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ABSTRACT

Reconstructing controllable Gaussian splats from monocular video is a challeng-
ing task due to its inherently insufficient constraints. Widely adopted approaches
supervise complex interactions with additional masks and control signal annota-
tions, limiting their real-world applications. In this paper, we propose an anno-
tation guidance-free method, dubbed FreeGaussian, that mathematically derives
dynamic Gaussian motion from optical flow and camera motion using novel dy-
namic Gaussian constraints. By establishing a connection between 2D flows and
3D Gaussian dynamic control, our method enables annotation-free optimization
and continuity of dynamic Gaussian motions from flow priors. Furthermore, we
introduce a 3D spherical vector controlling scheme, which represents the state
with a 3D Gaussian trajectory, thereby eliminating the need for complex 1D con-
trol signal calculations and simplifying controllable Gaussian modeling. Quanti-
tative and qualitative evaluations on extensive experiments demonstrate the state-
of-the-art visual performance and control capability of our method. Project page:
https://freegaussian.github.io.

1 INTRODUCTION

Controllable view synthesis (CVS) aims to recover the 3D structure and interactable motions of
a scene given a set of input views, which has garnered significant attention in various research
fields, including content creation (Liao et al., 2024; Tang et al., 2023; Gao et al., 2024b), virtual
reality (Steuer, 1992; Kerbl et al., 2023a; Waisberg et al., 2023) and robotic simulator (Huang et al.,
2023; Qu et al., 2024; Lou et al., 2024). Mainstream methods Yu et al. (2023a); Fridovich-Keil et al.
(2023) have recently achieved high-quality real-time rendering via 3D Gaussian representation Kerbl
et al. (2023b) and extended to scene-level using large-scale annotated datasets (Qu et al., 2024).

Despite the impressive advances, a significant obstacle remains: the severe dependence on man-
ual annotations hinders the practical application of mainstream methods. Existing methods either
segment Gaussian ellipsoids in interactive regions via mask-based reprojection Yu et al. (2023a) or
input control signals to jointly model neural radiance fields Kania et al. (2022); Fridovich-Keil et al.
(2023); Qu et al. (2024). Without mask or control signal supervision in the training data, the model
collapses, failing to decode the feature to color and losing scene control capabilities. Manual annota-
tion guidance such as mask and control signal has become an indispensable and stringent condition
for existing methods and datasets.

To address this challenge, we propose FreeGaussian, a guidance-free but effective Gaussian splat-
ting method for controllable scene reconstruction, which automatically explores interactable struc-
tures and restores controllable scenes from successive frames, without any manual annotations. Our
novel insight is that dynamic Gaussian flow under instantaneous motion can be analytically de-

rived from optical flow and camera motion via differential analysis. It enables us to track dynamic
Gaussian motion solely relying on camera views in the training process, which allows for localizing
controllable structures and providing continuous optimization constraints. This innovation stream-
lines existing controllable view synthesis methods by introducing flow-based priors, eliminating the
need for annotations and improving their real-world applicability.

More specifically, in the training stage, FreeGaussian directly derive dynamic Gaussians flow from
2D image optical flow and camera-induced camera flow, accumulated with Gaussian projection
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displacements. By tracking the dynamic Gaussian flow, we highlight interactive dynamic 3DGS and
obtain their trajectories via DBSCAN clustering, eliminating the dependence on manual mask anno-
tations. To overcome the reliance on 1D control signal inputs, we introduce a 3D spherical vector

controlling scheme that exploits 3D Gaussian scene representations bypassing dynamic Gaussian
trajectories as state representations, aligning with the splatting rasterization pipeline and greatly
simplifying the control process. In constant, given the 3D control vector as input, the Gaussian
dynamics are retrieved from the network during the control stage. Beyond localizing interactive
Gaussians, the dynamic Gaussian flow constraints 3DGS motion between frames, guaranteeing
smooth motion and eliminating ghosting artifacts to improve rendering quality. To the end, we im-
plement the differentiable dynamic Gaussian flow analysis and constraints in CUDA, and evaluate
the effectiveness of the 3D spherical vector controlling scheme on both synthetic and real-world
datasets.

Extensive evaluations show that our method outperforms existing methods significantly in both novel
view synthesis and scene controlling, enabling more accurate and efficient modeling of interactable
content with no annotations. Contributions can be summarized as follows:

• We propose FreeGaussian, a novel annotations guidance-free Gaussian Splatting method for
controllable scene reconstruction, which automatically explores interactable scene structures with
flow priors, and restores scene interactivity without any manual annotations.

• FreeGaussian analytically derive the dynamic Gaussian flow constraints via differential analysis
with alpha composition, which draws the mathematical link among optical flow, camera motion,
and dynamic Gaussian flow. With the CUDA implementation, we leverage the flow constraints to
refine Gaussian optimization, enabling unsupervised interactable scene structure localization and
continuous Gaussian motion variation training.

• Exploiting 3D Gaussian explicitness, we introduce a 3D spherical vector controlling scheme,
avoiding traditional complex 1D control variable calculations bypassing 3DGS trajectory as state
representation, further simplifying and accelerating interactive Gaussian modeling.

2 RELATED WORK

4D Novel View Synthesis. Neural Radiance Fields (NeRF) (Mildenhall et al., 2020) has innovated
great progress in dynamic scene reconstruction. The existing methods can be categorized into three
primary categories: time-varying, deformable-canonical, and hybrid representation methods. The
time-varying methods (Du et al., 2021; Fang et al., 2022; Li et al., 2021; Park et al., 2021a; Pumarola
et al., 2021; Tretschk et al., 2021; Yuan et al., 2021) directly model the radiance field over time and
enhance the temporal information with time embedding, scene flow and etc. While, the deformable-
canonical methods(Gao et al., 2021; Li et al., 2022; Park et al., 2021b; Xian et al., 2021) decouple
the 4D field into dynamic deformable fields and static canonical spaces, querying canonical features
by warped coondinates. In contrast, hybrid representation methods (Shao et al., 2023; Fridovich-
Keil et al., 2023; Cao & Johnson, 2023; Song et al., 2023) have achieved high-quality reconstruction
and fast rendering by exploiting time-space feature planes, dynamic voxels, and 4D hash encoding.

In contrast to fitting complex dynamic scenes with MLPs, 3D Gaussians Splatting (Kerbl et al.,
2023b) has emerged as a popular choice recently, owing to the superior training efficiency and ultra-
high-quality rendering speeds. Related progress typically learn dense Gaussian movements (Yang
et al., 2023; Luiten et al., 2024) directly, leverage feature planes (Wu et al., 2023) or learnable motion
basis (Kratimenos et al., 2023) for better rendering quality, or introduce flow loss (Guo et al., 2024)
to enhancing different paradigms of dynamic 3DGS. More recently, S4D (He et al., 2024) introduced
a generalized streaming pipeline that leverages Gaussians and 3D control points to reconstruct 4D
real-world scenes.

Controllable Scene Representation. Decoupling color, occupancy, geometry from time provides
increased flexibility over 4D reconstruction, with significant implications for digital humans (Rivero
et al., 2024; Liu et al., 2023) and simulators (Qu et al., 2024; Wang et al., 2024). CoNeRF (Kania
et al., 2022) pioneered this effort by extending HyperNeRF (Park et al., 2021b) and regressing the
attribute and the mask to enable few-shot attribute control. CoNFies (Yu et al., 2023b) propose a
controllable representation for face self-portraits by utilizing AU intensities and facial landmarks.
EditableNeRF (Zheng et al., 2023) introduces detection key points and joint weights optimization. In
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Figure 1: The overview of FreeGaussian. Given a set of video stream {P(t), I(t)}, our method
recover controllable 3D Gaussians G→ with two stages. First, we pre-train a deformable 3DGS and
calculate dynamic Gaussian flow u

GS from optical and camera flow with eq. (3). Then, we reproject
dynamic Gaussian flow maps and cluster the highlight 3DGS with the DBSCAN algorithm, followed
with trajectory calculation. In the controllable Gaussian training stage, we optimize Gaussians G

and network ! using rasterization-based loss function in eq. (8), which measures the discrepancy
between rendered images and input images, as well as dynamic Gaussian flows.

contrast, CoGS (Yu et al., 2023a) leveraged 3D Gaussians (Kerbl et al., 2023a) to achieve real-time
control of dynamic scenes without requiring explicit control signals. More recently, LiveScene (Qu
et al., 2024) advance the progress to scene-level and introduces an efficient factorization to decom-
pose the interactive space. Despite their breakthroughs, these methods either require dense manual
interaction variable annotations or mask supervision, limiting their real-world applicability.

