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Abstract
The practical applications of diffusion models
have been limited by the misalignment between
generated images and corresponding text prompts.
Recent studies have introduced direct preference
optimization (DPO) to enhance the alignment of
these models. However, the effectiveness of DPO
is constrained by the issue of visual inconsis-
tency, where the significant visual disparity be-
tween well-aligned and poorly-aligned images
prevents diffusion models from identifying which
factors contribute positively to alignment during
fine-tuning. To address this issue, this paper in-
troduces D-Fusion, a method to construct DPO-
trainable visually consistent samples. On one
hand, by performing mask-guided self-attention
fusion, the resulting images are not only well-
aligned, but also visually consistent with given
poorly-aligned images. On the other hand, D-
Fusion can retain the denoising trajectories of the
resulting images, which are essential for DPO
training. Extensive experiments demonstrate the
effectiveness of D-Fusion in improving prompt-
image alignment when applied to different rein-
forcement learning algorithms.

1. Introduction
Diffusion models have made remarkable success in various
domains, such as medicine (Xu et al., 2022), robotics (Chi
et al., 2024), and 3D synthesis (Poole et al., 2022). Recently,
the application of diffusion models in the field of text-to-
image generation has gained widespread attention (Ho et al.,
2020; Dhariwal & Nichol, 2021). Under the guidance of
the given text descriptions, usually called prompts, these
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Figure 1. (Misalignment) Diffusion models (e.g., Stable Diffusion
(SD) (Rombach et al., 2022)) often encounter the issue that the
generated images do not accurately match the given prompts. Ex-
isting RL-based fine-tuning methods (e.g., DPO (Wallace et al.,
2023)) have limited effectiveness in improving the alignment. For
each set of images above, we use the same seed for sampling.

models transform random noises to corresponding images
via a sequential denoising process. However, as shown
in Figure 1, diffusion models often encounter the issue of
prompt-image misalignment (Jiang et al., 2024; Mrini et al.,
2024). Prompt-image misalignment refers to the problem
that the generated images do not accurately match the given
text prompts, which limits the real-world applications of
diffusion models.

To address this issue, recent studies have explored incorpo-
rating reinforcement learning (RL) algorithms to fine-tune
pre-trained diffusion models (Black et al., 2024; Clark et al.,
2024; Fan et al., 2023; Wallace et al., 2023; Xu et al., 2023;
Yang et al., 2024a;b; Hu et al., 2025). In the paradigm of
RL, the step-by-step denoising process of diffusion models
is reinterpreted as a sequential decision-making problem.
In this formulation, the intermediate noisy image at each
timestep is regarded as a state, while each denoising opera-
tion corresponds to an action. Among these RL algorithms,
direct preference optimization (DPO) stands out for its ad-
vantage of eliminating the need for an explicit reward model,
making it a widely adopted approach (Wallace et al., 2023;
Yang et al., 2024a). As illustrated in Figure 2(a), researchers
first sample images from the diffusion model with given
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Figure 2. (Visual Inconsistency) When people train diffusion models with direct preference optimization (DPO), the visual disparity
between well-aligned and poorly-aligned images are enormous. This visual inconsistency limits the success of DPO in enhancing diffusion
models. Meanwhile, the visually consistent samples obtained through manual editing lack denoising trajectories and are not suitable for
RL training. To this end, we introduce D-Fusion, which constructs RL-trainable visually consistent samples.

prompts, and then evaluate the alignment between images
and prompts via human preference or model prediction.
These sampled images, along with their preference orders
and denoising trajectories, can be further used in DPO to
enhance the alignment of diffusion model.

However, DPO has so far achieved limited success in im-
proving prompt-image alignment, primarily due to the issue
of visual inconsistency in the training data. Visual incon-
sistency refers to the disparity between images in terms of
structure, style or appearance, which is commonly observed
in the images denoised from different noises. As shown in
Figure 2(a), high-preference images (i.e., well-aligned im-
ages) differ from low-preference images (i.e., poorly-aligned
images) not only in the alignment-related factors, but also
in unrelated factors (e.g., background). Interfered by unre-
lated factors, it is difficult for the model to identify which
factors contribute positively to alignment. Meanwhile, with
great differences, it is difficult to tell which image aligns
better sometimes (e.g., an image with only monkey and an
image with only sandwich). As a result, learning effective
denoising policies from those samples becomes challenging.

We believe that performing DPO with visually consistent
image pairs can help diffusion models learn effective poli-
cies. Recent studies have corroborated similar perspectives
on RL training of large language models (LLMs) and multi-
modal large language models (MLLMs) (Kong et al., 2025;
Yu et al., 2024). As illustrated in Figure 2(b), these studies
make fine-grained editing or annotations to the hallucina-

tions (Huang et al., 2024; Bai et al., 2024) present in the
text output of the language model, thereby obtaining factual
training data (i.e., high-preference data) with consistent lin-
guistic style. Since the editing or annotations to text output
are at the token-level, and the decision-making sequence
in language model is constructed token-by-token (Rafailov
et al., 2024), RL training can still proceed. By performing
DPO with the pairs consisting of hallucinated text and cor-
responding factual text, the language model receives dense
reward signals and achieves fine-grained alignment.

However, these methods on language models fail when ap-
plied to the text-to-image diffusion models. As illustrated in
Figure 2(b), the decision-making sequence of the diffusion
model is constructed timestep-by-timestep. Existing edit-
ing methods, such as manual editing, Imagen Editor (Wang
et al., 2023) and Imagic (Kawar et al., 2023), are capable
of both aligning images and maintaining visual consistency.
Yet, these methods perform editing at the pixel-level, caus-
ing the loss of the timestep-by-timestep decision-making se-
quences. Once edited to better align with the prompts, these
images lack corresponding denoising trajectories, making
them unsuitable for RL fine-tuning. This motivates us to ask:
How can we generate RL/DPO-trainable visually consistent
image pairs to fine-tune diffusion models?

In this paper, we address this challenge by introducing D-
Fusion: self-attention based Denoising trajectory Fusion, a
method to construct RL-trainable visually consistent images.
Our method offers key innovations in two phases. (1) In the
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sampling phase, we propose to apply self-attention fusion
between a high-preference sample (called reference image)
and a low-preference sample (called base image) under the
guidance of an auto-extracted mask to obtain a new sample
(called target image), as illustrated in Figure 2(c). The mask,
which is derived from the denoising process of the reference
image, can reveal the position of alignment-related area. By
applying self-attention fusion in the alignment-related area,
the target image becomes as well-aligned as the reference
image. Simultaneously, with shared random noise, the target
image exhibits a high degree of visual consistency with the
base image. (2) In the training phase, since the self-attention
fusion is applied step-by-step along the denoising process,
we collect the intermediate states to form the trajectories,
which are the necessity of RL training. By performing
DPO between the base images and corresponding target
images, the diffusion models can achieve better prompt-
image alignment than those fine-tuned with naive samples.

