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Detecting anomalous activity in video surveillance often suffers from limited availability of training data.
Transfer learning may close this gap, allowing to use existing annotated data from some source domain.
However, analyzing the source feature space in terms of its potential for transfer of learning to another
context is still to be investigated. This paper reports a study on video anomaly detection, focusing on the
analysis of feature embeddings of pre-trained CNNs with the use of novel cross-domain generalization
measures that allow to study how source features generalize for different target video domains. This gen-
eralization analysis represents not only a theoretical approach, can be useful in practice as a path to
understand which datasets allow better transfer of knowledge. Our results confirm this, achieving better
anomaly detectors for video frames and allowing analysis of transfer learning’s positive and negative
aspects.

� 2019 Elsevier Inc. All rights reserved.
1. Introduction

An anomaly detection algorithm infers a model that is able to
discriminate between a normal pattern and abnormal ones. In this
context, learning means inferring a function f : X ? Y from a train-
ing set of examples xi 2 X, in which X is an input space from a given
domain, and Y = {�1, +1} is the output space, which in the case of
anomaly detection refers to either ‘‘normal” or ‘‘anomaly”. It is
common to have knowledge mostly (or only) about the normal
data and, therefore, most techniques models only what is consid-
ered normal in a given problem, and therefore considering any
event that deviates from such normality as anomalous. Learning
then means inferring a function using input data composed of
observations from a single, normal, class [1]. In terms of video data,
this approach is employed in surveillance of human crowds [2–4],
pedestrian detection [5–7], and analysis of directions (human or
vehicle motion) [8]. But even when considering complex systems,
it is essential to have sufficient data and an adequate input space
to be able to create an accurate detector.

In this context, real world problems become increasingly chal-
lenging when it comes to meeting the requirements of (annotated)
data availability assumptions. First, the amount of available data
collected from some task is often sufficient only to the same prob-
lem or domain [9,10]. Second, many algorithms, in particular those
with a large number of parameters to be learned such as deep
learning methods, need a large amount of labeled data [11]. How-
ever, annotating large amounts of data for learning can be expen-
sive [12,13]. With these considerations, there is a strong
incentive to investigate techniques that can reduce the need for
new labels and data [14]. Transfer learning can be a viable tool in
this direction, such as demonstrated by [15] in the context of
pedestrian detectors, and by [16] for anomaly detection in video.
The goal of transfer learning is to allow solving new problems
using knowledge previously acquired from other similar solutions
[17]. In this learning context, the source dataset or domain suppos-
edly provides sufficient knowledge to complement or even
describe some target dataset or domain [18]. Therefore, the main
challenge in transfer learning can be seen as to correlate the distri-
bution of training data from a source to the distribution of test data
from a target [19]. However, if the source and target are similar in
their domains, data with similar distributions, it is expected that
the same classifier performs similarly across them [20].

Transfer learning has been widely used in many different appli-
cations, such as image representation [21], facial attribute classifi-
cation [22], network traffic [23], medical diagnosis [24], and
pattern recognition [25]. In problems of video anomaly detection,
either natural or urban scenarios, the assumption that similar
problems have similar data distribution may not hold true due to
factors such as variable illumination, camera perspective, and
amount of clutter in the scene [5,26]. These factors contribute to
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the distancing between the activities and visual content of differ-
ent domains. More importantly, the definition of anomaly itself
may differ. Although in general an anomaly is an observation con-
taining an abnormal pattern [27], this can be linked to different
events as, for example, the appearance of a clandestine boat for
the application of water surveillance, or a car parking on a pedes-
trian boardwalk in a traffic surveillance scenario. Consequently,
detecting anomalies in video requires an arduous task of studying
which attributes are relevant to well model the activities, allowing
systems to distinguish normal from unusual ones. Consider the
task of anomaly detection in surveillance videos and any two dis-
tinct domains A and B: in this scenario, one can train a recognition
system using a source domain A, in which f : A? Ymay yield a reli-
able system for such domain. But it is not certain if the same func-
tion would be reliable when used within the context of some target
domain B. Intuitively, all samples from B would anomalous, i.e. f
(bi) = +1 for all bi 2 B, leading the detector to fail for the target data.
The challenge of transfer learning here is to design systems capable
of performing consistently, even when considering cross-domain or
cross-dataset scenarios, such as training on A and detecting on B.
Fig. 1 illustrates this scenario in which two distinct domains train-
ing sets (Atr and Btr) are used to identify normal and anomalous
activity of a single test domain (Ate). Our hypothesis is that, by
using adequate transfer learning techniques, a new source domain
(BAtr) can be found, closing the gap between the data distributions
of A and B.

In this paper we investigate the generalization of feature spaces
extracted via a pre-trained Convolutional Neural Network (CNN) –
which does not require additional labels – within the task of
detecting anomalous activity in videos. CNNs have been successful
in many computer vision tasks, being considered to be intelligent
feature extraction modules that offer flexibility and a good level
Fig. 1. Likely scenario in cross-domain application of video anomaly detection. The
green arrows represent normal events detection and red arrows identify anomalous
occurrences from two distinct scenarios (sources A and B); notice how normal
events on the target domain are identified as anomalous due to the domain gap. It is
expected that applying transfer learning methods (TL) between those two domains
will significantly improve normal events detection on the target domain (repre-
sented by dashed flows). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 2. Experimental setup: both source and target domains feature spaces embedding a
used to train a One Class SVM, while target B is tested on this trained model. Transfer lea
dashed lines).
of cross-domain transfer learning [17,28–30], even on video recog-
nition tasks [3]. Investigating transfer learning in this scenario is
relevant because CNN models are known to require large amounts
of labeled training data in order to converge and to have any true
learning guarantee; in practice many datasets do not have enough
samples to allow training of deep networks from scratch. Leverag-
ing pre-acquired knowledge is therefore a must and we find it
important to highlight that recent research [31] has shown that
theoretical learning guarantees are achieved when CNNs are
trained with large datasets such as ImageNet [32].

We aim to understand the benefits of using CNN-based feature
embeddings coupled with simple transfer learning methods in the
taskof anomalydetection.Wedesignedexperiments on transferring
an anomaly detector’s knowledge within: (i) the cross-domain fea-
ture embeddings; (ii) cross-domain Principal Component Analysis
(PCA) [33]; and (iii) Transfer Component Analysis (TCA) [34]. More
than designing a framework for transfer learning within the task
of anomaly detection, we introduce a novel evaluation approach
regarding generalization of feature embeddings between distinct
domains and present the performance of our systems within these
newmetrics. Our contributions are then two-fold: (i) we developed
a framework for transfer learning applied in the task of anomaly
detection in videos; and (ii) we designed a novel evaluation
approach regarding generalization of feature embeddings.