3 METHODOLOGY

Figure. 1 shows the complete pipeline of FreeGaussian, which exploits the connections between
dynamic Gaussian flow, optical flow, and camera motion, restoring scene interactivity without any
manual annotations. The dynamic Gaussian flow derivative facilitates 3DGS trajectory clustering
and enables a flexible 3D spherical vector control pipeline, which streamlines and accelerates the
interactive Gaussian modeling scheme.

Hence, after recalling basic 3DGS preliminary in Section. 3.1, we draw the mathematical link among
optical flow, camera motion, and dynamic Gaussian flow in Section. 3.2. With the dynamic Gaus-
sian flow, we introduce the 3D spherical vector controlling scheme in Section. 3.3, which explores
dynamic Gaussians and extracts their trajectories for joint training. The overall pipeline in Figure. 1
is optimized with loss function formulations in Section. 3.4.

3.1 PRELIMINARY OF 3DGS RASTERIZATION

3D Gaussian Splatting Kerbl et al. (2023b) (3DGS) explicitly represents scenes with millions of
Gaussians and emerges ultra high-quality rendering performance recently. Given a set of images
capture with corresponding camera poses, 3DGS models scenes by learning a set of 3D Gaussians
G = {Gi : (Xi,”i,oi,Hi)|i = 1, ..., N}, where Xi → R3, ”i → R3↑3, oi → R, and Hi →
R48 are the center position, 3D covariance, opacity, and spherical harmonics of the i-th Gaussian,
respectively. With the rasterization pipeline, 3DGS projects G to image planes as 2D Gaussians
g = {gi : (µi,”↓

i,oi, ci)|i = 1, ..., N} and blender pixel colors Ĉ via alpha composition:

Ĉ =
N∑

i=1

ciωiTi, Ti =
i↔1∏

j=1

(1↑ ωj), (1)

where µi → R2 , ”↓
i → R2↑2, ci → R3, ωi → [0, 1] and Ti → [0, 1] are the 2d center, 2d covariance,

color, alpha value and transmittance of 2D Gaussian gi. The alpha value ωi at pixel coordinate m

can be obtained by:

ωi = oi exp(↑
1

2
(m↑ µi)

T
”

↓↔1
i (m↑ µi)). (2)

With the supervision of observations, 3DGS optimizes parameters to minimize the photometric loss
between rendered and ground-truth images.

3.2 DYNAMIC GAUSSIAN FLOW ANALYSIS

3
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Figure 2: Dynamic Gaussian flow illustration.

In interactive scenes, consider an instantaneous
motion model, where the camera and 3D Gaussian
hold separate velocities in consecutive frames.
The projected optical flow u can be decomposed
into camera flow u

Cam and dynamic Gaussian flow
u

GS, as described in eqs. (3) and (4).

Our insight is that dynamic Gaussian flow un-
der instantaneous motion can be analytically
decoupled from optical flow and camera mo-
tion via differential analysis with alpha com-
position. Considering a dynamic scene with
interactive objects as shown in Figure. 2, the
camera and 3D Gaussians hold separate veloc-
ities in consecutive frames 0 and t. Assuming
a dynamic 3D Gaussian Gi with velocity vGS,
it is projected as image measurement gi under
the constant camera instantaneous motion by
translation velocity v and rotational velocity ω.
The optical flow u induced by (v,ω) of a pixel
m = (x, y)↗ can be obtained by Lemma 1:

Lemma 1: Dynamic Gaussian flow u
GS

un-

der instantaneous motion can be derived from

optical flow u and camera flow u
Cam

with the

following transform eq. (3).

u = u
Cam + u

GS +#,

u
Cam =

Av

Z
+Bω, u

GS = A

M∑

i=1

Tiωi
vGS

Zi
, # = A

M∑

i=1

Tiωiv(
1

Zi
↑ 1

Z
),

A =

[
↑fx 0 x↑ cx
0 ↑fy y ↑ cy

]
, B =

[
(x↔cx)(y↔cy)

fy
↑fx ↑ (x↔cx)

2

fx

(y↔cy)fx
fy

fy +
(y↔cy)

2

fy
↑ (x↔cx)(y↔cy)

fx
↑ (x↔cx)fy

fx

]
,

(3)

where fx, fy, cx, cy are camera intrinsics, M denotes the number of Gaussian projections sorted
with Gaussian depth Zi intersecting the pixel m. Flow residual term # are preserved to guarantee
accuracy, even when they approach zero after refined optimization.

Proof. The proof involves analyzing camera motion and dynamic Gaussian motion under instanta-
neous motions. By differentiating the dynamic Gaussian center Xi and projection matrix in suc-
cessive camera views P(0) and P(t), we derive the connection between dynamic Gaussian flow
u

GS
i , camera velocities (v,ω), and optical flow u. With alpha composition, we weight the flow with

wi =
Tiωi

!iTiωi
, and proof the mathematical relation described in eq. (3). Detailed derivation can be

found in the supplementary material Section. 6. ↭
The expression eq. (3) elucidates the triadic relationship, yet Gaussian flow is not amenable to joint
3DGS training. For flexibility, we consider a pixel mi,t following 2D Gaussian distribution gi at
time t, and obtain mi,t ↓ N (µi,t,”↓

i,t), with 2D mean µi,t and covariance ”
↓
i,t = Bi,tB

↗
i,t. The

following Corollary describes the dynamic Gaussian flow with 2D Gaussian means.

Corollary 1: The dynamic Gaussian flow ũ
GS

on image plane can be accumulated with 2D Gaus-

sian means displacement µi,t ↑ µi,0.

u = u
Cam + ũ

GS +#, ũ
GS =

M∑

i=1

Tiωi(µi,t ↑ µi,0). (4)

Proof. Assuming the Gaussian to be isotropic Gao et al. (2024b), with covariance matrix Bi,tB
↗
i,t =

RSS
↗
R

↗ = ε2
I. With a constant instantaneous-motion model, the tiny varation of scaling factor

ε of each Gaussian can be simply ignored, and Bi,tB
↔1
i,0 ↔ I. Therefore, the projection flow of a

dynamic Gaussian Gi varying from 0 to t can be formulated as ũGS
i = µi,t ↑ µi,0. The difference

between two Gaussian-distributed variables mi,0 and mi,t can be expressed as:

ũ
GS
i = xi,t ↑ xi,0 = Bi,tB

↔1
i,0 (x0 ↑ µi,t) + µi,t ↑ x0 = µi,t ↑ µi,0. (5)

By weighting the flow on both side, and substituting the flow into eq. (3), we obtain the relation
among the optical flow, camera flow, and dynamic Gaussian flow. ↭

4
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Figure 3: Illustration of dynamic Gaussian flow map under static and dynamic scenes. a) In static
scenes with camera motion only, eq. (4) degenerate to pure camera flow and resulting zero dynamic
Gaussian flow. b) In contrast, for dynamic scenes with interactive objects, the dynamic Gaussian
flow map will highlight interactive 3D Gaussians.

Note that the isotropic Gaussian assumption helps to reduce computational complexity and enhance
optimization stability. It is a common practice in many works (Gao et al., 2024a; Ling et al., 2024;
Keetha et al., 2024). Nevertheless, it is still flexible to extend to anisotropic in practice with eq. (5).

