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Abstract

The general-utility Markov decision processes (GUMDPs) framework generalizes
the MDPs framework by considering objective functions that depend on the fre-
quency of visitation of state-action pairs induced by a given policy. In this work,
we contribute with the first analysis on the impact of the number of trials, i.e.,
the number of randomly sampled trajectories, in infinite-horizon GUMDPs. We
show that, as opposed to standard MDPs, the number of trials plays a key-role in
infinite-horizon GUMDPs and the expected performance of a given policy depends,
in general, on the number of trials. We consider both discounted and average
GUMDPs, where the objective function depends, respectively, on discounted and
average frequencies of visitation of state-action pairs. First, we study policy evalua-
tion under discounted GUMDPs, proving lower and upper bounds on the mismatch
between the finite and infinite trials formulations for GUMDPs. Second, we address
average GUMDPs, studying how different classes of GUMDPs impact the mis-
match between the finite and infinite trials formulations. Third, we provide a set of
empirical results to support our claims, highlighting how the number of trajectories
and the structure of the underlying GUMDP influence policy evaluation.

1 Introduction

Markov decision processes (MDPs) [20] provide a mathematical framework to study stochastic
sequential decision-making. In MDPs, the agent aims to find a mapping from states to actions such
that some function of the stream of rewards is maximized. The specification of the scalar reward
function, which expresses the degree of desirability of each state-action pair, allows the encoding of
different objectives. MDPs have found a wide range of applications in different domains [26], such
as inventory management [7]], optimal stopping [5] or queueing control [[24]. MDPs are also of key
importance in the field of reinforcement learning (RL) [25] since the agent-environment interaction is
typically formalized under the framework of MDPs. Recent years witnessed significant progress in
solving challenging problems across various domains using RL [[17} 21} [16]. Such results attest to the
flexibility of MDPs as a general framework to study sequential decision-making under uncertainty.

However, there are relevant objectives that cannot be easily specified within the framework of
MDPs [1]]. These include, for example, imitation learning |13} [19], pure exploration problems [12],
risk-averse RL [10], diverse skills discovery [9} 2] and constrained MDPs [3, 8]]. Such objectives,
including the scalar reward objective of standard MDPs, can be formalized under the framework of

18th European Workshop on Reinforcement Learning (EWRL 2025).



general utility Markov decision processes (GUMDPs) [28| [18]]. In GUMDPs, the objective is, instead,
encoded as a function of the occupancy induced by a given policy, i.e., as a function of the frequency
of visitation of states (or state-action pairs) induced when running the policy on the MDP. Recent
works have unified such objectives under the same framework and proposed general algorithms to
solve GUMDPs under convex objective functions [28} 27, [11]. Extensions to the case of unknown
dynamics are also provided by the aforementioned works.

Despite providing a more flexible framework with respect to objective-specification in comparison to
standard MDPs, [18]] show that finite-horizon GUMDPs implicitly make an infinite trials assumption.
In other words, GUMDPs implicitly assume the performance of a given policy is evaluated under
an infinite number of episodes of interaction with the environment. Since this assumption may
be violated under many interesting application domains, the authors introduce a modification of
GUMDPs where the objective function depends on the empirical state-action occupancy induced over
a finite number of episodes. Under the introduced finite trials formulation, the authors show that the
class of Markovian policies does not suffice, in general, to achieve optimality and that non-Markovian
policies may need to be considered. Finally, the authors suggest that the difference between finite and
infinite trials fades away under the infinite-horizon setting.

In this work, we contribute with the first analysis on the impact of the number of trials in infinite-
horizon GUMDPs. We show that the number of trials plays a key role in infinite-horizon GUMDPs,
as opposed to what has been suggested [18]]. Such a finding is of interest and relevance as: (i) the
infinite-horizon setting is one of the most prevalent settings in the planning/RL literature and has
found important applications in different domains where the lifetime of the agent is uncertain or
infinite; and (ii) the assumption that the agent is evaluated under an infinite number of trajectories is
usually violated in relevant application domains. We focus our attention on discounted and average
GUMDPs, where the objective function depends on discounted and average occupancies, respectively.
We show, both theoretically and empirically, that the agent’s performance may depend on the number
of infinite-length trajectories drawn to evaluate its performance, but also on the structure of the
underlying GUMDP. Our analysis fundamentally differs, from a technical point of view, from that
in [18]] where the authors consider the finite-horizon case; this is because discounted and average
occupancies are inherently different than occupancies induced under the finite-horizon setting.

2 Background

Infinite-horizon MDPs [20] provide a mathematical framework to study sequential decision making
and are formally defined as a tuple M = (S, A, p, po, ) where: S is the discrete finite state space; A
is the discrete finite action space; p : S x A — A(S) is the transition probability function with A(S)
being the set of distributions over S, py € A(S) is the initial state distribution; and r : S x A — R
is the bounded reward function. The interaction protocol is: (i) an initial state Sy is sampled from
po; (ii) at each step t, the agent observes the state of the environment S; € S and chooses an action
A; € A. The environment evolves to state S;y1 € S with probability p(+|St, A;), and the agent
receives a reward R; with expectation given by r(S;, A;); (iii) the interaction repeats infinitely.

A decision rule m; specifies the procedure for action selection at each timestep ¢. A stochastic
Markovian decision rule maps the current state to a distribution over actions, i.e., 7 : S = A(A). In
the case of deterministic Markovian decision rules 7; : S — A instead. A policy 7 = {mg, 71,...}
is a sequence of decision rules, one for each timestep. If, for all timesteps, the decision rules are
deterministic or stochastic, we say the policy is deterministic or stochastic, respectively. We denote
the class of Markovian policies with ITy; and the class of Markovian deterministic policies with TI%;.
A policy is stationary if it consists of the same decision rule for all timesteps. We denote with Ilg the
set of stationary policies and with IS the set of stationary deterministic policies. We highlight that
IIs C Iy and IIY C TIY;. For a given policy T, the interaction between the agent and the environment
gives rise to a random process T' = (Sp, Ag, S1, A1,...) € (S x A)N, where the probability of
trajectory 7 = (g, ag, S1, 1, - . .) is given by (. (7). In the case of 7 € IIg, we denote with P™ the
|S| x |S| matrix with elements P™(s,s") = Ear(.|s) [p(5']s, A)].

The infinite-horizon discounted setting The discounted state-action occupancy under policy 7 is

d’YﬂT(Saa’) = (1 - 7) nytpﬂ,pc)(‘st = SaAt = CL>7 (1)

t=0
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Figure 1: Illustrative GUMDPs [M; and M o are adapted from[18]]. All GUMDPs have deter-
ministic transitions. The objective for M ; is f(d) = (d,log(d)) (entropy maximization), for My o
is f(d) = KL(d|dg) where 3 is a fixed policy (imitation learning), and for M 3 is f(d) = d' Ad
where A is positive-definite (quadratic minimization).

where v € [0,1) is the discount factor and P, (S; = s,A; = a) denotes the probabil-
ity of state-action pair (s,a) at timestep ¢ when following policy m and Sy ~ pg. The ex-
pected discounted cumulative reward of policy 7 can be written as (d r, 71")[1_-] where d, » =
[dy,x(50,00), .- .,dy (5|5, 014])] and 7 = [r(s0,a0),...,7(5|s],a4))]. We aim to find 7* =
arg min, e (dy,x, —7).

The infinite-horizon average setting The average state-action occupancy under policy 7 is

H-1
. 1
Aavg, = (5, 0) = I}l_rgo T E Propo (St = s, Ay = a). 2)
t=0

The expected average reward of policy 7 can be written as (dayg,r, —7), Where dygr~ =
[dave,x(50,a0), - - -, davg,x (55, @.4))]. The analysis of the average reward setting depends on the
structure of the Markov chains induced by conditioning the MDP on different policies. We say that
an MDP is [20] 3]]:

* unichain if, for every = € IIP, the Markov chain with transition matrix P™ contains a
single recurrent class plus a possibly empty set of transient states. A recurrent class is an
irreducible class where all states are recurrent. An irreducible class is a set of states such that
every state is reachable from any other state in the set. A state is recurrent if the probability
of returning to it in the future is one and transient if the probability is less than one. In a
finite-state Markov chain, all irreducible classes are recurrent.

e multichain if the MDP is not unichain.

Under both unichain and multichain MDPs we aim to find 7* = arg min, cy (davg,x, —7)-

2.1 General-utility Markov decision processes

The framework of GUMDPs generalizes utility-specification by allowing the objective of the agent
to be written in terms of the frequency of visitation of state-action pairs. This is in contrast to the
standard MDPs framework, where the objective of the agent is encoded by the reward function.

