is considered. The proposed dataset includes more than 50 000 timestamps
over a two year period from 2019 to 2021, allowing to investigate the effect of seasonality on rainfall
forecast.

We illustrate the applicability of our dataset to the nowcasting task by benchmarking the current
state-of-the-art optical flow approach Ayzel et al. (2019) and neural network models Shi et al. (2015);
Veillette et al. (2020); Ravuri et al. (2021) on it. Experiments show a seasonal dependence having
effect on the algorithm performance due to different precipitation intensity rates and differences
between adjacent timestamps in different months.

The main paper contributions are (i) published weather radar dataset with different geographical and
climatic conditions (provided under the CC BY NC SA 4.0 license) together with the accompanying
exploratory data analysis, (ii) evaluations of common simple precipitation nowcasting models and its
extenstion to support additional data, (iii) uncertainty estimation and its connection to the error for the
nowcasting ensemble case, and (iv) accompanying source code for data processing and experiments.

The structure of the paper is as follows: Section 2 covers previously published datasets for the
precipitation nowcasting task, Section 3 describes the proposed dataset, Section 4 introduces evaluated
nowcasting benchmarks, Section 5 explores the uncertainty estimation scenario for the ensemble of
models, and Section 6 concludes the paper.

2 RELATED WORK

Doppler weather radar is the most effective tool for detecting precipitation. The radar measures
reflectivity of radio waves from precipitation drops, which can then be converted into precipitation
intensity using Z-R relation Marshall & Palmer (1948). Standard ways of obtaining a single
reflectivity measure from the different heights is either taking measurements from only the lower
level (base reflectivity), or aggregating these measurements by the maximum value (composite
reflectivity). In addition, a Doppler radar can detect movement towards or away from itself, which
allows measuring the speed of precipitation movement along or against the direction of the radar. The
latter type of measurement is called radial velocity.

In the public domain, one can find quite a variety of weather radar datasets collected and maintained
by international agencies. We summarized the information about some of them in Table 1, where we
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provided a comparison by spatial, temporal and pixel resolution, time periods, geographic coverage
and number of radars from which measurements were taken.

The first three data sources in Table 1 are more large databases than ready-made ML benchmarks:

• NEXRAD Ansari et al. (2018) by US National Oceanic and Atmospheric Service (NOAA),
which has been collected since 1994 and contains reflectivity data, radial velocity, and
derivative products.

• MRMS Zhang et al. (2016) by NOAA National Severe Storms Laboratory combines the
previous source together with various sources to provide severe weather, transportation, and
precipitation products with 2-minute updates. This dataset is used in a number of nowcasting
studies Sønderby et al. (2020), Klocek et al. (2021).

• Radarnet Fairman et al. (2017) by UK Met Office, which has been collected since 1970
and contains composite precipitation data derived from reflectivity data.

The ready-to-go datasets, suitable for exploration by ML practitioners and researchers include:

• HKO-7 Shi et al. (2017) by Hong Kong Observatory (HKO) contains a single-height
reflectivity level from a single radar at the center of Hong Kong for a six years period.

• KNMI Overeem & Imhoff (2020) by the Royal Netherlands Meteorological Insti-
tute (KNMI) contains ten-year single-height composite reflectivity data from two radars.

• TAASRAD19 Franch et al. (2020) by Meteotrentino contains nine-year aggregated reflec-
tivity data from a single radar located in the Italian Alps. It is interesting due to geographical
specifics and a large amount of extreme phenomena, such as snowstorms, hails, downpours,
etc.

• SEVIR Veillette et al. (2020) by NOAA and the Geostationary Environmental Satellite
System (GOES) contains US radar and satellite data for a two year-period, sampled either
randomly or on an event basis. It is focused on the detection of storm events.

• RADOLAN Ramsauer et al. (2018) by the German Weather Service contains three-year
reflectivity and precipitation data collected by 18 radars in Germany.

Our dataset was collected by 30 radars of the Central Aerological Observatory (CAO) and contains
two years of observations (spring 2019 – spring 2021). Measurements were carried out mainly in the
European part of Russia, but some areas of the Siberian and Far Eastern regions were also captured.

The main advantages of our dataset relative to the abovementioned are as follows:

1. A large area is covered with different climatic conditions – from the extreme
north (Arkhangelsk, 64.62◦ N 40.51◦ E ) to the southern regions (Krasnodar,
45.04◦ N 39.15◦ E ).

2. Dataset introduces continuous measurements over a year period, which allows taking into
account the influence of seasonal dependence on strength and distribution of precipitation.

3. The data presents several radar products at once: reflectivity and radial velocity at 10 altitude
levels (1 – 10 km) and precipitation (600 m). We do not specifically aggregate the reflectivity
and radial velocity data, as we believe that it can be useful for forecasting to know how
moisture and its velocity are distributed depending on the height. There are situations when
precipitation has not yet appeared at low levels, but at the same time, at high levels, there is
information about future precipitation (see an example in Figure 6 in Supp.Mat.).