Discussion. The expression in eqs. (3) and (4) reveals dynamic gaussian flow can be directly derived
from 2D image flow u and camera-induced camera flow u

Cam, accumeulated with 2DGS projection
displacement µi,t ↑ µi,0. This naturally aligns with the 3D Gaussian rasterization pipeline, provid-
ing continuous motion constraints for dynamic Gaussian optimization. Besides, in static Gaussian
scenes, the equation degenerates to camera flow with u = u

Cam. Hence, the resulting dynamic
Gaussian flow map will highlight interactive 3D Gaussians, as illustrated in Figure. 3.

3.3 SELF-GUIDED CONTROL WITH DYNAMIC 3DGS

Based on the discussion in Section. 3.2, dynamic Gaussian flow constraint eq. (4) provides contin-
uous Gaussian constraints and, critically, exposes the position of interactive areas, whose changing
topological structures in dynamic scenes are reflected in varying Gaussian. To overcome the severe
dependence on mask annotations in existing methods, we propose leveraging dynamic Gaussian flow
to explore dynamic Gaussians of interactive objects and extract their trajectories for joint training:

Dynamic Gaussian clustering and tracking. With the formulations in eq. (4), we pretrain a de-
formable 3DGS G

↓ with a set of camera streams first. Then dynamic Gaussian flow u
GS from eq. (4)

can be extracted frame-by-frame and binaried to obtain flow maps. By back-projecting the flow maps
to identify dynamic 3D Gaussians, we highlight Gaussians D = {gi | i = 1, 2, . . . , Q} with sharp
dynamics, as illustrated in Figure. 1. Next, we use unsupervised clustering algorithm DBSCAN

to group dynamic Gaussians into clusters C = {ci | i = 1, 2, . . . ,K}, where K is the number of
interactive objects. The cluster centers evolve over time, generating continuous trajectories ε(t, k),
where k indexing which objects the trajectory belongs to.

3D Spherical Vector Control. Conventional methods using a 1D state variable to describe object
state changes are limited by the reliance on prior knowledge or Gaussian trajectory fitting, and their
inability to accurately capture dynamic changes. We overcome these limitations by representing the
Gaussian states with 3D spherical vectors, which can be directly obtained from dynamic Gaussian
tracking trajectory. This technique eliminates the requirement of control signals and curve fitting
while increasing control flexibility.

Specifically, in the training stage, we represent the Gaussian dynamics state using cluster trajectory
coordinates vi

c = ε(t, k)↑ε(0, k), concatenated with Gaussian centers Xi. Then, we encode the co-
ordinates with E(vi

c,Xi) and jointly train the model ! to recover Gaussian dynamics ↗”Xi,””i↘:

f”

(
E(vi

c,Xi)
)
≃⇐ ↗”Xi,””i↘ . (6)

Then, we perform splatting rasterization in eq. (1) with the Gaussian combining with predicted dy-
namics. In contrast, during the control stage, we manually input interactive 3D vector v↓

c, retrieving
the Gaussian dynamics from the network by f” (Xi,v↓

c).

5
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3.4 LOSS FUNCTIONS

Loss with dynamic Gaussian flow. The expression in eq. (4) suggests that incorporating optical
flow and camera flow prior to the loss function can improve 3DGS optimization and maintain dy-
namic Gaussian smooth transitions between frames. Hence, we propose a dynamic Gaussian flow
loss LuGS to optimize the dynamic Gaussian field G and network ! with the following formulation:

LuGS =

∥∥∥∥∥u↑ u
Cam ↑

M∑

i=1

Tiωi(µi,t ↑ µi,0)

∥∥∥∥∥

2

, (7)

where u and u
Cam can be calculated with optical flow estimator Contributors (2021) and eq. (4),

respectively. Dynamic Gaussians G and ! are optimized via the proposed dynamic gaussian flow
supervision LuGS in eq. (7) with the fundamental per-frame photometric supervision LRGB, and
LD-SSIM. The loss function for FreeGaussian optimization can be formulated as:

L = ϑLRGB + (1↑ ϑ)LD-SSIM + ϖLuGS. (8)

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets. To evaluate the performance of FreeGaussian, we leverage the object level CoNeRF
Synthetic and CoNeRF Controllable datasets in (Kania et al., 2022), and the scene level OmniSim
and InterReal datasets in (Qu et al., 2024). Following (Qu et al., 2024), we divide the OmniSim and
InterReal datasets into (#easy, #medium, #challenging) and (#medium, #challenging) respectively.
No annotations are used in the training process.

Baselines. Three categories of sota baselines are compared, including 3D novel view synthe-
sis methods (Mildenhall et al., 2020; Müller et al., 2022; Kerbl et al., 2023b;a), 4D deformable
methods (Fridovich-Keil et al., 2023; Park et al., 2021b;a), and controllable scene reconstruction
methods (Kania et al., 2022; Yu et al., 2023a; Fridovich-Keil et al., 2023; Qu et al., 2024). We
conduct comprehensive evaluations of FreeGaussian from novel view synthesis in Section. 4.2,

controllable rendering in Section. 4.2, and efficiency in Section. 4.3.

Implementation details. FreeGaussian is implemented based on nerfstudio (Tancik et al., 2023)
and gsplat (Ye et al., 2024). We use RAFT Teed & Deng (2020); Contributors (2021) for optical flow
prediction and perform DBSCAN clustering from dynamic Gaussian flow with Euclidean metric,
ϱ = 0.05 and minimal samples = 5. The cluster center corresponding to each Gaussian is encoded
with hash grids and decoded with an 8-layer MLP with 256 neurons. The model is trained on an
NVIDIA GeForce RTX 4090 GPU for 60k steps, using Adam optimizer with learning rate 1.6e↔4

and batch size 1. The coarse-to-fine training process lasts 30 minutes and is divided into 3 stages,
including 500 steps of canonical warmup, 30k steps 4D deformable training, and 30k steps of full
training. For all experiments, we set loss weights of LRGB, LD-SSIM, and LuGS as ϑ = 0.8, (1↑ϑ) =
0.2, and ϖ = 0.5, respectively.

4.2 EVALUATION OF NOVEL VIEW SYNTHESIS

Results on CoNeRF Synthetic and Controllable Datasets. The quantitative results of our ap-
proach on the CoNeRF Synthetic and Controllable scenes are presented in Table. 1. Notably, our
method surpasses all existing approaches in terms of PSNR, SSIM, and LPIPS metrics on CoN-
eRF Synthetic scenes, with a slight advantage over the second-best method, which benefits from
dense labels. Furthermore, on CoNeRF Controllable scenes, our method attains the highest PSNR
of 33.247, while demonstrating comparable SSIM and LPIPS scores to the SOTA methods. These
results underscore the success of the guidance-free paradigm.

Metric on OmniSim Dataset. Table. 2 shows that FreeGaussian achieves the highest scores in
PSNR, SSIM, and LPIPS on #medium subset of OmniSim, with optimal average scores of 33.249,
0.969, and 0.074, respectively. Specifically, our method surpasses sparse-label guidance meth-
ods Kania et al. (2022); Yu et al. (2023a) by nearly 1 dB in terms of PSNR. Although our approach

6
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Table 1: Quantitative results on CoNeRF synthetic and controllable datasets. FreeGaussian tops
the leaderboard on synthetic scenes and achieves the best PSNR on the controllable dataset.

Method
CoNeRF Synthetic CoNeRF Controllable

PSNR⇒ SSIM⇒ LPIPS⇑ PSNR⇒ SSIM⇒ LPIPS⇑
NeRF (Mildenhall et al., 2020) 25.299 0.843 0.197 28.795 0.951 0.210
InstantNGP (Müller et al., 2022) 27.057 0.903 0.230 26.391 0.884 0.278
3DGS (Kerbl et al., 2023a) 32.576 0.977 0.077 25.945 0.834 0.414
HyperNeRF(Park et al., 2021b) 25.963 0.854 0.158 32.520 0.981 0.169
K-Planes (Fridovich-Keil et al., 2023) 33.301 0.933 0.150 31.811 0.912 0.262
CoNeRF-M(Kania et al., 2022) 27.868 0.898 0.155 32.061 0.979 0.167
CoNeRF(Kania et al., 2022) 32.394 0.972 0.139 32.342 0.981 0.168
CoGS (Yu et al., 2023a) 33.455 0.960 0.064 32.601 0.983 0.164

LiveScene Qu et al. (2024) 43.349 0.986 0.011 32.782 0.932 0.186
FreeGaussian (Ours) 43.939 0.993 0.011 33.247 0.941 0.218

Table 2: Quantitative results on OmniSim Dataset. FreeGaussian surpasses prior works in most
metrics, achieving the highest average scores for both the #medium subset and the entire dataset.