We conduct comprehensive experiments with three lists of
prompts on Stable Diffusion (Rombach et al., 2022). The
three prompt lists respectively consider the behavior of the
object, the attribute of the object, and the positional relation-
ship between the objects, which we believe can encompass
a broad spectrum of commonly used prompt types in image
generation. Furthermore, we apply D-Fusion to a variety of
RL algorithms for fine-tuning diffusion models, including
DPO (Wallace et al., 2023), DDPO (Black et al., 2024) and
DPOK (Fan et al., 2023). Experimental results show that
D-Fusion can effectively enhance the alignment of diffusion
models across different prompts, and is compatible with
different RL algorithms.

The main contribution of this work can be summarized as 1:
(1) We for the first time highlight the necessity of fine-
tuning diffusion models with visually consistent image pairs
when applying DPO, and discuss the challenge in obtaining
RL-trainable visually consistent images. (2) We introduce
D-Fusion, a compatible approach to construct visually con-
sistent samples and corresponding denoising trajectories,
where the latter is curial for RL training, to address the
above challenge. (3) Comprehensive experimental results
demonstrate the effectiveness of D-Fusion in improving
prompt-image alignment when applied to different prompts
and different RL algorithms.

2. Related Work
2.1. Controllable Generation with Diffusion Models

Diffusion models have demonstrated impressive ability in
generating high-quality and high-fidelity images (Ho et al.,
2020; Song & Ermon, 2020; Peebles & Xie, 2023). With

1The code for this work is available at this repository:
https://github.com/hu-zijing/D-Fusion.

the increasing demand for more interactive and user-driven
generation, researchers begin exploring methods to incor-
porate controllability into these models (Cao et al., 2024;
Tong et al., 2023). A variety of studies aim to control the
generation process of diffusion models with specific con-
ditions, such as class labels (Dhariwal & Nichol, 2021;
Ho & Salimans, 2022), layouts (Zheng et al., 2024), im-
ages (Preechakul et al., 2022) and audios (Yang et al., 2023).
With the introduction of text encoders, diffusion models gain
the ability to generate images from text (Rombach et al.,
2022). Subsequent studies therefore focus on fine-tuning
the pre-trained text-to-image diffusion models to improving
alignment (Jiang et al., 2024; Lee et al., 2023). Among them,
RL has been widely employed to enhance the controllability
of diffusion models (Black et al., 2024; Clark et al., 2024;
Fan et al., 2023; Wallace et al., 2023; Xu et al., 2023; Yang
et al., 2024a;b; Hu et al., 2025). In this paper, by mitigating
the issue of visual inconsistency, we further improve the
performance of RL in training diffusion models.

2.2. Reinforcement Learning with Fine-grained Data

Reinforcement learning is a training paradigm that has
played an important role in improving alignment of both
diffusion models and language models. In the area of trust-
worthy LLMs/MLLMs, alignment to human preference has
attracted widespread attention (Liu et al., 2024; Tu et al.,
2023; Zhu et al., 2025; Yang et al., 2025), where reinforce-
ment learning from human feedback (RLHF) has been em-
ployed accordingly (Bai et al., 2022; Rafailov et al., 2024;
Ouyang et al., 2022). Current language models generate text
in an auto-regressive manner (Vaswani et al., 2023), thus
the token-by-token generation process can be regarded as
a Markov decision process. Recently, researchers perform
fine-grained corrections or assign fine-grained human feed-
back to the textual training data (Kong et al., 2025; Yu et al.,
2024; Wu et al., 2023). Fine-grained data can provide dense
reward signals to RL, thus achieving impressive fine-tuning
results. In this paper, by employing denoising trajectory fu-
sion, we provide visually consistent samples for RL training
of diffusion models, which have similar fine-grained effects.

2.3. Attention Control for Diffusion Models

The attention mechanism has garnered considerable interest
and sparked a wealth of research (Vaswani et al., 2023; Doso-
vitskiy et al., 2021; Wang et al., 2024). In diffusion models,
some studies have demonstrated how cross-attention maps
in the denoising process determine the layouts of generated
images (Hertz et al., 2022; Brooks et al., 2023; Mokady
et al., 2022). Additionally, other studies have explored the
role of self-attention layers in these models (Cao et al., 2023;
Tumanyan et al., 2022; Shi et al., 2024). These studies can
edit images by controlling the attention layers, and some
of them have the potential to preserve the denoising tra-
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Figure 3. (Method Overview) We propose D-Fusion to construct RL-trainable visually consistent samples. (a) Each layer of the U-Net
based diffusion models contains several transformer attention blocks, and each block contains a self-attention module and a cross-attention
module. (b) D-Fusion constructs visually consistent samples through two steps: cross-attention mask extraction and self-attention fusion.
(c) Examples of visually consistent samples. Each set consists of three images: the reference image, the base image, and the target image.
The target images are not only as well-aligned as the reference images but also maintain visual consistency with the base images.

jectories. However, these methods generally transfer an
image from one prompt to another, which does not corre-
spond to our task of aligning an image with corresponding
prompt. Nevertheless, these methods inspire us to explore
attention-based techniques in this paper. We present some
observations on these methods in Appendix B.

3. Method
In this section, we start by formulating the problem, fol-
lowed by a detailed introduction to D-Fusion, covering both
the sampling and training phases.

3.1. Problem Formulation

Text-to-Image Diffusion Models. In this work, we consider
pre-trained text-to-image diffusion models p(x0 | c), which
generate a sample x0 conditioned on a textual prompt c. Be-
ginning with random noise xT ∼ N (0, I), diffusion models
iteratively transform the noise through T steps into a clear
image x0 that matches the given prompt (Sohl-Dickstein
et al., 2015; Dhariwal & Nichol, 2021). Building upon the
samplers of DDPM (Ho et al., 2020) and DDIM (Song et al.,

2022), each iteration is performed by applying the following
denoising formula:

pθ(xt−1 | xt, c) = N (xt−1 | µθ(xt, t, c), σtI
2), (1)

where t denotes current timestep, µθ represents the predic-
tion made by a diffusion model parameterized by θ, and σt

is the fixed timestep-dependent variance. The reverse pro-
cess produces a denoising trajectory {xT ,xT−1, . . . ,x0}
ending with a sample x0.

Attention Mechanism in Diffusion Models. Transformer
attention blocks (Vaswani et al., 2023) have been applied
in each layer of the U-Net (Ronneberger et al., 2015) based
diffusion models. As shown in Figure 3(a), the U-Net based
diffusion models contain several down-sampling layers, a
middle layer, and corresponding up-sampling layers. Fur-
thermore, each layer contains several transformer attention
blocks, and each attention block in diffusion models con-
tains a self-attention module and a cross-attention module.
The attention mechanism can be formulated as follows:

Attention(Q,K, V ) = softmax(
QKT√
dkey

)V, (2)
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where Q ∈ Rm×dkey are queries projected from image fea-
tures, and K ∈ Rn×dkey , V ∈ Rn×dvalue are keys and
values projected from image features (in self-attention mod-
ule) or prompt embeddings (in cross-attention module). In
this formula, softmax( QKT√

dkey

) is commonly referred to as

attention maps, represented by A.