4. In addition to the radar data itself, we provide information about the orography in the area
around each radar. These data allow one to investigate the influence of the surrounding
orography in predicting precipitation.

3 DATASET DESCRIPTION AND PROCESSING

The proposed RuDar dataset contains measurements from 30 weather radars mainly located in the
European part of Russia (Figure 1). Radars scan the area around with a radius of 250 kilometers.
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Table 1: Comparative table of various international open sources of radar data. The data were
compared by spatio-temporal (km per pixel / minutes) and pixel resolution, as well as by time periods,
geographical coverage and the number of radars involved. The main products contained in the
datasets are base and composite reflectivity, as well as derived products: precipitation, maximum
reflectivity and vertically integrated liquid (VIL). If there is more than one radar, all except NEXRAD
and RuDar combine measurements from different radars into one frame.
(*) For the 2020.03–2021.02 period, we publish every fifth day to be used for validation and testing.
(**) Feature codes: (1) precipitation rate, (2) radial velocity, (3) reflectivity by altitude layers, (4)
integrated or one layer reflectivity, (5) satellites

Dataset Time Spatio-temporal Pixel resolution Geography No. Features Ready
periods resolution per frame of radars to use

NEXRAD Ansari et al. (2018) 1994– 1 km / 5 min 460×460 United States 160 1, 2, 3, 4 –
MRMS Zhang et al. (2016) 2014– 1 km / 2 min 3500×7000 United States 160 1, 3, 4 –

Radarnet Fairman et al. (2017) 1970– 1 km / 5 min 1536×1280 United Kingdom 15 1, 3 –
HKO-7 Shi et al. (2017) 2009–2015 1.06 km / 6 min 480×480 Hong-Kong 1 4 +

KNMI Overeem & Imhoff (2020) 2008–2018 1 km / 5 min 400×400 Netherlands 2 4 +
TAASRAD19 Franch et al. (2020) 2010–2019 0.5 km / 5 min 480×480 Italian Alps 1 4 +

SEVIR Veillette et al. (2020) 2017–2019 1 km / 5 min 384×384 United States 160 4, 5 +
RADOLAN Ramsauer et al. (2018) 2014.12–2017.11 1 km / 5 min 900×900 Germany 18 1, 4 +

RuDar (Ours) 2019.03–2021.02* 2 km / 10 min 252×252 Russia 30 1, 2, 3 +

Measurements come from radars every 10 minutes and have a spatial resolution of 2 × 2 kilometers.
The dataset covers two years from 2019 to 2021 and has over 50 000 unique timestamps.

Each data sample is a three-dimensional tensor that contains the result of a 10 minute scan of the
atmosphere with a single radar. The center of the frame corresponds to the location of the radar in
the scanned area. Tensors have 21 channels with a spatial resolution of 252 × 252 pixels. The first
channel contains information about precipitation intensity (mm/h) on a 600 m altitude level. The
channels 2-11 contain reflectivity measurements (dBZ) performed at 10 altitude levels from 1 km to
10 km with 1 km step, and the channels 12-21 contain 10 radial velocity (m/s) measurements from the
same 1-10 km altitudes. We also provide data on orography Becker et al. (2009) and latitude-longitude
coordinates of the territory surrounding the area of the radar measurements. Coordinates were initially
set on a kilometer grid with a step of 2 kilometers with zero at the radar location.

The data example is partially shown in Figure 2a. Please refer to the Section D in Supplementary for
the comprehensive documentation2.

3.1 PRECIPITATION INTENSITY

Precipitation intensity is measured at an altitude of 600 meters in mm/h and is represented by a single
channel in the data. It is not a direct measurement: the precipitation rate is calculated from reflectivity
values with Marshal-Palmer type of Z-R relationship Marshall & Palmer (1948). In addition to mm/h
values, two special values are presented in data: -2e6 value marks areas where measurements are
not available, -1e6 value marks areas where no precipitation events were detected. Both values
can be reduced to 0 mm/h, however, when feeding a radar frame to the model, it is better to mask
-2e6 values so that the model can distinguish the absence of precipitation from the blind zone of the
radar.

Figure 2d shows the distribution of precipitation by seasons. The data for each season is taken from
the entire period 2019-2021. As can be seen in Figure 2d, the intensity has a seasonal dependence:
the highest values of precipitation amount are reached in summer and the lowest in winter.

We investigated the distribution of precipitation intensity difference between two adjacent radar im-
ages. As Figure 2e shows, in the winter season the precipitation rate difference between two adjacent
radar images is much lower than in the summer season. This means that in winter precipitation
changes much less in the short-term interval than in summer, and therefore it is more difficult to solve
the problem of nowcasting in warmer seasons.