Method
#Easy Sets #Medium Sets #Avg (all 20 Sets)

PSNR⇒ SSIM⇒ LPIPS⇑ PSNR⇒ SSIM⇒ LPIPS⇑ PSNR⇒ SSIM⇒ LPIPS⇑
NeRF (Mildenhall et al., 2020) 25.817 0.906 0.167 25.645 0.928 0.138 25.776 0.916 0.153
InstantNGP (Müller et al., 2022) 25.704 0.902 0.183 25.627 0.930 0.140 25.706 0.914 0.164
HyperNeRF (Park et al., 2021b) 30.708 0.908 0.316 31.621 0.936 0.265 30.748 0.917 0.299
K-Planes (Fridovich-Keil et al., 2023) 32.841 0.952 0.093 32.548 0.954 0.100 32.573 0.952 0.097
CoNeRF (Kania et al., 2022) 32.104 0.932 0.254 33.256 0.951 0.207 32.477 0.939 0.234
MK-Planesε 31.630 0.948 0.098 31.880 0.951 0.104 31.477 0.946 0.106
MK-Planes 31.677 0.948 0.098 32.165 0.952 0.099 31.751 0.949 0.099
CoGS (Yu et al., 2023a) 32.315 0.961 0.108 32.447 0.965 0.086 32.187 0.963 0.097
LiveScene Qu et al. (2024) 33.221 0.962 0.072 33.262 0.965 0.072 33.158 0.962 0.074

FreeGaussian (Ours) 33.205 0.967 0.076 33.922 0.972 0.071 33.249 0.969 0.074

is slightly inferior to the SOTA method in PSNR and LPIPS, it demonstrates significant advantages
in scenarios where label-free guidance is required, making it particularly relevant for tasks that ne-
cessitate extensive manual labeling.

Metric on InterReal Dataset. As demonstrated in Table. 3, CoGS (Yu et al., 2023a) falls short of
our approach on the #medium subset and fails to converge when confronted with complex scenes
featuring long camera trajectories and mass of interactive objects (#challenging), revealing the lim-
itation of existing controllable gaussian methods in modeling real-world interactive scenarios. In
contrast, FreeGaussian achieves the highest SSIM of 0.893 and the lowest LPIPS of 0.165 on the
#challenging subset. On the #medium subset, FreeGaussian achieves the highest PSNR compared to
the current SOTA NeRF method Qu et al. (2024), showcasing its robustness in real-world scenarios
with incomplete labels and its superiority in modeling real-world large-scale interactive scenarios.
Table 3: Quantitative results on InterReal Dataset. Our method consistently outperforms other
methods across various settings, achieving the highest SSIM scores in all scenarios.

Method
#Medium Sets #Challenging Sets #Avg (all 8 Sets)

PSNR⇒ SSIM⇒ LPIPS⇑ PSNR⇒ SSIM⇒ LPIPS⇑ PSNR⇒ SSIM⇒ LPIPS⇑
NeRF (Mildenhall et al., 2020) 20.816 0.682 0.190 21.169 0.728 0.337 20.905 0.694 0.227
InstantNGP (Müller et al., 2022) 21.700 0.776 0.215 21.643 0.745 0.338 21.686 0.769 0.245
HyperNeRF (Park et al., 2021b) 25.283 0.671 0.467 25.261 0.713 0.517 25.277 0.682 0.480
K-Planes (Fridovich-Keil et al., 2023) 27.999 0.813 0.177 26.427 0.756 0.331 27.606 0.799 0.215
CoNeRF (Kania et al., 2022) 27.501 0.745 0.367 26.447 0.734 0.472 27.237 0.742 0.393
CoGS (Yu et al., 2023a) 30.774 0.913 0.100 ✁ ✁ ✁ 30.774 0.913 0.100
LiveScene Qu et al. (2024) 30.815 0.911 0.066 28.436 0.846 0.185 30.220 0.895 0.096

FreeGaussian (Ours) 31.310 0.938 0.074 28.435 0.893 0.165 30.489 0.924 0.099

Novel View Synthesis Visulization. Figure. 15 showcases the novel view synthesis results of Free-
Gaussian and other methods on the both OmniSim and dataset. The results demonstrate that in
addition to rendering more detailed and accurate controlled objects, our method also preserves the
texture information of the background, resulting in a more comprehensive and realistic scene recon-
struction. For example, LiveScene Qu et al. (2024) and MK-Planes* Qu et al. (2024) suffer from
significant residual shadows when rendering three objects simultaneously (top right). CoNeRF Ka-
nia et al. (2022), although better at modeling controllable objects, loses texture information from the
desktop (bottom left). CoGS Yu et al. (2023a), the first Gaussian method in the controllable domain,
exhibits turbulent performance across different scenes, sometimes producing a mask for the entire
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CoGSGT OursLiveSceneMKPlanes*CoNeRF CoGSGT OursLiveSceneMKPlanes*CoNeRF

Figure 4: View Synthesis Visualization on OmniSim and InterReal Dataset. We show the ren-
dering quality of our method and SOTA methods on novel view synthesis across 3 synthetic subsets
and 1 real subset. In comparison with other methods, FreeGaussian achieves more realistic and
detailed rendering quality, whereas other methods suffer from ghosting artifacts.
Table 4: Model performance across size and speed. We show the comparison of model perfor-
mance in terms of number of parameters, rendering speed, and runtime memory.

Method Batch size Ray samples FPS Parameters (MB) Memory (GB)
CoNeRF (Kania et al., 2022) 1024 256 0.22 149.58 71.93
MK-Planes (Fridovich-Keil et al., 2023) 4096 48 2.07 154.19 12.48
MK-Planes* (Fridovich-Keil et al., 2023) 4096 48 0.61 152.35 11.90
LiveScene (Qu et al., 2024) 4096 48 0.62 144.80 8.24
CoGS (Yu et al., 2023a) 1 - 215.93 189.70 25.50
FreeGaussian (Ours) 1 - 123.88 49.84 5.43

scene. In contrast, FreeGaussian method accurately models object details without compromising
environmental information.

4.3 EVALUATION OF EFFICIENCY

To better demonstrate the advantages of FreeGaussian, we picked #seq002 from the OmniSim for
statistical modeling of the number of parameters, running memory and rendering speed. Table. 4
describes that our method achieves a rendering speed of 123.88 FPS, which is significantly faster
than NeRF based methods, while maintaining a relatively low memory footprint of 5.43 GB. The
number of parameters in FreeGaussian is 49.84 MB, which is smaller than 1/4 the size of CoGS.
These results shows that FreeGaussian is not only efficient in terms of memory usage and rendering
speed but also has a smaller model size compared to existing methods.

4.4 ABLATION AND ANALYSIS

In this section, we conduct ablation studies to examine the contribution of each component in Free-
Gaussian. To facilitate a comprehensive and convincing analysis, we select three representative
subsets from the OmniSim dataset: #seq001, #seq004, and #seq0015. Table. 5 shows the results of
each ablation experiment.

Effectiveness of 3D Vector Control. We validate the effectiveness of our spherical vector con-
trolling ability through qualitative comparisons presented in Table. 5. Compared to FreeGaussian
(w/o control), FreeGaussian demonstrates significant improvements in PSNR. This is attributed to
the fact that our model represents the movement of each controllable object individually using 3D
vectors, which capture the object’s direction and speed of motion. In contrast, models lacking 3D
vector control only model objects temporally, failing to decouple time from the object’s trajectory.
Consequently, our model not only enables individual object control but also achieves high rendering
quality, reflecting the feasibility and effectiveness of this control paradigm.