Denoising as a Decision-Making Problem. The denoising
process in diffusion models can be formulated as a sequen-
tial decision-making problem. The process can be defined
by a tuple (S,A, P,R, πθ), where S is the state space, A
is the action space, P is the transition function, R is the
reward function, and πθ is the decision-making policy. At
each timestep t, the state st ∈ S is represented by (c, t,xt),
i.e., the text prompt, the current timestep, and the noisy
image at the current timestep. The action at ∈ A refers to
the denoising operation that generates the next noisy image
xt−1. The transition P (st+1 | st, at) specifies the distri-
bution over the next state st+1 given the current state st
and action at, and is provided by corresponding samplers in
DDPM and DDIM. The reward R(c,x0) corresponds to the
prompt-image alignment score in our settings, which can be
given by human preference or model evaluation. And the
policy is defined as πθ(at | st) = pθ(xt−1 | xt, c), which
describes how to select the current action based on current
state. By adopting this formulation, we can enhance the
prompt-image alignment in diffusion models by maximiz-
ing the following objective:

JRL(θ) = Ec∼p(c),x0∼pθ(x0|c) [R(x0, c)] , (3)

where p(c) is a uniform distribution over the candidate
prompts.

3.2. Sampling: Denoising Trajectory Fusion

When employing reinforcement learning, people first sam-
ple a set of images I1, . . . , In, and reserve their denoising
trajectories. These images contain both well-aligned and
poorly-aligned ones, and can be further used as training
data for RL. We refer to these well-aligned images as ref-
erence images and poorly aligned-images as base images.
The goal of our method is to generate a target image Ia

that is both as well-aligned as a given reference image Ir,
and visually consistent with a given base image Ib, where
Ir and Ib are generated with the same textual prompt c.
D-Fusion reaches this goal through the following two steps:
cross-attention mask extraction and self-attention fusion.
Formally, the denoising trajectories of Ir and Ib are rep-
resented as {xr

T ,x
r
T−1, . . . ,x

r
0} and {xb

T ,x
b
T−1, . . . ,x

b
0}

respectively.

Cross-Attention Mask Extraction. Firstly, we extract a
mask Mt from reference image at each timestep t, i.e., at
the denoising process from xr

t to xr
t−1. Let h×w represent

the image resolution of xr
t (h × w = 64 × 64 in Stable

Diffusion), and hl × wl represent the image resolution at
layer l of the U-Net. Inspired by previous work (Hertz et al.,
2022; Cao et al., 2023), the cross-attention maps contain
sufficient information about shapes and structures of the
generated images, among which the first up-sampling layer
(with resolution h

4 ×
w
4 = 16 × 16 in Stable Diffusion)

performs the best. Therefore, we average the cross-attention
maps across all heads and all attention blocks in the first
up-sampling layer, and extract a mask from them.

Formally, after averaging and reshaping, the cross-attention
maps are denoted as Across

t ∈ Rh
4 ×

w
4 ×|c|, where |c| is

the number of tokens in prompt c. The i-th attention map
Across

t [:, :, i] indicates the extent to which each pixel in the
image should pay attention to the i-th token in the prompt.
Let Oc = {o1, . . . , ok} represents index list of the item-
related tokens in prompt c, then the mask Mt can be ex-
tracted with the following formula:

Mt =
⊕
o∼Oc

[
(Across

t [:, :, o] ≥ thro)?1 : 0
]
, (4)

where thro is a hyperparameter that defines the mask thresh-
old for the o-th token, 1 is the all-one matrix, and 0 is the
all-zero matrix. In this formula, we first binarize the atten-
tion maps to generate the masks for corresponding items,
as shown in the Figure 3(b). Afterwards, we merge them
into one mask through XOR operation. The resulting mask
Mt ∈ Bh

4 ×
w
4 , where B = {0, 1}, reveals the position of the

items mentioned by the prompt in the reference image.

Self-Attention Fusion. To generate an ideal target image
Ia, our approach is based on the idea of having the prompt-
related area imitate the reference image Ir, while the other
area retain the features of base image Ib. Inspired by previ-
ous work (Cao et al., 2023; Tumanyan et al., 2022), the (i, j)
entry in the self-attention maps Aself

t ∈ R(hl×wl)×(hl×wl)

indicates the extent to which the i-th pixel in the image
should pay attention to the j-th pixel at timestep t. There-
fore, we design the mechanism named self-attention fusion,
to control the attention allocation in Ia. Starting with the
same random noise as Ib, we progressively denoise it with
diffusion model, and apply self-attention fusion at each
timestep t as follows. Firstly, we resize the mask Mt to
match the image resolution of the current layer, resulting in
a new mask M̂t ∈ Bhl×wl . Afterwards, we manipulate the
keys and values in self-attention as Eq.(5):

Ka
new = Kr ◦ Flatten(M̂t) +Ka ◦

(
1− Flatten(M̂t)

)
,

V a
new = V r ◦ Flatten(M̂t) + V a ◦

(
1− Flatten(M̂t)

)
,
(5)

where the signal ◦ is Hadamard product 2, the Kr ∈
R(hl×wl)×dkey , V r ∈ R(hl×wl)×dvalue are keys and val-

2For two matrices A and B, the Hadamard product is A ◦B =
[aij ] ◦ [bij ] = [aijbij ].
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ues of Ir, the Ka, V a are keys and values of Ia generated
at current denoising step, and Flatten() reshapes M̂t into
B(hl×wl)×1, enabling it to compute the Hadamard product
with the keys and values after auto-broadcasting.

By applying self-attention fusion, the diffusion model can
generate the target image Ia that is not only as well-aligned
as Ir, but also visually consistent with Ib. On one hand,
by injecting the fused keys Ka

new, the self-attention maps
allocate attention to the prompt-related area with reference
to Ir. Subsequently, by injecting the fused values V a

new, the
final image features in the prompt-related area also take into
account the features of Ir. Thus the prompt-related area in
Ia becomes well-aligned, as the reference image Ir goes.
On the other hand, by sharing the same random noise with
Ib, retaining the original queries, and retaining the keys and
values in prompt-unrelated area, the target image Ia also
achieves visual consistency with Ib.

3.3. Training: DPO with Visually Consistent Samples

By applying denoising trajectory fusion based on Ib

and with reference to Ir, we can get the well-aligned
target image Ia along with its denoising trajectory
{xa

T ,x
a
T−1, . . . ,x

a
0}. The direct preference optimization

can therefore be employed with the image pair consisting
of high-preference image Ia and low-preference image Ib.
Following traditional DPO (Wallace et al., 2023; Yang et al.,
2024a), the diffusion model with parameters θ can be opti-
mized with following objective:

−E
( T∑

t=1

log σ
[
β

pθ(x
a
t−1 | xa

t , c)

pθold(x
a
t−1 | xa

t , c)
−β

pθ(x
b
t−1 | xb

t , c)

pθold(x
b
t−1 | xb

t , c)

])
,

(6)
where σ is the sigmoid function, θold is the parameters of
diffusion model prior to update, and β is a hyperparameter
controlling the deviation from pθ to pθold . By introducing
CLIP (Radford et al., 2021) to replace human in evaluating
prompt-image alignment, it becomes possible to conduct
multiple rounds of online learning, allowing the model to
progressively adapt to a new image distribution that aligns
well with corresponding prompts. Beyond DPO, we further
employ DDPO (Black et al., 2024) and DPOK (Fan et al.,
2023) to fine-tune diffusion models with visually consistent
samples. For a comprehensive description of implementa-
tion details, we refer the readers to Appendix C.