Peaks which are visible in Figure 2e are the result of specificity of the combination of radar-side
filtration algorithms and Marshall-Palmer type of Z-R relationship.

2Data-featuring Colab Notebook is available at URL_hidden_due_to_blind_review.
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Figure 2: Featuring RuDar dataset. (a) The sky above the Moscow Region, Vnukovo Radar; axes
ticks are given in kilometers. Ten levels of the precipitation intensity are shown (for each height
level from 1 km to 10 km), together with the orography (magnified for visualization purposes) on the
bottom. The lined cuts on the left part of the plot demonstrate a specific case of urban obstruction
in the radar vision: skyscrapers are not shown in the orography map yet they affect the scan result.
(b) Tensor representation for a single radar at the given timestamp: each tensor has a shape of
(252, 252, 21). Note that orography information is stored separately to avoid duplication. (c) Natural
obstructions near Mineralnye Vody city: the mountain chain on the south blocks the radar, reducing
the receptive field down to the area denoted by the white dotted line. (d) Seasonal dependence
of the precipitation intensity distribution (mm/h per pixel). During the winter season events with
high precipitation rates are much less represented than in the summer season. We clipped high
precipitation rates (> 140 mm/h). (e) The distribution of precipitation intensity difference between
two adjacent radar images (mm/h per pixel) in RuDar dataset. In the winter season, precipitation
events change slower than in the summer season. The periodical peaks are the result of a peculiarity
of the combination of radar-side filtration algorithms and Marshall-Palmer type of Z-R relationship.
Best viewed in color.

3.2 RADAR REFLECTIVITY

Reflectivity values represent direct radar measurements in dBZ units. The radar measures the amount
of energy reflected from droplets distributed in the atmosphere, and this amount of energy turns out
to be proportional to the amount of moisture in the air. All reflectivity measurements were carried out
at heights of 1-10 km with 1 km step. We provide reflectivity data at several altitude levels, since we
believe that not only information about precipitation changes in time, but also in space, is important
for nowcasting, see Fig. 6 in Supp. Mat. for an example.

To demonstrate the geospatial diversity, we compare the mean reflectivity for two radars:
Arkhangelsk (in the north) and Krasnodar (in the south) in Figure 3. It can be seen that both
seasonal and altitudinal dependencies are different for these radars, which shows the wide range of
weather conditions and data variability.

3.3 RADIAL VELOCITY

The radial velocity is the wind velocity projected onto the ray starting in the radar. Negative values
correspond to the movement towards the radar, and positive values correspond to movement away
from the radar. Due to the peculiarities of this type of measurement, the values are available only at
points where the radar has registered moisture droplets. The data is measured in m/s and provided
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Figure 3: Comparison of two different regions: Krasnodar (on the south) and Arkhangelsk (on the
north) in terms of mean reflectivity (left) and mean radial velocity (right) on different height levels.
Only non-zero values are taken into account. Regions demonstrate different patterns in the altitude
intensity and radial velocity distribution as well as the seasonal changes.

for ten altitude levels from 1 km to 10 km with 1 km step similar to reflectivity data. According to
Figure 3, radial velocity values are seasonally dependent.

3.4 GEOGRAPHICAL INFORMATION

In addition to atmosphere scans, the RuDar dataset contains orography and geographical coordinates
associated with each radar. Geographical coordinates (latitudes and longitudes) are provided for each
point where measurements are presented. Orography is a two-dimensional tensor in which positive
values correspond to elevations above sea level and negative values correspond to elevations below
sea level. We resampled an available information Becker et al. (2009) to the used coordinate grid.
An example of orography is shown in Figure 2c where the case of natural radar vision obstruction is
demonstrated. The radar’s visibility area in the figure is greatly reduced by high mountains located in
the immediate vicinity of Mineralnye Vody. Note that the orography measurements do not include
the urban areas, and Figure 2a shows that skyscrapers in Moscow may also pose a problem.

4 NOWCASTING BASELINES

4.1 PROBLEM STATEMENT

The nowcasting problem can be formulated in terms of sequence prediction task (precisely video
prediction task) – the goal is to predict a sequence of future observations from an input sequence
of historical measurements. More formally, let us have an input sequence of measurements X =
(Xt−M+1, . . . , Xt) of length M for time step t, and a sequence of future measurements Y =
(Yt+1, . . . , Yt+K) of length K. Then our task is to construct a model f that predicts Y by X:

Yt+1, Yt+2, . . . , Yt+K = f(Xt−M+1, . . . , Xt−1, Xt). (1)

Each element Xi is a tensor of shape H × W × Cinput, where H and W are the height and width
of one frame, and Cinput is the number of measurements used for prediction. An element Yi of the
output sequence is a tensor of shape H ×W × Coutput, where Coutput is the number of predicted
measurements. The numbers Cinput and Coutput may differ, since in the input sequence one can
possibly use all the available measurements (intensity, reflectivity, radial velocity, orography), and
the output sequence will contain only the target values. In our case, the target is future precipitation
intensity, which implies Coutput = 1.