Quality of Dynamic Gaussian Clustering. Gaussian clustering would impact the control ability of
the model, which in turn is directly influenced by the quality of the back-projected flow map. We
investigate the impact of the proportion of the flow map to the total dataset on Gaussian clustering
performance. Figure. 5 reveals that small keyframe ratios lead to incomplete clustering, while a
5% ratio is sufficient for achieving better clustering results. Conversely, higher ratios result in noisy
clustering, which hinders subsequent control.

8
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Figure 5: Ablation study on the ratio of keyframes to total frames. The left side presents the
results for seq001. The right side illustrates the impact of varying keyframe ratios (1%, 5%, 10%,
and 50%) on clustering performance.

Ours

Ours w/o 

Ours w/o 

Ours

Ours w/o 

Ours w/o 

Ours

Ours w/o 

Ours w/o 

PSNR SSIM LPIPS

Figure 6: Ablation study on Dynamic Gaussian Flow Loss and Flow Residual Term. We show
the training process of our model on #seq015, with training PSNR and evaluation SSIM and LPIPS.

Flow Residual Term #. In Lemma 1, # is introduced to ensure the accuracy of decomposition
of optical flow u. Although this term is not exactly zero, experimental results demonstrate that it
converges to zero through continuous optimization during training, shown in Figure. 6. Moreover,
after convergence, this term has a negligible impact on the overall performance, as evident from the
rendering metrics in Table. 5, which clearly illustrate this phenomenon.

Dynamic Gaussian Flow Loss. The dynamic Gaussian flow loss is designed to improve 3DGS
optimization. Figure. 6 illustrates the effect of incorporating the Gaussian flow loss into our model
on both convergence speed and rendering metrics. The addition of this loss term leads to a smoother
and faster training process, as evident from the figure. Furthermore, the table reveals that the PSNR
metrics have also improved by 1-2 dB, indicating enhanced rendering quality. This demonstrates the
effectiveness of the dynamic Gaussian flow loss in faster and more effective training.

Table 5: Ablation Study on the subset of OmniSim Datasets. We ablate our method on 4 compo-
nents in 3 seleted scenes from OmniSim Dataset and show the corresponding rendering metrics.

Metrics
#Ablation Settings

FreeGaussian w/o 3D vector control w/o # w/o LuGS
Ratio of flow maps in Section. 3.2

in Figure. 1 in Section. 3.3 in eq. (3) in eq. (7) 1% 5% 10% 50%
PSNR 35.31 33.77 34.24 33.51 34.61 35.31 34.61 31.79
SSIM 0.975 0.967 0.969 0.964 0.974 0.975 0.973 0.959
LPIPS 0.062 0.081 0.076 0.087 0.062 0.062 0.062 0.095

5 CONCLUSION AND LIMITATION

In this work, we draw the mathematical connection among optical flow, camera motion, and dynamic
Gaussian flow with differential analysis, and introduce a guidance-free Gaussian Splatting method
for controllable view synthesis. By leveraging the flow constraints, we refine Gaussian optimization,
enabling accurate continuous Gaussian motion dynamic constraints. It not only guarantee smooth
motion and improves rendering quality but also highlights interactable Gaussians and eliminates the
severe dependence on manual annotations. We further introduce a 3D spherical vector controlling
scheme, simplifying and accelerating interactive Gaussian modeling by bypassing the 3D Gaussian
trajectory as a state representation. Extensive experiments demonstrate our superior performance
in both view synthesis and scene controlling, enabling more accurate and efficient modeling of
interactable content.

Limitations: FreeGaussian relies on optical flow estimators, and may compromise view synthe-
sis or control robustness in lighting variation interactive environments. Future work will focus on
improving the robustness of lighting variation scenes and extending the method to handle more
challenging scenarios.

9
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FreeGaussian: Guidance-free Controllable 3D Gaussian Splats

with Flow Derivatives

Supplementary Material

ABSTRACT

This supplementary material accompanies the main paper by providing more de-
tails for reproducibility as well as additional evaluations and qualitative results to
verify the effectiveness and robustness of FreeGaussian:
ς Section. 6: Dynamic Gaussian Flow Derivative Proof.
ς Section. 7: Additional implementation details.
ς Section. 8: Additional experimental results, including more detailed view syn-
thesis quality comparison, clustering visualization, dual objects control capabili-
ties and illustrations of gaussian flow map.
ς Section. 9: Video demonstrations and anonymous project page:
https://freegaussian.github.io.

6 DETAILED DYNAMIC GAUSSIAN FLOW ANALYSIS

Our insight is that dynamic Gaussian flow under instantaneous motion can be analytically decoupled
from optical flow and camera motion via differential analysis with alpha composition. Considering
a dynamic scene with interactive objects as shown in Figure. 2, the camera and 3D Gaussians hold
separate velocities in consecutive frames 0 and t. Assuming a dynamic 3D Gaussian Gi with velocity
vGS, it is projected as image measurement gi under the constant camera instantaneous motion by
translation velocity v and rotational velocity ω. The optical flow u induced by (v,ω) of a pixel
m = (x, y)↗ can be obtained by Lemma 1:

Lemma 1: Dynamic Gaussian flow u
GS

under instantaneous motion can be derived from optical

flow u and camera flow u
Cam

with the following transform eq. (3).

u = u
Cam + u

GS +#,

u
Cam =

Av

Z
+Bω, u

GS = A

M∑

i=1

Tiωi
vGS

Zi
, # = A

M∑

i=1

Tiωiv(
1

Zi
↑ 1

Z
),

A =

[
↑fx 0 x↑ cx
0 ↑fy y ↑ cy

]
, B =

[
(x↔cx)(y↔cy)

fy
↑fx ↑ (x↔cx)

2

fx

(y↔cy)fx
fy

fy +
(y↔cy)

2

fy
↑ (x↔cx)(y↔cy)

fx
↑ (x↔cx)fy

fx

]
,

(9)

where fx, fy, cx, cy are camera intrinsics, M denotes the number of Gaussian projections sorted
with Gaussian depth Zi intersecting the pixel m. Flow residual term # are preserved to guarantee
accuracy, even when they approach zero after refined optimization.

Proof. We first derive the formula for 3D Gaussians derivative induced by camera rotation R(t),
translation T(t), and Gaussian translation T

GS(t), which transform the 3D Gaussian Gi under con-
stant instantaneous-motion as time t increasing. The equation transforming Gaussian Gi from time
t to 0 can be formulated as:

Xi(0)↑T
GS
i (t) = R(t)Xi(t) +T(t), (10)

By derivative in both sides, we reformulate the Gaussian transform in eq. (10) as:

↑Ṫ
GS
i (t) = Ṙ(t)Xi(t) +R(t)Ẋi(t) + Ṫ(t), (11)

Ẋi(t) = ↑R
↗(t)Ṙ(t)Xi(t)↑R

↗(t)Ṫ(t)↑R
↗(t)ṪGS

i (t). (12)

According to Possion’s equation (Ling et al.; Heeger & Jepson, 1992), the rotation and translation
velocities can be defined with R

↗(t)Ṙ(t) = [ω]↑, R
↗(t)Ṫ(t) = v and R

↗(t) ˙TGS(t) = vGS. By

14
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substituting the above equations into eq. (12) and omitting the time notation, we obtain the simplicity
results:

Ẋi = ↑[ω]↑Xi ↑ v ↑ vGS, (13)
where vGS presents the velocity of the dynamic 3D Gaussian Gi. Then, the camera projection model
with respect to Xi is:

Zi[µi; 1] = KXi. (14)
In order to derive the dynamic Gaussian flow u

GS
i in the 2D image plane, we derivative on both sides

and obtain the differential of the projected image coordinates, namely the optical flow, in relation to
the projection parameters:

u
GS
i =

[ fx
Z 0 ↑ fxX

Z2

0 fy
Z ↑ fyY

Z2

]
Ẋi. (15)