We define an infinite-horizon GUMDP as a tuple M ¢ = (S, A, p, po, f) where S, A, p, and p, are
defined in a similar way to the standard MDP formulation. The objective of the agent is encoded
by f: A(S x A) — R, as a function of a state-action occupancy d. Similar to the case of standard
MDPs, d can correspond to: (i) a discounted state-action occupancy d.,, as defined in (I)), in the case
of infinite-horizon discounted GUMDPs; or (ii) an average state-action occupancy dayg, as defined in
(), in the case of infinite-horizon average GUMDPs. The objective is then to find

7 € argmin f(d,), 3
mell

where: (i) d, can either correspond to a discounted or average state-action occupancy depending on
the considered setting; and (ii) IT = HME] in the case of average multichain GUMDPs and II = Ilg in

!{a, b) denotes the dot product between vectors a and b.
2Since f can be non-linear it may happen that a stationary policy does not attain the minimum of f and,
hence, we need to consider the case where 7 € Ily [20, p. 402].



the case of discounted GUMDPs [3| Theo. 3.2.] and average unichain GUMDPs [20, Theo. 8.9.4].
When f is linear, we are under the standard MDP setting; if f is convex, we are under the convex
MBDP setting [27]]. Finally, it is known that the optimal policy may not be deterministic [12} [27].

Hlustrative GUMDPs Throughout this paper, we make use of the GUMDPs depicted in Fig.
which are representative of three common tasks in the convex RL literature.

3 From Expected to Empirical Objectives for GUMDPs

In this section, we introduce multiple objectives for GUMDPs. As opposed to the objective in (3)),
which depends on the expected discounted or average state-action occupancy d, the objectives herein
introduced depend on the empirical discounted or average state-action occupancy.

We start by considering that the agent interacts with its environment over multiple trials, i.e., multiple
trajectories/episodes. We denote by K the number of trials. We assume the K trials are independently
sampled. As it is generally clear from the context to understand whether we are referring to discounted

or average empirical occupancies, we use d to denote both types of empirical occupancies.

3.1 Empirical state-action occupancies

Discounted state-action occupancies We introduce CZTK’ which denotes the empirical discounted
state-action occupancy induced by a set of K trajectories Trr = {71, ..., Tk }, where each T}, =
(Sk,05 Ak,0, Sk,1, Ak 1, - . .), defined as

dTKsa KZI— Z’y (Skt =8, Ak =a), 4)
t=0

where 1 is the indicator function. In practice, it is common to truncate the trajectories of interaction
between the agent and its environment. We denote by H € N the length at which the trajectories
are truncated, i.e. the length of the sampled trajectories. We then introduce a truncated version of

estimator cZTK , which we denote dr,. g, defined as

K H-1

- 1 1—7

dTK,H(Sva):?E [ E Y 1(Skt = s, Api = a). (5)
k=1 =0

Average state-action occupancies In the case of average state-action occupancies, we define

- 1 . 1
dri (s,a) = 74 lim — Z 1(Sk = s, Ak = a). 6)
t=0

We emphasize that the estimator above JTK always considers infinite-length trajectories.

3.2 Infinite and finite trials objectives for GUMDPs

We now introduce multiple objectives for GUMDPs that are functions of empirical discounted/average
state-action occupancies. Below, in the case of a discounted GUMDP, d,, corresponds to an empirical

discounted occupancy and d, = d. . For average GUMPDs, dATK is an empirical average occupancy
and dr = dayg,x-

The finite trials discounted/average objective, fx, is
min fic(r) = min Er, [/(dr)]
where T}, ~ (, for each T}, € Tg. The infinite trials discounted/average objective, f, is
min foo () = min f(d-) = min f (. [dr,]),

where T}, ~ (, for each T}, € Tx. We note that f.., under both discounted and average occupancies,
is equivalent to the objective introduced in (3). Precisely, we call the objective above the infinite trials



objective because, assuming f is continuous, limg 00 f(d7.) = f(dx) = fso (). The finite trials
truncated objective, fx pr, which we only consider under discounted occupancies, is

min fre(m) = mgnETK [f(dTK,H)} ,

where T}, ~ (, for each T}, € Tx. We note that the finite trials truncated objective is more general
than the finite trials objective. In particular, fx g = fx as H — oo.

Why there may be a mismatch between the infinite and finite trials objectives? When f is
linear, we make the following remark.

Remark 3.1. If f is linear, for both discounted and average occupancies, we have that fo(7) =
fi (), forany K € N.

Proof. Under both discounted and average occupancies d, for any K € N, it holds that

foo(T) = (dr,b) = By [dric | ,0) = B [ (e, )] = fic(m),

due to the linearity of the expectation. O

Thus, all objectives are equivalent. Intuitively, the performance of a given policy is, in expectation,
the same independently of the number of trajectories drawn to evaluate its performance.

However, assume that the objective function f is convex, possibly non-linear. We make the following
remark.

Remark 3.2. If f is convex, for both discounted and average occupancies, we have that foo(m) <
[k (m), forany K € N.

Proof. Under both discounted and average occupancies, for any K € N and convex f, it holds that

foo(m) = flds) = f (]ETKNgW [JTKD < Eriencs {f (CZTKH = fx(m),

where the inequality follows from Jensen’s inequality. O

As a consequence, the theorem above suggests that, in general, there may be a mismatch between
the finite and infinite trials formulations for GUMDPs. In the next section we show that, indeed,
fx(m) # fso(m) in general and further investigate the impact of the number of trajectories in the
mismatch between the infinite and finite trials formulations under both discounted and average
occupancies.

4 Policy Evaluation in the Finite Trials Regime

In this section, we investigate the mismatch between the different GUMDP objectives introduced
in the previous section, while evaluating the performance of a fixed policy. We consider convex
objective functions. First, we focus our attention on the discounted setting and show that, in general,
fr(m) # foo(m), for fixed m € IIs. Furthermore, we provide a lower bound on the mismatch between

fx () and foo (7), as well as an upper probability bound on the absolute distance between f(d7,. )
and fo (7). Second, we study policy evaluation under GUMDPs with average occupancies. We
investigate the mismatch between fx (7) and f () for different classes of GUMDPs, also proving
a lower bound on the mismatch between fx (7) and f. (7). Finally, we provide a set of empirical
results to support our theoretical claims.

4.1 The infinite-horizon discounted setting

We first consider the discounted setting. Thus, letd; = d as defined in (I). Also, we consider

v,
estimators dr;. and d7;, g as defined in @) and (3) respectively. We prove the following result.

Theorem 4.1. Under the discounted setting, it does not always hold that fx(m) = foo(m) for
arbitrary € 1l.



Proof. We prove the theorem by providing a GUMDP instance where fx (7) # foo (7). We consider
the GUMDP M 3 (Fig. . For simplicity, we let f and the occupancies depend only on the states.
Hence, d = [d(s¢),d(s1),d(s2)]. We let f(d) = d Ad, where A is the identity matrix (hence, f
is a strictly convex function). It holds that d, = [(1 — v), ym(ag|so), y7(a1|s0)]. On the other
hand, let K = 1. It holds that, with probability 7 (ag|so), the trajectory gets absorbed into s; and

7 = (S0, 81,51, ..), yielding d, = [(1 —~), ~, 0]. With probability 7(a1|so) the trajectory gets
absorbed into s3 and 7 = (sg, S2, S2, . . .), yielding dr = [(1 —7), 0, v]. Let p = m(ag|so) and note
that 7(ay|so) = 1 — p. For any non-deterministic policy, i.e., p € (0, 1), it holds that

foo(m) = [(dx)
= fl(1=7), 7 01+ (1 =p)[(1=7), 0, 7])
<pf((L=2), 7 0)+ @ =p)f([(1 =), 0, 7])
:fK:1(7T)7

where the inequality holds since f is strictly convex. O

As stated in the theorem above, under the discounted setting, fx (7) # foo(w) in general. Thus,
we further analyze the impact of the number of trials, K, on the deviation between fx (7) and
foo (). To derive the result below, we assume f is c-strongly convex, i.e., it exists ¢ > 0 such that
f(dy) > f(de) + Vf(de) T (dy — do) + 5lldy — dgHg , for any d1, ds belonging to the domain of
f- We note that the objective functions of all GUMDPs in Fig.[l|are c-strongly convex (proof in
appendix). We state the following result (full proof in appendix).

Theorem 4.2. Let M be a discounted GUMDP with c-strongly convex f and K € N be the number
of sampled trajectories. Then, for any policy m € 1lg it holds that

fr(m) = foo(m) > Var |:CiT(S,a,>:|

2K sES Tt
acA

C(l _7)2 v,
S S v [,
a€A

where JI'" = Z;’io vtrs’a(St, Ay) is the discounted return for the MDP with reward function
rsa(s’,a') =1ifs = sand a’ = a, and zero otherwise.

Proof sketch. From the strongly convex assumption it holds, for a random vector X, that
c
E[f(X)] = f(BIX]) + SE [IX — EIX]|3]
Using the inequality above, it holds that

Tr(m) = foo(m) = E7ie {f(CzTK)} —f (ETK {CZTKD

c . 2
= BT U\dTK ~ J
@@ C 1 K
= § Z VarTK ? Z di (S, a)
s€S,acA =1

k
=% Y Va [dr(s.a)],

where (a) follows from simplifying the previous expression and substituting CZTK (s,a) =
LS dr,(s,a) where dr, (s,a) = (1 —7) 30007 1(Ske = s, Aks = a). The result fol-
lows since CZT(& a) is equivalent to the discounted return in an MDP with an indicator reward
function. O



As stated in the theorem above, the difference between fx (7) and foo(7) can be lower bounded by
the sum of the variances of the discounted returns for the MDPs with reward functions 7, as defined
above. We refer to [4 23| 22]] for an expression to calculate the variance of discounted returns in
MDPs. We highlight the 1/K dependence on the number of trajectories. Therefore, the result above
shows that, for a low number of trajectories, the mismatch between the objectives can be significant,
linearly decaying as K increases.