The quality of the model can be measured by how well it predicts the strength of precipitation directly,
as well as how well it copes with detecting precipitation. In the first case, we use pixelwise mean
squared error (MSE) to measure quality, in the second we use F1-score, see details of calculation in
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Section I of Supplementary Material. In meteorological articles Espeholt et al. (2021); Ravuri et al.
(2021); Bouget et al. (2021), metrics such as Probability of Detection (POD), Success Ratio (SUCR),
Critical Success Index (CSI) are sometimes used, but they are actually the equivalents of recall,
precision and intersection over union (IOU), – standard metrics in machine learning. We chose F1

because it correlates with IOU and depends on both precision and recall.

4.2 EXPERIMENTAL SETUP

4.2.1 DATA SETUP

We are focusing on a year scale setup, which uses 2019 data for training, and every fifth day of
2020–2021 data for validation and testing.

In our experiments, we use 4 input tensors with historical observations to predict 12 future intensity
frames (M = 4, K = 12, Coutput = 1). The spatial size of the input and output tensors is
H = W = 252. We clip precipitation intensity values to 50 mm/h, since high intensity rates are rare
in the given geographical area. As we use an MSE loss to train our models, we use a binary mask for
the special value -2e6 to prevent penalizing our models for errors outside the radar visibility range.

When only intensity is used as an input observation, Cinput = 1. Using reflectivity levels increases
Cinput to 11. All values are clipped in the interval between −32 dBZ and 65 dBZ, and then reduced
to the interval from 0 to 1 by subtracting −32 dBZ and dividing by 65 − (−32) = 87 dBZ. The
intensity values for this setup are divided by 50 mm/h (for both input and target frames) to be also in
the unit range (0, 1). Radial velocity also adds 10 input channels (Cinput = 11). All radial velocity
values are clipped between −63 m/s and 63 m/s and then divided by 63 m/s to be in the interval
(−1, 1). Orography adds one additional channel (Cinput = 2). Negative values of heights are reduced
to zero, and positive values are divided by the maximum height equal to 5336 m.

For both radial velocity and orography, the intensity preprocessing is the same as in the absence of
additional features.

4.2.2 MODELS AND SETUPS

We represented f(·) with a persistent model as a weak baseline and with a state-of-the-art optical
flow approach Ayzel et al. (2019) as a strong baseline. Also we trained UNet-like Veillette et al.
(2020) and ConvLSTM-like Shi et al. (2015) neural network models (including Extended ConvLSTM
architecture shown in Fig.4b) and tested a pretrained GAN-like model Ravuri et al. (2021). Each
of the above models (excepting the pretrained GAN model) was trained on a single Tesla A100
80GB for approximately 70 hours. Details about model architectures are provided in Section E of
Supplementary Materials.

Also we evaluated Earthformer Gao et al. (2022) on the proposed dataset using official implementation.
Other strong neural network baselines Sønderby et al. (2020); Klocek et al. (2021); Espeholt et al.
(2021) will be considered in future research as they require additional input data that is not presented
in the proposed dataset. Satellite information is used in Sønderby et al. (2020), numerical weather
forecast is used in Klocek et al. (2021), and Espeholt et al. (2021) requires both.

4.3 RESULTS

We provide the results on F1 and MSE for each of the above models, as well as the results of
Extended ConvLSTM using each of the additional features. We evaluate the baselines on seasonal
test splits of the RuDar dataset. The results are shown in Table 2.

All baselines work better than Persistent, and among baselines without additional features, Extended
ConvLSTM shows the best result in all seasons except summer: there it is inferior to Optical Flow in
F1.

Adding reflectivity shows the best result for all metrics and seasons, except for F1 in summer (where
it is inferior to Optical Flow) and in autumn (where it is inferior to Extended ConvLSTM with
orography). Adding radial speed improves both MSE and F1 and adding orography improves F1

relative to Extended ConvLSTM without additional features.
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Table 2: Metrics of baseline models calculated separately for each season. The first value in the cell
is MSE, the second value is F1. Metrics are average across prediction horizons. Red highlights
the maximum in the entire column, blue highlights the maximum among models without additional
features.

