
Condensing Graphs via One-Step Gradient Matching

Wei Jin1, Xianfeng Tang2, Haoming Jiang2, Zheng Li2, Danqing Zhang2,
Jiliang Tang1, Bing Yin2

1Michigan State University, 2Amazon
{jinwei2,tangjili}@msu.edu, {xianft,jhaoming,amzzhe,danqinz,alexbyin}@amazon.com

Abstract

As training deep learning models on large dataset takes a lot of time and resources,
it is desired to construct a small synthetic dataset with which we can train deep
learning models sufficiently. There are recent works that have explored solutions
on condensing image datasets through complex bi-level optimization. For instance,
dataset condensation (DC) matches network gradients w.r.t. large-real data and
small-synthetic data, where the network weights are optimized for multiple steps at
each outer iteration. However, existing approaches have their inherent limitations:
(1) they are not directly applicable to graphs where the data is discrete; and (2) the
condensation process is computationally expensive due to the involved nested opti-
mization. To bridge the gap, we investigate efficient dataset condensation tailored
for graph datasets where we model the discrete graph structure as a probabilistic
model. We further propose a one-step gradient matching scheme, which performs
gradient matching for only one single step without training the network weights.
Our theoretical analysis shows this strategy can generate synthetic graphs that lead
to lower classification loss on real graphs. Extensive experiments on various graph
datasets demonstrate the effectiveness and efficiency of the proposed method. In
particular, we are able to reduce the dataset size by 90% while approximating up
to 98% of the original performance and our method is significantly faster than
multi-step gradient matching (e.g. 15× in CIFAR10 for synthesizing 500 graphs).
Our code is available at https://github.com/amazon-science/doscond.

1 Introduction

Graph-structured data plays a key role in various real-world applications. For example, by exploiting
graph structural information, we can predict the chemical property of a given molecular graph [1],
detect fraud activities in a financial transaction graph [2], or recommend new friends to users
in a social network [3]. Due to its prevalence, graph neural networks (GNNs) [4, 5, 6, 7] have
been developed to effectively extract meaningful patterns from graph data and thus tremendously
facilitate computational tasks on graphs. Despite their effectiveness, GNNs are notoriously data-
hungry like traditional deep neural networks: they usually require massive datasets to learn powerful
representations. Thus, training GNNs is often computationally expensive. Such cost even becomes
prohibitive when we need to repeatedly train GNNs, e.g., in neural architecture search [8] and
continual learning [9].

One potential solution to alleviate the aforementioned issue is dataset condensation or dataset
distillation. It targets at constructing a small-synthetic training set that can provide sufficient
information to train neural networks [10, 11, 12, 13, 14, 15, 16]. In particular, one of the representative
methods, DC [11], formulates the condensation goal as matching the gradients of the network
parameters between small-synthetic and large-real training data. It has been demonstrated that such a
solution can greatly reduce the training set size of image datasets without significantly sacrificing
model performance. For example, using 100 images generated by DC can achieve 97.4% test accuracy

NeurIPS 2022 New Frontiers in Graph Learning Workshop (NeurIPS GLFrontiers 2022)

https://github.com/amazon-science/doscond

on MNIST compared with 99.6% on the original dataset (60, 000 images). These condensed samples
can significantly save space for storing datasets and speed up retraining neural networks in many
critical applications, e.g., continual learning and neural architecture search. In spite of the recent
advances in dataset distillation/condensation for images, limited attention has been paid on domains
involving graph structures.

To bridge this gap, we investigate the problem of condensing graphs such that GNNs trained on
condensed graphs can achieve comparable performance to those trained on the original dataset.
However, directly applying existing solutions for dataset condensation [10, 11, 12, 13] to graph
domain faces some challenges. First, existing solutions have been designed for images where the data
is continuous and they cannot output binary values to form the discrete graph structure. Thus, we
need to develop a strategy that can handle the discrete nature of graphs. Second, they usually involve
a complex bi-level problem that is computationally expensive to optimize: they require multiple
iterations (inner iterations) of updating neural network parameters before updating the synthetic data
for multiple iterations (outer iterations). It can be catastrophically inefficient for learning pairwise
relations for nodes, of which the complexity is quadratic to the number of nodes.

To address the aforementioned challenges, we propose an efficient condensation method for graphs,
where we follow DC [11] to match the gradients of GNNs between synthetic graphs and real graphs.
In order to produce discrete values, we model the graph structure as a probabilistic graph model and
optimize the discrete structures in a differentiable manner. Based on this formulation, we further
propose a one-step gradient matching strategy which only performs gradient matching for one single
step. Consequently, the advantages of the proposed strategy are twofold. First, it significantly speeds
up the condensation process while providing reasonable guidance for synthesizing condensed graphs.
Second, it removes the burden of tuning hyper-parameters such as the number of outer/inner iterations
of the bi-level optimization as required by DC. Furthermore, we demonstrate the effectiveness of the
proposed one-step gradient matching strategy both theoretically and empirically. Our contributions
can be summarized as follows:

1. We study a novel problem of learning discrete synthetic graphs for condensing graph datasets,
where the discrete structure is captured via a graph probabilistic model that can be learned in a
differentiable manner.