Finally, we provide a probability bound on the absolute deviation between f(dr, ) and fo (), for
fixed € Ils. To derive our result, we assume f is L-Lipschitz, i.e., | f(d1) — f(d2)| < L||d1 — d2]|1,
for any d, ds belonging to the domain of f. We prove the following result (full proof in Appendix).
Theorem 4.3. Let My be a discounted GUMDP with convex and L-Lipschitz f, K € N be the
number of sampled trajectories, each with length H € N. Then, for any policy 7 and ¢ € (0,1] it
holds with probability at least 1 — ¢

o) — £l ) < L ( \/2I8|AI lzg@ma) . 27H> |

Proof sketch. Via the application of successive inequalities, it can be shown that, for any 7,

|foo (M) = fldTic.mr)| < L<t€{0§}§§1} HdK,t —dry

) +27H>. 7

Using a union bound and the fact that P (Hd,,,t - a?K,tH > e’) < 2exp (—WK(e’)Q) I8l
Lemma 16] we have that, with probability at least 1 — 0,

< ¢ 21S][ A log(2H/3)
1 K
Substituting the result above in (7)) yields our result. [

max HdK’t —drt
te{0,...,H—1}

As shown above, for fixed H € N, the bound becomes arbitrarily tight up to a factor of 2Ly as
we increase the number of sampled trajectories K ; factor 2L~ is due to the bias of our estimator,
which exponentially vanishes as H increases. However, the bound highlights a 1/v/K dependence
on K, suggesting that for low K values the mismatch between fo () and f(d7,. s) can become
significant. Finally, the upper bound does not get tighter as H increases, for fixed K € N.

In summary, our results under the discounted setting show that, indeed, a mismatch between fx and
fo exists, as showcased in Theo. 4.1} where we provided a GUMDP under which fx # fs, and in
Theo. where we proved a lower bound on the deviation between fx and f... Finally, Theo.
further analyses how f (dTK7 1) concentrates around f,(7) depending on the number of trajectories
K, as well as the length of each trajectory H.

4.2 The infinite-horizon average setting

We now study the mismatch between the infinite and finite trials formulations of GUMDPs under the
case of average occupancies. Hence, we consider estimator JTK as defined in @ and dr = dayg,r-
We always consider infinite-length trajectories. We investigate which properties of the GUMDP
contribute to the mismatch between infinite and finite trials.

We start by focusing our attention on unichain GUMDPs, i.e., GUMDPs such that, for all 7 € IIY,
the Markov chain with transition matrix P™ has at most one recurrent class plus a possibly empty set
of transient states. To prove the next result (full proof in appendix), we assume f is continuous and
bounded in its domain. All objective functions in Fig. E] are continuous and bounded, however, for the
case of the KL-divergence in M ¢ 5 we need to ensure dg is lower-bounded to meet our assumptions.

Theorem 4.4. If the average GUMDP M is unichain and f is bounded and continuous in its
domain, then fx (n) = foo () for any m € 1.

Proof sketch. Consider the case where the occupancies are only state-dependent. For any 7 € 1lg,
in a unichain GUMDP, the Markov chain with transition matrix P™ and initial distribution p, has



a unique stationary distribution u, € A(S). Let Zy i be the random vector with components

Zr(s) = & S5 1(Sk, = s). It holds that,

1 K
d (K 2 ZM)

where (a) holds because: (i) from the Ergodic theorem for Markov chains [[15], Zg ; — pr almost
surely Vk € {1,..., K}; (i) since f is continuous, it also holds that f(% Zle Zux) — f(ur)
almost surely; and (iii) from (ii) and the fact that f is bounded, the bounded convergence theorem
[6, Theo. 1.6.7.] allows to simplify the expectation. We then generalize the result for the case of
state-action dependent occupancies by considering a Markov chain defined over S x A. O

fr(r) =Er, € f(ir) = foolm),

The result above states that, under unichain GUMDPs with continuous and bounded f, all objectives
are equivalent. We now address the case of multichain GUMDPs, i.e., GUMDPs that are not unichain
and, therefore, the Markov chain P™ contains two or more recurrent classes.

Theorem 4.5. If the average GUMDP M ; is multichain, then it does not always hold that fy (7) =
foo(m) for arbitrary ™ € Ty,

Proof. We prove the theorem above by providing a GUMDP instance where fx (7) # foo (7). We
consider the GUMDP M 5 (Fig. , which is multichain. For simplicity, we let f and the occupan-
cies depend only on the states. Thus, d = [d(s¢),d(s1),d(s2)]. We let f(d) = d" Ad, where A is the
identity matrix (hence, f is a strictly convex function). It holds that d,, = [0, 7(ao|s0), 7(a1|so)]-
On the other hand, let K = 1. With probability 7(ag|so), the trajectory gets absorbed into s;
and 7 = (s0,51,51,...), yielding d, = [0, 1, 0]. With probability 7(a;|so) the trajectory gets
absorbed into ss and T = (sg, $2, $2, . - .), yielding d, = [0, 0, 1]. Let p = m(ap|so) and note that
m(a1|sp) = 1 — p. For any non-deterministic policy, i.e., p € (0, 1), it holds that

foo(m) = fldx) = f([0, p, (1 —p)])
= f(p[07 1, 0] + (1 7p)[07 0, 1])
<pf([0, 1, 0) + (1 = p) f([0, 0, 1]) = fx=1(7),

where the inequality holds since f is strictly convex. O

The result above shows that, under multichain GUMDPs, fx (7) # foo(7) in general. The intuition is
that each trajectory eventually gets absorbed into one of the recurrent classes and, therefore, multiple
trajectories may be required so that dr,. ~ d, and, hence, f(d1..) ~ f(dx). Therefore, we now
further investigate the mismatch between the finite and infinite objectives by proving a lower bound
on the deviation between fx (7) and foo(7) while assuming f is c-strongly convex (full proof in
appendix).

Theorem 4.6. Let M ¢ be an average GUMDP with c-strongly convex f and K € N be the number
of sampled trajectories. Consider also the Markov chain with state-space S, transition matrix P™ and
initial states distribution py. Let 'R be set of all recurrent states of the Markov chain and R+, ..., Ry,
the sets of recurrent classes, each associated with stationary distribution ;. Then, for any policy
7w € 1, it holds that

L
fK(ﬂ-) - Z Aar B~Ber( al) Z Z Cl| )

SER; acA

where B ~ Ber (p) denotes that B is distributed according to a Bernoulli distribution such that
P(B =1) =pand oy = limy_, P(S; € Ry|So ~ po) is the absorption probability to R;.

Proof sketch. Let dp(s,a) = limp_,o0 Zp(s,a) where Zy (s, a) = + t 0 1(S: = s, At = a).

H
Under a multichain GUMDP, Zg(s,a) — Ysm(a|s) almost surely where Y is a random variable
such that: (i) if s is transient, P(Y, = 0) = 1; and (ii) if s is recurrent, Y, = j1(4)(s) with probability



ay(s) and Yy = 0 with probability 1 — «y s, where 1(s) denotes the index of the recurrent class to
which state s belongs. Then,

fr(m) = foo(m) = E7y [f(CzTK)} —f (ETK [JTKD

@ ¢ “ 2
> iETK HdTK —dy 9
C ~
= — Z VZI]’T~C7r |:dT(S7 CL)]
2K SES,acA
Yok X ’
= — 7(als)*Var [Y;]
2K s€S,acA
(© C L
=K > Varppea) [B] Y w(als)’m(s)
=1 sERy
acA

where: (a) follows from the c-strongly convex assumption; in (b) we used the fact that Zg (s, a) —
Yi7m(als) almost surely and the bounded convergence theorem [6, Theo. 1.6.7.] to simplify the
variance term; and (c) follows from rewriting Y, using a Bernoulli random variable, noting that
Var (Y;) = 0 for transient states, and simplifying the resulting expression. O

Intuitively, the result above shows that the gap between fx (7) and fo.(7) can be lower bounded by
a weighted sum of the variances of the probabilities of getting absorbed into each of the recurrent
classes. Thus, we expect the gap to exist whenever the sampled trajectories can get absorbed into
different recurrent classes. Also, we highlight the 1/K dependence on the number of sampled
trajectories. Finally, we note that, in the case of unichain GUMDPs, since the unique recurrent class
is reached with probability one, the lower bound above equals zero, agreeing with Theo. .4

4.3 Empirical results

We now empirically assess the impact of different parameters in the mismatch between fx g ()
and fo(m) for arbitrary fixed 7. Under the discounted setting, we consider dr,, m as defined

in (3). We also use dr, g to study the average setting by letting H — oo and v — 1, since
limp o lim, 1 (B) = (6). We consider the GUMDPs depicted in Fig.[l| Under M 1, w(left|so) =
w(right|so) = 0.5, and 7 (right|s;) = m(left|sy) = 1; for M5 and M 3, 7 is uniformly random.
We consider 100 random seeds and report 95% bootstrapped confidence intervals (shaded areas
in plots). Complete experimental results are in the appendix. The code used can be found in the
following repository,

Discounted setting (v < 1) In Fig.[2] a set of plots displays the average finite trials objective
function, f(dr, m),in comparison to the infinite trials objective f(d), under GUMDP M ;. As
can be seen, the results highlight that f(d7, #) can significantly differ from f(d.). Also, for the
displayed ~y values, both the trajectories’ length H and the number of trajectories K need to be

sufficiently high for the mismatch between f(d7, z) and f(d,) to fade away. This is suggested by
Theo. .3]since both K and H contribute to the tightness of the upper bound. We display the results

for estimator CZTK, g under all GUMDPs in the appendix.