4. Experiments
In this section, we demonstrate the effectiveness of D-Fusion
both qualitatively and quantitatively. Afterwards, we focus
on ablation studies on denoising trajectories and RL algo-
rithms, as well as demonstrating the generalization ability.
For simplicity, we refer to DPO+D-Fusion (i.e., employing
DPO with D-Fusion) as our method in some places.

4.1. Experimental Setup

Diffusion Models. We use Stable Diffusion (SD) 2.1-
base (Rombach et al., 2022), one of the most advanced
diffusion models, as the base model for the experiments.
We employ DDIM (Song et al., 2022) as the sampler. The
weight of noise in DDIM sampler is set to 1.0, which de-
cides the degree of randomness at each denoising step. We
apply Low-Rank Adaptation (LoRA) (Hu et al., 2021) for
efficient fine-tuning. Following the previous work (Black
et al., 2024), the total denoising timesteps T is set to 20.
Each experiment is conducted with three different seeds.

Prompt Templates. We construct the prompt lists based on
three templates. The three templates consider the behavior
of the object, the attribute of the object, and the positional re-
lationship between the objects respectively. (1) Template 1:
“a(n) [animal] [activity]”. The animal is chosen from the the
list of 45 common animals given by previous work (Black
et al., 2024), and the activity is chosen from the list: “eating
a sandwich”, “driving a car” and “playing basketball”. (2)
Template 2: “a(n) [color] and [material] [object]”. We
select six common colors (e.g., red) and nine common ma-
terials (e.g., wooden) for this template. The object list is
chosen from the Visual Relation Dataset (VRD) (Lu et al.,
2016). We randomly combine colors, materials, and ob-
jects to form the prompts. (3) Template 3: “the [object 1]
[predicate] the [object 2]”. We select four position-related
predicates: “above”, “below”, “on the left of ” and “on the
right of ”. We construct the prompts based on the annota-
tions of VRD to ensure their rationality. The prompt list
for each template contains 40 prompts for training, and 40
prompts for generalization test. We present the full prompt
lists in Appendix G.

Rewards and Evaluation Metrics. We evaluate the prompt-
image alignment by CLIPScore (Hessel et al., 2022), and
also use it as the reward function (if needed). A higher
CLIPScore represents better alignment. In terms of imple-
mentation, we use Vit-H-14 CLIP model (Radford et al.,
2021; Ilharco et al., 2021).

4.2. Qualitative Evaluation

We first evaluate the performance of D-Fusion when applied
to DPO (Wallace et al., 2023; Yang et al., 2024a). After em-
ploying DPO with or without D-Fusion for the same training
rounds, we sample a series of images from original model
and fine-tuned models with same random seeds, as shown
in Figure 4(top). The results qualitatively show that training
diffusion models with visually consistent samples yields
better performance in improving prompt-image alignment
than training without them when employing DPO. We also
conduct a human preference test with 22 independent hu-
man raters (ranging from undergraduates to Ph.D.), who are
asked to select the image that best aligns with corresponding
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Figure 4. (Qualitative Results) Examples of images generated by original model and fine-tuned models on three templates. For each
set of images, we use the same random seed. For both training prompts (top) and test prompts (bottom), the models fine-tuned by
DPO+D-Fusion achieves better prompt-image alignment compared to the original model and the models fine-tuned by naive DPO.

prompt from a set of three images generated by different
models. We report the average preference rates in Figure 6.
The results indicate that the preference rates of the images
generated by the models fine-tuned with our method con-
sistently outperform those by original model (SD) and by
the models fine-tuned with naive DPO on the three prompt
templates. We present more samples in Appendix F.

4.3. Quantitative Evaluation

We also quantitatively demonstrate the alignment of the
models fine-tuned by DPO with or without D-Fusion. As
shown in Figure 5, we conduct multiple rounds of fine-
tuning on the diffusion models with different methods. At
each round, we use the same seed to sample the fine-tuned
different models, and test the alignment scores of the gener-
ated images. The results illustrate the alignment scores as
the training progresses on the three prompt templates, where
the x-axis represents the amount of image data used to fine-
tune the models, and y-axis represents the CLIPScore. It
can be seen that after training with the same amount of data,

the models fine-tuned by our method almost always achieve
higher alignment scores than the models fine-tuned by naive
DPO. These results indicate that training with visually con-
sistent samples can enhance diffusion models to a greater
extent than training with naive DPO.

4.4. Ablation Study

We conduct ablation studies on denoising trajectories and
RL algorithms. For the former, we investigate the effective-
ness of training with the denoising trajectories generated
through DDIM inversion (Song et al., 2022; Mokady et al.,
2022). For the latter, we apply D-Fusion across different RL
algorithms to assess its compatibility and performance.

Comparison with DDIM Inversion. The goal of DDIM
inversion is to estimate the initial random noise xinv

T from
a clear image x0 step by step, thus constructing a denois-
ing trajectory {x0,x

inv
1 , . . . ,xinv

T } in reverse order. In this
ablation study, we apply DDIM inversion to visually con-
sistent samples, and utilize the generated denoising trajec-
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Figure 5. (Alignment) Alignment curves of the diffusion models fine-tuned with or without
D-Fusion on three prompt templates. Results show that training with D-Fusion can enhance the
alignment of diffusion models to a greater extent.
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Figure 7. (Ablation Study) The ablation studies on denoising trajectories and RL algorithms
with template 1. Results indicate that (1) Constructing denoising trajectories by DDIM inversion
is not a practical way; (2) Integrating D-Fusion can enhance the effect of different RL algorithms.

Table 1. (Generalization) Prompt-image
alignment (measured by CLIPScore ↑) of
the images generated by the SD, DPO,
and our method on three templates. The
prompts for generalization test are not
used during training.

Methods Temp.1 Temp.2 Temp.3

SD 0.3725 0.3396 0.3213
DPO 0.3733 0.3407 0.3230
Ours 0.3758 0.3446 0.3276

tories to replace those provided by D-Fusion, which are
then used to train the models. As shown in Figure 7, the
results reveal that after applying DDIM inversion, the mod-
els do not receive any noticeable improvement in alignment.
This indicates that DDIM inversion fails to provide accurate
noise estimations. Previous work (Mokady et al., 2022) has
noted that, if denoising from xinv

T to reconstruct the image,
the reconstructed one exhibited visible difference from the
original one, which is a consistent phenomenon with our
observation here. The reason is DDIM inversion relies on
a rough assumption that ϵθ(xt−1, t) = ϵθ(xt, t), leading to
inaccurate estimations. Therefore, compared to our method,
DDIM inversion is not a practical approach to construct
denoising trajectories for RL training.