2. We propose a one-step gradient matching scheme that significantly accelerates the vanilla gradient
matching process. Theoretical analysis is provided to understand the rationality of the proposed
one-step gradient matching. We show that learning with one-step matching produces synthetic
graphs that lead to a small classification loss on real graphs.

3. Extensive experiments have demonstrated the effectiveness and efficiency of the proposed method.
Particularly, we are able to reduce the dataset size by 90% while approximating up to 98% of the
original performance and our method is significantly faster than multi-step gradient matching (e.g.
15× in CIFAR10 for synthesizing 500 graphs).

2 The Proposed Framework

Before detailing the framework, we first introduce the main notations used in this paper. We
majorly focus on the graph classification task where the goal is to predict the labels of given graphs.
Specifically, we denote a graph dataset as T = {G1, . . . , GN} with ground-truth label set Y . Each
graph in T is associated with a discrete adjacency matrix and a node feature matrix. Let A(i), X(i)

represent the adjacency matrix and the feature matrix of i-th real graph, respectively. Similarly, we
use S = {G′

1, . . . , G
′
N ′} and Y ′ to indicate the synthetic graphs and their labels, respectively. Note

that the number of synthetic graphs N ′ is essentially much smaller than that of real graphs N . We
use d and n to denote the number of feature dimensions and the number of nodes in each synthetic
graph, respectively1. Let C denote the number of classes and ℓ denote the cross entropy loss. The
goal of our work is to learn a set of synthetic graphs S such that a GNN trained on S can achieve
comparable performance to the one trained on the much larger dataset T .

2.1 Gradient Matching as the Objective
Since we aim at learning synthetic graphs that are highly informative, one solution is to allow GNNs
trained on synthetic graphs to imitate the training trajectory on the original large dataset. Dataset
condensation [11, 12] introduces a gradient matching scheme to achieve this goal. Concretely, it tries

1We set n to the average number of nodes in original dataset.

2

to reduce the difference of model gradients w.r.t. large-real data and small-synthetic data for model
parameters at every training epoch. Hence, the model parameters trained on synthetic data will be
close to these trained on real data at every training epoch. Let θt denote the network parameters at
the t-th epoch and fθt indicate the neural network parameterized by θt. The condensation objective
is expressed as:

min
S

T−1∑
t=0

D(∇θℓ(fθt(S),Y ′),∇θℓ(fθt(T),Y)), s.t. θt+1 = optθ(θt,S), (1)

where D(·, ·) is a distance function, T is the number of steps of the whole training trajectory and
optθ(·) is the optimization operator for updating parameter θ. Note that Eq. (1) is a bi-level problem
where we need to learn the synthetic graphs S at the outer optimization and update model parameters
θt at the inner optimization. To learn synthetic graphs that generalize to a distribution of model
parameters Pθ0 , we sample θ0 ∼ Pθ0 and rewrite Eq. (1) as:

min
S

E
θ0∼Pθ0

[
T−1∑
t=0

D (∇θℓ (fθt(S),Y ′) ,∇θℓ (fθt(T),Y))

]
, s.t. θt+1 = optθ(θt,S). (2)

Discussion. The aforementioned strategy has demonstrated promising performance on condensing
image datasets [11, 12]. However, it is not clear how to model the discrete graph structure. Moreover,
the inherent bi-level optimization inevitably hinders its scalability. To tackle these shortcomings, we
propose DosCond that models the structure as a probabilistic graph model and is optimized through
one-step gradient matching. In the following subsections, we introduce the details of DosCond.

2.2 Learning Discrete Graph Structure

For graph classification, each graph in the dataset is composed of an adjacency matrix and a feature
matrix. For simplicity, we use X′ ∈ RN ′×n×d to denote the node features in all synthetic graphs
S and A′ ∈ {0, 1}N ′×n×n to indicate the graph structure information in S. Note that fθt can be
instantiated as any graph neural network and it takes both graph structure and node features as input.
Then we rewrite the objective in Eq. (2) as follows:

min
A′,X′

E
θ0∼Pθ0

[
T−1∑
t=0

D (∇θℓ (fθt(A
′,X′),Y ′) ,∇θℓ (fθt(T),Y))