In Fig.[3a] we display a set of plots comparing f (dTK, H=oo) and f(d,) for the different GUMDPs,

under infinite-length trajectories. As can be seen when y < 1, even for H = oo, f(d7 H=co) can
significantly differ from f(d.) if the number of sampled trajectories is low. Such results support the
fact that K plays a key role in regulating the mismatch between the different objectives for discounted
GUMDPs and are in line with our theoretical analysis.

Average setting (y — 1, H — co) As can be seen in Fig. [3al under M, ; and M 5, we have

that the difference between f(d7, r—oo) and f(d,) fades away when  — 1. However, this is not
the case for My 3. Under M ; and My 5, we obtain such results because, given the choice of
policies, the induced Markov chains have a single recurrent class. Hence, since there exists a unique


https://github.com/PPSantos/gumdps-number-of-trials/tree/master
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Figure 2: Empirical study of f (CZTK, ) for different K, H and +y values under M ;.
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(a) Standard transition matrices. (b) Noisy transition matrices.
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Figure 3: Empirical study of f (JTK, H=oo) for different K and ~ values, with H = oc.

stationary distribution, dATK, H=oo converges to d, irrespective of K and the different objectives
become equivalent. However, under M ¢ 3 and for the chosen policy, the induced Markov chain has
two recurrent classes and, hence, there exist multiple stationary distributions. Thus, a low number of
trajectories (K value) does not suffice to evaluate the non-linear objective.

Our results are in line with the theoretical results from the previous section. We note that all GUMDPs
in Fig. are multichain. Hence, from Theo. it not always holds that f(d7, mr—oo) = f(dy) in
general. Our results for M 3 exemplify that such a mismatch can occur. Naturally, being multichain
does not imply that f(dr, g—oc) # f(d,) for: (i) all policies; or (ii) any policy. For (i), take our
results under My ; as an example. For (ii), consider M ¢ . For all policies except m(left|s;) =1
(zero otherwise) and m(right|sy) = 1 (zero otherwise), the induced Markov chain has a single
recurrent class and, hence, f(d7, . f—o0) = f(dx). However, under the policy just described, even
though the induced Markov chain has two recurrent classes, one of them is unreachable given the
distribution of initial states and, hence, it also holds that f (cZTK, H=o0o) = f(dx). Thus, for M o, the
different objectives are equivalent for all policies.

Average setting (v — 1, H — oco) with noisy transitions We consider the GUMDPs in Fig. [T}
but add a small amount of noise to the transition matrices so that there is a non-zero probability of
transitioning to any other arbitrary state. All GUMDPs now become unichain. In Fig.[3b} we display
the results obtained for different « values with trajectories of infinite length. As can be seen, for
the discounted setting (v < 1), it continues to exist a mismatch between the objectives. However,
under the average setting (7 — 1), the gap between the objectives fades away for all GUMDPs. Such
results are in line with Theo. 4.4] where we showed that the different objectives are equivalent for
unichain GUMDPs.

5 Conclusion

In this work, we provided clear evidence, both theoretically and empirically, that the number of trials
matters in infinite-horizon GUMDPs. First, under the discounted setting, we showed that a mismatch
between the finite and infinite trials formulations exists in general. We also provided upper and
lower bounds to quantify such mismatch as a function of the number of sampled trajectories. Second,
under the average setting, we showed how the structure of the underlying GUMDP influences the
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Table 1: Are the infinite and finite trials formulations equivalent? (v'= yes, X= no)

Discounted setting Average setting
Objective function (f) Unichain Multichain

Linear v [Remark v [Remark v [Remark
Non-linear X [Theo. [4.1] v [Theo.4.4] X [Theo.[4.5]

mismatch between the finite and infinite trials formulations: (i) for unichain GUMDPs, the infinite
and finite trials formulations are equivalent; and (ii) for multichain GUMDPs there is, in general, a
mismatch between the different objectives. Finally, we provided a set of empirical results to support
our theoretical claims. We summarize our results in Table

While we focused on the case of policy evaluation, we expect the mismatch between the finite
and infinite trials to also impact policy optimization. For example, under a generalized policy
iteration scheme [25]], we expect the mismatch between the infinite and finite trials formulations at
the policy evaluation stages to impact the resulting optimal policies. Future work should study policy
optimization in the finite trials regime, investigating its computational and statistical complexity.
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A Empirical State-Action Occupancies

Given a random trajectory T' = (Sy, Ao, S1, 41, . . .), we note that

Pr(Sy =5, Ay = a|So ~ po) = Brnc, [1(Si =5, Ay = a)] = > _ (a(r)1(s¢ = 5,0, = a),
where (. (7) denotes the probability of trajectory T = (s, ag, S1, a1, . . .) under policy 7.

A.1 Discounted occupancies

Given a random trajectory 7' = (S, Ao, S1, 41, . . .), consider the estimator CZT(S, a) defined as

dr(s,a) =(1—7) Z’ytl(St =s,A; = a). (8)
=0

~+

It holds that, forall s € Sand a € A,

T t=0
o0
=(1-7) ZWt ZCw(T)l(St =s,a; = a)
t=0 T
=(1-9) ZVtIPw(St = s,A; = al|so ~ po)
t=0
=d,(s,a),
i.e., dr is an unbiased estimator for d. Given a set of K random trajectories T = {T1,..., Tk},

consider estimator
1 K
dTK (S, a) = ? 1; di (57 a’)7

for d}k as defined in @I) We note again that, for all s € Sand a € A4, and any K € N,
1 &
e S in )

k=1

1 ZK ;
= E ETkNCw |:di (87 a)i|
k=1

= dﬂ'(s’ a)7

B [JTK (S’G)} =Er

i.e., the estimator JTK is unbiased. We now show that estimator (JTK is also consistent.

Remark A.1. (dr, is a consistent estimator) For any s € S and a € A, the estimator dr, (s, ) is
consistent in probability for d. (s, a), i.e., limg o P (’JTK (s,a) —dx(s, a)‘ > e) = 0,Ve > 0.
’1:his is true because theA estimator consists of a sample average of random variables dj, (s,a) =
dr, (s,a) (we note that dp, (s, a) is a random variable since it is the result of applying a function to

the random trajectory T},). In particular, since random variables dy, (s, a) are i.i.d. and E [dk (s, a)] =

dr(s,a) < oo, for all k, the weak law of large numbers states that - Zle dy.(s,a) converges in
probability to d (s, a) when K — oc.
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A.2 Average occupancies

Given a random trajectory 7' = (S, Ao, S1, 41, . . .), consider estimator CZT(S, a) defined as
1

. 1 2=

dr(s,a) = Jm T 1(S; = 5,4 = a). ©)

t=0

It holds that, forall s € Sand a € A,

| Al
IETNQ7r |:dT(S,a/):| = ETNCw [}}gllw H Z 1(St =S, At = Cl)
t

= (a(7) lim 7 2 WS =s54r=0)
— im0 Y 1S = s A= a)

— lim = 3 S G()1(S = 5, A = a)
t=0 T
H-1

. 1
= ngnoo H ; P (S; = s,A; = a)
- davg,'fr(sv (L),

i.e., dr is an unbiased estimator for dyyg, . Given a set of K random trajectories Tk ={T1,..., Tk},
consider estimator

dTK s, a) Z di s, a)
for chk as defined in @]) We note again that, for all s € S and a € A, and any K € N,
1K
X dneo)

K
Z Tp~Cr |:di s,a)}
= davg ( a),

i.e., the estimator ciTK is unbiased. Finally, similarly to the case of discounted occupancies, the

Eri [JTK (S’G)} = Eri

average occupancy estimator d-r. is also consistent, i.e., img_, o, P (’CZTK (s,a) —dr(s,a) ‘ > e) =
0, Ve > 0. The line of reasoning is the same as that in Remark [A.T]

B Policy Evaluation in the Finite Trials Regime

Assumption B.1. We say that f is c-strongly convex if there exists ¢ > 0 such that
c
f(dr) > f(da) + Vf(da) " (dr — da) + 3 lldr = ds |3, (10)

for any di, do belonging to the domain of f. Equivalently, f is c-strongly convex if there exists ¢ > 0
such that

V2f(d) = cI, (11)
for all d belonging to the domain of f, where [ is the identity matrix.

