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ABSTRACT

As large language models (LLMs) grow in popularity for their diverse capabili-
ties, improving the efficiency of their inference systems has become increasingly
critical. Batching requests during LLM inference increases throughput by allow-
ing multiple requests to be processed in parallel, making better use of hardware
resources such as GPUs. However, the autoregressive nature of LLMs presents
a challenge: requests often have varying execution times, causing resource un-
derutilization, as hardware must wait for the longest-running request in the batch
to complete before moving to the next batch. We propose Multi-Bin Batching, a
simple yet effective method that can provably improve LLM inference throughput
by grouping requests with similar execution times into predetermined bins. We
evaluate multi-bin batching on various settings, showing consistent throughput
improvements compared to standard batching approaches.

1 INTRODUCTION

Large Language Model (LLM) inference systems are becoming increasingly popular due to their
various abilities, such as text generation (Li et al., 2024), coding assistance (Chen et al., 2021),
and question answering (Jiang et al., 2021). As the demand for LLM inference systems grows, so
does the need to optimize their efficiency. Several techniques have been proposed to improve the
efficiency of LLM inference systems, and batched inference (Sheng et al., 2023; Kwon et al., 2023;
Jin et al., 2023) is one of the most promising techniques among them.

With batched inference, multiple requests are processed simultaneously, using the underlying hard-
ware’s parallelism to improve throughput. It can be seen in Figure 1a that generating 100 tokens for
each request in an increasing batch size improves throughput. We measure throughput for the Phi-
3.5 Mini Instruct model by prompting it with“once upon a time” in various batch sizes, generating
100 tokens per batch index on an NVIDIA A100 80G GPU. Throughput is calculated as total tokens
generated across all indices divided by total generation time, using greedy sampling.

However, batched inference comes with some critical drawbacks. The execution time of each re-
quest depends linearly on the number of tokens generated. In standard batched inference systems, a
computing unit remains locked until the entire batch is processed, meaning all requests in the batch
must be completed before the system is released. This can result in underutilization of resources,
offsetting some of the throughput gains achieved through parallelism in batched inference. Re-
cent studies have proposed dispatching additional requests to the computing node before the current
batch is fully processed. This approach, known as continuous batching (Yu et al., 2022), requires
fine-grained control of hardware, which is not always feasible. In distributed or cloud-based environ-
ments, hardware control is typically abstracted or inaccessible, making it impossible to implement
continuous batching.

Inspired by this, a natural question arises: can we achieve near-optimal throughput from batched
inference without depending on fine-grained, hardware-level controls? Addressing this challenge
is crucial for achieving high LLM inference throughput, particularly in such environments where
continuously dispatching additional requests is not feasible.

We propose a novel approach for optimizing batched inference by binning requests based on their
output lengths. Instead of placing all requests into a single queue, we create multiple “bins”, each
serving as a waiting area for requests with similar output lengths. Incoming requests are assigned
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Figure 1: (a) Batch serving improves the throughput for the LLM inference systems. (b) Standard
batching causes under utilization of resources due to varying answer sizes.

to their corresponding bins based on these lengths, and batches are formed within each bin. Once a
batch is ready, it is dispatched to a central queue to be processed.

Why is this approach beneficial? Consider the example illustrated in Figure 1b. Suppose four
requests arrive at nearly the same time, with execution times of 1, 5, 2, and 6 seconds, respectively.
In a standard batching system with a batch size of B = 2, the requests would be grouped based on
their arrival time, forming two batches: (Request 1: 1s, Request 2: 5s) and (Request 3: 2s, Request
4: 6s). The total execution time would be 11 seconds (5 seconds for the first batch and 6 seconds for
the second).

Now, consider our binning approach. Assume we have two bins: one for requests with output lengths
between 1 to 3 seconds and another for those between 4 to 6 seconds. In this case, Request 1 and
Request 3 would be placed in the first bin, while Requests 2 and 4 would go to the second bin. The
resulting batches—(Request 1: 1s, Request 3: 2s) and (Request 2: 5s, Request 4: 6s)—would reduce
the total execution time to 8 seconds (2 seconds for the first batch and 6 seconds for the second).
This simple binning strategy demonstrates how aligning requests by output length can significantly
improve LLM inference throughput.

Inspired by the toy example above, we propose multi-bin batching, a simple yet effective method
that can provably improve LLM inference throughput by grouping requests with similar execution
times into predetermined bins. We evaluate multi-bin batching on various settings using Microsoft’s
Phi-3.5-mini-instruct model on an Nvidia A100-80G GPU, demonstrating consistent throughput im-
provements compared to standard batching approaches. For instance, with the GSM8K dataset and
an oracle output length estimator, multi-bin batching enhances throughput by up to 75% compared to
standard batching systems. Our experiments span simulated results, and end-to-end LLM inference
with oracle lengths, all showing significant performance gains as the number of bins increases.

To summarize, our contributions are as follows:

• We propose a novel binning-based batching system that can improve the throughput of
LLM inference systems. Our batching system groups requests with similar execution times
together based on predetermined bins.

• We use queueing-theoretical analysis to show that our multi-bin batching strategy can im-
prove the throughput of LLM inference systems. We also show that how many bins are
needed to achieve any desired throughput improvement.