Compatibility with Different RL Algorithms. D-Fusion
demonstrates compatibility with a variety of RL algorithms.
In this ablation study, we further apply D-Fusion to the
widely used RL-based diffusion fine-tuning methods, in-
cluding DDPO (Black et al., 2024) and DPOK (Fan et al.,
2023). The implementation details are presented in Ap-
pendix C. As shown in Figure 7, among these methods, the
integration of D-Fusion enhances the alignment of diffusion
models to a greater extent. More experimental results on
template 2 and 3 are shown in Appendix E. The results
demonstrate that training with visually consistent samples
is effective across different RL algorithms.

4.5. Generalization Ability

The models fine-tuned with our method exhibit generaliza-
tion capabilities, further enhancing the potential for real-
world applications. As shown in Table 1, for each prompt
template, we use different models to separately sample
1,280 images with the same random seeds. The prompts
used here are not optimized with RL fine-tuning, but accord
with corresponding template. The results indicate that the
images generated by the models fine-tuned by our method
achieve higher alignment scores compared to those gener-
ated by original model (SD) and DPO. Figure 4(bottom)
presents the image examples generated with these prompts,
qualitatively showing generalization ability of the models
fine-tuned with our method. For more image examples, we
refer the readers to Appendix F.

5. Conclusion
In this work, we mitigate the issue of prompt-image mis-
alignment in diffusion models by employing direct pref-
erence optimization with visually consistent samples. We
highlight the challenge of obtaining RL-trainable visually
consistent samples. To address this challenge, we introduce
D-Fusion, a self-attention based method that can not only
generates visually consistent and well-aligned samples from
given images, but also retain the denoising trajectories. We
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conduct comprehensive experiments using Stable Diffusion
as backbone, incorporating a variety of prompts and RL
algorithms. Both qualitative and quantitative experimental
results demonstrate that, by training with visually consistent
samples generated by D-Fusion, the RL-based fine-tuning
can achieve better prompt-image alignment.
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The Appendix is organized as follows:

• Appendix A: presents the list of abbreviations and sym-
bols in this paper.

• Appendix B: presents comprehensive observations on a
variety of attention control methods.

• Appendix C: provides more details on implementation
(e.g., computational resources and hyperparameters).

• Appendix D: provides pseudo-code of training with D-
Fusion.

• Appendix E: presents more experimental results.

• Appendix F: presents more image samples generated by
diffusion models fine-tuned with D-Fusion.

• Appendix G: presents prompts and corresponding mask
thresholds used in our experiments.

A. Abbreviation and Symbol Table
The abbreviations and symbols used in this paper are pre-
sented in Table 2.

B. Observations on Attention Control
In this section, we present some observations on attention
control from three perspectives: (1) What are the effects
of different attention control methods (i.e., fusing differ-
ent components in the attention module). (2) How do the
timesteps and layers in U-Net affect the fusion results. (3)
How do the cross-attention maps look like. We use prompt
“a cat playing chess” in these observations.

(1) What are the effects of different attention control meth-
ods? We have observed varieties of different attention con-
trol methods. As shown in Figure 8(top), subfigures (a) to
(c) correspond to the previous work (Tumanyan et al., 2022;
Cao et al., 2023; Hertz et al., 2022), where they inject the
self-attention maps, the keys and values of self-attention,
and the cross-attention maps from the reference image into
the base image, respectively. Subfigure (a) illustrates that
injecting self-attention maps can easily lead to significant
blurring in the resulting image. Subfigures (b) and (c) inject
the keys and values of self-attention, and the cross-attention
maps, respectively. In the former, the features largely mimic
those of the reference image, while in the latter, the features
from the base image are better preserved. For instance, the
table in subfigure (c) appears green, just like in base image,
whereas subfigure (b) does not exhibit this characteristic.
Meanwhile, we experiment with injecting additional compo-
nents in attention mechanism, as shown in subfigures (d) to
(f). The images in Figure 8(top) are either blurred or retain
too few features from the base image.

In order to generate ideal images, we introduce masks as in
the previous work MasaCtrl (Cao et al., 2023). MasaCtrl

reference image

base image

(a) self Q*K (b) self K,V (c) cross Q*K

(d) self Q (e) self feats (f) self Q,V

reference image

base image

(a) MasaCtrl

(d) D-Fusion with different timesteps and layers

(b) mask 𝐴𝐴!"#$ (c) mask feats

Figure 8. Effects of different attention control methods.

applies masks to two components: self-attention maps and
image features (i.e., the output of the attention module). The
masks are used to make the foreground of resulting images
resemble the reference images, while the background resem-
bles the base images. As shown in subfigures (a) to (c) of
Figure 8(bottom), we test MasaCtrl and its two parts respec-
tively. They fail to generate ideal images primarily because
the image features are directly tied to the pixel structure.
Therefore, applying masks to image features often leads to
confusion at the boundaries between the covered and uncov-
ered areas. We can conclude that MasaCtrl is more suitable
for fusing two images with similar foreground and back-
ground boundaries, such as the images generated with same
seed (but different prompts). Therefore, we turn to apply
masks to keys and values in D-Fusion, and get robust fusion
effects, as shown in subfigure (d) of Figure 8(bottom).

(2) How do the timesteps and layers in U-Net affect the fu-
sion results? The U-Net in Stable Diffusion has three down-
sampling layers, one middle layer and three up-sampling
layers. We number them in order from 0 to 7. As shown in
Figure 9, we apply D-Fusion at different timesteps and dif-
ferent U-Net layers. The x-axis represents fused timesteps,
and the y-axis represents fused layers. We present some
of the most representative layers, specifically layer 3 (i.e.,
middle layer), layers 2-4 (i.e., middle layer, the last down-
sampling layer and the first up-sampling layer), layers 3-6
(i.e., the whole up-sampling layers) and layers 3-5 (i.e., the
whole up-sampling layers except for the last one).
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Table 2. List of important abbreviations and symbols.

Abbreviation/Symbol Meaning

Abbreviations of Concepts
DM Diffusion Model
RL Reinforcement Learning
DPO Direct Preference Optimization
SD Stable Diffusion
LoRA Low-Rank Adaptation
DDIM Denoising Diffusion Implicit Model
DDPM Denoising Diffusion Probabilistic Model
CLIP Contrastive Language-Image Pre-Training

Abbreviations of Methods
D-Fusion Self-attention based Denoising trajectory Fusion
DDPO Denoising Diffusion Policy Optimization
DPOK Diffusion Policy Optimization with KL regularization

Symbols in Diffusion Models
x0 Generated image
xt Noisy image at timestep t
{xT ,xT−1, . . . ,x0} Denoising trajectory
c Condition for image generation, also called prompt
θ Parameters of the diffusion model
N () Gaussian distribution
T Total timesteps

Symbols in Reinforcement Learning
st State at timestep t
at Action at timestep t
πθ Action selection policy parameterized by θ
R Reward function
r̂ Rewards after normalization

Symbols in D-Fusion
R Set of real numbers
B Binary set {0, 1}
Ia, Ib, Ir Target image 3, base image and reference image
Q,K, V Query, key and value in attention mechanism
Across

t , Aself
t Cross-attention maps and self-attention maps at timestep t

Oc Index list of the item-related tokens in prompt c
Mt Cross-attention mask at timestep t
◦ Hadamard product⊕

Exclusive OR operation
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Layer
2-4

Layer
3

Layer
3-6

reference image base image

𝑡𝑡: 20~0 𝑡𝑡: 18~0 𝑡𝑡: 14~0 𝑡𝑡: 10~0 𝑡𝑡: 6~0

Layer
3-5

Figure 9. Impact of timesteps and U-Net layers on fusion results.