By substituting the above equations eq. (15) into eq. (13), we obtain the dynamic Gaussian flow
decomposition u

GS
i in individual Gaussian Gi as:

ui =
Av

Zi
+Bω +

AvGS

Zi
= (

Av

Z
+Bω) +

AvGS

Zi
+ (

Av

Zi
↑ Av

Z
) (16)

With alpha composition, we weight the flow with wi =
Tiωi

!iTiωi
in both sides and proof the mathe-

matical relation described in eq. (3). ↭

7 ADDITIONAL IMPLEMENTATION DETAILS

Implementation Details. FreeGaussian is implemented based on nerfstudio (Tancik et al., 2023)
and gsplat (Ye et al., 2024). We use RAFT Teed & Deng (2020); Contributors (2021) for optical flow
prediction and perform DBSCAN clustering from dynamic Gaussian flow with Euclidean metric,
ϱ = 0.05 and minimal samples = 5. The cluster center corresponding to each Gaussian is encoded
with hash grids and decoded with an 8-layer MLP with 256 neurons. The model is trained on an
NVIDIA GeForce RTX 4090 GPU for 60k steps, using Adam optimizer with learning rate 1.6e↔4

and batch size 1. The coarse-to-fine training process lasts 30 minutes and is divided into 3 stages,
including 500 steps of canonical warmup, 30k steps 4d deformable training, and 30k steps of full
training. For all experiments, we set loss weights of LRGB, LD-SSIM, and LuGS as ϑ = 0.8, (1↑ϑ) =
0.2, and ϖ = 0.5, respectively.

The CUDA implementation of the proposed Dynamic Gaussian Flow Constrain is based on
gsplat (Ye et al., 2024). We implemented a minimal modification to the source code, creating a
mapping from pixel coordinates to Gaussian sphere identifiers and their associated weights. Due to
the potential intersection of pixel coordinates with numerous Gaussian splats, we opted to store the
top 50 Gaussian ellipsoid indices per pixel and perform reweighting with wi =

Tiωi

!50
i Tiωi

as neces-
sary. Backpropagation only updates the gradients of associated weights, not the pixel coordinates to
Gaussian mapping.

Dynamic Gaussian Clustering. Gaussian clustering would impact the control ability of the model,
which in turn is directly influenced by the quality of the back-projected flow map. We configure the
frame interval to be 1 and establish correspondences between the optical flows of adjacent frames.
By leveraging eq. (3), we compute the Gaussian interaction flow. Next, by randomly sampling 5% of
the interaction flow map as keyframes, we perform back-projection and apply DBSCAN clustering
to obtain dynamic Gaussians. Small keyframe ratios lead to incomplete clustering, while a 5%
ratio is sufficient for achieving better clustering results. Conversely, higher ratios result in noisy
clustering, which hinders subsequent control.

Algorithm Implementation. Algorithm 1 provided detailed implementation pseudo code of Free-
Gaussian, including the deformable 3D Gaussian pre-training, dynamic Gaussian flow decouple,
DBSCAN clustering, and Self-guide control with dynamic 3D Gaussian.

8 ADDITIONAL EXPERIMENTAL RESULTS

View Synthesis Quality Comparison on OmniSim and InterReal dataset We present detailed
quantitative results on the OmniSim and InterReal datasets in Table. 6 and Table. 7, respectively.
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Algorithm 1: Controllable 3D Gaussian Splats with Flow Derivatives
Input : Set camera stream {P(t), I(t)} and initialize 3D Gaussians G0.
Output: Controllable 3D Gaussians G→ with Network !→.

1 ↫ pre-train a deformable 3DGS G
↓;

2 ⇓ Dynamic Gaussian Flow Decouple;
3 for Each continuous camera views P(0),P(t) do

4 Estimate optical flow u and caculate camera flow u
Cam using eq. (3);

5 Calculate dynamic gaussian flow u
GS using eq. (4);

6 Back project binarized dynamic Gaussian flow bin(uGS) to 3DGS: gi ⇐ D;
7 end

8 ↫ DBSCAN clustering and caculate trajactory ε(t, k);
9 ⇓ Self-guided Control with Dynamic 3DGS;

10 while (not reach max iteration) and (not satisfy stopping criteria) do

11 for Each continuous pair < P(t), I(t) > do

12 Encode coordinates vi
c = ε(t, k)↑ ε(0, k) with hash grid: E(vi

c);
13 Forward pass and rasterize with G

→ and E(ε): I,uGS = !(G→,E(ε));
14 Calculate loss LuGS, LRGB, LD-SSIM using eq. (4) and optimize with Gradient Descent;
15 Update !

→ and G
→;

16 end

17 end

18 ⇓ Controlling with FreeGaussian;
19 for Each control camera view and 3d vector v

↓
c do

20 Back-project to query Gaussian Gi ;
21 Perform hash encoding: E(v↓

c);
22 Forward pass !→ and rasterize with f”→ (Xi,v↓

c)
23 end

Our method demonstrates significant advantages on both the #easy and #medium subsets of the
OmniSim dataset. Additionally, it achieves notable scores on the #medium subset of the InterReal
dataset. A multitude of metrics indicate that our model excels in rendering on both simulated and
real datasets, underscoring its superiority. While the metric improvements may be modest compared
to current SOTA NeRF methods, our approach offers a substantial advantage by introducing a novel
guidance-free training paradigm that significantly reduces the label requirements, thereby enhancing
its real-world applicability. We report scores as NaN if the model fails to converge or runs out of
memory during training multiple times.

More Detailed Rendering Comparison We show additional visual comparisons in Figure. 7, Fig-
ure. 8, showcasing our method’s superior performance on the OmniSim and InterReal datasets. Our
approach excels in reconstructing detailed and accurate object representations. Notably, our method
generates more accurate object shapes and background textures compared to existing approaches.

More Detailed on Individual Control Capability We present two examples, as shown in Figure. 9
and Figure. 10, to demonstrate the model’s capability to control individual objects. Our method
offers superior control over the objects within the scene, enabling the model to implement attribute
combinations that were never seen in the training data.

More Detailed Clustering Visualization Figure. 11 illustrates the clustering results of our method
across various scenarios. As demonstrated, the majority of Gaussian clusters are accurately grouped
around controllable entities, particularly in relation to the moving components. This can be at-
tributed to the successful decoupling of the interaction flow, a feature that enables the Gaussian
clusters to concentrate more effectively on the motion rendering.

More illustrations of dynamic Gaussian flow map We provide a more detailed visualization of
highlighting dynamic Gaussian capabilities in Figure. 12. The experimental results show that, de-
spite the presence of complex camera motion and interactive body motion, the proposed approach
successfully decouples the Gaussian dynamics, producing accurate and detailed flow maps. Notably,
objects exhibiting complex topological structure changes, such as boxes or dishwashers, can be ef-
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Table 6: Detailed Quantitative Results on OmniSim Dataset. FreeGaussian outperforms prior
works on most metrics, especially the #easy and #medium subsets.