• Our comprehensive experiments on real-world LLM models demonstrate that our proposed
multi-bin batching system can enhance throughput by up to 75% compared to standard
batching approaches.
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2 RELATED WORK

LLM Inference and Scheduling. Recent research has focused on optimizing large language
model (LLM) inference through various scheduling techniques and tools from queueing theory.
Wu et al. (2023) utilizes a novel preemptive scheduling algorithm, skip-join Multi-Level Feedback
Queue, to improve the job completion time of LLM inference systems. Inoue (2021) considers a dy-
namic batching scenario (the system serves at most B jobs, if there are less than B jobs at the queue
it serves them) and derives closed-form upper bounds for the mean latency. Cheng et al. (2024b)
proposes a new scheduling method, slice-level scheduling that splits the maximum output length of
the model into slices and serves batches slice by slice, which utilizes the memory more efficiently
and reduces the response time. Llumnix (Sun et al., 2024) addresses the challenges of heterogeneous
and unpredictable LLM inference requests through runtime rescheduling across multiple model in-
stances, improving tail latencies and resource utilization. Yang et al. (2024) analyze LLM inference
queueing delay using an M/G/1 model, demonstrating that enforcing maximum output token limits
and optimizing batch size can significantly reduce latency.

LLM Serving and Answer Length Estimation. There have been several studies on improving
the throughput and the latency of LLM inference systems via estimating the answer length of the
requests. Zheng et al. (2024) proposed a response time prediction model for LLM inference systems
via prompting the model with an extra question to predict the response time. Instead of directly
predicting execution times, Fu et al. (2024) predict the ranking of requests based on their execution
times, and then propose a shortest-job-first scheduling algorithm to address the head-of-line blocking
problem. Qiu et al. (2024) uses a light proxy model to predict the execution time of the requests and
then uses a speculative shortest-job-first scheduling algorithm to improve the throughput of LLM
inference systems. S3 (Jin et al., 2023) estimates the answer length of the requests and uses it to
optimize the memory efficiency of the LLM inference systems and it increases the effective batch
size of the system thanks to the increased memory efficiency. Cheng et al. (2024a) uses input length
to predict the response length of the requests and then uses it to optimize the batch size, it achieves
higher throughput and reduces response time. Similarly, SyncIntellects (Lin et al., 2024b) enhanced
response length prediction using a transformer-based model and implemented QoS-friendly length
control, resulting in improved throughput and latency of LLM inference systems.

LLM Inference Optimization. Recent studies have focused on optimizing the inference effi-
ciency of LLM models through various techniques. Quantization has emerged as a key approach
to reduce the memory footprint and improve the inference efficiency of LLM models. Methods
like LLM.Int8() (Dettmers et al., 2022), GPTQ (Frantar et al., 2023), SmoothQuant (Xiao et al.,
2023), and AWQ (Lin et al., 2024a) have demonstrated effective weight quantization techniques for
LLM models, while QLoRA (Dettmers et al., 2024) combines quantization with parameter-efficient
fine-tuning. Memory management innovations such as PagedAttention (Kwon et al., 2023) have
significantly improved the serving throughput. KV cache optimizations, including compression
techniques like Gear (Kang et al., 2024) have further improved the memory efficiency of LLM in-
ference systems. Systems like FastServe (Wu et al., 2023), and FlexGen (Sheng et al., 2023) have
integrated these techniques to create comprehensive LLM serving solutions.

3 PROBLEM SETUP AND THE MULTI-BIN BATCHING ALGORITHM

We begin by introducing the system model and key assumptions that form the foundation of our
analysis. This model represents a typical LLM inference system as a queueing system with specific
characteristics. Following this, we will propose our novel batching algorithm, which leverages a
multi-binning approach to optimize request processing.

Assumption 3.1. The LLM inference system is a single-server queueing system with an infinite
queue length capacity. The system receives requests from a Poisson process with rate λ.

Assumption 3.1 is a standard assumption in queueing theory, and it is well-suited for LLM inference
systems since requests are typically generated by users in a random manner. The single server
assumption is reasonable; it can further be easily extended to multi-server systems by assuming that
the servers are identical and requests are served in a first-come-first-serve manner. In that case, the
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effective arrival rate λ can be divided by the number of servers, and one can derive similar results
following the same analysis.

The system forms batches of size B and serves them in a“first completed batch, first served” manner.
The serving time of a batch of requests is the maximum of the serving times of the requests in the
batch. This batching approach is suitable for LLM inference systems, as it enhances efficiency by
optimizing the utilization of computing resources. The “first completed batch, first served” approach
means that as soon as a batch is fully formed with B requests, it becomes eligible for service,
regardless of when its individual requests arrived. This allows for more efficient processing of
requests, especially when combined with our batching strategy.

Assumption 3.2. The service time of each request is independent and identically distributed (i.i.d.)
with a uniform distribution in the range [lmin, lmax], i.e., l ∼ U(lmin, lmax).

We make this assumption to simplify the analysis, and it is justified since LLM answer lengths
typically fall within a specific range due to maximum token length limitations. We also extend our
analysis to the case where the service time is exponentially distributed in the Appendix A.4.

In our theoretical analysis, we assume that the system always forms batches of size B and then start
processing them. However, in real systems, there could be a parameter that specifies the maximum
time a batch can wait before it is processed. This way the system can ensure that the latency of a
request does not exceed a certain threshold and the quality of service is maintained for all requests.