(3) How do the cross-attention maps look like? As shown
in Figure 10, the cross-attention maps at each timestep are
highly correlated with the corresponding items in the gener-
ated images. More specifically, in the early timesteps, the
layouts of the images have not yet fully taken shape, so the
cross-attention maps do not accurately identify the items’
location. In the middle timesteps, the cross-attention maps
gradually turn to mark the items’ position precisely. By the
later timesteps, the fundamental features of each item have
been established, thus the cross-attention maps shift focus
to more fine-grained details (e.g., cat’s face). For tokens
that do not represent items, their cross-attention maps do
not have an obvious meaning, but are generally highlighted
in the areas of related items. If the image fails to align
with the prompt, such as when there is no cat present, the
corresponding cross-attention maps will also lack clearly
highlighted areas.

C. Implementation Details
C.1. Detailed Implementation of Our Method

Fusion Layers and Timesteps. As shown in Appendix B,
usually, employing self-attention fusion at all layers and
all timesteps does not generate ideal images (i.e., images
that are both well-aligned and visually consistent with given
poorly-aligned images). Therefore, we only employ self-
attention fusion at some layers and some timesteps. For
layers, we employ self-attention fusion at the middle layer
and the up-sampling layers (i.e., from layer 3 to layer 6
in Stable Diffusion 2.1-base). For timesteps, we employ
self-attention fusion from timestep t = 18 to t = 1.

a

cat

playing

chess

𝑡𝑡 = 20 𝑡𝑡 = 16 𝑡𝑡 = 11 𝑡𝑡 = 6 𝑡𝑡 = 1

cat

chess

cat

Figure 10. The heatmaps of cross-attention maps at different
timesteps.

Further Alignment Verification. Although D-Fusion has
demonstrated the ability to generate both well-aligned and
visually consistent samples, it also generates failed cases
sometimes. Excessive use of failed cases as training data
can have a negative impact on fine-tuning the diffusion
models. Therefore, we introduce additional verification
before training, which is shown as follows:

R(xa
0 , c)−R(xb

0, c) ≥ thrado ∗
(
R(xr

0, c)−R(xb
0, c)

)
,

(7)
where thrado is a hyperparameter called adoption threshold
(usually, 0.0 ≤ thrado ≤ 1.0), and R is reward function. If
the target image Ia does not meet the requirements, we will
replace it with the reference image Ir. This replacement is
reasonable, as the pairing between reference image Ir and
base image Ib is consistent with that used in the naive DPO.

Compatibility with DDPO. Before optimization, the align-
ment scores evaluated by CLIP need to be normalized first.
In implementation, we calculate the mean and standard devi-
ation of the alignment scores for current and all the previous
rounds. The scores from previous rounds are also used in
calculation in order to increase the sample size under the

3We use Ia instead of It to represent the target image, as t
commonly refers to timestep in diffusion models.
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Table 3. Hyperparameters of our experiments.

Hyperpatameter D-Fusion Baselines

Sampling

Denoising steps T 20 20
Noise weight η 1.0 1.0
Guidance scale 5.0 5.0
Batch size 4 4
Batch count 160 160

Fusion
Fusion U-Net layers 3-6 -
Fusion timesteps 18-1 -
Adoption threshold 1.0 -

Optimizer

Optimizer AdamW AdamW
Learning rate 1e-4 1e-4
Weight decay 1e-4 1e-4
(β1, β2) (0.9, 0.999) (0.9, 0.999)
ϵ 1e-8 1e-8
Grad. clip norm 1.0 1.0

Training
Batch size 1 1
Grad. accum. steps 320 320
Inner epoch 2 2

same prompt. With the mean and standard deviation of the
image scores under the same prompt, we can normalize
them by r̂ = R(x0,c)−mean(R(x0,c))

std(R(x0,c))
, where R is the reward

function. The normalized scores serve as rewards in the pro-
cess of DDPO fine-tuning. DDPO employs proximal policy
optimization (PPO) algorithms (Schulman et al., 2017) via
importance sampling pθ(xt−1|xt,c)

pθold
(xt−1|xt,c)

and clipping. The gra-
dient when applying D-Fusion to DDPO goes as follows.

−E

(
T∑

t=1

[
pθ(x

a
t−1 | xa

t , c)

pθold(x
a
t−1 | xa

t , c)
∇θ log pθ(x

a
t−1 | xa

t , c)r̂
a

+
pθ(x

b
t−1 | xb

t , c)

pθold(x
b
t−1 | xb

t , c)
∇θ log pθ(x

b
t−1 | xb

t , c)r̂
b

])
.

(8)

Compatibility with DPOK. Similar to DDPO, DPOK
also employs the clipping mechanism in PPO. Meanwhile,
DPOK utilizes a value function V (xt, c) in their implemen-
tation. In our implementation, we replace the value function
with reward normalization same as DDPO. Therefore, the
gradient when applying D-Fusion to DPOK goes as follows,
where α = 0.99 and β = 0.01.

E
( T∑

t=1

[
− α∇θ log pθ(x

a
t−1 | xa

t , c)r̂
a

+ β∇θKL(pθ(xa
t−1 | xa

t , c)||pθold(x
a
t−1 | xa

t , c))

− α∇θ log pθ(x
b
t−1 | xb

t , c)r̂
b

+ β∇θKL(pθ(xb
t−1 | xb

t , c)||pθold(x
b
t−1 | xb

t , c))
])

.

(9)

C.2. Experimental Resources

The experiments were conducted on 24GB NVIDIA 3090
and 4090 GPUs. It took approximately 30 hours to reach
a training data volume of 25.6k when applying DPO and
DDPO, and approximately 40 hours when applying DPOK.

C.3. Hyperparameters

The hyperparameters of our experiments are listed in Table 3.
Hyperparameters that are not listed keep consistent with the
corresponding RL work (Wallace et al., 2023; Fan et al.,
2023; Black et al., 2024).