Spring 2020 Summer 2020 Autumn 2020 Winter 2020-2021
Persistent 0.2691 / 0.5177 0.6281 / 0.4975 0.0579 / 0.5233 0.0260 / 0.6425

Optical Flow 0.1936 / 0.6297 0.4768 / 0.6435 0.0384 / 0.6351 0.0190 / 0.6884
GAN 0.1885 / 0.6368 0.5820 / 0.6140 0.0352 / 0.6507 0.0218 / 0.6580
U-Net 0.1420 / 0.5649 0.3215 / 0.5406 0.0312 / 0.5730 0.0160 / 0.6232

ConvLSTM 0.1217 / 0.6222 0.3244 / 0.5580 0.0242 / 0.6650 0.0156 / 0.6799
Extended ConvLSTM 0.1192 / 0.6436 0.3193 / 0.5877 0.0233 / 0.6814 0.0150 / 0.6947

Extended ConvLSTM + reflectivity 0.1133 / 0.6597 0.3080 / 0.6170 0.0219 / 0.6936 0.0140 / 0.7014
Extended ConvLSTM + radial velocity 0.1170 / 0.6516 0.3153 / 0.5970 0.0228 / 0.6885 0.0144 / 0.7038

Extended ConvLSTM + orography 0.1193 / 0.6526 0.3197 / 0.5968 0.0234 / 0.6876 0.0148 / 0.7016
Earthformer 0.0124 / NA 0.0153 / NA 0.0047 / NA 0.0048 / NA

Figure 4: (Left) Algorithm performance (left column: F1, right column: MSE) as a function of
a prediction horizon on the spring season of the test set. Top row: baseline algorithms, bottom
row: Extended ConvLSTM with the various additional data. While optical flow may outperform
other models on the initial time steps, NN-based and trained baselines easily outperform baselines.
Usage of the radar reflectivity improves the performance of the ConvLSTM model. (Right) An
extension of the architecture from Shi et al. (2015). The first ConvLSTM layer receives the output of
a convolutional encoder as input, and the output of the last ConvLSTM layer is upsampled to the
final prediction with a convolutional decoder. To output the next frame, the predictor uses the outputs
of the last ConvLSTM layer from the previous step.

We also show the relationship between algorithm performance and forecast horizon for the spring
season in Figure 4a.

5 UNCERTAINTY ESTIMATION FOR THE ENSEMBLE CASE

Weather forecasting task, given its properties such as noisy data, probabilistic predictions, and general
weather variability, may organically benefit from the uncertainty quantification. Uncertainty estimates
(UEs) are helpful in a number of cases, including ”failing to predict” (when the model understands
that its prediction is not reliable enough, and gets the results from the basic robust model), active
learning, data shift reaction, as well as the error analysis and model selection.

We focus on the last scenario and analyze the relationship between the error and UE for the ensemble
case. Given an ensemble of five ConvLSTM models, trained on the same data but different seeds,
we treat the mean and standard deviation of predictions as the output and UE, correspondingly. An
ensemble error and UE on the test set are correlated with a large Spearman coefficient (> 0.8); this
relationship holds even when both metrics are averaged over the various dimensions: time, location,
and forecast horizon, see Fig. 7, 8 in Section H of Supp.Mat. We also report that we did not find a
relationship between the UE and orography (Pearson |r| < 0.1).
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This analysis suggests that UE metrics can be used to indicate large errors, which, in turn, can be
used to deliver better predictions or uncertainty of the forecast, as well as assist the model selection
and improvement.

6 DISCUSSION

6.1 SUMMARY

In this paper, we propose a weather radar dataset with a wide variety of geographical and climatic
conditions and show in contrast to previously published works that a precipitation nowcasting task
can be a seasonal dependent problem. This encourages the usage of the seasonal models and separate
models for precipitation rate forecasting and precipitation events existence.

We also evaluated an ensemble of nowcasting models, analyzing the uncertainty estimates and
showing its deep relation to the ensemble error on various scales.

We believe that our proposed dataset will become a reliable benchmark for precipitation nowcasting
models. The code for data preprocessing and model preparation is publicly available 3. This dataset
is provided under the CC BY NC SA 4.0 license. The data is maintained on the cloud service, and is
maintained by authors team4.

6.2 LIMITATIONS

We would like to point out a few limitations of out work:

• Dataset size. We included the two-year period only in order for the dataset to be compre-
hensible and processible by the community, as its unpacked size already exceeds 100 GB.
This dataset is not intended for a study of long-term climatic changes.

• Data shift. Like any other piece of real-world data, our dataset may contain several pecu-
liarities. In the text, we discuss the seasonal dependence and geographical shifts, however,
it should be noted that the measurements within the sample are also not simultaneous as
they were obtained by combining the measurements from the narrow beam that scans the
atmosphere.

• Baselines. We provide the readers with simple baselines supporting the dataset. However,
we plan to benchmark a number of state-of-the-art neural network-based baselines Sønderby
et al. (2020); Espeholt et al. (2021); Klocek et al. (2021), in future studies.

6.3 POSSIBLE PROSPECTS

A two-year dataset may be applicable not for the nowcasting task only but in a number of contemporary
ML problems, including:

Rare event detection. Various storms and rare weather conditions are of special interest both to the
researchers and end-users. Some works even emphasize this area of research Veillette et al. (2020).
We expect various anomaly detection algorithms to be of great use here.