]
, s.t. θt+1 = optθ(θt,S), (3)

where we aim to learn both graph structure A′ and node features X′. However, Eq. (3) is challenging
to optimize as it requires a function that outputs binary values. To address this issue, we propose
to model the graph structure as a probabilistic graph model with Bernoulli distribution. Note that
in the following, we reshape A′ from N ′ × n × n to N ′ × n2 for the purpose of demonstration
only. Specifically, for each entry A′

ij ∈ {0, 1} in the adjacency matrix A′, it follows a Bernoulli
distribution: PΩij (A

′
ij) = A′

ijσ(Ωij) + (1 −A′
ij)σ(−Ωij), where σ(·) is the sigmoid function;

Ωij ∈ R is the success probability of the Bernoulli distribution and also the parameter to be
learned. Since A′

ij is independent of all other entries, the distribution of A′ can be modeled

as:PΩ(A
′) =

∏N ′

i=1

∏n2

j=1 PΩij

(
A′

ij

)
. Then, the objective in Eq. (2) needs to be modified to

min
A′,X′

E
θ0∼Pθ0

[
E

A′∼PΩ

[ℓ(A′(Ω),X′, θ0)]

]
. (4)

With the new parameterization, we obtain a function that outputs discrete values but it is not differen-
tiable due to the involved sampling process. Thus, we employ the reparameterization method [17],
binary concrete distribution, to refactor the discrete random variable into a differentiable func-
tion of its parameters and a random variable with fixed distribution. Specifically, we first sample
α ∼ Uniform(0, 1), and edge weight A′

ij ∈ [0, 1] is calculated by:

A′
ij = σ ((logα− log(1− α) +Ωij) /τ) , (5)

where τ ∈ (0,∞) is the temperature parameter that controls the continuous relaxation. As τ → 0,
the random variable A′

ij smoothly approaches the Bernoulli distribution. In other words, we have

3

limτ→0 P
(
A′

ij = 1
)
= σ(Ωij). While small τ is necessary for obtaining discrete samples, large

τ is useful in getting large gradients as suggested by [17]. In practice, we employ an annealing
schedule [18] to gradually decrease the value of τ in training. With the reparameterization trick, the
objective function becomes differentiable w.r.t. Ωij with well-defined gradients. Then we rewrite our
objective as:

min
Ω,X′

E
θ0∼Pθ0

[
E

α∼Uniform(0,1)

[
ℓ(A′(Ω),X′, θ0)

]]
= (6)

E
θ0

[
E
α

[
T−1∑
t=0

D
(
∇θℓ

(
fθt(A

′(Ω),X′),Y ′) ,∇θℓ (fθt(T),Y)
)]]

, s.t. θt+1 = optθ(θt,S).

2.3 One-Step Gradient Matching

The vanilla gradient matching scheme in Eq. (2) presents a bi-level optimization problem. To solve
this problem, we need to update the synthetic graphs S at the outer loop and then optimize the
network parameters θt at the inner loop. The nested loops heavily impede the scalability of the
condensation method, which motivates us to design a new strategy for efficient condensation. In this
work, we propose a one-step gradient matching scheme where we only match the network gradients
for the model initializations θ0 while discarding the training trajectory of θt. Essentially, this strategy
approximates the overall gradient matching loss for θt with the initial matching loss at the first epoch,
which we term as one-step matching loss. The intuition is: the one-step matching loss informs us
about the direction to update the synthetic data, in which, we have empirically observed a strong
decrease in the cross-entropy loss (on real samples) obtained from the model trained on synthetic
data. Hence, we can drop the summation symbol

∑T−1
t=0 in Eq. (6) and simplify Eq. (6) as follows:

min
Ω,X′

E
θ0

[
E
α

[
D

(
∇θℓ

(
fθ0(A

′(Ω),X′),Y ′) ,∇θℓ (fθ0(T),Y)
)]]

, (7)

where we sample θ0 ∼ Pθ0 and α ∼ Uniform(0, 1). Compared with Eq. (6), one-step gradient
matching avoids the expensive nested-loop optimization and directly updates the synthetic graph
S. It greatly simplifies the condensation process. In practice, as shown in Section 3.3, we find this
strategy yields comparable performance to its bi-level counterpart while enabling much more efficient
condensation. Next, we provide theoretical analysis to understand the rationality of the proposed
one-step gradient matching scheme.

Theoretical Understanding. We denote the cross entropy loss on the real graphs as ℓT (θ) =∑
i ℓi(A(i), X(i), θ) and that on synthetic graphs as ℓS(θ) = ℓS(A

′
(i),X

′
(i), θ). Let θ∗ denote the

optimal parameter and θt be the parameter trained on S at the t-th epoch by optimizing ℓS(θ). For
notation simplicity, we assume that A and A′ are already normalized. The matrix norm ∥ · ∥ is the
Frobenius norm. We focus on the GNN of Simple Graph Convolutions (SGC) [19] to study our
problem since SGC has a simpler architecture but shares a similar filtering pattern as GCN.