Remark B.2. Consider the objective function f(d) = (d,log(d)). It holds that f is c-strongly convex
and any c € (0, 1] satisfies and (TI).
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Proof. Tt holds that V2 f(d) = diag([1/d(1), 1/d(2), ... ]) where diag(a) denotes the diagonal
matrix with vector a in its diagonal. From the strong convexity definition,

V2f(d) = cI, Vd
— V2f(d) —cI =0, Vd
— \(d)—¢>0, Vi, Vd
= Amin(d) > ¢, Vd

<= min L >c, Vd,
i d(i)

where \;(d) are the eigenvalues of matrix V2 f(d). Since d € A(S x \A), it holds that min, ﬁ >1
for any d € A(S x A) and, hence, f is c-strongly convex with any ¢ € (0, 1] satisfying (I0) and
. O

Remark B.3. Consider the objective function f(d) = KL(d|dg) =), d(i) log (%), where dg is

fixed. It holds that f is c-strongly convex and any ¢ € (0, 1] satisfies (I0) and (TT).

Proof. Tt holds that V2 f(d) = diag([1/d(1), 1/d(2), ... ]) where diag(a) denotes the diagonal
matrix with vector a in its diagonal. Thus, similar to the case of the entropy function, it holds that f
is c-strongly convex with any ¢ € (0, 1] satisfying (I0) and (TT). O

Remark B.4. Consider the objective function f(d) = dTAd. If A is positive definite, i.e.,
Amin(A) > 0 where Amin(A) denotes the smallest eigenvalue of matrix A, then f is c-strongly
convex. Furthermore, any ¢ € (0, 2\min(A)] satisfies (I0) and (TT).

Proof. Tt holds that V2 f(d) = 2A. From the condition for strong convexity,

V2f(d) = I, Vd
< 24—-¢cl >0
<~ 2\;—c>0, Vi
<~ 2\; >c, Vi
<~ 2)\min(A) > c,

where \; are the eigenvalues of matrix A. If A\yin(A) > 0, then any ¢ € (0, 2Anin(A)] satisfies the
condition above. O

B.1 Discounted setting
B.1.1 Proof of Theorem[4.2]

Theorem[d.2] Let My be a GUMDP with c-strongly convex f and K € N be the number of sampled
trajectories. Then, for any policy 7 € Ilg it holds that

Jr(m) = foo(m) =

e 3 e [itoa)

U0 5 v ],

where J)'T = Ztoi 07Y'7s,a(St, A¢) is the discounted return for the MDP with reward function
rs.a(s’ya’) =1if s’ = sand @’ = a, and zero otherwise.

Proof. For any policy 7 € Ilg it holds that
I (7) = foolm) = e | £(d7ic)| = 1 (Emic [dric])

15



@ ¢ R 2
> K a
2 o | ]
¢ - 2
- §]ETK Z (dTK (s,a) — dx(s, a))
s€S,acA
¢ 2
=5 > Er [(dTK s,a) — dy (S,a)) ]
s€S,acA
C ~
=5 > Varr [dn(s0)]
s€S,acA
C 1 K
=3 Z Vargr, . 1y} [K Zdi (s,a)]
sE€ES,aeA =1
C ~
s Y Ve, [in(no)
s€S,acA
c(1 —~)2
— % > Varp, [Zv (S =s,Ay = a)] 7
s€S,acA
c(l-7)? _
= T Z \]arT,\,C7r |:J;); a]
s€S,ac A

where (a) follows from the strongly convex assumption and the fact that
F(X) 2 F(EIX]) + VS EIX]) (X — EIX]) + £ |X — E[X]|}
— E[f(X)] 2 f(EX]) + SE [|IX —E[X]|]
where X is a random vector. We refer to [4} 23| 22] for a closed-form expression for the calculation

of Varp.¢_ {J“’ ”} . O

Ts,a

B.1.2 Proof of Theorem 4.3

Theorem Let M; be a GUMDP with convex and L-Lipschitz f, K € N be the number of
sampled trajectories, each with length H € N. Then, for any policy 7 and § € (0, 1] it holds with
probability at least 1 — ¢

o) = S ()| < 1 <\/ ASIATOBRH/0) | M) = Bupel IS, H).

K

For fixed H € N it holds that
Jim Bupper(K, H) = 2047,
— 00

and for fixed K € N
1. E K H —_—
Hnn Upper( ) ) o8}

Proof. For any policy m and H € N, we have

fool®) = f(dic )| = |F(dn) = F(dricun)|

(a)
<L HH
1
[e%e) H-1
® (1-1)
:L (1 ’Y)Z’ytdﬂ',t_l_ H
t=0 7 t=0 1
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H—-1 %)
1-— N
=L|— 7H At ((1 — ) dn g — det) +(1=9)> ey
v t=0 t=H 1
H—1
© 1— .
<L L 7t ((1 — MY dp s — dK,t) +~1
1- v t=0 1
H—-1
@ 1— R
<L > | (=) s = |+
I !
H—-1
e 1-— A
{77 20 (e = o], + sl ) "
-7 50 1
1_ H—-1
<L D0 e = dra| + 207
11— Pt 1

S L ( max HCZK7t — d‘n’,t
te{0,...,H—1}

‘ +2’yH>
1

where: (a) is due to the L-Lipschitz assumption; in (b) we used dr = (1 — ) > ;= ¥ dx,+ where

d: denotes the expected occupancy under policy 7 at timestep ¢, and JTK, g=01-7v/1-
H H-1
)

P < max HCZK,t —dr
te{0,...,H—1}

T

INZ
T

Il
=]

=0 'ytci K,t Where d Kt denotes the empirical distribution induced by the K random trajecto-
inequality above with high probability; to do so, we note that
H-1
) > 6/) <P ( U HdK,t —dry ) > €/>
t=0
S P(Hd}(’t—dﬂ—’t > 6/)
‘ 1
2H exp (—IK(€’)2>
2|S]|A]
d‘n’,t - JK,t

ries at timestep ¢; and (c), (d) and (e) follow from the triangular inequality. We aim to bound the last
@ =]
2 exp (K(e’)2>
‘ 2|S|| Al
2exp (—WK (¢ )2> (Lemma 16 in [8]]). Thus, it holds with probability at least 1 — §

where: (a) follows from a union bound, and (b) from the fact that P (‘

>e’> <

‘ < \/QISIIAI 1;%(211/5)

max HdK’t — dﬂ—,t
te{0,..., H—1}

Given the above we conclude that, with probability at least 1 — 4,

) Hldren)] < L( \/28||A1;)(g(2H/6) HWH).

For the limits we have, for fixed H € N,

: . 2|S||Allog(2H/d)

i Fone,10) = iy 1 ((f2ARECID) o
L SIANesRE/S) .
s, BT o,
=0+ 2L~H.
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For fixed K € N,

: o 2|S||Allog(2H/b) |, u
0, e ) = i W kY
=L lim \/2|S|A| log(2H/9) +2L lim A%
H—oo K H—oo

2
=1L %}}im V1og(2H/6) + 0
—00

_ o J2SHAL
=L % /I}gnwlog(QH/é)+0

2
=L %'OO—I—O

= 0

B.2 Average setting
B.2.1 Proof of Theorem 4.4

Theorem@ If the GUMDP M is unichain and f is bounded and continuous in its domain, then
fr(m) = foo(m) for any 7 € Ils.

Proof. We start by focusing on the case of state-dependant occupancies and later generalize our result
for the case of state-action-dependant occupancies.

For any 7 € Ilg, in a unichain GUMDP, the Markov chain with transition matrix P™ and initial states
distribution pg contains a single recurrent class R, and a possibly non-empty set of transient states
Z. Associated to the unique recurrent class is 1, € A(S), the unique stationary distribution of the
Markov chain, which satisfies p(s) > 0 for s € R and p.(s) = 0 for s € Z. Furthermore, the
unique stationary distribution ., satisfies

Y P(sls)pals) = pnls), Vs€S

s’eS
Z,uﬂ(s) =1.

seS

All aforementioned facts can be found in textbooks such as [20].