Dataset Metric NeRF Instant-NGP HyperNeRF CoNeRF K-Planes MK-Planes MK-Planes→ LiveScene CoGS FreeGaussian
seq001 Rs int psnr 25.941 25.768 NaN 34.035 33.136 32.169 32.092 34.784 32.211 36.335
seq001 Rs int ssim 0.931 0.933 NaN 0.957 0.953 0.946 0.946 0.974 0.968 0.980
seq001 Rs int lpips 0.118 0.113 NaN 0.135 0.093 0.110 0.110 0.048 0.068 0.046
seq002 Rs int psnr 28.616 28.660 NaN 34.286 34.765 36.532 34.580 35.190 34.497 34.979
seq002 Rs int ssim 0.950 0.946 NaN 0.951 0.967 0.976 0.968 0.969 0.979 0.976
seq002 Rs int lpips 0.096 0.112 NaN 0.217 0.074 0.036 0.074 0.070 0.051 0.060
seq003 Ihlen 1 int psnr 26.720 28.255 33.551 34.700 35.217 34.758 34.753 35.323 36.816 36.094
seq003 Ihlen 1 int ssim 0.940 0.944 0.946 0.953 0.964 0.966 0.966 0.966 0.980 0.974
seq003 Ihlen 1 int lpips 0.120 0.121 0.268 0.244 0.097 0.087 0.090 0.094 0.077 0.077
seq004 Ihlen 1 int psnr 30.847 31.800 31.115 32.684 36.157 34.863 35.000 36.712 31.055 35.700
seq004 Ihlen 1 int ssim 0.927 0.942 0.878 0.888 0.955 0.919 0.926 0.962 0.915 0.965
seq004 Ihlen 1 int lpips 0.104 0.102 0.389 0.366 0.085 0.145 0.135 0.072 0.209 0.086
seq005 Beechwood 0 int psnr 27.183 27.295 30.699 32.549 31.944 33.195 33.098 33.623 33.664 33.778
seq005 Beechwood 0 int ssim 0.930 0.937 0.906 0.927 0.944 0.961 0.959 0.962 0.978 0.973
seq005 Beechwood 0 int lpips 0.127 0.112 0.291 0.245 0.105 0.076 0.080 0.072 0.058 0.063
seq006 Beechwood 0 int psnr 27.988 28.150 29.513 30.058 31.861 31.541 31.521 32.206 31.272 32.067
seq006 Beechwood 0 int ssim 0.938 0.938 0.907 0.917 0.951 0.951 0.951 0.959 0.974 0.971
seq006 Beechwood 0 int lpips 0.103 0.119 0.314 0.283 0.097 0.095 0.096 0.077 0.059 0.058
seq007 Beechwood 0 int psnr 23.201 22.902 31.259 33.451 30.979 30.136 30.089 30.360 27.367 33.748
seq007 Beechwood 0 int ssim 0.885 0.886 0.913 0.935 0.938 0.942 0.942 0.946 0.893 0.969
seq007 Beechwood 0 int lpips 0.220 0.219 0.289 0.229 0.140 0.120 0.121 0.107 0.219 0.084
seq008 Benevolence 1 int psnr 25.750 25.574 32.691 34.319 31.914 30.926 30.916 33.393 33.795 33.855
seq008 Benevolence 1 int ssim 0.943 0.940 0.945 0.960 0.948 0.941 0.941 0.970 0.980 0.975
seq008 Benevolence 1 int lpips 0.113 0.123 0.229 0.185 0.107 0.118 0.116 0.067 0.072 0.068
seq009 Benevolence 1 int psnr 24.326 24.386 29.596 31.225 32.836 31.500 31.471 32.030 33.205 31.960
seq009 Benevolence 1 int ssim 0.921 0.922 0.897 0.932 0.956 0.954 0.953 0.962 0.975 0.959
seq009 Benevolence 1 int lpips 0.124 0.128 0.327 0.248 0.090 0.088 0.090 0.071 0.074 0.089
seq010 Merom 1 int psnr 22.927 22.765 28.985 31.092 30.120 29.461 29.396 30.029 30.254 30.622
seq010 Merom 1 int ssim 0.917 0.925 0.939 0.957 0.960 0.960 0.959 0.966 0.974 0.971
seq010 Merom 1 int lpips 0.173 0.158 0.275 0.233 0.093 0.087 0.088 0.074 0.065 0.080
seq011 Merom 1 int psnr 26.732 27.077 NaN 30.483 33.394 32.951 32.910 33.426 31.767 33.014
seq011 Merom 1 int ssim 0.932 0.933 NaN 0.932 0.959 0.959 0.959 0.960 0.968 0.966
seq011 Merom 1 int lpips 0.112 0.117 NaN 0.246 0.074 0.073 0.072 0.068 0.091 0.079
seq012 Pomaria 1 int psnr 26.856 27.074 NaN 33.065 35.185 32.248 32.209 33.367 37.284 34.104
seq012 Pomaria 1 int ssim 0.936 0.943 NaN 0.954 0.972 0.966 0.966 0.969 0.985 0.972
seq012 Pomaria 1 int lpips 0.138 0.126 NaN 0.199 0.059 0.075 0.075 0.061 0.047 0.067
seq013 Pomaria 1 int psnr 25.277 24.018 NaN 33.682 30.860 30.390 30.299 33.592 32.868 32.730
seq013 Pomaria 1 int ssim 0.925 0.930 NaN 0.964 0.943 0.931 0.930 0.970 0.981 0.970
seq013 Pomaria 1 int lpips 0.154 0.161 NaN 0.166 0.123 0.162 0.164 0.056 0.045 0.072
seq014 Wainscott 0 int psnr 26.011 25.966 NaN 29.580 32.517 30.511 30.504 31.197 31.885 31.709
seq014 Wainscott 0 int ssim 0.927 0.924 NaN 0.925 0.955 0.951 0.951 0.952 0.969 0.958
seq014 Wainscott 0 int lpips 0.105 0.116 NaN 0.244 0.077 0.082 0.083 0.083 0.067 0.084
seq015 Wainscott 0 int psnr 27.257 27.191 NaN 32.307 30.721 28.288 28.134 34.266 32.949 35.014
seq015 Wainscott 0 int ssim 0.953 0.951 NaN 0.962 0.955 0.942 0.942 0.976 0.975 0.980
seq015 Wainscott 0 int lpips 0.080 0.092 NaN 0.202 0.083 0.110 0.108 0.050 0.078 0.047
seq016 Wainscott 0 int psnr 21.953 21.660 28.364 30.205 30.414 28.915 28.710 29.746 31.965 31.096
seq016 Wainscott 0 int ssim 0.897 0.895 0.909 0.935 0.951 0.952 0.951 0.955 0.976 0.967
seq016 Wainscott 0 int lpips 0.175 0.194 0.327 0.260 0.089 0.086 0.087 0.083 0.066 0.075
seq017 Benevolence 1 int psnr 26.364 26.367 27.533 30.349 29.833 29.254 26.565 31.645 28.701 28.347
seq017 Benevolence 1 int ssim 0.927 0.920 0.897 0.923 0.937 0.933 0.887 0.948 0.970 0.958
seq017 Benevolence 1 int lpips 0.128 0.143 0.318 0.238 0.118 0.119 0.218 0.093 0.073 0.089
seq018 Benevolence 1 int psnr 28.236 24.296 32.551 34.297 34.690 33.049 33.002 34.187 34.963 33.659
seq018 Benevolence 1 int ssim 0.918 0.809 0.911 0.936 0.951 0.953 0.952 0.958 0.976 0.966
seq018 Benevolence 1 int lpips 0.145 0.342 0.293 0.248 0.093 0.090 0.091 0.081 0.114 0.085
seq019 Rs int psnr 20.059 20.854 33.119 34.598 34.462 33.679 33.653 35.223 25.947 34.097
seq019 Rs int ssim 0.794 0.808 0.950 0.963 0.956 0.963 0.962 0.969 0.879 0.970
seq019 Rs int lpips 0.425 0.424 0.270 0.225 0.106 0.087 0.089 0.068 0.327 0.089
seq020 Merom 1 int psnr 23.273 24.074 31.280 32.580 30.462 30.655 30.626 32.869 31.280 32.068
seq020 Merom 1 int ssim 0.823 0.852 0.970 0.914 0.929 0.919 0.918 0.954 0.970 0.954
seq020 Merom 1 int lpips 0.306 0.259 0.086 0.276 0.140 0.139 0.142 0.078 0.086 0.095

fectively isolated. This outcome substantiates the efficacy and unsupervised exploration capabilities
of the proposed method for interactive Gaussian discovery.

9 VIDEOS DEMONSTRATION AND ANONYMOUS LINK

We provide a video of our proposed method FreeGaussian along with this document to demon-
strate the interactive scene reconstruction and multimodal control capabilities. Please refer to the
anonymous link: https://freegaussian.github.iofor more information.
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Table 7: Detailed Quantitative Results on InterReal Dataset. FreeGaussian consistently outper-
forms all other methods in most sequences. Across most sequences, FreeGaussian maintains high
PSNR and SSIM, with low LPIPS, indicating that it excels in both numerical image quality and
perceptual similarity.