Theorem 1 When we use a K-layer SGC as the GNN used in condensation, i.e., fθ(A(i),X(i)) =

Pool(AK
(i)X(i)W1)W2 with θ = [W1;W2] and assume that all network parameters satisfy ∥θ∥2 ≤

M2(M > 0), we have

min
t

ℓT (θt)− ℓT (θ∗) ≤
T−1∑
t=0

√
2M

T
∥∇θℓT (θt)−∇θℓS (θt) ∥

3M

2
√
T

C − 1

CN ′

√∑
i

γi∥1⊤A′K
(i)X

′
(i)∥2 (8)

where γi = 1 if we use sum pooling in fθ; γi = 1
ni

if we use mean pooling, with ni as the number of
nodes in the i-th synthetic graph.

We provide the proof of Theorem 1 in Appendix C.1. Theorem 1 suggests that the smallest gap
between the resulted loss (by training on synthetic graphs) and the optimal loss has an upper bound.
This upper bound depends on two terms: (1) the difference of gradients w.r.t. real data and synthetic
data and (2) the norm of input matrices. Thus, the theorem justifies that reducing the gradient
difference w.r.t real and synthetic graphs can help learn desirable synthetic data that preserves
sufficient information to train GNNs well. Based on Theorem 1, we have the following proposition.

4

Proposition 1 Assume the largest gradient gap happens at 0-th epoch, i.e., ∥∇θℓT (θ0) −
∇θℓS (θ0) ∥ = max

t
∥∇θℓT (θt)−∇θℓS (θt) ∥ with t = 0, 1, . . . , T − 1, we have

min
t

ℓT (θt)− ℓT (θ∗) ≤
√
2M∥∇θℓT (θ0)−∇θℓS (θ0) ∥+

3M

2
√
T

C − 1

CN ′

√∑
i

γi∥1⊤A′K
(i)X

′
(i)∥2. (9)

We omit the proof for the proposition since it is straightforward. The above proposition suggests
that the smallest gap between the ℓT (θt) and ℓT (θ

∗) is bounded by the one-step matching loss and
the norm ∥1⊤A′K

(i)X
′
(i)∥

2. As we will show in Section B.1, when using mean pooling, the second
term tend to have a smaller scale than the first one and can be neglected; the second term matters
more when we use sum pooling. Hence, we solely optimize the one-step gradient matching loss for
GNNs with mean pooling and additionally include the second term (the norm of input matrices) as a
regularization for GNNs with sum pooling. As such, when we consider the optimal loss ℓT (θ∗) as
a constant, reducing the one-step matching loss indeed learns synthetic graphs that lead to a small
classification loss on real graphs. This demonstrates the rationality of one-step gradient matching
theoretically.

Remark 1. Note that the spectral analysis from [19] demonstrated that both GCN and SGC share
similar graph filtering behaviors. Thus practically, we extend the one-step gradient matching loss
from K-layer SGC to K-layer GCN and observe that it works well under the non-linear scenario.

Remark 2. While we focus on the graph classification task, it is straightforward to extend our
framework to node classification. We obtain similar conclusions for node classification as shown in
Theorem 2 in Appendix C.2 and achieve impressive empirical performance in Appendix B.2.

2.4 Final Objective and Training Algorithm

In this subsection, we describe the final objective function and the detailed training algorithm. We note
that the objective in Eq. (6) involves two nested expectations, we adopt Monte Carlo to approximately
optimize the objective function. Together with one-step gradient matching, we have

min
Ω,X′

E
θ0

E
α∼Uniform(0,1)

[[
ℓ(A′(Ω),X′, θ0)

]]
≈

K1∑
k1=1

K2∑
k2=1

D
(
∇θℓ

(
fθ0(A

′(Ω),X′),Y ′) ,∇θℓ (fθ0(T),Y)
)

where K1 is the number of sampled model initializations and K2 is the number of sampled graphs.
We find that K2 = 1 is able to yield good performance in our experiments.

Regularization. In addition to the one-step gradient matching loss, we note that the proposed
DosCond can be easily integrated with various priors as regularization terms. In this work, we focus
on exerting sparsity regularization on the adjacency matrix, since a denser adjacency matrix will
lead to higher cost for training graph neural networks. Specifically, we penalize the difference of the
sparsity between σ(Ω) and a given sparsity ϵ:

ℓreg = max(
1

|Ω|
∑
i,j

σ(Ωij)− ϵ, 0). (10)

We initialize σ(Ω) and X′ as randomly sampled training graphs and set ϵ to the average sparsity of
initialized σ(Ω) so as to maintain a low sparsity. On top of that, as we discussed earlier in Section 2.3,
we include the following regularization for GNNs with sum pooling:

ℓreg2 =
3

2
√
2T
· C − 1

CN ′

√∑
i

∥1⊤A′K
(i)X

′
(i)∥2 (11)

Training Algorithm. We provide the details of our proposed framework in Algorithm 1 in Ap-
pendix A.3. Specifically, we sample K1 model initializations θ0 to perform one-step gradient
matching. Following the convention in DC [11], we match gradients and update synthetic graphs
for each class separately in order to make matching easier. For class c, we first retrieve the synthetic
graphs of that class, denoted as (A′

c,X
′
c,Y ′

c) ∼ S, and sample a batch of real graphs (Ac,Xc,Yc).
We then forward them to the graph neural network and calculate the one-step gradient matching loss
together with the regularization term. Afterwards, Ω and X′ are updated via gradient descent. It is
worth noting that the training process for each class can be run in parallel since the graph updates for
one class is independent of another class.

5

Comparison with DC. Recall that the gradient matching scheme in DC involves a complex bi-level
optimization. If we denote the number of inner-iterations as τi and that of outer-iterations as τo,
its computational complexity can be τi × τo of our method. Thus DC is significantly slower than
DosCond. In addition to speeding up condensation, DosCond removes the burden of tuning some
hyper-parameters, i.e., the number of iterations for outer/inner optimization and learning rate for
updating fθ, which can save us enormous training time when learning larger synthetic sets.

Comparison with Coreset Methods. Coreset methods [20, 21] select representative data samples
based on some heuristics calculated on the pre-trained embedding. Thus, it requires training the
model first. Given the cheap cost on calculating and ranking heuristics, the major computational
bottleneck for coreset method is on pre-training the neural network for a certain number of iterations.
Likewise, our proposed DosCond has comparable complexity because it also needs to forward and
backward the neural network for multiple iterations. Thus, their efficiency difference majorly depends
on how many epochs we run for learning synthetic graphs in DosCond and for pre-training the model
embedding in coreset methods. In practice, we find that DosCond even requires less training cost
than the coreset methods as shown in Section 3.2.

3 Experiment
3.1 Experimental settings

Datasets. To evaluate the performance of our method, we use multiple molecular datasets from
Open Graph Benchmark (OGB) [22] and TU Datasets (DD, MUTAG and NCI1) [23] for graph-level
property classification, and one superpixel dataset CIFAR10 [24]. We also introduce a real-world
e-commerce dataset. In particular, we randomly sample 1,109 sub-graphs from a large, anonymized
internal knowledge graph. Each sub-graph is created from the ego network of a random selected
product on the e-commerce website. We form a binary classification problem aiming at predicting
the product category of the central product node in each sub-graph. We use the public splits for OGB
datasets and CIFAR10. For TU Datasets and the e-commerce dataset, we randomly split the graphs
into 80%/10%/10% for training/validation/test. Detailed dataset statistics are shown in Appendix A.2.

Baselines. We compare our proposed methods with four baselines that produce discrete structures:
three coreset methods (Random, Herding [20] and K-Center [25, 21]), and a dataset condensation
method DCG [11]: (a) Random: it randomly picks graphs from the training dataset. (b) Herding: it
selects samples that are closest to the cluster center. Herding is often used in replay-based methods
for continual learning [26, 27]. (c) K-Center: it selects the center samples to minimize the largest
distance between a sample and its nearest center. (d) DCG: As vanilla DC [11] cannot generate
discrete structure, we randomly select graphs from training and apply DC to learn the features
for them, which we term as DCG. We use the implementations provided by DC [11] for Herding,
K-Center and DCG. Note that coreset methods only select existing samples from training while DCG
learns the node features.

Evaluation Protocol. To evaluate the effectiveness of the proposed method, we test the classification
performance of GNNs trained with condensed graphs on the aforementioned graph datasets. Con-
cretely, it involves three stages: (1) learning synthetic graphs, (2) training a GCN on the synthetic
graphs and (3) test the performance of GCN. We first generate the condensed graphs following the
procedure in Algorithm 1. Then we train a GCN classifier with the condensed graphs. Finally we
evaluate its classification performance on the real graphs from test set. For baseline methods, we first
get the selected/condensed graphs and then follow the same procedure. We repeat the generation
process of condensed graphs 5 times with different random seeds and train GCN on these graphs with
10 different random seeds. We report the mean and standard deviation of these results.