3.1 MULTI-BIN BATCHING ALGORITHM

We propose a novel batching algorithm that aims to improve the throughput of LLM inference
systems. The key idea is to group requests into k bins based on their service times before forming
batches within each bin.

Algorithm 1 Multi-Bin Batching with k-bins

Require: Decision boundaries for bins, [li−1, li], i = 1, . . . , k, batch size B, and serving policy
1: for each incoming request do
2: Estimate its service time l
3: Assign the request to bin i where li−1 ≤ l < li
4: end for
5: for each bin do
6: Form batches of size B when available
7: Add completed batches to the service queue
8: end for
9: Serve batches from the service queue based on the serving policy provided

10: The serving time of a batch is the maximum of the serving times of the requests in the batch
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Figure 2: Multi-Bin Batching with k-bins

The multi-bin batching algorithm is
illustrated in Figure 2. This algorithm
works by first dividing the range of
possible service times into k bins. As
requests arrive, their estimated ser-
vice times are used to assign them to
the appropriate bin. Within each bin,
requests are grouped into batches of
size B. As soon as a batch is com-
pleted in any bin, it is added to a service queue. The system then processes batches from the service
queue in a “first completed batch, first served” order. This approach ensures that requests with sim-
ilar service times are batched together, potentially reducing the overall serving time of each batch,
while also allowing for efficient processing of completed batches across all bins.
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4 THROUGHPUT ANALYSIS

In this section, we present a queueing-theoretical analysis to show that our multi-bin batching system
can improve the throughput of LLM inference systems. To analyze the throughput of the system,
we first derive the optimal decision boundaries for each bin in our batching system. Then, we derive
the expected service time of a batch of requests with multi-bin batching algorithm.

The expected throughput of the system can be expressed as following proposition.
Proposition 4.1. The expected throughput of the system is the ratio of the batch size to the expected
service time. Specifically it can be written as,

Throughput =
B

E[tservice]
, (1)

where B is the batch size and E[tservice] is the expected service time of a batch of B requests.

For our multi-bin batching system, we can derive the expected service time of a batch of B requests
as follows,

E[tservice, k] =

k∑
i=1

Pr(bin = i)E
[
max
j∈[B]

xj |bin = i

]
, (2)

where Pr(bin = i) is the probability that a batch served by the system is in bin i, and
E
[
maxj∈[B] xj |bin = i

]
is the expected service time of a batch of B requests from bin i. We also

denote it as E[tservice, k] to emphasize that it is the expected service time of multi-bin batching system
with k bins. Then, the first step is to determine the decision boundaries for each bin in the multi-bin
batching system for a fixed number of bins k. The following lemma provides the optimal decision
boundary for each bin.
Lemma 4.1. Under Assumption 3.2 and a fixed number of bins k, the throughput of the system is
maximized when each bin has equal probability mass, and the decision boundaries are determined
as follows,

li−1 = lmin +
i− 1

k
(lmax − lmin), li = lmin +

i

k
(lmax − lmin), i ∈ [k]. (3)

The proof of Lemma 4.1 is provided in the Appendix A.1. We first show that the expected service
time is a convex function of the decision boundaries, and then we show that it is minimized when
each bin has equal probability mass.

Given the optimal decision boundaries in Lemma 4.1, for a fixed number of bins k, we can have the
following theorem for the expected throughput of the system.
Theorem 4.2. Under Assumption 3.2, the expected throughput of the multi-bin batching with k bins
is,

Throughputk =
B

E[tservice, k]
=

B

lmax+lmin

2 + 1
k

(
B

B+1 lmax +
1

B+1 lmin − lmax+lmin

2

) , (4)

and it is an increasing function of the number of bins k.

The proof of Theorem 4.2 is provided in the Appendix A.2. The proof utilizes the optimal decision
boundaries in Lemma 4.1 to derive the expected service time of a batch of B requests with k bins.
Then, we derive the expected throughput of the system with k bins as a function of the number of
bins k.
Remark 4.1. The standard batching system is a special case of the multi-bin batching system with
k = 1. If we substitute k = 1 into Equation 4, we can derive the expected throughput of the system
with standard batching. Since the expected throughput of the system with the multi-bin batching
is an increasing function of the number of bins k, the throughput of the system with our multi-bin
batching system is higher than the standard batching system. Hence, the multi-bin batching system
can improve the throughput of the system.
Remark 4.2. The expected throughput of the system with multi-bin batching is an increasing func-
tion of the number of bins k. As the number of bins k goes the infinity, the expected throughput of
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the system with multi-bin batching converges and we denote this as the maximum capacity of the
system, which is,

cmax = lim
k→∞

Throughputk =
B

lmax+lmin

2

. (5)

This convergence can be interpreted as follows: when k becomes infinitely large, the bins become
so fine-grained that the overall expected service time for the batch approaches the expected service
time of a single request. However, we still process B requests simultaneously, meaning that the
throughput becomes B times the single-server, non-batched throughput, which is 1/E[T ], where
E[T ] is the mean service time of a single request.

In the following theorem, we derive the smallest integer k that satisfies any given throughput less
than the maximum capacity of the system.