2. Method

In order to evaluate howwell some feature space has the poten-
tial to generalize for a target dataset, we use an experimental setup
that considers several different domains, each coming from differ-
ent video anomaly detection datasets. Fig. 2 depicts this setup: all
datasets are individually mapped to a feature space using the same
pre-trained VGG-19 [35] network. For every domain pair (source A,
target B), the training set of A is used to train an anomaly detector
model (One Class Support Vector Machine (OC-SVM) [36]), which
is then employed on the test set of B. Afterwards, we evaluate
the generalization between A and B and the impact of transfer
learning methods on this generalization.

Three scenarios were investigated: (i) without any data trans-
formation; (ii) with PCA applied across domains; and (iii) with
TCA. The next sections detail each step: the feature extraction (Sec-
tion 2.1) and transfer learning methods (Section 2.2), as well as the
generalization evaluation metric (Section 2.3).

2.1. Feature extraction

Feature extraction is a fundamental step that directly influences
the result of recognition systems — a bad descriptor choice can sig-
nificantly degrade performance and accuracy. With the great num-
ber of feature extraction methods available and the particularities
of each database, finding the relevant descriptor can become a
trial-and-error task [37]. Data-driven approaches to feature extrac-
tion are a recent trend, of which deep learning was particularly
shown to produce suitable representations [38]. One of the main
re independently computed via the same deep network model, then the source A is
rning (TL) can be used to transform such spaces before training/testing (indicated in
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advantages presented by methods of feature learning in relation to
handcrafted extraction is the generalization of the feature space
produced for data not seen within the same visual domain
[39,40]. Among current deep learning techniques, CNNs are widely
used to compute feature space representations by sharing informa-
tion and internal connections [41].

The VGG-19 CNN [35] is widely used as pre-trained models due
to its simple architecture: a composition of convolutional layers
with 3 � 3 sized filters. The motivation of this structure is that
two sequential 3 � 3 filters have an effective receptive field of a
5 � 5 and, with the addition of more rectification layers, the deci-
sion function is more discriminative. This concept can be expanded
to replace 7 � 7 filters with three filters 3 � 3. After a sequence of
convolutional layers (generally composed of the 3 � 3 filters) and
max-pooling, the top of VGG-19 is composed of fully connected
layers which aim to provide probabilities for trained classes. Each
layer provides a new descriptor that can be used to describe shapes
and edges (lower layers) and texture and semantics (higher layers)
[28], each one with a number of predefined attributes.

We use this architecture as a feature extractor, each frame of
the selected domains is forward-passed through a network with
its weights pre-trained using the ImageNet dataset [32] (and used
as-is). To ensure compatibility with the pre-training phase, each
frame has its resolution reduced to 224 � 224 and the last network
layer is discarded due to its tie with the ImageNet classification
task; the feature set is then a result of the second-to-last layer
(FC-4096), a 4096-dimensional feature vector.
2.2. Transfer learning

For our baseline, the feature space obtained in the second-to-
last layer in VGG-19 is applied in two circumstances: without
pre-processing and with dimensionality reduction. Considering
two domains (A and B) and their respective training set (Atr and
Btr) and test set (Ate and Bte), the cross-feature occurs with direct
inversion of test sets in relation to their source domain. Therefore,
the anomaly detection performed in Ate uses the information con-
tained in Btr and Atr is the basis for Bte. With this setup and without
pre-processing, all 4096 attributes available by the VGG-19 layer
are considered in the evaluation of the first scenario.

For the second scenario, we investigate how the classic space
projection technique PCA [33] may contribute to transfer learning.
WeapplyPCAontheoriginal feature space (Atr) and learnaprojection
matrixH of this space to a subset of its eigenvectors.We experiment
then using the same projection H on the feature space of another
domain (Bte) and evaluate howwell does learning trained over A per-
form on B given both spaces were projected over A’s eigenvectors.

Finally, in the third scenario TCA is applied for the task of
anomaly detection over distinct domains. TCA, introduced by Pan
et al. [34], is motivated by the assumption that common factors
exist between different domains. The goal of performing TCA is
to project both feature spaces into a new, common space where
the distance between samples from distinct domains is small and
data variance is kept large (this latter objective being the same
as designed by classic PCA). The solution showed by Pan et al.
[34] is to formulate TCA as a variant of Kernelized-PCA, where data
is centralized over both domains, which the GramMatrix is defined
as the composition of gram matrices, where the subscripts indicate
the source (S) or target (T) domains and KS,S = XSX

t
S:

K ¼ KS;S KS;T

KT;S KT;T

� �
ð1Þ

To build this matrix, TCA needs at least some training data from
the second domain and K is weighted to highlight intra-domain
and diminish inter-domain dissimilarities, stimulating the eigen
decomposition to better capture existing variance across-
domains instead of in each individually. Using this approach, TCA
is designed to find eigenvectors and eigenvalues in a combined fea-
ture space, therefore acting upon the assumption that common
factors do exist between domains and finding a linear transforma-
tion into a space that highlights those common factors.

2.3. A Generalization metric for cross-domain feature spaces

The field of machine learning has long dealt with the idea of
developing theoretical guarantees and support for what is called
‘‘learning” within the context of each algorithm; the most stable
theory comes in the form of Statistical Learning Theory (STL)
[42,43]. STL has since its introduction been widely used to assess
the quality of studies within machine learning field and, more
specifically, to support the mathematical proofs that guarantee
Support Vector Machines (SVM) generate optimum classifiers [44].

As one of the major contributions of this study, we hereafter
propose a new metric to evaluate cross-domain transfer learning
systems using SLT tools. Inspired on the evaluation of supervised
learning models, which proved invaluable to researchers working
to design such systems, we aim then to contribute to the field of
cross-domain transfer learning by asking: how can one measure
generalization of a feature space produced by some method? One
of the main concepts that drive STL is generalization. In supervised
learning, generalization is a divergence that measures how well a
classifier performance with unseen data is consistent with its per-
formance on training (seen) data. It can be mathematically
expressed as:

Remp f nð Þ � R f nð Þ�� ��; ð2Þ

where R(fn) is the true risk (expectancy of loss) of a classifier fn over
‘‘all data”, also called expected risk, and Remp(fn) is the risk of the
same fn, but evaluated over the training set (the empirical sample),
called empirical risk. The idea of true risk is purposefully abstract
(being an intractable quantity), but it nonetheless serves its goal
of highlighting the importance of not losing ourselves amid metrics
of accuracy and cost over training data, metrics that may not paint
the bigger picture of how well a system works [44].