3.2 Performance with Condensed Graphs

Classification Performance Comparison. To validate the effectiveness of the proposed framework,
we measure the classification performance of GCN trained on condensed graphs. Specifically, we vary
the number of learned synthetic graphs per class in the range of {1, 10, 50} ({1, 10, 20} for MUTAG
and E-commerce) and train a GCN on these graphs. Then we evaluate the classification performance
of the trained GCN on the original test graphs. Following the convention in OGB [22], we report the
ROC-AUC metric for ogbg-molbace, ogbg-molbbbp and ogbg-molhiv; for other datasets we report
the classification accuracy (%). The results are summarized in Table 1. Note that the Ratio column
presents the ratio of synthetic graphs to original graphs and we name it as condensation ratio; the

6

Table 1: The classification performance comparison. We report the ROC-AUC for the first three
datasets and accuracies (%) for others. Whole Dataset indicates the performance with original dataset.

Graphs/Cls. Ratio Random Herding K-Center DCG DosCond Whole Dataset

ogbg-molbace
(ROC-AUC)

1 0.2% 0.580±0.067 0.548±0.034 0.548±0.034 0.623±0.046 0.657±0.034
0.714±0.00510 1.7% 0.598±0.073 0.639±0.039 0.591±0.056 0.655±0.033 0.674±0.035

50 8.3% 0.632±0.047 0.683±0.022 0.589±0.025 0.652±0.013 0.688±0.012

ogbg-molbbbp
(ROC-AUC)

1 0.1% 0.519±0.016 0.546±0.019 0.546±0.019 0.559±0.044 0.581±0.005
0.646±0.00410 1.2% 0.586±0.040 0.605±0.019 0.530±0.039 0.568±0.032 0.605±0.008

50 6.1% 0.606±0.020 0.617±0.003 0.576±0.019 0.579±0.032 0.620±0.007

ogbg-molhiv
(ROC-AUC)

1 0.01% 0.719±0.009 0.721±0.002 0.721±0.002 0.718±0.013 0.726±0.003
0.757±0.00710 0.06% 0.720±0.011 0.725±0.006 0.713±0.009 0.728±0.002 0.728±0.005

50 0.3% 0.721±0.014 0.725±0.003 0.725±0.006 0.726±0.010 0.731±0.004

DD
(Accuracy)

1 0.2% 57.69±4.92 61.97±1.32 61.97±1.32 58.81±2.90 70.42±2.21
78.92±0.6410 2.1% 64.69±2.55 69.79±2.30 63.46±2.38 61.84±1.44 73.53±1.13

50 10.6% 67.29±1.53 73.95±1.70 67.41±0.92 61.27±1.01 77.04±1.86

MUTAG
(Accuracy)

1 1.3% 67.47±9.74 70.84±7.71 70.84±7.71 75.00±8.16 82.21±1.61
88.63±1.4410 13.3% 77.89±7.55 80.42±1.89 81.00±2.51 82.66±0.68 82.76±2.31

20 26.7% 78.21±5.13 80.00±1.10 82.97±4.91 82.89±1.03 83.26±2.34

NCI1
(Accuracy)

1 0.1% 51.27±1.22 53.98±0.67 53.98±0.67 51.14±1.08 56.58±0.48
71.70±0.2010 0.6% 54.33±3.14 57.11±0.56 53.21±1.44 51.86±0.81 58.02±1.05

50 3.0% 58.51±1.73 58.94±0.83 56.58±3.08 52.17±1.90 60.07±1.58

CIFAR10
(Accuracy)

1 0.06% 15.61±0.52 22.38±0.49 22.37±0.50 21.60±0.42 24.70±0.70
50.75±0.1410 0.2% 23.07±0.76 28.81±0.35 20.93±0.62 29.27±0.77 30.70±0.23

50 1.1% 30.56±0.81 33.94±0.37 24.17±0.51 34.47±0.52 35.34±0.14

E-commerce
(Accuracy)

1 0.2% 51.31±2.89 52.18±0.25 52.36±0.38 57.14±1.72 60.82±1.23
69.25±0.5010 0.9% 54.99±2.74 56.83±0.87 56.49±0.36 61.03±1.32 64.73±1.34

20 3.6% 57.80±3.58 62.56±0.71 62.76±0.45 64.92±1.35 67.71±1.22

Whole Dataset column shows the GCN performance achieved by training on the original dataset.
From the table, we make four observations:

(a) The proposed DosCond consistently achieves better performance than the baseline methods under
different condensation ratios and different datasets. Notably, when generating only 2 graphs
on ogbg-molbace dataset (0.2%), we achieve an ROC-AUC of 0.657 while the performance on
full training set is 0.714, which means we approximate 92% of the original performance with
only 0.2% data. Likewise, we are able to approximate 96.5% of the original performance on
ogbg-molhiv with 0.3% data. By contrast, baselines underperform our method by a large margin.
Similar observations can be made on other datasets, which demonstrates the effectiveness of
learned synthetic graphs in preserving the information of the original dataset.