D. Pseudo-Code
The pseudo-code of employing direct preference optimiza-
tion with D-Fusion for one training round is shown in Algo-
rithm 1.
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Algorithm 1: Pseudo-code of employing direct preference optimization with D-Fusion for one training round.
Input :Total denoising timesteps T , inner epoch E, number of samples each round N , prompt list C, reward

function R, pre-trained diffusion model pθ.
pold = deepcopy(pθ) ;
pold.require grad(False) ;
// Sampling
Dsampling = {c : [ ] for c in C} ;
for n← 1 to N do

Randomly choose a prompt c from C ;
Randomly choose xT from N (0, I) ;
Set seed to a random number s ;
x(T−1):0 = Denoise from xT with pθ for T steps ;
r = R(c, x0) ;
Dsampling[c].append({xT :0, r, s}) ;

end
// Constructing Visually Consistent Samples
Dtraining = [ ] ;
for c, {xT :0, r, s}0:K−1 ∈ Dsampling do

Dtemp = sort {xT :0, r, s}1:K in descending order according to r ;
Dreference = Dtemp[0 : K//2] ;
Dbase = Dtemp[K//2 : K] ;
for {xr

T :0, r
r, sr}, {xb

T :0, r
b, sb} ∈ zip(Dreference, Dbase) do

Set seed to sr ;
Across

T :1 ,Kr
T :1, V

r
T :1 = Denoise from xr

T with pθ for T steps ;
Extract mask MT :1 from Across

T :1 using Eq.(4) ;
Set seed to sb ;
xa
T = xb

T ;
for t← T to 1 do

xa
t−1 = Denoise from xa

t with pθ, incorporating Mt,K
r
t , V

r
t using Eq.(5) ;

end
Dtraining.append({xb

T :0, x
a
T :0, c}) ;

end
end
// Training
for e← 1 to E do

D = shuffle(Dtraining) ;
with grad ;
for d ∈ D do

d = shuffle(d) ;
for {xb

t , x
b
t−1, x

a
t , x

a
t−1, c} ∈ d do

update θ with gradient descent using Eq. (6) ;
end

end
end
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E. More Experimental Results
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(a) DPO and D-Fusion on Templates 2(left) and 3(right)

(b) DDPO and D-Fusion on Templates 2(left) and 3(right)

(c) DPOK and D-Fusion on Templates 2(left) and 3(right)
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Figure 11. More ablation studies on denoising trajectories and RL
algorithms with templates 2 and 3.

As a supplement to Section 4.4, we also conduct ablation
studies on denoising trajectories and RL algorithms on tem-
plates 2 and 3, as illustrated in Figure 11. The experimental
results show the same conclusion as the ablation studies on
template 1. That is, on the one hand, constructing denoising
trajectories by DDIM inversion is not an effective approach
for RL training. On the other hand, integrating D-Fusion
can enhance the effect of different RL algorithms, which
can further improve the alignment of diffusion models.

F. More Samples
In this appendix, we present more samples generated by
the diffusion models fine-tuned with visually consistent
samples. In detail, Figure 12 shows more samples of our
method when compatible with DPO, DDPO and DPOK on
template 1. Correspondingly, Figure 13 and Figure 14 show
more samples on templates 2 and 3. Moreover, Figure 15
shows more samples when generalized to unseen prompts.

G. Prompt Lists
We present the prompt lists used in our experiments in this
section. Meanwhile, we list the mask thresholds correspond-

ing to each item used in Eq.(4). For each prompt template,
we collect 40 prompts for training and another 40 prompts
for generalization test. The full prompt lists are shown in
Table 4, Table 5 and Table 6.

The mask thresholds are not hyperparameters that require
meticulous tuning, and can be predetermined through low-
cost methods. In our experiments, we predetermined the
thresholds by sampling a few images for each prompt, and
assessing whether the chosen threshold value allows the
mask to outline corresponding object. This selection pro-
cess does not require high precision. As shown in the
prompt lists, the thresholds we use (predominantly 0.005,
0.01, 0.015, 0.02, and 0.03) are fairly coarse values. To
apply our method to new prompts, one can simply sample a
few images and determine appropriate thresholds through
straightforward observation.
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“a dog driving a car”

SD DPO DPO+D-Fusion DDPO DDPO+D-Fusion DPOK DPOK+D-Fusion

“a horse playing basketball”

“a zebra playing basketball”

“a cow playing basketball”

“a lion driving a car”

“a bear eating a sandwich”

“a raccoon driving a car”

“a sheep eating a sandwich”

Figure 12. More samples generated by the diffusion models with template 1. The models are fine-tuned by different RL methods with or
without D-Fusion.
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SD DPO DPO+D-Fusion DDPO DDPO+D-Fusion DPOK DPOK+D-Fusion

“a green and metallic table”

“a yellow and metallic dog”

“a black and glass dog”

“a blue and fabric dog”

“a yellow and woolen table”

“a yellow and marble lamp”

“a red and woolen dog”

“a white and marble bus”

Figure 13. More samples generated by the diffusion models with template 2. The models are fine-tuned by different RL methods with or
without D-Fusion.
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SD DPO DPO+D-Fusion DDPO DDPO+D-Fusion DPOK DPOK+D-Fusion

“the umbrella above the table”

“the dog on the right of the vase”

“the table above the dog”

“the suitcase on the left of the person”

“the building below the kite”

“the person on the left of the bear”

“the trees above the train”

“the person on the right of the dog”

Figure 14. More samples generated by the diffusion models with template 3. The models are fine-tuned by different RL methods with or
without D-Fusion.
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SD DPO DPO+D-Fusion SD DPO DPO+D-Fusion SD DPO DPO+D-Fusion

“a horse driving a car” “a yellow and marble tree” “the tree below the clock”

“a zebra driving a car”

“a tiger driving a car”

“a bear playing basketball”

“a wolf playing basketball”

“a rat eating a sandwich”

“a tiger riding a bike”

(a) Template 1

“a raccoon washing dishes”

(b) Template 2 (c) Template 3

“a green and metallic bowl”

“a red and leather car”

“a white and leather cup”

“a green and wooden chair”

“a blue and marble car”

“a yellow and marble bike”

“a red and wooden table”

“the shirt above the shoes”

“the pants below the jacket”

“the kite above the building”

“the person on the right of the bear”

“the motorcycle on the left on the bus”

“the motorcycle on the left of the car”

“the faucet on the right of the bottle”

Figure 15. More samples when generalized to unseen prompts on templates 1, 2 and 3.
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Table 4. Prompt lists and mask thresholds for template 1.

Training list Test list

Prompt Mask Threshold Prompt

a cat eating a sandwich 0.03; 0.005 a cat playing basketball
a cat driving a car 0.03; 0.01 a dog eating a sandwich
a dog driving a car 0.03; 0.01 a horse driving a car

a dog playing basketball 0.03; 0.02 a monkey playing basketball
a horse playing basketball 0.03; 0.02 a rabbit eating a sandwich
a horse eating a sandwich 0.03; 0.005 a zebra driving a car

a monkey eating a sandwich 0.03; 0.005 a sheep playing basketball
a monkey driving a car 0.03; 0.01 a deer eating a sandwich
a rabbit driving a car 0.03; 0.01 a cow driving a car

a rabbit playing basketball 0.03; 0.02 a goat playing basketball
a zebra playing basketball 0.03; 0.02 a lion eating a sandwich
a zebra eating a sandwich 0.03; 0.005 a tiger driving a car
a sheep eating a sandwich 0.03; 0.005 a bear playing basketball

a sheep driving a car 0.03; 0.01 a raccoon eating a sandwich
a deer driving a car 0.03; 0.01 a fox driving a car