Data shift and uncertainty estimation. The variety of both geographical and temporal conditions
makes this dataset a good candidate for the modeling of distribution shift scenarios (see, e.g. Malinin
et al. (2021)), where test data may naturally vary from the training data dramatically. In this case,
various uncertainty estimation approaches, like in Grönquist et al. (2019) may be helpful.

Active learning. One of the most important scenarios for the day-to-day forecasting systems is active
learning since continuous data flow allows for the production model to learn from its own mistakes,
correcting previous predictions. However, processing and retraining on huge amounts of data poses a
challenge, and one may use smarter ways of data sampling (of both past archives and daily chunks of
data) in order to reduce the data processing and model training times.

3The link to the full dataset will be available after paper acceptance, a sample is available at URL_hidden_
due_to_blind_review.

4Please contact corresponding authors if you have any questions or additions regarding the dataset.
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7 SUPPLEMENTARY MATERIALS

A SUMMARY AND DISCUSSION OF PREVIOUS REVIEWS

We would like to thank anonymous reviewers for their valuable comments and suggestions. The main
difference between the previous submission and the current one is that we shifted our focus from the
ML models to the dataset, and thus provide basic and simple baselines to follow in future use. The
main points raised by reviewers are listed below together with our comments:

• There is no major difference between the proposed dataset and previous datasets like HKO-7
and SEVIR. The outstanding difference – a large number of channels – needs to be justified
and is straightforward to incorporate into the existing ConvLSTM-like models.
We emphasized the difference between our datasets and several others, including HKO-7
and SEVIR. We discuss the benefits of the additional channels in the main text.

• The importance of this specific type of data for the ML community, not only meteorologists.
We added a subsection in the summary section that discusses this issue. We argue that this
dataset may be of great interest to ML researchers for anomaly detection and domain shift
tasks, as well as active learning and uncertainty estimation.

• Choices on data processing and data split should be explained in detail, as well as the choice
of the baselines.
We refined and reasoned the data processing and split scheme and updated the text. As we
shifted the focus of the paper to the dataset, we now provide the most straightforward and
ready-to-go baselines for comparison and future research.

• Paper lacks critical reflection on the limitations of the proposed dataset.
We added discussion of the limitations to the last section of the main text.

B THE CHOICE OF THE BINARIZATION THRESHOLD

Initially, it was chosen upon our internal experiments within the company, which involved user’s
feedback for a weather forecasting service, and is close to the boundary of the rain versus moisture
discrimination, given the following reasoning. Table 1 shows the number of events in the first two
bins from the seasonal precipitation distribution shown in Figure 2c of the main text. One event
here is one pixel in a radar frame with intensity measurements, and season data is combined for all
occurrences of a given season between 2019 and 2021. For each season, the first two columns contain
the number of events when there is no precipitation at all and when the precipitation strength is in the
range from 0 to 0.1 mm/hr. The last column shows the proportion of no precipitation events (the sum
of the first two columns) relative to all events in the season. For summer and autumn, the threshold of
0.1 mm/hr turns out to be the 95-percentile of the distribution. Since the frame-by-frame variability
is much higher in summer than in winter (see Figure 2d in the main text), the summer season is more
challenging for the nowcasting problem. Therefore, when choosing a threshold for binarization to
obtain F1 results, we focused on the summer season.

Season No-precipitation events Precipitation events in range (0, 0.1] Total events Ratio
Winter 72,898,929,129 2,963,366,689 81,044,347,514 0.936
Spring 174,324,614,608 3,781,612,615 191,773,945,439 0.929

Summer 175,629,693,691 1,852,301,657 186,500,102,531 0.952
Autumn 170,587,211,782 4,187,861,067 183,448,937,655 0.953

Table 3: Seasonal comparison of the number of events with the absence of precipitation or with the
strength of precipitation from the interval (0, 0.1] mm/hr, and their cumulative proportion among all
events in the season.

C RAINYMOTION LAUNCH CODE LISTING

We have added a Rainymotion Ayzel et al. (2019) launch code, which basically demonstrates that we
use the default setting in our experiments.
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Figure 5: The scheme of an hdf5-dataset with RuDar data. Upper level – hdf5-groups with radar data
and geo-data. Geo-data is arranged in the geo-data group by radar and contains the topography of
the radar and the latitude-longitude coordinates of its territory. Radar data within the radar-data
group is decomposed into timestamps in the form of UTC-timestamps. Data for each radar has a
shape (252, 252, 21), where the first channel of the last dimension corresponds to intensity, 1-11 – to
reflectivity, 12-21 – to radial velocity.

# workaround OpenCV 4 . *
import cv2
cv2 . o p t f l o w . c r e a t e O p t F l o w D I S = cv2 . D I S O p t i c a l F l o w c r e a t e
import numpy as np
from r a i n y m o t i o n . models import Dense

# assuming x b a t c h c o n t a i n s t h e n e c e s s a r y t e n s o r
model = Dense ( )
model . i n p u t d a t a = x b a t c h # SEQ x H x W
model . i n p u t d a t a [ np . where ( model . i n p u t d a t a < 0 ) ] = 0
p red = model . run ( )

D DATASET STRUCTURE

The dataset is represented with a set of hdf5 files 5: one hdf5 file per year. We also share subsets
of RuDar dataset used in data analysis and experiments.