Theorem 4.3. Under Assumptions 3.1, and 3.2, for any ϵ > 0, the desired throughput of the system
cmax − ϵ can be achieved by the multi-bin batching system with k bins, where k is the smallest
integer satisfying the condition,

k ≥


(cmax − ϵ)

(
B

B+1 lmax +
1

B+1 lmin − lmax+lmin

2

)
ϵ lmax+lmin

2

 = O

(
1

ϵ

)
. (6)

The proof of Theorem 4.3 is provided in the Appendix A.3. The proof utilizes the expected through-
put derivation in Theorem 4.2 to find the smallest integer k that satisfies the desired throughput of
the system.
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Figure 3: Average throughput of the system with
multi-bin batching vs the arrival rate λ for differ-
ent number of bins k.

Figure 3 shows the average throughput of the
system with different number of bins k as a
function of the arrival rate λ. In this figure, we
assumed that the batch size B = 128, the min-
imum service time lmin = 1, and the maximum
service time lmax = 20. Therefore, the maxi-
mum capacity of the system is cmax = 128

20+1
2

≈
12.3. We submit 128000 requests to the system
and measure the time taken to process all the
requests. We run the simulations for 10 times
and report the average throughput of the sys-
tem. Then, we calculate the average throughput
of the system as the number of requests pro-
cessed per unit time. It can be observed that the
throughput of the system with multi-bin batch-
ing increases as the number of bins k increases
and when k = 5, the throughput of the system
is close to the maximum capacity of the system.
However, the binning idea comes with a trade-
off, as the number of bins k increases, the time to construct a batch of requests increases, which
may lead to higher latency. In the next section, we evaluate the latency of the system with multi-bin
batching and compare it with the standard batching system.

5 LATENCY ANALYSIS

We define the latency of a request as the time taken to complete a request from the time it is submitted
to the system. The latency of a request consists of two components: the queuing time and the service
time. In the previous section, we discussed the expected service time of a request for our multi-bin
batching system. In this section, we analyze the queuing time of a request. The queuing time
of a request is the time it spends waiting in the queue before it is processed. This time can also
be decomposed into two components: the time spent waiting to complete the current batch and
the time spent waiting for the current batch to start processing. In this analysis, we focus on the
time spent waiting to complete the current batch, as it is the dominant component of the queuing
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time in an underloaded system, which are common in cloud computing environments. In such
systems, it is reasonable to assume that the time spent waiting for the current batch to complete
remains the dominant factor in queuing time. This is because underloaded systems typically have
shorter queues and less contention for resources, making the wait time between batches relatively
insignificant compared to the time required to complete the batch itself. Therefore, we make the
following simplifying assumption for the purpose of latency approximation:
Assumption 5.1. The number of servers in the system is infinite. Therefore, whenever a batch is
ready to be processed, it is immediately processed.

Under this assumption, we can provide a lower bound on the latency of a request in our system
because the time spent waiting for the current batch to start processing is negligible. We denote the
expected latency of a request as E[tlatency]. The following lemma provides the expected latency of a
request in our system with the assumption of infinite servers.
Lemma 5.1. Under Assumptions 3.2, and 5.1, and given the arrival rate λ and k-bins with equal
probability mass, the expected latency of a request is given by

E[tlatency] =
lmax + lmin

2
+

1

k

(
B

B + 1
lmax +

1

B + 1
lmin − lmax + lmin

2

)
+

B − 1

2λ
k. (7)

The proof of Lemma 5.1 is provided in Appendix B.1. The proof utilizes the fact that the arrival
process is Poisson and the effective arrival rate of each bin is λ/k.
Remark 5.1. The previous lemma provides the expected latency of a request in our system under
the assumption of infinite servers. Therefore, it provides a lower bound on the latency of a request
in our system with the assumption of one(or finite) server. Under the regime with low load factor,
the assumption of infinite servers is reasonable and it provides a good approximation of the latency
of a request in our system. However, as the load factor increases, the assumption of infinite servers
becomes less accurate.
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Figure 4: The expected latency of a request vs the arrival
rate λ for different number of bins k.

In Figure 4, we plot the expected la-
tency of a request as a function of
the arrival rate λ for different num-
ber of bins k. We use the parameters
lmin = 1, lmax = 20, B = 128, and
k = 1, 2, 3. We submit 128000 re-
quests to the system and measure the
latency of each request. We run the
simulations for 10 times and report
the average latency of a request. It
can be seen that our Lemma 5.1 pro-
vides a good approximation of the la-
tency of a request in our system when
the arrival rate is low. As the arrival
rate increases, the average latency of
a request decreases until the arrival
rate reaches the expected throughput
of the system. Overall, our multi-bin
batching system with k-bins can provide a higher throughput compared to the standard batching
system with a small increase in the latency of a request. In Appendix A.4, we provide the results for
the case where the service time is exponentially distributed.

6 LLM EXPERIMENTS

To thoroughly analyze the throughput improvements from our multi-bin batching approach, we con-
duct two different experiments, with increasing levels of realism. Each experiment has two main
components: the service time for a request and the bin to place the request into. In the first ex-
periment, we model the service time as a linear function of the number of tokens generated by the
model and use the known service time to predict the bin, referred to as oracle bin predictions. In the
second experiment, we replace the linear model and instead send requests to a language model and
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use the actual inference time. Across all experiments, we simulate requests arriving to our system
as a Poisson process with rate λ.