(b) Increasing the number of synthetic graphs can improve the classification performance. For
example, we can approximate the original performance by 89%/93%/98% with 0.2%/2.1%/10.6%
data on DD. More synthetic samples indicate more learnable parameters that can preserve the
information residing in the original dataset and present more diverse patterns that can help train
GNNs better. This observation is in line with our experimental results in Section 3.3.

(c) The performance on CIFAR10 is less promising due to the limit number of synthetic graphs.
We posit that the dataset has more complex topology and feature information and thus requires
more parameters to preserve sufficient information. However, we note that our method still
outperforms the baseline methods especially when producing only 1 sample per class, which
suggests that our method is much more data-efficient. Moreover, we are able to promote the
performance on CIFAR10 by learning a larger synthetic set as shown in Section 3.3.

(d) Learning both synthetic graph structure and node features is necessary for preserving the infor-
mation in original graph datasets. By checking the performance DCG, which only learns node
features based on randomly selected graph structure, we see that DCG underperforms DosCond
by a large margin in most cases. This indicates that learning node features solely is sub-optimal.

Efficiency Comparison. Since one of our goals is to enable scalable dataset condensation, we now
evaluate the efficiency of DosCond. We compare DosCond with the coreset method Herding, as it
is less time-consuming than DCG and generally achieves better performance than other baselines.
We adopt the same setting as in Table 1: 1000 iterations for DosCond, i.e., K1 = 1000, and 500
epochs (100 epochs for ogbg-molhiv) for pre-training the graph convolutional network as required by
Herding. We also note that pre-training the neural network need to go over the whole dataset at every

7

Table 2: Comparison of running time (minutes).
CIFAR10 ogbg-molhiv DD

G./Cls. Herding DosCond Herding DosCond Herding DosCond
1 44.5m 4.7m 4.3m 0.66m 1.6m 1.5m
10 44.5m 4.9m 4.3m 0.67m 1.6m 1.5m
50 44.5m 5.7m 4.3m 0.68m 1.6m 2.0m

1 10 50 100 200 300
Number of Samples Per Class

15

20

25

30

35

40

45

Ab
so

lu
te

 A
cc

ur
ac

y
(%

) DosCond
Random

30

40

50

60

70

80

Re
la

tiv
e

Ac
cu

ra
cy

 (%
)

(a) Larger synthetic set.

0 0.5 1 5 10 25 50 75 100
Training Time (min)

28
29
30
31
32
33
34
35
36
37

Ac
cu

ra
cy

 (%
)

DosCond
DosCond-Bi

(b) One-Step v.s. bi-Level

0 0.001 0.01 0.1 1 10
0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

/S
pa

ris
ity

 (%
)

Acc
Sparsity

(c) Varying β on DD

0 0.001 0.01 0.1 1 10
0

10

20

30

40

50

60

Ac
cu

ra
cy

/S
pa

ris
ity

 (%
)

Acc
Sparsity

(d) Varying β on NCI1
Figure 1: Algorithm analysis and parameter analysis w.r.t. the sparsity regularization.

epoch while DosCond only processes a batch of graphs. In Table 2, we report the running time on an
NVIDIA V100 GPU for CIFAR10, ogbg-molhiv and DD. We make three observations:

(a) DosCond can be faster than Herding. In fact, DosCond requires less training time in all the cases
except in DD with 50 graphs per class. Herding needs to fully train the model on the whole
dataset to obtain good-quality embedding, which can be quite time-consuming. On the contrary,
DosCond only requires matching gradients for K1 initializations and does not need to fully train
the model on the large real dataset.

(b) The running time of DosCond increases with the increase of the number of synthetic graphs
N ′. It is because DosCond processes the condensed graphs at each iteration, of which the time
complexity is O(N ′L(n2d+nd2)) for an L-layer GCN. Thus, the additional complexity depends
on N ′. By contrast, the increase of N ′ has little impact on Herding since the process of selecting
samples based on pre-defined heuristic is very fast.

(c) The average nodes in synthetic graph n also impacts the training cost of DosCond. For instance,
the training cost on ogbg-molhiv (n=26) is much lower than that on DD (n=285), and the gap of
cost between the two methods on ogbg-molhiv and DD is very different. As mentioned earlier,
it is because the complexity of the forward process in GCN is O(N ′L(n2d + nd2)) for N ′

condensed graphs with node size of n.

3.3 Further Investigation
Increasing the Number of Synthetic Graphs. We study whether the classification performance
can be further boosted when using larger synthetic size. Concretely, we vary the size of the learned
graphs from 1 to 300 and report the results of absolute and relative accuracy w.r.t. whole dataset
training accuracy for CIFAR10 in Figure 1a. It is clear to see that both Random and DosCond achieve
better performance when we increase the number of samples used for training. Moreover, our method
outperforms the random baseline under different condensed dataset sizes. Note that the performance
gap between the two methods diminishes with the increase of the number of samples. This is because
the random baseline will finally approach the whole dataset training if we continue to enlarge the size
of the condensed set, in which the performance can be viewed as the upper bound of DosCond.