Each hdf5 file consists of two groups: radar-data and geo-data. radar-data group
provides measurements (precipitation intensity, reflectivity, and radial velocity) indexed by pairs
(timestamp, radar). geo-data group contains the topography Becker et al. (2009) of the radar and
the latitude-longitude coordinates of its territory

Figure 5 shows the schema of an hdf5-file.

radar-data group contains subgroups where each subgroup is named after a certain timestamp
in UTC time-zone. Timestamps have a 10 minute temporal resolution. Each timestamp subgroup
is divided into named hdf5-datasets with measurements from weather radars that were currently
available (sometimes radars are turned off due to problems). Each radar dataset is a three-dimensional
tensor that contains the result of a ten-minute scan of the atmosphere with a certain radar. The
measurements include precipitation intensity (mm/hr) on the 600 m altitude (the 1st channel in a
dataset), reflectivity (dBZ) (channels 2-11) and radial velocity (m/s) (channels 12-21) on 10 altitude
levels from 1 km to 10 km with a 1 km step and a 2 km spatial resolution.

geo-data group contains subgroups where each subgroup corresponds to a certain weather radar.
Each radar subgroup consists of three two-dimensional datasets with latitudes, longitudes, and
topography Becker et al. (2009) of the radar territory.

5The link will be available after review
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E MODEL INFORMATION

Persistent. In the persistent model, we consider the latest radar image from an input sequence as a
forecast for all K images of an output sequence, so it is simply a constant prediction.

Optical Flow. We take a state-of-the-art optical flow approach from Rainymotion library Ayzel
et al. (2019), and use Dense Inverse Search model with constant-vector advection scheme. The
advantage of this particular optical flow approach over the others was shown in previously published
works Sønderby et al. (2020) and our experiments. See code listing for usage in Section C of
Supplementary.

GAN-like. We used a pretrained GAN-based model from Ravuri et al. (2021) as a model for
comparison, and we did not additionally fine-tune or train this model on our data. The model, as
it is GAN-like, consists of a generator and discriminator parts. The generator contains two parts:
encoder and decoder. An encoder is a fully-convolutional neural network that separately processes
each input frame and concatenates the resulting representations. A decoder is a recurrent neural
network with ConvGRU cells Siam et al. (2017) for predicting future frames. The model contains
two discriminators: one for temporal consistency between predicted frames and another for spatial
consistency inside a certain frame.

UNet. We use the same architecture as proposed in Veillette et al. (2020). It is based on the original
UNet architecture Ronneberger et al. (2015) which takes M input frames concatenated along the
channel axis and predicts K output frames also concatenated along the channel axis. The model
contains four downsampling and four upsampling convolutional blocks – (32, 64, 128, 256) and
(256, 128, 64, 32) filters respectively. The last layer is a convolution with one filter for producing the
requested number of output channels. We trained the model for 10 epochs with L2-loss and Adam
optimization algorithm with a learning rate equal to 4e − 3 and batch size 64. For evaluation, we
took a checkpoint from the best epoch according to the validation loss.

ConvLSTM. We used the ConvLSTM and an encoder-predictor architecture proposed in Shi et al.
(2015), but with a few changes. Firstly, we do not concatenate predictions from all layers of the
predictor but use only the last layer. Secondly, we use the Adam optimizer instead of RMSProp.
Third, we use L2-loss instead of cross-entropy. And finally, we use teacher-forcing with probability
decreasing with the iteration number, similar to what authors of Wang et al. (2018) did in their
implementation.

For uncertainty estimation, we trained an ensemble of five models with (128, 64, 64) filters for each
layer, respectively. We trained these models with batch size 64 and learning rate 4e− 3 for one epoch
and then selected the best checkpoint for each according to the values of the validation loss.

Extended ConvLSTM. To analyze the impact of additional features, we expanded the original
architecture with convolutional blocks at the input and output of ConvLSTM layers (see Figure 4b).
We trained five models to provide an ablation study: a model without expansion by convolutional
blocks, an extended model that accepts only intensity as input, and three more models, each of which
accepts intensity and one of the additional features as input: reflectivity, radial velocity and orography.
Each model consists of three ConvLSTM layers with (64, 64, 64) filters for each layer, respectively.
We trained models for one epoch with the choice of the best checkpoint based on the values of the
validation loss. We used batch size 16 and a learning rate 1e− 3 for these experiments.