6.1 SIMULATED RESULTS

To simulate the LLM inference time, we collect responses to questions from the GSM8K
dataset (Cobbe et al., 2021) using Microsoft’s Phi-3.5 Mini Instruct model (Abdin et al., 2024).
We use greedy sampling on an Nvidia A100-80G GPU. We plot the number of generated tokens
in a response against the inference time and perform a linear regression to approximate the time to
generate each token. Given that the attention mechanism operates in a fully parallelizable manner
for small input contexts, each token is processed efficiently, resulting in a constant time per output
tokens and a linear relationship between the number of generated tokens and the overall inference
time. This behavior holds true as long as the context size remains small, allowing parallel computa-
tion to maintain. This linear relationship can be seen at Figure 5.
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Figure 5: The linear relationship between the number of tokens
generated and the inference time

Now, we simulate requests as
questions from the GSM8K
dataset according to an Pois-
son arrival process. We bin
each request using the known re-
sponses lengths collected from
Phi-3.5-mini-instruct. As de-
scribed in the multi-bin batch-
ing algorithm, once a full batch
size of B requests is completed
within a bin, that batch is added
to a central queue. When a
server is available, we simulate
the service time for each request
according to the linear model
described earlier, and let the ser-
vice time for the entire batch be
the maximum of the individual
requests’ service time. This re-
flects the reality that a server is busy until the model has generated complete outputs for all requests
within a batch.

10 15 20 25 30 35 40
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Average Latency vs. Traffic Intensity
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1-Bin Throughput Threshold: 22.71

2-Bin Simulation

2-Bin Throughput Threshold: 27.48

4-Bin Simulation

4-Bin Throughput Threshold: 31.91

8-Bin Simulation

8-Bin Throughput Threshold: 35.27

16-Bin Simulation

16-Bin Throughput Threshold: 37.87

32-Bin Simulation

32-Bin Throughput Threshold: 39.65

Figure 6: Throughput rises with more bins, while latency initially drops then climbs, illustrating the
system’s performance dynamics.

Figure 6 shows a comparison of latencies and maximum throughput across different numbers of
bins as system traffic increases. Here, we fixed a batch size of 8 and simulate 8 servers, which
can simultaneously serve batches. As the number of bins k increases, so as does the throughput.
Interestingly, when k is small, such as k ∈ [2, 4] the minimum latency is superior to the minimum
latency without our method, when k = 1. This could be due to the difference between the output
length and our assumption of uniform distribution.
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6.2 END-TO-END LLM INFERENCE WITH ORACLE LENGTHS

To better understand the throughput gains from our method, we replace the linear model with actual
time for an LLM to respond to a batch of requests. During this time the server is considered oc-
cupied. Specifically, we generate responses with Microsoft’s instruction tuned Phi-3.5 Mini model,
using a batch size of 8, a maximum of 1024 token, and a single simulated server, running on an
Nvidia A100-80G.

Rather than simulate various arrival rates, we simulate a single large arrival rate, effectively equiv-
alent to all requests arriving at once and record the throughput after completing all requests.

1 2 4 8 16 32
Number of Bins

0.0

0.1

0.2

0.3

0.4
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0.6

T
h

ro
u

gh
p

u
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Throughput vs. Number of Bins

Figure 7: Inference throughput rises with more bins when output
lengths are known.

In this scenario, there is no time
spent waiting for enough re-
quests to arrive before a batch
can be constructed to be pro-
cessed. In other words, the
server is fully utilized through-
out the simulation; therefore,
the throughput will be approx-
imately the maximum possible
throughput. Similar to the re-
sults in section 6.1, as the num-
ber of bins k increases, the
throughput also increases. The
throughput increases approxi-
mately 70% from no binning to
32 binning.

7 CONCLUSION

This paper introduced multi-bin batching, a novel approach to optimize Large Language Model
(LLM) inference systems without relying on fine-grained hardware controls. By grouping requests
with similar output lengths, our method provides a provable throughput increase, mitigating resource
underutilization in standard batched inference systems. Experiments demonstrated significant per-
formance gains compared to standard batching. Our scalable solution contributes to LLM inference
optimization and can be readily integrated into existing systems. As LLMs grow in importance,
multi-bin batching enables more efficient deployments across various computing environments, es-
pecially where fine-grained hardware control is unfeasible. Future work could refine bin prediction
models and explore adaptive binning strategies.
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APPENDIX

A PROOFS FOR THROUGHPUT ANALYSIS

We give the proofs for the throughput analysis in this section.

A.1 PROOF OF LEMMA 4.1

In this section, we provide the proof of Lemma 4.1.

Proof. We begin by defining the expected service time of a request in bin i as follows,

E
[
max
j∈[B]

xj |bin = i

]
=

B

B + 1
li−1 +

1

B + 1
li. (8)

Since, the service time of a request in bin i is uniformly distributed in the range [li−1, li], the ex-
pected value of maximum of B uniform random variables in the range [li−1, li] is well-known and
can be computed easily. Then, the expected service time of the system is given by,

E [tservice, k] =

k∑
i=1

Pr(bin = i)E
[
max
j∈[B]

xj |bin = i

]
(9)
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It can be written as,

E [tservice, k] =

k∑
i=1

li − li−1

lmax − lmin

(
B

B + 1
li−1 +

1

B + 1
li

)
. (10)

For k bins, we have k − 1 decision boundaries, and l0 = lmin and lk = lmax. We can denote the
expected service time of the system as a function of l1, l2, . . . , lk−1 as follows,

fk(l1, l2, . . . , lk−1) =

k∑
i=1

li − li−1

lmax − lmin

(
B

B + 1
li−1 +

1

B + 1
li

)
. (11)