Our view is that the evaluation of transfer learning systems
applied to anomaly detection cannot rely solely on performance
metrics such as Receiver Operating Characteristic (ROC), and
derived metrics such as Area Under the ROC Curve (AUC) and Equal
Error Rate (EER); if we aim to measure how well a system trained
within one domain’s feature space performs on a dissimilar
domain’s space, the idea of generalization presents itself as a great
fit. We propose then two ways to measure it: (i) Partial Cross-
domain Feature Space Generalization (Partial CDFG, or Gpart); and
(ii) Complete Cross-domain Feature Space Generalization (Com-
plete CDFG, or Gcomp), defined as:

Gpart f A
n

� �
¼ Rðf A

n Þ
x 2 X A

� Rðf A
n Þ

x 2 XB

�����
����� ð3Þ

Gcomp f A
n ; f

B
n

� �
¼ 1

2
Rðf A

n Þ
x 2 X A

� Rðf A
n Þ

x 2 XB

�����
�����þ Rðf BnÞ

x 2 XB
� Rðf BnÞ

x 2 X A

�����
�����

 !
ð4Þ

where f A
n and f Bn are classifiers found by a classification algorithm as

part of Empirical Risk Minimization applied over, respectively,

domain A and domain B; the expression Rðf A
n Þ

x 2 X A denotes the risk

of classifier f A
n over the feature space XA and Rðf A

n Þ
x 2 XB denotes the risk

of the same classifier f A
n over the feature space of the second
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domain, XB; the mirrored definition being valid for Rðf BnÞ
x 2 XB and

Rðf BnÞ
x 2 X A . Even though the real risk is intractable, it could be approx-

imated by validation or test sets (data that is specially separated to
represent unseen data) from each domain. Finally, transferring
those ideas to the context of anomaly detection, we could define
the empirical risk in this formulation as the evaluation of either
AUC or EER, both classic metrics for anomaly detection tasks.

Given two domains (A and B) and their respective feature spaces
(XA and XB), Gpart and Gcomp are meaningful metrics if:

� The bias (set of admissible functions) of the classification/detec-
tion algorithms are the same (e.g. same parameters on a SVM
training setup);

� The spaces XA and XB are composed of the same set of descrip-
tors for both domains;

� The transfer learning or domain mapping method should have
no prior knowledge of test data on either domain.

Evaluating with CDFG affords us a multi-leveled analysis of fea-
ture spaces and transfer learning systems. Gpart is a good represen-
tation of how well training over a domain A is well-suited or
adapted to work over samples from domain B with consistent per-
formance. It is however ‘‘one-way” regarding domain, i.e we are
looking at the mapping or transferring characteristic only in the
A? B direction. It is, regardless of this limitation, relevant to the
analysis, especially when used in conjunction with Gcomp. While
Gpart is partial to the chosen descriptors and how each domain is
particularly well represented by such descriptors, Gcomp is a better
measure of the quality of the transfer system itself and its robust-
ness when tested over different contexts and pairs of domains.

We are going to hereafter introduce three particular analysis
levels afforded by our novel metrics. To compare results by pairs
of methods (classification algorithm and transfer learning tech-
niques, indicating by the subscripts a and b), we selected classifiers
obtained through the principle of empirical risk minimization for
each methodology, denoted as fa and fb. One could use inequalities,
such as expressed bellow:
Gpart f A
a

� �
< Gpart f A

b

� �
ð5Þ

With this inequality satisfied, one could claim that method a is
capable of generalizing well from domain A to domain B. One can
also verify the Gpart metric from the ‘‘opposite direction” and assess
if the a methodology is also better than b at generalizing from B to
A, as expressed by the inequality:
Gpart f Ba
� �

< Gpart f Bb
� �

ð6Þ

Hence, evaluating the Gpart on both directions gives us an under-
standing of the first level of generalization: how well the space
obtained from one domain is applicable to another and how this
applicability is captured by the chosen methodology. These com-
parisons do not assess directly the transfer method, being influ-
enced and capturing well aspects regarding the representation
capability of each feature space. To obtain a more precise and rig-
orous analysis of the transfer learning method itself, we should
compare using the Gcomp metric:
Gcomp f A
a ; f

B
a

� �
< Gcomp f A

b ; f
B
b

� �
ð7Þ

However, the best use of our metrics come from applying each
Gpart and Gcomp at the same time, given that the Gcomp can be influ-
enced by high discrepancy between the two Gpart that compose it.
It is primal then that all three comparisons are taken into account
in the assessment of any two competing methods.
3. Experiments

We recall the experimental setup depicted in Fig. 2. First, we
evaluate the feature spaces with anomaly detection. With these
results, we apply our generalization metrics to compare the perfor-
mance of domains and methods used. In the following sections we
describe the datasets and detail the experiments.
3.1. Datasets

For transfer learning and feature generalization experiments,
we use seven anomaly detection videos/datasets (natural and
urban scenarios) differing in several aspects, including frame reso-
lution, amount of training frames, illumination conditions, per-
spectives, and presence of clutter.

Natural scenarios (water surveillance activities):

� Canoe: a video with 1050 frames of 240 � 320 pixels, which
200 are separated for training. It has scenery of nature with a
river in the center and a canoe which invades the waters indi-
cating the anomaly [45];

� Boat-River: similar to Canoe, but with higher resolution
(576 � 740 pixels) and different perspective. It has only 80
training frames and the majority of frames with anomalies in
a single video [46];

� Boat-Sea: similar to Canoe and Boat-River, but with occlusion in
the scenes, making it difficult to correlate with the first two
videos. Boat-Sea is composed of a single video of 576 � 720 res-
olution, in which the first 100 frames are for training and the
remaining ones for tests [46].

Urban scenarios (traffic and pedestrian activities):

� UCSD Pedestrian 1 (Ped1): it consists of videos of footpath, in
which the presence of pedestrians are considered normal, and
abnormal activity includes cyclists, skaters, and others. UCSD
Ped1 contains 34 videos for training and 36 videos for tests with
158 � 238 pixels of resolution [47];

� UCSD Pedestrian 2 (Ped2): similar to Ped1, UCSD Ped2 contains
16 videos for training and 12 videos for tests with 240 � 360
pixels of resolution. However, the placement of the cameras is
different between the datasets [47];

� Belleview: it has frames with 240 � 320 pixels in a single video,
with images of a road intersection in which anomalies are char-
acterized by vehicle conversions and the standard behavior by
the straight-line pass [46];

� Train: it is also a single video (the first 800 frames of 386 � 288
are used in training) where the illumination varies rapidly due
to the passage of the train through the tunnels. The anomalies
are composed by the movement of the people inside the wagons
[46].