Now, for a fixed policy 7 € Il g, consider the estimator

H-1

A 1
dr(s) = lim - > 1S =), (12)

t=0

where T = (Sp, S1, . . .) denotes a random trajectory from the Markov chain with transition matrix
P7 and initial distribution pg. Since there is a single recurrent class, independent of the initial state
distribution, a random trajectory drawn from the Markov chain will eventually get absorbed into the
unique recurrent class in a finite number of steps. Hence:

» for any transient state s € Z of the Markov chain, we have that JT(S) = 0 almost surely.
From the definition of a transient state, it holds that Y.~ , 1(S; = s) < oo with probability
one, yielding

1= 1 &
dr(s) = lim — > 1(S;=s) SI}EEOEZ“SFS) =0.
t= t=0

Ju
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* for any recurrent state s € R belonging to the unique recurrent class of the Markov chain,
we have that dr(s) = i (s) almost surely. Recurrent classes within a larger Markov chain
can be seen as independent Markov chains [20]. Let Pr_, r denote the transition matrix
for the states belonging to the recurrent class of the Markov chain. Then, since Pr_, r is
an irreducible Markov chain (any state is reachable from any other state), from the ergodic
theorem for Markov chains [[15]] it holds that, for any initial distribution,

H-1
P (JT(S) - u,r(s)) =P ( lim % S 1S =s) = ,u,r(s)> =1

t=0

Now, we use the fact that estimator dp(s) converges almost surely to ji(s) in order to show the
equivalence between fx (7) and foo (7). For now, we assume f is defined over state-dependant
occupancies and later extend our analysis for the case of state-action-dependant occupancies. Let
Zp,i, be the random vector with components Z i(s) = 4 f:f)l 1(Sk, = s). Since, for each
s € Sandk € {1,...,K}, it holds that Zy ,(s) — u-(s) almost surely, we have that random

vector Zy i, — [t almost surely, for any k € {1,..., K}, ie.,
IF’( lim Zg :,L,,) =1, Vke{l,...,K}
H—o00

By the definition of the finite trials objective (considering a state-dependant occupancy and objective
function), it holds that

K
fr(m) =K [f(JTK)} =E7; [f <[1( > i ZH,k)
k=1

Since Zp i, — pr almost surely for any k € {1,..., K}, it also holds that -+ Zszl Zak = ln
almost surely since the K trajectories are independently sampled. Assuming f is continuous, it holds

that f(% Ele Zu k) — f(pr) almost surely. Since f is bounded in its domain by assumption it

also implies that ‘ f (% Zszl Z H,;c) ‘ is bounded for any H € N. Thus, from the dominated/bounded
convergence theorem [6, Theo. 1.6.7.], it holds that

1 K
(3 )

where the second equality holds because f (4 Zle Zy 1) converges almost surely to f(u ), which
is a non-random quantity.

=E[f(ur)] = f(pix),

ETK

Finally, it remains to show that the result above also holds for the case of state-action occupancies.
Consider a second Markov chain, which we call the extended Markov chain, that has state space
S =8x transition matrix P(s',a'|s,a) = p(s'|s,a)n(d’|s’), and po(s,a) = po(s)m(als).
This Markov chain encapsulates both the transition dynamics p and the policy 7 within the tran-
sition matrix P and it should be clear that a random trajectory from the extended Markov chain
((So, Ao), (S1, A1), ...) precisely describes a random sequence of state-action pairs when using
7 € Il to interact with the GUMDP. It holds that the extended Markov chain has a unique stationary
distribution [i(s,a) = pr(s)m(als). This is true because [i, is a stationary distribution for the
extended Markov chain if it satisfies

fr(s' a') = Z Z P(s',d'|s,a)fix(s,a), Vs, d' (13)

s€eSacA

1= jix(s,a). (14)

seSacA

3We denote a state of the extended Markov chain with the tuple (s, a). However, to make the notation simpler,

we usually drop the parenthesis from the (s, a) tuple, thus writing po(s, a) instead of po((s,a)), P(s’,a’|s, a)
instead of P((s’,a’)|(s,a)), ur(s,a) instead of i ((s,a)), etc.
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Letting fir(s,a) = pr(s)7(a|s) satisfies (I3) since, when 7r(a’|s’) >0,

e (al]s') = 3 3 wlals) P, o' s, @) e (s)

seSacA

= a( (@] = 30 3 wlals)n(@]sp(s' s, )pa (5)

sES acA

= () = 30 3 wlals)p(s']s, a)an(s)

sES acA

< (s ZP’T (8'|8)pr (),
s€S

and the last equality above holds since ., is the stationary distribution of the Markov chain with
transition matrix P™. If w(a’|s") = 0, then (I3)) also holds given that fi(s', a’) = ur(s")w(a’|s") = 0.
Equation (14) is also straightforwardly satisfied. It can also be seen from the equations above that
the stationary distribution /i, is unique. Assume the opposite, i.e., there exist multiple stationary
distributions for the extended Markov chain. This would imply that it also exist multiple vectors
satisfying the last equation above, which we know it is not possible because the Markov chain with
transition matrix P™ has a unique stationary distribution.

Consider estimator
H-1

A 1
dr(s,a) = lim - ; 1(S; = s, Ay = a), (15)
where T' = (S, Ao, S1, A1, . . .) denotes a random sequence of state-action pairs from the extended
Markov chain. Since there is a single recurrent class (associated with the unique stationary distribution
of the extended Markov chain), independent of the initial state distribution, a random trajectory drawn
from the extended Markov chain will eventually get absorbed into the unique recurrent class in a
finite number of steps. Hence:

* if m(als) = 0 for some state-action pair (s, a), then (s, a) is never visited in the extended

Markov chain under any distribution of initial states and, hence, IP (dT(s, a) = O) =

* for any state-action pair (s,a) such that w(als) > 0, if (s,a) is transient in the ex-
tended Markov chain (equivalent to s being transient in the Markov chain P7), then

P (JT(S, a) = o) =1

» for any state-action pair (s, a) such that 7(a|s) > 0, if (s, a) is recurrent in the extended
Markov chain (equivalent to s being recurrent in the Markov chain P™), then from the
Ergodic theorem for Markov chains [[15]

H—oo H

H-1
R 1
P (dT(s,a) = /l,r(s,a)) = < lim Z 1(S; =s,A1=a) = ﬂﬂ(s,a)> =1.
t=0
Thus, noting that fi,(s,a) = pr(s)w(als) = dx(s,a) and following the same line of reasoning as we

did for the case of state-dependant occupancies, we can use the fact that estimator CZT(S, a) converges
almost surely to d (s, a) to show the equivalence between [ (7) and foo (7).

Lemma B.5. Consider a Markov chain with finite state-space S and transition matrix P. Let
po € A(S) be the distribution of initial states of the Markov chain, i.e., Sy ~ po, and afterwards
Sy ~ P(:|St—-1), for allt > 0. Assume that the state-space can be partitioned into L disjoint recurrent
classes R, ..., R and a set of transient states Z. For each recurrent state s € Ry U ... U R, we
let I(s) denote the index of the recurrent class to which state s belongs. Let also p; denote the unique
stationary distribution associated with each recurrent class R;. It holds, for any s € S, that

1 H-1
P(&E&H 2 1<St=$>=Ys> =1,

t=0
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where Y is a random variable such that, if s € Z then P(Yy, = 0) = 1, and if s is recurrent then

(s)s Iy = ts)(s),
P(Y;:y): 1_Oél(s)7 lfy:O7
0, otherwise,

and
ays) = lim P(S; € Ry(s)|So ~ po)

denotes the probability of absortion into recurrent class Ry(,), i.e., the recurrent class to which
recurrent state s belongs, when the initial state Sy is distributed according to po and can be calculated

in a closed-form manner [I4) Theo. 2.3.4.]. In other words, limpg o % Zi;l 1(S; = s) converges
almost surely to random variable Y, which describes the asymptotic proportion of time the chain
spends in any state s € S.

Proof. The state-space S of every finite-state Markov chain can be partitioned into L disjoint recurrent
classes Rq, ..., R and a set of transient states Z. For each recurrent state s € R1 U ... U R, we
let I(s) denote the index of the recurrent class to which state s belongs. Every recurrent class R; can
be treated as an independent Markov chain, associated with a unique stationary distribution y;, which
satisfies p;(s) > 0 forall s € R; and p;(s) = 0 for all s ¢ R; [20]. Once absorbed into a given
recurrent class, the chain cannot leave the recurrent class and will visit every state in the recurrent
class infinitely often.

Let dp(s) = limp oo + Zf: 51 1(S; = s) denote the asymptotic proportion of time the chain
spends in any state s € S. It holds that:

* for any transient state s € Z of the Markov chain, we have that JT(S) = 0 almost surely.
From the definition of a transient state, it holds that >~ ; 1(S; = s) < oo with probability
one, yielding

* for each recurrent class R;, if the Markov chain gets absorbed into R;, then it holds that

H-1
. 1
P (I}gréo T ; 1(S; =s) = ,ul(s)> =1, forseRy,
i.e., the asymptotic proportion of time the chain spends in each state s € R; converges
almost surely to p;(s) for all s € R;. This result follows from the ergodic theorem for
Markov chains [[15].

* for each recurrent class R, if the Markov chain gets absorbed into another recurrent class

" # [ then it holds that d}(s) = 0 for all s € R; since, once absorbed into class R;/ the
chain cannot leave the recurrent class (by definition).