We can compute the partial derivative of fk(l1, l2, . . . , lk−1) with respect to li, i ∈ [k−1] as follows,

∂fk(l1, l2, . . . , lk−1)

∂li
= −B − 1

B + 1

li+1

lmax − lmin
+
2(B − 1)

B + 1

li
lmax − lmin

−B − 1

B + 1

li−1

lmax − lmin
. (12)

Then, the second-order partial derivative of fk(l1, l2, . . . , lk−1) with respect to lilj , i, j ∈ [k − 1] is
given by,

∂2fk(l1, l2, . . . , lk−1)

∂li∂lj
=


2(B−1)
B+1

1
lmax−lmin

if i = j,

−B−1
B+1

1
lmax−lmin

if |i− j| = 1,

0 otherwise.
(13)

The Hessian matrix of fk(l1, l2, . . . , lk−1) is a tridiagonal matrix in the form of,

∇2fk(l1, l2, . . . , lk−1) =
B − 1

(B + 1)(lmax − lmin)



2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −1
0 0 0 · · · −1 2

 . (14)

The determinant of the Hessian matrix can be computed via the recursive formula for the determinant
of a tridiagonal matrix as follows,

det(∇2fk(l1, l2, . . . , lk−1)) = k

(
(B − 1)

(B + 1)(lmax − lmin)

)k−1

> 0 (15)

Since k > 1 and B > 1, the determinant of the Hessian matrix is positive, which implies that
the Hessian matrix is positive definite. Therefore, the function fk(l1, l2, . . . , lk−1) is convex with
respect to l1, l2, . . . , lk−1. Then, one can solve Equation equation 12 for li by setting the partial
derivative to zero, i.e., ∂fk(l1,l2,...,lk−1)

∂li
= 0. It can be seen that the optimal decision boundaries are

given by,

li = lmin +
i

k
(lmax − lmin) ∀i ∈ [k − 1]. (16)

This completes the proof.

A.2 PROOF OF THEOREM 4.2

In this section, we provide the proof of Theorem 4.2.

Proof. The expected service time of a batch of B requests is,

E[tservice, k] =

k∑
i=1

Pr(bin = i)E
[
max
j∈[B]

xj |bin = i

]
=

k∑
i=1

1

k

(
B

B + 1
li +

1

B + 1
li−1

)
, (17)

because each bin has equal probability mass, and the service time of a batch of requests follows
from the uniform distribution in the range [li−1, li]. If we substitute the optimal decision boundaries

12
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in Equation 3 into Equation 17, we can derive the expected service time of a batch of B requests
with multi-bin batching as follows,

E[tservice, k] =
1

k

k∑
i=1

B

B + 1

(
lmin +

i

k
(lmax − lmin)

)
+

1

B + 1

(
lmin +

i− 1

k
(lmax − lmin)

)
(18)

=
1

k

B

B + 1

k + 1

2
(lmax − lmin) +

1

k

1

B + 1

k − 1

2
(lmax − lmin) + lmin (19)

=
lmax + lmin

2
+

1

k

(
B

B + 1
lmax +

1

B + 1
lmin − lmax + lmin

2

)
(20)

Then, the expected throughput of the system with multi-bin batching with k bins is,

Throughputk =
B

E[tservice, k]
=

B

lmax+lmin

2 + 1
k

(
B

B+1 lmax +
1

B+1 lmin − lmax+lmin

2

) , (21)

and it can be observed that it is an increasing function of the number of bins k since the denominator
is decreasing with respect to k.

A.3 PROOF OF THEOREM 4.3

Here we provide the proof of Theorem 4.3.

Proof. The desired throughput of the system is cmax−ϵ. From Theorem 4.2, the expected throughput
of the system with multi-bin batching with k bins is,

Throughputk =
B

lmax+lmin

2 + 1
k

(
B

B+1 lmax +
1

B+1 lmin − lmax+lmin

2

) . (22)

Then, we can find the smallest integer k that satisfies the following condition,

cmax − ϵ ≤ Throughputk =
B

lmax+lmin

2 + 1
k

(
B

B+1 lmax +
1

B+1 lmin − lmax+lmin

2

) . (23)

We can solve the above inequality for k to find the smallest integer k that satisfies the desired
throughput of the system,

(cmax − ϵ)

[(
lmax + lmin

2

)
+

1

k

(
B

B + 1
lmax +

1

B + 1
lmin − lmax + lmin

2

)]
≤ B. (24)

It can be simplified as follows,

B − ϵ

(
lmax + lmin

2

)
+ (cmax − ϵ)

1

k

(
B

B + 1
lmax +

1

B + 1
lmin − lmax + lmin

2

)
≤ B. (25)

This implies,

k ≥
(cmax − ϵ)

(
B

B+1 lmax +
1

B+1 lmin − lmax+lmin

2

)
ϵ lmax+lmin

2

. (26)

Therefore, the smallest integer k that satisfies the desired throughput of the system is given as in the
statement of the theorem.