All frames from Canoe, Boat-River, Boat-Sea, and Train were
converted to grayscale via: 0.299R + 0.587G + 0.114B. The other
urban datasets are originally in grayscale. Examples from all
videos/datasets are presented in Fig. 3. Since the urban datasets
are more complex and need to be described via motion/direction
attributes, we expect the feature embeddings and transfer learning
methods to work better within the Natural scenarios.



Fig. 3. Samples of test frames from: (a) Canoe; (b) Boat-River; (c) Boat-Sea; (d) UCSD- Ped1; (e) UCSD-Ped2; (f) Belleview; and (g) Train. Anomalous events are represented in
red (boats, trucks, cyclists, vehicle conversions, and passenger movement). Examples of normal events are in green (pedestrians and straight-line pass). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
PCA variance with 80 principal components.

Dataset Variance

Canoe 0.9996
Boat-River 1.0
Boat-Sea 0.9999
UCSD-Ped1 0.9992
UCSD-Ped2 0.9998
Belleview 0.9997
Train 0.9998
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3.2. Anomaly detection, parameters and evaluation

The Area Under the Curve (AUC) and Equal Error Rate (EER) are
used to evaluate the anomaly detection in frame level. That means
the model must predict which frames contain at least one anomaly
and compare them with their respective ground-truth to deter-
mine the false positive rate (FPR) and true positive rate (TPR).
The EER is the value on the ROC Curve in which FPR = 1 � TPR. As
an anomaly detector, we used OC-SVM [36] that estimates support
vectors having only positive labels in training set by including reg-
ularization to single out outliers. When the linear kernel is used, a
hyper-sphere is drawn to cover the training samples, allowing an
amount of outliers v in (0, 1]. In our approach, we used v = 0.25.

For our generalization measure to be validated, we performed
three experiments: first using the original feature embedding (Full
VGG-19) with 4096 features; second, by applying PCA to these
spaces selecting the 80 principal components (this value was cho-
sen since Boat-River video has the smallest training set, 80 training
examples, limiting the PCA analysis); third, the same dimensional-
ity (80) is used in TCA method using the RBF kernel. In the original
VGG-19, only the source training set is used to infer the model,
which is then used to identify abnormal events using the target
test set. For PCA, the transformation computed for the source train-
ing set is used to transform and select features for the target test
set. In order to apply TCA, the matrix merged with the two training
sets (source and target) is used to compute the transformation
matrix, which is then used to select the principal components in
target test set. With the results of the metrics (AUC and EER) the
generalization measure is then computed. In that sense, we evalu-
ate from a lower to a higher level of knowledge transfer. Table 1
shows the PCA variance obtained with the videos/datasets: values
near 1.0 in all sets indicate that there was no loss of relevant data
in the created space with 80 features, due to the similarity among.
4. Results and discussion

Table 2 presents the anomaly detection results of three experi-
ments for natural scenarios: using the original VGG-19 feature
embedding (Full VGG-19), after transformation with PCA (reduc-
tion to 80 dimensions), and applying unsupervised transfer learn-
ing by TCA (also with 80 dimensions). Considering the AUC and
EER as performance metrics in the comparison of TCA with the
other two approaches, it is observed that the TCA is better in 6
pairs (66.6% of total) tested, mainly when the source domain is
Boat-River. In the natural scenarios, the average AUC across all
TCA sets was 86.68%, meanwhile for Full VGG-19 was 70.47%. As
expected, the PCA space performance is out-performed by TCA,
both in the number of pairs (1 vs. 6), in the average AUC (69.52%



Table 2
Anomaly detection in natural scenarios (%).

Source? Target Full VGG-19 PCA TCA

AUC EER AUC EER AUC EER

Canoe? Canoe 92.63 12.65 63.97 39.66 71.66 32.49
Boat-River? Canoe 92.75 12.65 53.61 48.1 99.1 3.04
Boat-Sea? Canoe 92.75 12.65 85.44 18.56 97.5 4.64

Boat-River? Boat-River 63.24 36.75 74.35 25.64 90.59 9.4
Canoe? Boat-River 63.24 36.75 50.42 49.57 61.11 38.88
Boat-Sea? Boat-River 64.52 35.47 61.96 38.03 94.87 5.12

Boat-Sea? Boat-Sea 54.97 46.15 97.01 9.89 91.37 16.48
Canoe? Boat-Sea 55.0 46.15 83.39 26.37 86.99 19.79
Boat-River? Boat-Sea 55.2 46.15 55.54 43.96 86.95 21.91

Average 70.47 28.37 69.52 33.3 86.88 16.86
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vs. 86.88%), and average EER (33.3% vs. 16.86%). Additionally, there
are expressive results of TCA in relation to Full VGG-19 and PCA:
Boat-Sea? Boat-River has an improvement (30.35% to Full
VGG-19) and Boat-River? Boat-Sea in 31.41% in relation to PCA.
Therefore, as expected, the space provided by TCA overcomes Full
VGG-19 and PCA in natural scenarios.

Also, considering the AUC and EER as performance metrics in
urban scenarios (see Table 3), it is highlighted that Full VGG-19
is better in 7 pairs (16 pairs in total), mainly when the target
domain is Ped2 or Belleview. However, the difference between
the averages of Full VGG-19 and TCA is practically negligible:
63.84% vs. 62.8% in AUC and 39.41% vs. 40.51% in EER. Unlike the
results with natural environments, urban domains with PCA pre-
sented positive results. It is important to emphasize that the con-
cept of anomalies between these domains is very different,
implying that the transfer learning should not be totally trans-
ferred (negative transfer). Hence, considering only domains with
the same meaning of anomalies (Ped1 and Ped2), TCA stands out
in relation to Full VGG-19 and PCA in averages of AUC and EER.

Although the transfer learning by TCA be superior to original
space (Full VGG-19) and PCA, those metrics (AUC and EER) are
not enough to guarantee the feature space generalization. Analyz-
ing the results in isolation gives an imprecision due to the great
variety of performances achieved. For these reasons, our general-
ization metrics offers a more detailed and reliable comparison if
one methodology overcomes other. Evidently, generalization does
not depend only on the techniques, but also on the similarity
Table 3
Anomaly detection in urban scenarios (%).