a deer playing basketball 0.03; 0.02 a wolf playing basketball
a cow playing basketball 0.03; 0.02 a lizard eating a sandwich
a cow eating a sandwich 0.03; 0.005 a shark driving a car
a goat eating a sandwich 0.03; 0.005 a whale playing basketball

a goat driving a car 0.03; 0.01 a dolphin eating a sandwich
a lion driving a car 0.03; 0.01 a squirrel driving a car

a lion playing basketball 0.03; 0.02 a mouse playing basketball
a tiger playing basketball 0.03; 0.02 a rat eating a sandwich
a tiger eating a sandwich 0.03; 0.005 a turtle driving a car
a bear eating a sandwich 0.03; 0.005 a frog playing basketball

a bear driving a car 0.03; 0.01 a chicken eating a sandwich
a raccoon driving a car 0.03; 0.01 a duck driving a car

a raccoon playing basketball 0.03; 0.02 a goose playing basketball
a fox playing basketball 0.03; 0.02 a pig eating a sandwich
a fox eating a sandwich 0.03; 0.005 a llama driving a car
a wolf eating a sandwich 0.03; 0.005 a lion washing dishes

a wolf driving a car 0.03; 0.01 a tiger riding a bike
a lizard driving a car 0.03; 0.01 a bear playing chess

a lizard playing basketball 0.03; 0.02 a raccoon washing dishes
a shark playing basketball 0.03; 0.02 a fox riding a bike
a shark eating a sandwich 0.03; 0.005 a wolf playing chess
a whale eating a sandwich 0.03; 0.005 a lizard washing dishes

a whale driving a car 0.03; 0.01 a shark riding a bike
a dolphin driving a car 0.03; 0.01 a whale playing chess

a dolphin playing basketball 0.03; 0.02 a dolphin washing dishes
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Table 5. Prompt lists and mask thresholds for template 2.

Training list Test list

Prompt Mask Threshold Prompt

a black and woolen bus 0.005 a red and wooden table
a black and plastic dog 0.03 a green and metallic bowl

a green and metallic table 0.02 a white and woolen bowl
a black and glass table 0.02 a blue and stone sculpture
a white and marble bus 0.03 a yellow and glass bus
a red and woolen dog 0.01 a black and woolen sculpture

a green and glass lamp 0.03 a yellow and fabric table
a red and glass dog 0.015 a yellow and marble tree

a black and glass bowl 0.03 a blue and wooden toy
a green and stone lamp 0.03 a red and plastic sculpture

a yellow and wooden tree 0.02 a white and leather tree
a black and marble vase 0.03 a yellow and metallic sculpture

a yellow and metallic dog 0.015 a white and wooden lamp
a yellow and woolen table 0.005 a yellow and stone bus

a blue and woolen vase 0.005 a red and fabric toy
a yellow and plastic bus 0.03 a green and wooden dog

a black and stone sculpture 0.025 a white and woolen table
a red and marble table 0.02 a black and stone table

a white and plastic lamp 0.03 a white and metallic tree
a yellow and leather table 0.02 a green and plastic sculpture

a red and leather toy 0.01 a white and marble car
a red and leather table 0.02 a white and leather boat

a blue and plastic sword 0.03 a blue and fabric clock
a black and fabric tree 0.02 a white and stone chair

a yellow and fabric dog 0.015 a green and leather chair
a black and plastic table 0.02 a yellow and wooden cup

a white and metallic sculpture 0.02 a white and leather cup
a black and leather tree 0.02 a green and wooden chair
a blue and marble toy 0.015 a black and wooden car
a black and glass dog 0.015 a red and wooden plate
a black and fabric bus 0.03 a red and glass car

a green and wooden vase 0.03 a yellow and stone car
a blue and plastic table 0.02 a white and metallic cup
a green and fabric dog 0.015 a white and stone car
a black and stone bowl 0.02 a blue and marble car
a black and stone tree 0.02 a red and woolen bike

a black and glass sculpture 0.015 a yellow and marble bike
a yellow and marble lamp 0.03 a blue and wooden chair

a blue and fabric dog 0.015 a red and marble plate
a green and glass sword 0.03 a red and leather car
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Table 6. Prompt lists and mask thresholds for template 3.

Training list Test list

Prompt Mask Threshold Prompt

the umbrella above the table 0.03; 0.01 the shirt above the shoes
the trees above the train 0.01; 0.03 the jacket above the pants

the laptop above the table 0.02; 0.01 the kite above the building
the table below the laptop 0.01; 0.02 the kite above the sand

the building below the tower 0.005; 0.01 the monitor above the keyboard
the snowboard below the person 0.03; 0.005 the keyboard above the mouse
the dog on the right of the vase 0.01; 0.03 the glasses below the laptop

the table above the dog 0.01; 0.01 the shirt above the jeans
the shirt above the pants 0.01; 0.01 the jeans above the shoes

the suitcase above the dog 0.03; 0.01 the bag below the sink
the suitcase on the left of the person 0.03; 0.005 the hat above the sunglasses

the dog below the suitcase 0.01; 0.03 the tree below the clock
the dog on the left of the person 0.02; 0.005 the clock above the tree

the person on the right of the dog 0.01; 0.02 the skis below the pants
the person on the right of the suitcase 0.01; 0.03 the pants below the jacket

the person on the right of the hand 0.01; 0.01 the sunglasses below the hat
the helmet above the glasses 0.03; 0.01 the car on the right of the umbrella
the helmet above the person 0.03; 0.01 the phone on the right of the monitor

the roof above the bus 0.01; 0.01 the shirt below the helmet
the wheel below the engine 0.01; 0.005 the pants below the shirt
the engine above the wheel 0.005; 0.01 the person on the right of the bear

the car on the right of the person 0.01; 0.01 the bear on the right of the person
the table below the glasses 0.01; 0.01 the bear on the left of the person
the building below the kite 0.01; 0.03 the bus on the right of the car

the sand below the kite 0.03; 0.03 the bus on the right of the motorcycle
the mouse below the keyboard 0.03; 0.03 the car on the left of the bus
the computer below the counter 0.01; 0.005 the motorcycle on the left of the bus
the person on the left of the ball 0.01; 0.01 the motorcycle on the left of the car

the ball on the right of the person 0.01; 0.01 the table below the monitor
the person on the left of the pillow 0.01; 0.02 the person below the monitor
the bowl on the right of the plate 0.01; 0.01 the basket on the right of the person

the building on the right of the truck 0.01; 0.01 the faucet on the right of the bottle
the person on the left of the bottle 0.01; 0.02 the pot on the right of the faucet

the bottle on the right of the person 0.02; 0.01 the van on the right of the car
the box on the left of the post 0.01; 0.01 the car on the left of the van

the truck on the right of the car 0.01; 0.01 the person on the left of the train
the jacket on the left of the coat 0.01; 0.01 the hat on the left of the shirt

the monitor on the left of the person 0.01; 0.01 the plate on the left of the glasses
the phone on the left of the person 0.01; 0.01 the person on the left of the cart
the person on the left of the bear 0.01; 0.03 the bed on the left of the chair
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