A.4 EXPONENTIALLY DISTRIBUTED SERVICE TIME

In this section, we provide the expected service time of a batch of B requests when the service
time of each request is exponentially distributed with rate µ. Hence, here we make the following
assumption:
Assumption A.1. The service time of each request is independent and identically distributed (i.i.d.)
with an exponential distribution with rate µ, i.e., l ∼ Exp(µ).
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Then, for our multi-bin batching system, we need to decide the optimal decision boundaries to
minimize the expected service time of a batch of B requests. One can utilize the order statistics of
the truncated exponential distribution (Joshi, 1978) to derive the expected service time of a batch of
B requests with k bins. However, the exact values of truncated exponential order statistics are not
easy to compute. Therefore, we use a simpler approach to derive an upper bound on the expected
service time of a batch of B requests with k bins. For the bins before the last bin, we can upper
bound the expected service time of a batch of B requests as the decision boundary of that bin, i.e.,
for bin i, the expected service time of a batch of B requests is upper bounded by li. For the last bin,
the exact expected service time of a batch of B requests is known and it is lk−1 +

HB

µ , where HB is
the B-th harmonic number. Then, we have the following lemma.
Lemma A.1. Under Assumption A.1, the expected service time of a batch of B requests with k bins
is upper bounded by,

E[tservice, k] ≤
k−1∑
i=1

Pr(bin = i)li + Pr(bin = k)

(
lk−1 +

HB

µ

)
. (27)

and this upper bound is minimized when the decision boundaries are set as,

li =
1

µ

i∑
j=1

log(Lk−j) ∀i ∈ [k − 1] (28)

where Lm is defined recursively as:

Lm =

{
HB if m = 1

1 + log(Lm−1) if m > 1
(29)

Proof. The upper bound on the expected service time of a batch of B requests with k bins is derived
based on the following observation.

E[tservice, k|bin = i] ≤ li ∀i ∈ [k − 1], (30)

and the exact expected service time of a batch of B requests with k bins is given by lk−1+
HB

µ . This
is well-known in the literature, it is the maximum of shifted exponential random variables. Then,
the expected service time of a batch of B requests with k bins is upper bounded by the sum of the
expected service time of each bin. The upper bound could be written as follows,

E[tservice, k] ≤
k−1∑
i=1

Pr(bin = i)li + Pr(bin = k)

(
lk−1 +

HB

µ

)
. (31)

The probability of each bin is given by Pr(bin = i) = exp(−µli−1)− exp(−µli). Then, we apply
the following change of variables before minimizing the upper bound. Let qi = exp(−µli) (q0 = 1),
then the upper bound can be written as,

E[tservice, k] ≤
k−1∑
i=1

(qi−1 − qi)
log(1/qi)

µ
+ qk−1

(
log(1/qk−1)

µ
+

HB

µ

)
= f(q1, q2, . . . , qk−1).

(32)
It can be seen the upper bound function can be decomposed as a function of q1, q2, . . . , qk−1 and
a multiplicative factor of 1/µ. Therefore, we will assume that µ = 1 for simplicity. Then, we can
write the upper bound function as,

f(q1, q2, . . . , qk−1) =

k−1∑
i=1

(qi−1 − qi) log(1/qi) + qk−1 (log(1/qk−1) +HB) (33)

=

k−1∑
i=1

(qi − qi−1) log(qi) + qk−1 (HB − log(qk−1)) . (34)

We can compute the partial derivative of f(q1, q2, . . . , qk−1) with respect to qi, i ∈ [k−2] as follows,

∂f(q1, q2, . . . , qk−1)

∂qi
= log(qi) +

qi − qi−1

qi
− log(qi+1) ∀i ∈ [k − 2]. (35)

14
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Then, the partial derivative with respect to qk−1 is given by,

∂f(q1, q2, . . . , qk−1)

∂qk−1
= HB − qk−2

qk−1
. (36)

Then, the second-order partial derivative of f(q1, q2, . . . , qk−1) with respect to qiqj , i, j ∈ [k− 1] is
given by,

∂2f(q1, q2, . . . , qk−1)

∂qi∂qj
=


1
qi

+ qi−1

q2i
if i = j and i ∈ [k − 2],

qi−1

q2i
if i = j = k − 1,

− 1
qmax(i,j)

if |i− j| = 1,

0 otherwise.

(37)

Then, the Hessian matrix of f(q1, q2, . . . , qk−1) is a tridiagonal matrix in the form of,

∇2f(q1, q2, . . . , qk−1) =



q1+q0
q21

− 1
q2

0 · · · 0 0

− 1
q2

q2+q1
q22

− 1
q2

· · · 0 0

0 − 1
q3

q3+q2
q23

· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · qk−1+qk−2

q2k−1
− 1

qk−1

0 0 0 · · · − 1
qk−1

qk−2

q2k−1


. (38)

The determinant of the matrix can be found using the following recursive formula:

fn = An,nfn−1 −An,n−1An−1,nfn−2 ∀n ∈ [2, k − 1] (39)

where f1 = A1,1 and f0 = 1. For all n ∈ [2, k − 2], it can be seen that:

fn =
qn−1 + qn

q2n
fn−1 −

1

q2n
fn−2 (40)

Our claim is that:
fn =

1

q1q2 . . . qn−1q2n
+

1

qn
fn−1 ∀n ∈ [2, k − 2] (41)

It holds for n = 1. Then, we can prove it by induction. Assume that it holds for n − 1. Then, we
can write the following:

fn =
qn−1 + qn

q2n
fn−1 −

1

q2n
fn−2 (42)

=
qn−1 + qn

q2n

(
1

q1q2 . . . qn−2q2n−1

+
1

qn−1
fn−2

)
− 1

q2n
fn−2 (43)

=
1

q1q2 . . . qn−1q2n
+

1

qn
fn−1 (44)

Hence, it is proven by induction.