Source? Target Full VGG-19

AUC EER

Ped1? Ped1 50.91 51.4
Ped2? Ped1 50.82 51.46
Belleview? Ped1 51.77 50.75
Train? Ped1 53.42 51.75

Ped2? Ped2 80.34 26.26
Ped1? Ped2 80.18 26.25
Belleview? Ped2 80.88 26.26
Train? Ped2 81.81 25.69

Belleview? Belleview 68.91 33.47
Ped1? Belleview 68.67 33.45
Ped2? Belleview 68.73 33.47
Train? Belleview 69.1 32.92

Train? Train 53.97 47.2
Ped1? Train 54.02 46.73
Ped2? Train 54.13 46.67
Belleview? Train 53.85 46.84

Average 63.84 39.41
among domains. In Fig. 4 is presented a frame of the Boat-River
video, pointed out as anomalous, which erroneously was detected
as ‘‘normal” using Full VGG-19 (Boat-Sea? Boat-River). However,
applying TCA the anomaly was detected (Boat-Sea? Boat-River).

4.1. Transferred features generalization

Based on the metrics used to anomaly detection (AUC and EER)
on generalization measure proposed in this paper, we evaluated
the performance of the feature spaces provided by Full VGG-19
cross-domain, PCA cross-domain, and transfer learning by TCA.
First, we evaluate the generalization at the first level, Gpart. The
results using the Inequations (5) and (6) are presented in Table 4.
In general, the transfer learning method TCA is superior in the
two metrics evaluated in the Gpart. Considering only AUC, the aver-
age of all cases (12 sets) of TCA was 8.47%, with Full VGG-19 in
22.43%, and PCA in 17.27%. The same occurs with EER, being the
best rate for TCA with 8.1%. In terms of similarity between
domains, Canoe and Boat-Sea are very close in the feature space
mapping, in both directions TCA performs with high transfer rates.
There is also great applicability of the feature spaces in contexts of
different anomalies, Belleview and Ped1, in which the transfer
learning is more significant from Ped1 to Belleview. It is also
observed that Ped1 offers high learning rates for Ped2; however
the inverse does not occur in the same intensity. Another highlight
is the higher performance of the PCA when compared to Full VGG-
19, demonstrating that the dimensionality reduction increases the
PCA TCA

AUC EER AUC EER

71.46 35.17 62.94 39.68
64.01 39.13 60.39 41.7
76.12 30.56 58.86 45.89
60.65 39.72 71.02 33.66

55.24 44.13 74.16 33.26
56.95 46.14 67.06 38.54
69.46 34.63 65.16 38.01
61.77 41.89 50.11 52.51

50.54 51.38 72.63 32.24
56.22 45.45 68.39 35.25
60.42 40.63 65.24 39.12
54.36 49.31 68.65 34.35

57.67 42.84 51.88 51.47
57.75 46.16 53.98 43.96
55.47 49.0 55.56 42.68
50.63 51.46 58.86 45.89

59.92 42.97 62.8 40.51



Fig. 4. Example of same frame from Boat-River considered normal with Full VGG-19 (left) and anomalous with TCA (right).

Table 4
Partial cross-domain feature space generalization (Gpart) (%).

Source? Target Full VGG-19 PCA TCA

AUC EER AUC EER AU EER

Boat-River? Canoe 29.51 24.1 20.74 22.46 8.51 6.36
Boat-Sea? Canoe 37.78 33.5 11.57 8.67 6.13 11.84

Canoe? Boat-River 29.39 24.1 13.55 9.91 10.55 6.39
Boat-Sea? Boat-River 9.55 10.68 35.05 28.14 3.5 11.36

Canoe? Boat-Sea 37.63 33.5 19.42 13.29 15.33 12.7
Boat-River? Boat-Sea 8.04 9.4 18.81 18.32 3.64 12.51

Ped2? Ped1 29.52 25.2 8.77 5.0 13.77 8.44
Belleview? Ped1 17.14 17.28 25.58 20.82 14.27 10.47

Ped1? Ped2 29.27 25.15 14.51 10.97 4.12 1.14
Belleview? Ped2 11.97 7.21 18.92 16.75 7.47 5.77

Ped1? Belleview 17.76 17.95 15.24 10.28 5.45 4.43
Ped2? Belleview 11.61 7.21 5.18 3.5 8.92 5.86

Average 22.43 19.6 17.27 14.0 8.47 8.10
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performance during cross-feature. These data contradict the iso-
lated analysis from Tables 2 and 3, implicit the importance of our
generalization metrics.

The generalization in the first level excludes more complex and
pertinent aspects to the generated spaces. The Gpart analysis is not
enough to verify the two domains in a unique model, except in
cases where there will be only contribution from one domain to
other, without the need of the inversion from source and target.
This scenario is noticeable in situations where the source is com-
posed of large amounts of data and, therefore, it is sufficient to pro-
vide information to itself, not requiring auxiliary domains or prior
learning. In more complex and accurate scenarios, Gcomp offers a
deeper analysis of the proposed transfer learning model. In this
approach, results in Table 5, TCA offers even more generalization
in relation to other two methods. Among similar domains, the
latent space created by TCA is highly applicable: Boat-River and
Table 5
Complete cross-domain feature space generalization (Gcomp) (%).

Datasets Full VGG-19

AUC EER

(Canoe, Boat-River) 29.45 24.1
(Canoe, Boat-Sea) 37.70 33.5
(Boat-River, Boat-Sea) 8.79 10.04

(Ped1, Ped2) 29.4 25.2
(Ped1, Belleview) 17.5 17.6
(Ped2, Belleview) 11.79 7.21
Boat-Sea with 3.57%; Boat-River and Canoe with 9.53%; and Ped1
and Ped2 with 8.95%. Even in domains with different anomalies,
the performance gain is evidenced (Ped2 and Belleviewwith 8.19%).

For a full feature generalization, the three inequalities (5, 6, and
7) must be satisfied. This level guarantees that the Gcomp is contem-
plated without one Gpart compensating the other. In our experi-
ments, it is observed that there is compensation in two approved
cases of Gcomp with TCA: (Ped1, Ped2) and (Belleview, Ped2).
Although Ped1 and Ped2 have the same concept of anomalies,
the position of the cameras hinders the direct transfer learning,
requiring preprocessing methods to facilitate the use of previously
acquired knowledge. Despite the urban scenario, the concept of
anomalies between Belleview and Ped2 is different both semanti-
cally and visually: Belleview targets vehicles conversion, while
Ped2 anomalies are related to the presence of vehicles on the
scene.
PCA TCA

AUC EER AUC EER

17.14 16.18 9.53 6.37
15.49 10.98 10.73 12.27
26.93 23.23 3.57 11.93

11.6 7.99 8.95 4.79
20.4 15.6 9.86 7.45
12.05 10.12 8.19 5.82
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4.2. Negative transfer

A major concern in transfer learning methods is to apply only
the acquired knowledge that favors the improvement of the task
for the new target domain. For this purpose, it is important to eval-
uate if the source domain is sufficiently related to target domain so
that the transfer does not fail, causing the negative transfer [48].
The negative transfer is evidenced when the transfer learning
method achieved a lower performance to a method that does not
perform transfer learning [49]. In this context, Gpart and Gcomp

should be applied to measure if the source domain or the method-
ology is suitable for a designated task.