Dataset Metric NeRF Instant-NGP HyperNeRF CoNeRF K-Planes LiveScene CoGS FreeGaussian
seq001 transformer psnr 20.094 20.619 24.651 27.260 26.881 30.396 31.067 31.067
seq001 transformer ssim 0.725 0.805 0.638 0.739 0.791 0.912 0.943 0.943
seq001 transformer lpips 0.182 0.167 0.495 0.355 0.185 0.060 0.060 0.060
seq002 transformer psnr 20.093 20.028 24.433 26.917 26.232 29.706 30.513 30.513
seq002 transformer ssim 0.736 0.778 0.635 0.732 0.763 0.899 0.938 0.938
seq002 transformer lpips 0.210 0.196 0.477 0.357 0.223 0.069 0.062 0.062
seq003 door psnr 20.001 20.652 27.144 29.850 29.278 32.709 31.998 31.998
seq003 door ssim 0.785 0.831 0.878 0.922 0.920 0.960 0.962 0.962
seq003 door lpips 0.250 0.250 0.316 0.231 0.101 0.044 0.071 0.071
seq004 dog psnr 20.044 20.206 25.691 28.567 30.350 32.519 32.455 33.555
seq004 dog ssim 0.723 0.819 0.730 0.815 0.894 0.943 0.950 0.960
seq004 dog lpips 0.196 0.178 0.435 0.324 0.107 0.049 0.074 0.063
seq005 sit psnr 21.558 24.211 24.944 26.252 27.970 30.161 27.169 30.236
seq005 sit ssim 0.480 0.727 0.573 0.633 0.773 0.886 0.767 0.912
seq005 sit lpips 0.178 0.236 0.543 0.463 0.207 0.084 0.232 0.098
seq006 stand psnr 23.109 24.483 24.833 26.159 27.285 29.400 31.442 30.489
seq006 stand ssim 0.643 0.699 0.574 0.627 0.736 0.868 0.919 0.913
seq006 stand lpips 0.123 0.260 0.538 0.470 0.237 0.089 0.104 0.092
seq007 flower psnr 21.150 21.813 25.334 26.854 26.545 28.208 28.435 28.435
seq007 flower ssim 0.721 0.747 0.712 0.748 0.759 0.844 0.893 0.893
seq007 flower lpips 0.302 0.319 0.489 0.425 0.321 0.188 0.165 0.165
seq008 office psnr 21.187 21.474 25.188 26.040 26.309 28.663 27.510 27.620
seq008 office ssim 0.735 0.743 0.714 0.720 0.754 0.848 0.897 0.872
seq008 office lpips 0.371 0.358 0.545 0.520 0.341 0.181 0.138 0.181

CoNeRF CoGS OursLiveSceneMKPlanes*GT

Figure 7: View Synthesis Visualization on InterReal Dataset. We compare our method with
SOTA methods on RGB rendering across real scenes. FreeGaussian obtained more detailed and
accurate representations of the objects. While other methods fail to capture the object’s shape and
cause significant artifacts.
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CoNeRF CoGS OursLiveSceneMKPlanes*GT

Figure 8: View Synthesis Visualization on OmniSim Dataset. Compared with the other methods,
FreeGaussian reconstructs clear and accurate object shapes and textures.
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Figure 9: Visualization of Dual Attributes Combination on #seq007. The model allows for inde-
pendent control of both the upper and lower cabinets, highlighting its superior capability for precise,
individual control.
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Figure 10: Visualization of Dual Attributes Combination on #seq009. The model enables inde-
pendent control of the chest and the door, showcasing its advanced ability for precise, individual
operation.
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RGB Clustering RGB Clustering

Figure 11: Visualization of DBSCAN clustering. After successfully training the 4D Gaussian field,
we apply DBSCAN and the interaction flow to identify the key Gaussian spheres corresponding to
the controllable objects.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

#s
eq
00
1

#s
eq
00
4

#s
eq
00
6

#s
eq
00
8

#s
eq
01
1

Figure 12: More illustrations of dynamic Gaussian flow map under dynamic scenes of OmniSim.
For dynamic scenes with interactive objects and complex camera motions (translation and rotation),
the dynamic Gaussian flow map will highlight interactive 3D Gaussians, and demonstrate the effec-
tiveness of proposed Dynamic Gaussian Flow derivatives in eq. (3).
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CoGSCoNeRFHyperNeRF LiveSceneGT Ours

Figure 13: View Synthesis Visualization on CoNeRF Controllable Dataset.
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(a) Face Attribute and Metronome (b) Fast Moving Chest

Figure 14: (a) Qualitative results on CoNeRF Faces and Metronome subsets. (b) Qualitative result
on failure case of fast moving chest.
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Figure 15: View Synthesis Visualization on DyNeRF Dataset.
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Table 8: Quantitative results between GaussianFlow and FreeGaussian.
#seq001 #seq004 #seq015 Mean

PSNR GaussianFlow 32.21 34.64 31.36 32.74
Ours 36.34 35.70 35.01 35.68

SSIM GaussianFlow 0.968 0.958 0.966 0.964
Ours 0.980 0.965 0.980 0.975

LPIPS GaussianFlow 0.068 0.103 0.084 0.085
Ours 0.046 0.086 0.047 0.060

(a) Train Viewpoint (b) Dynamic Gaussian Flow (c) Clustering (d) Novel View Synthesis

(e) Train Viewpoint (f) Dynamic Gaussian Flow (g) Clustering (h) Novel View Synthesis

Figure 16: Visualization of dynamic gaussian flow, clustering results, and novel view synthesis
under conditions of incomplete moving areas.

 = 0GT  = 1!"  = 1!#  = 1!$

Figure 17: Qualitative results on #seq001 with noisy camera poses.

Fl
ow

 M
ap

Fl
ow

 Q
ui

ve
r

Flow
 M

ap
Flow

 Q
uiver

Optical Flow Camera Flow Dynamic Gaussian Flow Optical Flow Camera Flow Dynamic Gaussian FlowBright RGB Dark RGB

(a) Bright Image Flow Decomposition (b) Dark Image Flow Decomposition

Figure 18: Failure cases due to excessively intense or insufficient lighting.
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(f) DBSCAN, eps = 0.05,
min_samples=5,

PSNR = 36.34 (Success)

(e) DBSCAN, eps = 0.01,
min_samples=5,

PSNR = 36.33 (Success)

(g) DBSCAN, eps = 0.05,
min_samples=10,

PSNR = 36.43 (Success)

(c) KMeans, PSNR = 32.15 (Failed)(b) Back-project with flow map (d) MeanShift, PSNR = 31.67 (Failed)

(h) DBSCAN, eps = 0.1,
min_samples=25,

PSNR = 36.45 (Success)

(a) Ground-truth

cabinet

fridge
oven

microwave

Outliners Outliners Outliners Outliners

Figure 19: Comparison of clustering results among KMeans, MeanShift and DBSCAN with varying
parameters on #seq001 of OmniSim.

(f) DBSCAN, eps = 0.05,
min_samples=5,

PSNR = 27.62 (Success)

(e) DBSCAN, eps = 0.01,
min_samples=5,

PSNR = 27.62 (Success)

(g) DBSCAN, eps = 0.05,
min_samples=10,

PSNR = 27.40 (Success)

(c) KMeans, PSNR = 25.24 (Failed)(b) Back-project with flow map (d) MeanShift, PSNR = 24.77 (Failed)

(h) DBSCAN, eps = 0.5,
min_samples=100,

PSNR = 27.39 (Success)

(a) Ground-truth

computer
blur car

yellow car

microwave

Outliners Outliners Outliners Outliners

Figure 20: Comparison of clustering results among KMeans, MeanShift and DBSCAN with varying
parameters on #seq008 of InterReal.
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