Then, we can compute the determinant of the Hessian as:

det(∇2f) = fk−1 =
qk−2

q2k−1

fk−2 −
1

q2k−1

fk−3 (45)

We can replace the fk−2 with the formula:

fk−2 =
1

q1q2 . . . qk−3q2k−2

+
1

qk−2
fk−3 (46)

Then, we can compute the determinant of the matrix as:

det(∇2f) =
qk−2

q2k−1

(
1

q1q2 . . . qk−3q2k−2

+
1

qk−2
fk−3

)
− 1

q2k−1

fk−3 (47)

=
1

q1q2 . . . qk−2q2k−1

(48)
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Therefore, the determinant of the Hessian matrix is as follows:

det(∇2f) =
1

q1q2 . . . qk−2q2k−1

> 0 (49)

Since all qi are positive. Therefore, the upper bound for the total service time is a convex function
of the decision points for the bins. Then, the optimal decision boundaries can be found by setting
the partial derivative of the upper bound function to zero. We can start from the partial derivative
with respect to qk−1 as follows:

∂f

∂qk−1
= HB − qk−2

qk−1
= 0 =⇒ qk−2 = qk−1HB (50)

Then, we can compute the partial derivative with respect to qi, i ∈ [k − 2] as follows:

∂f

∂qi
= log(qi) +

qi − qi−1

qi
− log(qi+1) = 0 =⇒ qi−1

qi
= 1 + log

(
qi

qi+1

)
(51)

Utilizing the above equation and q0 = 1, we can derive,

1

q1
= 1 + log

(
q1
q2

)
(52)

= 1 + log

(
1 + log

(
q2
q3

))
(53)

= 1 + log

(
1 + log

(
1 + . . .+ log

(
qk−2

qk−1

)))
(54)

= 1 + log (1 + log (1 + . . .+ log(HB))) = Lk−1 (55)

=⇒ q1 =
1

Lk−1
(56)

where Lk−1 is defined recursively as:

Lm =

{
HB if m = 1

1 + log(Lm−1) if m > 1
(57)

Similarly, we can derive qi for i ∈ [k − 1] as follows:

qi =
1∏i

j=1 Lk−j

∀i ∈ [k − 1] (58)

Then, the optimal decision boundaries are given by,

li = − 1

µ
log(qi) =

1

µ

i∑
j=1

log(Lk−j) ∀i ∈ [k − 1]. (59)

This completes the proof.

Given the optimal decision boundaries in Lemma A.1, we can derive the expected service time of a
batch of B requests with k bins.
Corollary A.1.1. Under Assumption A.1, and the optimal decision boundaries in Lemma A.1, the
expected service time of a batch of B requests with k bins is given by,

Throughputk =
B

E[tservice, k]

≥ Bµ∑k−1
i=1

Lk−i−1∏i
j=1 Lk−j

·
∑i

j=1 log(Lk−1−j) +
1∏k−1

j=1 Lk−j

(∑k−1
j=1 log(Lk−1−j) +HB

) (60)

Proof. The proof of corollary follows from the optimal decision boundaries in Lemma A.1 and the
expected service time of a batch of B requests with k bins.
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Figure 8: (a) Throughput of the system with respect to the arrival rate λ for different values of k. (b)
Expected latency of a request with respect to the arrival rate λ for different values of k.

Similary to the uniform distribution case, we provide numerical results for the exponentially dis-
tributed service time case. In Figure 8, we provide the throughput and expected latency of the
system with respect to the arrival rate λ for different values of k. We assume that the service time
of each request is exponentially distributed with rate µ = 0.1, the batch size is B = 200, and the
total number of requests is N = 200000. We run the simulations for 10 different seeds and provide
the average throughput and expected latency of the system. It can be observed that the throughput
of the system increases with the number of bins k with the multi-bin batching policy in Figure 8a.
The average latency of the system depicted in Figure 8b decreases with the number of bins k. It
can be seen that with the increasing number of bins, the system first achieves a lower latency but
after a certain point, the latency starts to increase. This is different from the results in the uniform
distribution case, where the latency increases with the number of bins.

B PROOFS FOR LATENCY ANALYSIS

B.1 PROOF OF LEMMA 5.1

In this section, we provide the proof of Lemma 5.1.

Proof. Under the assumption of infinite servers, the latency consists of the time spent waiting to
complete the current batch and the service time. Therefore, the expected latency of a request is
given by

E[tlatency] = E[tbatch] + E[tservice]. (61)
The expected time spent waiting to complete the current batch is given by

E[tbatch] =

k∑
i=1

P(bin = i)E[tbatch|bin = i]. (62)

Since the bins are equally likely, the arrival rate for each bin is λ/k. Then, for each request in the
batch, the expected time spent waiting to complete the current batch is given by

E[tbatch|bin = i] =
1

B

B∑
j=1

(B − j)k

λ
=

B − 1

2λ
k. (63)

Then, the expected time spent waiting to complete the current batch is given by

E[tbatch] =
B − 1

2λ
k. (64)

The expected service time of a request is given by Theorem 4.2. Therefore, the expected latency of
a request can be derived as in the statement of the lemma.
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