Tables 6 and 7 present correlation results between videos/
datasets of urban scenarios, more specifically between Train and
the others (Ped1, Ped2, and Belleview). Train presents concept of
Table 6
Partial cross-domain feature space generalization (Gpart) (%): negative transfer.

Source? Target Full VGG-19

AUC EER

Train? Ped1 0.55 4.55
Train? Ped2 27.84 21.51
Train? Belleview 15.13 14.28

Ped1? Train 3.11 4.67
Ped2? Train 26.21 20.41
Belleview? Train 15.06 13.37

Table 7
Complete cross-domain feature space generalization (Gcomp) (%): negative transfer.

Datasets Full VGG-19

AUC EER

(Train, Ped1) 1.83 4.61
(Train, Ped2) 27.0 21.0
(Train, Belleview) 15.1 13.8

Fig. 5. Generalization from different water surveillance domains
anomalies very different from the others, in which the dissimilarity
between them (background and objects) are highly perceivable. By
the analysis of Gpart, it is observed that there is applicability of
transfer learning only from Train? Ped2. Differently, the other
methods (Full VGG-19 and PCA) performed better than TCA, char-
acterizing a negative transfer scenario. Consequently, Gcomp indi-
cates that Train is not a suitable domain for Ped1, Ped2, or
Belleview.

4.3. A closer look on the practical application of the generalization
metric

The datasets studied in this paper have two levels of difficulty:
the water surveillance videos are easier, depending mainly on the
appearance of the objects on the frame, while the urban ones
PCA TCA

AUC EER AUC EER

2.98 3.12 19.14 17.81
4.1 0.95 1.77 1.04
3.31 6.47 16.77 17.12

13.71 10.99 8.96 4.28
0.23 4.87 18.6 9.42
0.09 0.08 13.77 13.65

PCA TCA

AUC EER AUC EER

8.35 7.06 14.1 11.0
2.17 2.91 10.2 5.23
1.7 3.28 15.3 15.4

: (top) anomaly detection in EER; and (bottom) Gpart in AUC.



Fig. 6. Generalization from different source datasets to Train. The left barplots shows the EER (%) from anomaly detection results, while the right barplots from the Gpart

values.
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depend on more complex attributes such as motion and orienta-
tion (not explicitly captured via the employed VGG-19 features),
and have a larger training set. In any case, the use of the full feature
embedding shows similar results for a fixed target domain B, and
any source domain A. As an example, for the Boat-River dataset,
training an anomaly detector on any source domain produces an
EER of �36%. However, the generalization measure is not the same
and indicates the best potential for transfer learning via TCA.

In Fig. 5, it is possible to see that, when evaluating the original
feature embedding using both anomaly detection and the Gpart, the
dataset with the best (lower) generalization is a better potential as
a source domain. If so, then the TCA method shows the best results.
In the case of Boat-River (Fig. 5- top), the lowest EER are for Boat-
Sea, which indeed, present the best result after application of TCA.
Similar results are observed for Boat-Sea, for which the lowest Gpart

is Boat-River, which also produces good improvement after apply-
ing TCA. For Train video as target, in Fig. 6, the Ped1, Ped2, and
Belleview were not possible to improve the results using transfer
learning in the original feature embedding, which is clear when
TCA often showed worse Gpart when compared to either PCA or
the VGG features.
4.4. Running time analysis

In our experiments, the frame per second processing rate was
also analyzed. We consider two groups: water surveillance videos;
and only UCSD datasets. The first one examines the average among
all combinations of Canoe, Boat-River, and Boat-Sea. The second
group considered the average when using datasets UCSD Ped1
and Ped2 only. Those experiments were grouped to evaluate sce-
narios considering videos with different duration. After running
all experiments, we discarded the highest and the lowest recorded
times to avoid outliers. In Table 8 we present the processing rates
of frames per second (FPS), as well as the range of frames processed
in the experiments for each group of videos. All experiments were
performed on the same machine, configured with an Intel(R) Core
(TM) i7-7700 K CPU, 64 GB of RAM and a GeForce GTX 1080 Ti GPU.
It is important to highlight that feature extraction using feed-
forward through neural networks was performed using the GPU
Table 8
Frame per seconds (FPS) using the two investigated approaches considering the
stages: feature extraction (CNN), space transformation (PCA or TCA) and detection
(OC-SVM).

Video (# of analyzed frames) Full VGG-19 PCA TCA

Water (395 to 1162) 1256 FPS 2247 FPS 1754 FPS
UCSD (7110 to 20800) 47 FPS 1700 FPS 4 FPS
hardware while PCA, TCA, and SVM computations were performed
on CPU.

Note that, overall, PCA presents the highest FPS, since it only has
to process the training samples from the source domain and,
because it compacts the space, it allows for a faster OC-SVM detec-
tion. When more video frames are used for Transfer Learning (see
UCSD row of Table 8), the computational running time perfor-
mance of TCA is severely degraded due to the need of keeping a
model with frames from both source and target videos. Again,
PCA allows a fast projection into a lower dimensionality. In any
case, even a rate of 4 FPS is not unfeasible considering our system
was not optimized for detection, and that running TCA on GPU or
using multiple cores of the CPU would significantly improve this
performance.

5. Conclusion

This paper proposes a cross-domain generalization metric that
allows evaluation of feature embeddings, indicating the potential
for transfer learning. As our results indicate, when using CNN-
based features, the TCA performance stands out and it is often
accompanied by better generalization levels. This is a simple
approach that allows a guideline for the use of off-the-shelf feature
extraction tools, boosting the performance of anomaly detection
methods even when there is no additional data from the target
domain that we are interested in solving.

We present experimental evidence that such generalization
measures are useful in practice as a manner of understanding
which datasets can be used as source or additional knowledge,
and the ones to avoid, in order to describe video frames improving
discrimination between normal and anomalous activity. This is
important because it allows to use unsupervised or semi-
supervised methods.