Therefore, the chain starts in an arbitrary state Sy ~ po and eventually gets absorbed with probability
one into a given recurrent class ;. Once absorbed into R;, the chain behaves as an independent
Markov chain defined only on states R; and: (i) the chain cannot leave the recurrent class, hence
dr(s) = 0 forall s ¢ Ry; and (ii) dr(s) converges almost surely to 1 (s) for every s € R;. Thus, it
holds that lim g _, o % Zflz 61 1(S; = s) can be described, in the almost surely sense, by a random
variable Y; such that: (i) if s € Z then Y; = 0 almost surely; (ii) if s € R, i.e., if s belongs to
some recurrent class R, and the chain gets absorbed into R;, then Y = p;(s) almost surely; and
(iii) if s € R; but the chain gets absorbed into other recurrent class R/, then Y, = 0. Therefore, the
probability density function of Y can be described as follows: if s € Z, i.e., if s is transient, then
P (Ys = 0) = 1. On the other hand, if s is recurrent

A(s), lfy = Hi(s) (5)7
]P)(Yszy): 170‘[(8)7 y:07
0, otherwise,
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where
ays) = Jim P(S; € Rygs)|So ~ po)

is the probability of absorption to recurrent class ;. i.€., the recurrent class to which recurrent
state s belongs, when Sy ~ pg and can be calculated in a closed-form manner [14, Theo. 2.3.4.] [

Lemma B.6. Consider a GUMDP with finite state-space S, finite action-space A, transition proba-
bility functionp : S x A — A(S), and let py € A(S) be the distribution of initial states. For any
fixed stationary policy w € llg, the interaction between the policy and the GUMDP gives rise to a
random sequence of state-action pairs Sy, Ag, S1, A1, - . .. Consider also the Markov chain with state
space S, transition matrix P™(s'|s) = " ., p(s'|s, a)n(a|s), and initial distribution pq. It holds,
forany s € S and a € A, that

H-1
. 1
]P) ( hm ﬁ Z l(St = S,At = a) = Ysﬂ(a|s)> = 17

H—oc0
t=0

where Y is the random variable defined in Lemma [B.3| by considering the Markov chain with
transition matrix P™.

Proof. For a given fixed policy 7w € IIg, consider two Markov chains:

» the first Markov chain has state space S, transition matrix P7(s'|s) =
Y acaP(s'|s,a)m(als) and pg as defined in the original GUMDP. Assume this Markov
chain can be partitioned into L disjoint recurrent classes R, ..., R and a set of transient
states Z. For each recurrent state s € Ry U ... U Ry, we let [(s) denote the index of
the recurrent class to which state s belongs. Let «; denote the probability of absorption
to recurrent class R; given pg. Every recurrent class R; can be treated as an independent
Markov chain, associated with a unique stationary distribution p;, which satisfies p;(s) > 0
forall s € R; and 1;(s) = 0 for all s ¢ R; [20].

¢ the second Markov chain, which we call extended Markov chain, has state space S=8xA
(hence we denote with the pair (s, a) a given state of the extended Markov chain), transition
matrix P(s',d’|s,a) = p(s'|s, a)w(a’|s’), and o (s, a) = po(s)m(als). This Markov chain
encapsulates both the transition dynamics p and the policy 7 within the transition matrix
P. 1t should also be clear that a random trajectory from the extended Markov chain
((So, Ao), (S1, A1), .. .) precisely describes a random sequence of state-action pairs when
using 7 € Il to interact with the GUMDP. Assume we can partition the extended Markov
chain into L disjoint recurrent classes Ri,... ,7@ 1, and a set of transient states Z. For each
recurrent state (s, a) € RiU...URy, welet (s, a) denote the index of the recurrent class to
which state (s, a) belongs. Let also ¢&; denote the probability of absorption to recurrent class
Ri. Every recurrent class R, can be treated as an independent Markov chain, associated
with a unique stationary distribution fi;, which satisfies fi;(s,a) > 0 for all s € R; and
wi(s,a) =0forall s ¢ R, [20].

We are now interested in understanding how the long-term behavior of both chains is related, for
fixed m € IIs. We make the following remarks:

1. if w(a|s) = 0 for some state-action pair (s, a), then (s, a) is never visited in the extended
Markov chain for any distribution of initial states py.

2. For each (s, a) such that w(a|s) > 0, if (s, a) is transient, then all states (s, a’) for o’ € A
such that 7(a’|s) > 0 are also transient. This is true because if some pair (s, a) is only
finitely visited (from the definition of a transient state) it implies that state s is also finitely
visited and, therefore, all pairs (s, a’) for a’ € A such that 7(a’|s) > 0 need also to be
finitely visited. For each (s, a) such that w(a|s) > 0, if (s, a) is recurrent, then all states
(s,a’) for a’ € A such that w(a’|s) > 0 are also recurrent. This is true because, if some pair
(s, a) is infinitely visited (from the definition of a recurrent state) it implies that state s is
also infinitely visited and, therefore, all pairs (s, a’) for a’ € A such that 7(a’|s) > 0 need
also to be infinitely visited.
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. A given state s is transient for P™ if and only if states {(s,a) : w(a|s) > 0} are transient
for P. A given state s is recurrent for P™ if and only if states {(s,a) : 7(a|s) > 0} are
recurrent for P.

. Two states s and s’ are reachable from each other for P™ if and only if all states in {(s,a) :
m(als) > 0} and all states in {(s’, a) : w(a|s’) > 0} are reachable from each other for P.

. Given the point above, a given set of states C is communicating for P7, i.e., all states in C
are reachable from each other according to P™, if and only if the set of states {(s,a) : s €

C and 7(als) > 0} is communicating for P.

. A communicating class C is closed for P, i.e., it is impossible to leave C, if and only if the
set of states {(s,a) : s € C and 7(a|s) > 0} is closed for P.

. Since a recurrent class is a set of states that is communicating and closed, given the
two points above, there exists a one-to-one correspondence between the recurrent classes

Ri,...,Rrpand Ry, ..., Ry. In particular, R; = {(s,a) : s € R; and 7(a|s) > 0} and
Ri={s:(s,a) € Ry and 7(a|s) > 0}.
. The probabilities of absorption into any of the recurrent classes are the same for both Markov

chains, i.e., oy = @, forall | € {1,...,L}. Let a,; denote the probability of absorption
into recurrent class R; in the Markov chain P™ when the initial state is s, and ¢ 4),; denote

the probability of absorption into recurrent class R, in the extended Markov chain when the
initial state is (s, a). It holds, for any [ € {1,..., L}, that

a = po(s)as (16)

seS

_ Z Z Po(8,a)0(s,a),

s€SacA

_ZZPO a(sa)l

s€SacA

and

It should also be clear that as; = ), 4 m(als)d(sq), given the one-to-one corre-
spondence between the recurrent classes of both Markov chains. Replacing a,; =
Y acam(als)ds gy, in @) yields &; and, hence, o = &;. We refer to [[14} Theo. 2.3. 4]
for a closed-form expression to calculate the probabilities of absorption into each recurrent
class.

. For every recurrent class R; of the extended Markov chain it holds that ai(s,a) =
wi(s)m(als). This is true because fi; is a stationary distribution for the extended Markov
chain if it satisfies

"a')= Z Z P(s',d'|s,a)fu(s,a), Vs, d (17)

s€ESacA

1= ju(s,a). (18)
Letting fi;(s,a) = ,ul(s)ﬂ'(a\s) satisfies since, when 7(a’|s") > 0,

(s =55 wlals) P(s', ', @)pu(s)

seSacA

= (s =33 wlals)n(@]s )p(s'|s. a)pu(s)

s€ESacA

= u(s) =D wlals)p(s'|s, a)m(s)

sES acA

= u(s’) =Y P(s'|s)(s
sES
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and the last equality above holds since y; is the stationary distribution of the Markov chain
with transition matrix P™. If 7w(a’|s’) = 0, then also holds given that j;(s",a’) =
wi(s")m(a’|s") = 0. Equation (I8) is also straightforwardly satisfied. It can also be seen
from the equations above that the stationary distribution i is unique.

In summary, the limiting behavior of the extended Markov chain can be described by the Markov
chain with transition matrix P™ since the recurrent classes of both Markov chains are intrinsically
related (with the same probabilities of absorption), and the stationary distributions for each of the

recurrent classes R; of the extended Markov chain satisfy ji;(s, a) = p(s)m(als).

Thus, for the extended Markov chain and any (s, a), according to Lemma it holds that

H-—1
. 1 -
P ( lim E E 1(St =54 = CL) = Y(s,a)) =1,

H—o0
t=0

where }7(8@) is a random variable such that, if (s,a) € Z then ]P’(f/(&a) =0) = 1, and if (s,a)
belongs to recurrent class Ry

~ 5[1, ify:/]l(s,a),
P(Viow =y) = 1-d, ify=0,
0, otherwise,

and G 518
d = lim P(S; € Ra[So ~ fo)

denotes the probability of absortion into recurrent class R, when the initial state Sy is distributed
according to pg. Since there exists a one-to-one equivalence between the sets of recurrent classes of
both Markov chains, the probabilities of absorption into each recurrent class are the same in both

Markov chains, and fi;(s, a) = p(s)m(als), it holds that random variable }737,1) can be equivalently
described by Y7 (als), where Y is the random variable defined in Lemma for the Markov chain
with transition matrix P7. O

B.2.2 Proof of Theorem [4.6]

Theorem Let M be an average GUMDP with c-strongly convex f and K € N be the number
of sampled trajectories. Consider also the Markov chain with state-space S, transition matrix P™
and initial states distribution py. Let R be the set of all recurrent states of the Markov chain and
Ri1,..., Ry the sets of recurrent classes, each associated with stationary distribution y;. For each
s € R, let I(s) denote the index of the recurrent class to which s belongs. Then, for any policy
7 € Ilg, it holds that

)= 1002 g T a0, e

where B ~ Ber (p) denotes that B is distributed according to a Bernoulli distribution such that
P(B=1)=pand
sy = tliglo P(S: € Ri(s)lSo ~ po)

is the probability of absorption to recurrent class R;(5) when So ~ po.