Earthformer. We use a transformer-like architecture called Earthformer Gao et al. (2022). The idea
of the model is dividing the input tensors to cuboids and calculating self-attention inside them. After
that cuboids are merged also with self-attention mechanism using additional global vectors. We have
used an official implementation with hyperparameters from the original paper.

F FIGURES: FEATURING DATASET PECULARITIES
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Figure 6: An example of sudden precipitation occurrence. The image shows radar measurements of
precipitation rate (mm/h) at ground level (up to 600 meters, top row) and reflectivity (dBZ converted
to mm/h by Marshall–Palmer relation) at an elevation of 3 km (bottom row) for three consequent
time moments with an interval of ten minutes. The data from a 3 km height provide information
about future precipitation before the actual rain starts. The example is for June 19th, 2020, 9:30 AM
UTC, Moscow, Russia. The color in the pictures corresponds to the levels of precipitation intensity,
which may vary from 0 (blue) to 50 mm/h (light green).

G UNCERTAINTY ESTIMATION DETAILS

Here we provide an additional details to the uncertainty estimation (UE) section in the main text.

For a given pixel value at the position (x, y) for radar r, time horizon k, and time t we can define
a ground truth y(r,k,t,x,y). Let us have five predictor models f1, . . . , f5 with the corresponding
predictions ŷ(1), . . . , ŷ(5) (we omit indices here for simplicity). We define an ensemble prediction
as ŷ(r,k,t,x,y) = 1

5

∑
i

ŷ(i), and the (biased) standard deviation (which we treat as an UE here) as

UE(r,k,t,x,y) =
1
5 (
∑

ŷ2(i) − (
∑

ŷ(i))
2). We note that while we do not use an unbiased estimate, it is

the same up to the scaling factor, and does not affect the calculated correlations. An ensemble error is
defined as AE(r,k,t,x,y) = |y(r,k,t,x,y) − ŷ(r,k,t,x,y)|.
We use the straightforward SciPy implementations for the Pearson and Spearman correlations, which,
in turn, correspond to two different usage scenarios. In the first scenario, we can actually approximate
an error with UE if we believe that the linear relationship (indicated by Pearson correlation) is strong
enough for this region, season, or radar. The second scenario, which uses a rank Spearman correlation,
is more suitable for the outlier detection and other sample ranking activities, like acquisition function
for an active learning.

While aggregation performed for the Fig. 8 is pretty straightforward, aggregation for the Fig. 7 was
performed as follows. First, we perform the averaging of ensemble error and UE grouped by horizon,
radar, month, and hour over the remaining dimensions (see pseudo-SQL code listing below). After
that, we calculate the correlation between the vectors of UE and ensemble error corresponding to
the graph points for both left and right plots. All the correlation values we provide are statistically
significant.

SELECT
AVG( e n s e m b l e e r r o r ) AS avg ae ,
AVG( s t d e v ) AS avg ue ,
h o r i z o n , r a d a r , month , hour

FROM (
SELECT ensemble mae , s t d e v , h o r i z o n , r a d a r , month , hour
FROM p i x e l w i s e e r r o r t a b l e

)
GROUP BY

h o r i z o n , r a d a r , month , hour
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Figure 7: Error and UE for the Smolensk radar averaged pixelwise over the summer season for the 10
min horizon. Large error regions are located at the same coordinates as large UE values.

Figure 8: UE for the ensemble case. Left: Pearson correlation coefficient between the error and UE,
averaged along the radars and time, as a function of the forecast horizon. Autumn and winter seasons
are less predictable with the uncertainty quantification. Right: Heatmap of the correlation coefficient
as a function of radars and horizon. Northern radars’ errors correlation with UE is smaller.

H FIGURES: UNCERTAINTY ESTIMATION
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I METRICS CALCULATION DETAILS

We use raw mm/h values to calculate MSE =
∑H×W

i=1 (yi − ŷi)
2/(H ×W ) for a single frame,

where yi is a pixel value from the ground truth sequence and ŷi is the corresponding value from the
predicted sequence. To calculate MSE on the entire dataset, we iterate over the dataset and maintain
a vector of length Coutput accumulating the sum of MSE values for each prediction horizon. To get
the final result, we first divide the values obtained in the vector by the total number of sequences and
then average them.

In order to calculate F1-measure, we beforehand binarize ground truth and predicted sequences
with some threshold. In our experiments, we took one of the standard (see Sønderby et al. (2020))
binarization thresholds equal to 0.1 mm/h. The metric is defined as F1 = (2 · TP )/(2 · TP + FP +
FN), where TP – cases when precipitation was present both in the predicted sequences and in the
ground truth, FP – cases where precipitation was present in the predicted sequences but was not
present in the ground truth, FN – cases where precipitation was not predicted but was present in the
ground truth. To calculate F1, we iterate over the dataset and maintain a vector of length Coutput

accumulating TP , FP and TN for each prediction horizon. After we have gone through the entire
dataset, we count F1 for each position in the vector, and then average the values obtained.
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