Transfer learning from video activity and other computer vision
tasks is still a matter of future investigation. The proposed mea-
sures can be explored in the context of choosing which feature
extraction method better suits some task, or to merge different
datasets in order to accumulate a larger training set, and therefore
increase learning guarantees.

Conflict of Interest

The authors declared that there is no conflict of interest.

Acknowledgment

The authors would like to thank FAPESP for the grants
#2018/22482-0 and #2017/22366-8, and CNPq (307973/2017-4).



416 F.P. dos Santos et al. / J. Vis. Commun. Image R. 60 (2019) 407–416
This study was financed in part by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code
001 and the CEPID-CeMEAI (FAPESP grant #2013/07375-0).
References

[1] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: A survey, ACM
Comput. Surv. (CSUR) 41 (3) (2009) 15.

[2] H. Guo, X. Wu, S. Cai, N. Li, J. Cheng, Y.-L. Chen, Quaternion discrete cosine
transformation signature analysis in crowd scenes for abnormal event
detection, Neurocomputing 204 (2016) 106–115.

[3] Y. Hu, H. Chang, F. Nian, Y. Wang, T. Li, Dense crowd counting from still images
with convolutional neural networks, J. Vis. Commun. Image Represent. 38
(2016) 530–539.

[4] R. Chaker, Z. Al Aghbari, I.N. Junejo, Social network model for crowd anomaly
detection and localization, Pattern Recogn. 61 (2017) 266–281.

[5] M.J. Roshtkhari, M.D. Levine, An on-line, real-time learning method for
detecting anomalies in videos using spatio-temporal compositions, Comput.
Vis. Image Underst. 117 (10) (2013) 1436–1452.

[6] M.J. Hasan, J. Choi, A.K. Neumann, L.S. Roy-Chowdhury, Davis Learning
temporal regularity in video sequences, in: Computer Vision and Pattern
Recognition (CVPR), 2016 IEEE Conference on, IEEE, 2016, pp. 733–742.

[7] M. Ponti, T.S. Nazare, J. Kittler, Optical-flow features empirical mode
decomposition for motion anomaly detection, in: Acoustics, Speech and
Signal Processing (ICASSP), 2017 IEEE International Conference on, IEEE,
2017, pp. 1403–1407.

[8] E. Epaillard, N. Bouguila, Proportional data modeling with hidden markov
models based on generalized dirichlet and beta-liouville mixtures applied to
anomaly detection in public areas, Pattern Recogn. 55 (2016) 125–136.

[9] Y. Aytar, A. Zisserman, Tabula rasa: Model transfer for object category
detection, in: Computer Vision (ICCV), 2011 IEEE International Conference
on, IEEE, 2011, pp. 2252–2259.

[10] T. Tommasi, F. Orabona, B. Caputo, Safety in numbers: Learning categories
from few examples with multi model knowledge transfer, in: Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on, IEEE, 2010, pp.
3081–3088.

[11] H. Ravishankar, P. Sudhakar, R. Venkataramani, S. Thiruvenkadam, P. Annangi,
N. Babu, V. Vaidya, Understanding the mechanisms of deep transfer learning
for medical images, in: Deep Learning and Data Labeling for Medical
Applications, Springer, 2016, pp. 188–196.

[12] L. Duan, D. Xu, I.W.-H. Tsang, J. Luo, Visual event recognition in videos by
learning from web data, IEEE Trans. Pattern Anal. Mach. Intell. 34 (9) (2012)
1667–1680.

[13] X. Li, M. Fang, J.-J. Zhang, Projected transfer sparse coding for cross domain
image representation, J. Vis. Commun. Image Represent. 33 (2015) 265–272.

[14] M. Long, Y. Cao, J. Wang, M.I. Jordan, Learning transferable features with deep
adaptation networks, arXiv preprint arXiv:1502.02791.

[15] M. Wang, W. Li, X. Wang, Transferring a generic pedestrian detector towards
specific scenes, in: 2012 IEEE Conference on Computer Vision and Pattern
Recognition, IEEE, 2012, pp. 3274–3281.

[16] D. Xu, W. Ouyang, E. Ricci, X. Wang, N. Sebe, Learning cross-modal deep
representations for robust pedestrian detection, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp. 5363–
5371.

[17] J. Lu, V. Behbood, P. Hao, H. Zuo, S. Xue, G. Zhang, Transfer learning using
computational intelligence: a survey, Knowl.-Based Syst. 80 (2015) 14–23.

[18] J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features in deep
neural networks?, in: Advances in Neural Information Processing Systems,
2014, pp 3320–3328.

[19] J. Hu, J. Lu, Y.-P. Tan, Deep transfer metric learning, in: Computer Vision and
Pattern Recognition (CVPR), 2015 IEEE Conference on, IEEE, 2015, pp. 325–333.

[20] E. Tzeng, J. Hoffman, T. Darrell, K. Saenko, Simultaneous deep transfer across
domains and tasks, in: Computer Vision (ICCV), 2015 IEEE International
Conference on, IEEE, 2015, pp. 4068–4076.

[21] M. Oquab, L. Bottou, I. Laptev, J. Sivic, Learning and transferring mid-level
image representations using convolutional neural networks, in: Computer
Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, IEEE, 2014,
pp. 1717–1724.

[22] N. Zhuang, Y. Yan, S. Chen, H. Wang, C. Shen, Multi-label learning based deep
transfer neural network for facial attribute classification, Pattern Recogn. 80
(2018) 225–240.

[23] G. Sun, L. Liang, T. Chen, F. Xiao, F. Lang, Network traffic classification based on
transfer learning, Comput. Electr. Eng. (2018).
[24] B. Cheng, M. Liu, D. Zhang, D. Shen, A.D.N. Initiative, et al., Robust multi-label
transfer feature learning for early diagnosis of alzheimers disease, Brain
Imaging Behav. (2018) 1–16.

[25] J. Wang, H. Zheng, Y. Huang, X. Ding, Vehicle type recognition in surveillance
images from labeled web-nature data using deep transfer learning, IEEE Trans.
Intell. Transp. Syst. (2017).

[26] T. Hao, D. Wu, Q. Wang, J.-S. Sun, Multi-view representation learning for multi-
view action recognition, J. Vis. Commun. Image Represent. 48 (2017) 453–460.

[27] F. Jiang, Y. Wu, A.K. Katsaggelos, Detecting contextual anomalies of crowd
motion in surveillance video, in: Image Processing (ICIP), 2009 16th IEEE
International Conference on, IEEE, 2009, pp. 1117–1120.