Proof. For any policy 7 € Ilg it holds that
Ji(7) = foolm) = B | f(drie)| = f (B |di])

2
2
c

S ETic > (JTK(S’@_C[’T(S’“))Q

s€S,ac A

@ ¢ ~
s o -

Y
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— g Z Er |:(62TK (S,CL) - dﬂ-(S,Cl)>2:|
s€S,acA
Z Varr, [CZTK (Saa):|
s€S,acA
K
Z Varir Ty} [K Z ]
seS acA k=1
_ % Z Vary.c, [CiT(Saa)]
s€S,acA
_ % Z (ETNQ} [dAT(s,a)z] 7ET~CW {£T<87a)}2> 3
s€S,ac A

where (a) follows from the strongly convex assumption and the fact that
J(X) = J(EIX]) + VS (BIX])T (X ~ EIX]) + £ ||X — E[X]|}
— E[f(X)] 2 f(EX]) + SE [|IX —E[X]I],
where X is a random vector.

. 2
Focusing on the term Ep. {(dT(s, a)) ] we have that

~ 2 H-1 2
Er~c, |:<dT(57a)) :| =Er~e, (ngnooH Z 1(S;=s,4; = a))

© g, [(Yw als) }
= 7(a|s)’Ey, [Yﬂ .

Let Zyg = % Zf]: 51 1(S; = s, Ay = a). Step (a) above holds because: (i) from Lemmat holds
that P (limpy oo Zg = Ysm(als)) = 1, i.e., Zg — Yim(als) almost surely (note also that [Zg| < 1
for all H € N); (ii) since g(z) = z? is continuous it holds that g(Zy) — g(Ysm(als)) almost
surely (note also that |g(Z)| < 1 for all H € N); (iii) from the bounded convergence theorem [0
Theo. 1.6.7.] it holds that Er [g (limpy o0 Zpr)] = Ey, [g(Ys7(a]s))]. Also in (a), Y is distributed
according to the probability density function defined in Lemma B3]

. 2
For the term E7.¢, KdT(s, a))} , via similar arguments, it holds that

. 2
Brec, [(dr(s.0)] " = B, ((Vr(al)? = mlals By, (V)
Replacing both terms in our original lower bound yields

fi(m) = fou(m) 2 5= Y wlals)? (Ey, [V2] — By, [(V)F)

s€ES,aeA
C
=5z > mlals)*Var[y]]
2K s€ES,aeA
(@ C
= 5x 2 D mlals)*Var Y]
SER acA
by C
- ﬁ Z Z 7T-(alS)2VarBNBemoulli(p:oél(3>) [Ml(s)(S)B}
SER acA
¢ L
= 376 2 Vatsene(ay [B] D D wlals)*p(s)?
=1 sER; acA

25



where in (a) we let R denote the set of all recurrent states for the Markov chain with transition matrix
P7™ and the equality holds because if s is transient then P(Ys; = 0) = 1 and, hence, Var [Y;] = 0.
In (b), the equality holds since we can rewrite random variable Y using a scaled Bernoulli random
variable. O

C Empirical Results

In Algorithm T] we present the pseudocode of the sampling scheme used to approximate the different
GUMDPs formulations, under both discounted and average occupancies. The different objectives
can be approximated, for a sufficiently large number of iterations N, by running Algorithm I| with
the desired K, H, and v parameters. Under the discounted setting, we vary parameters K, H, and .
Under the average setting, we vary K while setting v ~ 1 and H = oo. Under both the average and
discounted setting, we set K = co and H = oo to compute the infinite trials objective.

Algorithm 1 Estimating fx g (m) via samples.

1: Inputs: N € N (num. of iterations), K € N (num. of trajectories), H € N (trajectories’
horizon), and ~ (discount factor).

2: fo =0

3: fornin{l,...,N} do

4: {A7'1’---77'K}NCW

50 dg(s,a) = 11_;'}{ % Zﬁil Zf[:f)l V' 1(skt = s,ap = a), Vs, a

6 fn = fn—l + f(KZK)]\?fn71

7: end for

8: Return: fN

C.1 Empirical results for the GUMDPs in Fig.

We consider the GUMDPs depicted in Fig. |1} representative of three tasks in the convex RL liter-
ature. Under M ; we let m(left|sg) = m(right|sy) = 0.5, w(right|s;) = 1 (zero otherwise), and
7(left|s2) = 1 (zero otherwise); for both M s 5 and M s 5 we let 7 be the uniformly random policy.
Figures [ [5 and [6] display the results obtained under the different GUMDPs illustrated in Fig. [I]
for different v, K and H values. Figure[7]displays the results obtained for the three GUMDPs for
different K and ~y values with H = oc.

v =02 v =0.6 7=2038
—0.5 !
5
=
= —1.0
—-15
0 10 20 0 10 20 0 10 20
H H H
— K=1 K=2 — K=5 —— K=10 ---- f(dx)

Figure 4: (M, standard transitions) Empirical study of f (JTK, g ) for different K, H and ~
values under GUMDP M ; with policy m(left|sg) = 0.5, m(right|sg) = 0.5, m(right|s;) = 1,
m(left|sg) = 1. The results are computed over 100 random seeds. Shaded areas correspond to the
95% bootstrapped confidence intervals.
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0 10 20 0 10 20 0 10 20
H H H
— K=1 K=2 —— K=5 K=10 ---—- F(dy)

Figure 5: (M o, standard transitions) Empirical study of f (drs .57) for different K, H and ~ values
under GUMDP M ¢ 5 with a uniformly random policy. The results are computed over 100 random
seeds. Shaded areas correspond to the 95% bootstrapped confidence intervals.

v=0.2 v=0.6 v=10.8
0.75
=050
E
=
0.25
0.00 =
10 20
H
— K=1 K=2 — K=5 — K=10

Figure 6: (M 3, standard transitions) Empirical study of f (drs .57) for different K, H and ~ values
under GUMDP M 3 with a uniformly random policy. The results are computed over 100 random
seeds. Shaded areas correspond to the 95% bootstrapped confidence intervals.

C.2 Empirical results for the GUMDPs in Fig. [T| with noisy transitions

We consider again the three GUMDPs illustrated in Fig. [I] but add a small amount of noise to
the transition matrices of each GUMDP so that there is a non-zero probability, at each timestep,
of transitioning from a given state to any other arbitrary state. Under M we let w(left|sg) =
m(right|sg) = 0.5, w(right|s1) = 1 (zero otherwise), and 7 (left|s2) = 1 (zero otherwise); for both
M2 and My 3 we let 7 be the uniformly random policy. Figures |§|, EI, and @ display the results
obtained under the different GUMDPs illustrated in Fig. [T] for different v, K and H values. Figure [TT]
displays the results obtained for the three GUMDPs for different K and  values with H = oo and
noisy transitions.
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0.75

0.50
0.25
0.0 0.00
0.2 04 0.6 0.8 1.0 0.2 04 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Y Y Y
— K=1 — K=2 — K=5 —— K=10 ---- (dy)

Figure 7: (Standard transitions) Empirical study of f (dTK, H=oo) for different K and  values with
H = oo. The results are computed over 100 random seeds. Shaded areas correspond to the 95%
bootstrapped confidence intervals.

v=0.2 v =0.6 v=0.8

—0.5 !
e
3
= 1.0

—1.5

0 10 20 0 10 20 0 10 20
H H H
— K=1 — K=2 — K=5 —— K=10 --- f(dy)

Figure 8: (M 1, noisy transitions) Empirical study of f (d\TK7 ) for different K, H and ~ val-
ues under GUMDP M ; with noisy transitions and policy m(left|sg) = 0.5, m(right|sg) = 0.5,
w(right|s1) = 1, m(left|sy) = 1. The results are computed over 100 random seeds. Shaded areas
correspond to the 95% bootstrapped confidence intervals.

7=102 v=0.6
10
=
E \
=
~ 0.5
= g
N R e
0 10 20 0 10 20
H H
— K-1 — K-2 — K=5 — K=10 --— £(dy)

Figure 9: (M 2, noisy transitions) Empirical study of f (&TK, p) for different K, H and +y values
under GUMDP M ¢ » with noisy transitions and a uniformly random policy. The results are computed
over 100 random seeds. Shaded areas correspond to the 95% bootstrapped confidence intervals.
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Figure 10: (M 3, noisy transitions) Empirical study of f (JTK, ) for different K, H and ~y values
under GUMDP M ¢ 5 with noisy transitions and a uniformly random policy. The results are computed
over 100 random seeds. Shaded areas correspond to the 95% bootstrapped confidence intervals.
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Figure 11: (Noisy transitions) Empirical study of f (G?TK, H=oo) for different K and ~y values with

H = oo and noisy transitions. The results are computed over 100 random seeds. Shaded areas
correspond to the 95% bootstrapped confidence intervals.
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