[28] A.S. Razavian, H. Azizpour, J. Sullivan, S. Carlsson, CNN features off-the-shelf:
an astounding baseline for recognition, in: Computer Vision and Pattern
Recognition Workshops (CVPRW), 2014 IEEE Conference on, IEEE, 2014, pp.
512–519.

[29] M. Sun, Y. Wang, T. Li, J. Lv, J. Wu, Vehicle counting in crowded scenes with
multi-channel and multi-task convolutional neural networks, J. Vis. Commun.
Image Represent. 49 (2017) 412–419.

[30] G.B. Cavallari, L.S.F. Ribeiro, M.A. Ponti, Unsupervised representation learning
using convolutional and stacked auto-encoders: a domain and cross-domain
feature space analysis, 31st SIBGRAPI Conference on Graphics, Patterns and
Images (SIBGRAPI 2018), 2018.

[31] R.F. de Mello, M.D. Ferreira, M.A. Ponti, Providing theoretical learning
guarantees to deep learning networks, arXiv preprint arXiv:1711.10292.

[32] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, et al., Imagenet large scale visual
recognition challenge, Int. J. Comput. Vision 115 (3) (2015) 211–252.

[33] I.T. Jolliffe, Principal component analysis and factor analysis, in: Principal
Component Analysis, Springer, 1986, pp. 115–128.

[34] S.J. Pan, I.W. Tsang, J.T. Kwok, Q. Yang, Domain adaptation via transfer
component analysis, IEEE Trans. Neural Networks 22 (2) (2011) 199–210.

[35] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, arXiv preprint arXiv:1409.1556.

[36] Y. Chen, X.S. Zhou, T.S. Huang, One-class svm for learning in image retrieval,
Image Processing, 2001. Proceedings. 2001 International Conference on, vol. 1,
IEEE, 2001, pp. 34–37.

[37] Y. Xian, X. Rong, X. Yang, Y. Tian, Evaluation of low-level features for real-
world surveillance event detection, IEEE Trans. Circ. Syst. Video Technol. 27 (3)
(2017) 624–634.

[38] M.A. Ponti, L.S.F. Ribeiro, T.S. Nazare, T. Bui, J. Collomosse, Everything you
wanted to know about deep learning for computer vision but were afraid to
ask, in: 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images
Tutorials (SIBGRAPI-T), IEEE, 2017, pp. 17–41.

[39] S. Sarraf, G. Tofighi, Deep learning-based pipeline to recognize Alzheimer’s
disease using FMRI data, in: Future Technologies Conference (FTC), IEEE, 2016,
pp. 816–820.

[40] T. Zhou, I. Icke, B. Dogdas, S. Parimal, S. Sampath, J. Forbes, A. Bagchi, C.-L. Chin,
A. Chen, Automatic segmentation of left ventricle in cardiac cine MRI images
based on deep learning, Medical Imaging 2017: Image Processing, vol. 10133,
International Society for Optics and Photonics, 2017, p. 101331W.

[41] M. Liang, X. Hu, Recurrent convolutional neural network for object recognition,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 3367–3375.

[42] V.N. Vapnik, An overview of statistical learning theory, IEEE Trans. Neural
Networks 10 (5) (1999) 988–999.

[43] U. von Luxburg, B. Schölkopf, Statistical learning theory: Models, concepts, and
results, Handbook of the History of Logic, Vol. 10: Inductive Logic, vol. 10,
Elsevier North Holland, Amsterdam, Netherlands, 2011, pp. 651–706.

[44] R.F. Mello, M.A. Ponti, Machine Learning: A Practical Approach on the
Statistical Learning Theory, Springer, 2018.

[45] P.-M. Jodoin, J. Konrad, V. Saligrama, Modeling background activity for
behavior subtraction, in: Distributed Smart Cameras, 2008. ICDSC 2008.
Second ACM/IEEE International Conference on, IEEE, 2008, pp. 1–10.

[46] A. Zaharescu, R. Wildes, Anomalous behaviour detection using spatiotemporal
oriented energies, subset inclusion histogram comparison and event-driven
processing, in: European Conference on Computer Vision, Springer, 2010, pp.
563–576.

[47] V. Mahadevan, W. Li, V. Bhalodia, N. Vasconcelos, Anomaly detection in
crowded scenes, in: Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on, IEEE, 2010, pp. 1975–1981.

[48] L. Torrey, J. Shavlik, Transfer learning, in: Handbook of Research on Machine
Learning Applications and Trends: Algorithms, Methods, and Techniques, IGI
Global, 2010, pp. 242–264.

[49] S.J. Pan, Q. Yang, et al., A survey on transfer learning, IEEE Trans. Knowl. Data
Eng. 22 (10) (2010) 1345–1359.

http://refhub.elsevier.com/S1047-3203(19)30092-6/h0005
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0005
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0010
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0010
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0010
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0015
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0015
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0015
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0020
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0020
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0025
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0025
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0025
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0030
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0030
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0030
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0030
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0035
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0035
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0035
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0035
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0035
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0040
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0040
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0040
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0045
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0045
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0045
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0045
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0050
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0050
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0050
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0050
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0050
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0055
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0055
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0055
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0055
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0055
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0060
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0060
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0060
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0065
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0065
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0075
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0075
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0075
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0075
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0080
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0080
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0080
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0080
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0080
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0085
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0085
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0090
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0090
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0090
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0090
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0095
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0095
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0095
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0100
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0100
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0100
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0100
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0105
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0105
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0105
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0105
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0105
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0110
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0110
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0110
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0115
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0115
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0120
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0120
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0120
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0125
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0125
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0125
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0130
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0130
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0135
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0135
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0135
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0135
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0140
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0140
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0140
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0140
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0140
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0145
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0145
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0145
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0150
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0150
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0150
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0150
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0150
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0160
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0160
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0160
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0165
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0165
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0165
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0170
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0170
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0180
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0180
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0180
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0180
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0185
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0185
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0185
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0190
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0190
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0190
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0190
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0190
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0195
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0195
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0195
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0195
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0200
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0200
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0200
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0200
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0200
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0205
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0205
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0205
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0205
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0210
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0210
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0215
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0215
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0215
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0215
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0220
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0220
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0220
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0225
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0225
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0225
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0225
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0230
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0230
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0230
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0230
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0230
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0235
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0235
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0235
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0235
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0240
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0240
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0240
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0240
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0245
http://refhub.elsevier.com/S1047-3203(19)30092-6/h0245

	Generalization of feature embeddings transferred from different videoanomaly detection domains
	1. Introduction
	2. Method
	3. Experiments
	4. Results and discussion
	5. Conclusion
	Conflict of Interest
	Acknowledgment
	References