Ablation Study. We perform ablation study on the proposed one-step gradient matching and
regularization terms. We create an ablation of our method, namely DosCond-Bi, which adopts the
vanilla gradient matching scheme that involves a bi-level optimization. Without loss of generality, we
compare the training time and classification accuracy of DosCond and DosCond-Bi in the setting
of learning 50 graphs/class synthetic graphs on CIFAR10 dataset. The results are summarized in
Figure 1b and we can see that DosCond needs approximately 5 minutes to reach the performance of
DosCond-Bi trained for 75 minutes, which indicates that DosCond only requires 6.7% training cost.
It further demonstrates the efficiency of the proposed one-step gradient matching strategy.

Next we study the effect of sparsity regularization on DosCond. Specifically, we vary the sparsity
coefficient β in the range of {0, 0.001, 0.01, 0.1, 1, 10} and report the classification accuracy and
graph sparsity on DD and NCI datasets in Figure 1c and 1d. As shown in the figure, when β gets
larger, we exert a stronger regularization on the learned graphs and the graphs become more sparse.
Furthermore, the increased sparsity does not affect the classification performance. This is a desired

8

class 0
class 1

(a) Random

class 0
class 1

(b) DCG

class 0
class 1

(c) DosCond

class 0
class 1

(d) Whole Dataset
Figure 2: T-SNE visualizations of embedding learned with condensed graphs on DD.

property since sparse graphs can save much space for storage and reduce training cost for GNNs.
We also remove the regularization of Eq. (11) for ogbg-molhiv, we obtain the performance of 0.724/
0.727/0.731 for 1/10/50 graphs per class, slightly worse than the one with this regularization.

Visualization. We further investigate whether GCN can learn discriminative representations from
the synthetic graphs learned by DosCond. Specifically, we use t-SNE [28] to visualize the learned
graph representation from GCN trained on different condensed graphs. We train a GCN on graphs
produced by different methods and use it to extract the latent representation for real graphs from
test set. Without loss of generality, we provide the t-SNE plots on DD dataset with 50 graphs per
class in Figure 2. It is observed that the graph representations learned with randomly selected graphs
are mixed for different classes. Similarly, DCG graphs also resulted in poorly trained GCN that
outputs indistinguishable graph representations. By contrast, the representations are well separated
for different classes when learned with DosCond graphs (Figure 2c) and they are as discriminative as
those learned on the whole dataset (Figure 2d). This demonstrates that the graphs learned by DosCond
preserve sufficient information of the original dataset so as to recover the original performance.

4 Related Work
Graph Neural Networks. As the generalization of deep neural network to graph data, graph neural
networks (GNNs) [4, 29, 5, 7, 19, 30, 31, 32, 33] have revolutionized the field of graph representation
learning through effectively exploiting graph structural information. GNNs have achieved remarkable
performances in basic graph-related tasks such as graph classification [34, 35], link prediction [3] and
node classification [4]. Recent years have also witnessed their great success achieved in many real-
world applications such as recommender systems [3, 36], computer vision [37], drug discovery [38]
and single-cell analysis [39]. GNNs take both adjacency matrix and node feature matrix as input
and output node-level representations or graph-level representations. Essentially, they follow a
message-passing scheme [40] where each node first aggregates the information from its neighborhood
and then transforms the aggregated information to update its representation.

Dataset Distillation & Dataset Condensation. It is widely received that training neural networks
on large datasets can be prohibitively costly. To alleviate this issue, dataset distillation (DD) [10]
aims to distill knowledge of a large training dataset into a small number of synthetic samples. DD
formulates the distillation process as a learning-to-learning problem and solves it through bi-level
optimization. To improve the efficiency of DD, dataset condensation (DC) [11, 12] is proposed to
learn the small synthetic dataset by matching the gradients of the network parameters w.r.t. large-
real and small-synthetic training data. It has been demonstrated that these condensed samples can
facilitate critical applications such as continual learning [11, 12, 41, 42, 43], neural architecture
search [13, 14, 44] and privacy-preserving scenarios [45]. Recently, following the gradient matching
scheme in DC, GCond [46] proposes to condense a large-scale graph to a small graph for node
classification. Different from GCond, we aim to solve the challenge of learning discrete structure and
we majorly target at graph classification. Our method avoids the costly bi-level optimization and is
much more efficient than the previous work. A detailed comparison is included in Appendix B.2.

5 Conclusion
Training graph neural networks on a large-scale graph dataset consumes high computational cost. One
solution to alleviate this issue is to condense the large graph dataset into a small synthetic dataset. In
this work, we propose a novel framework DosCond that adopts a one-step gradient matching strategy
to efficiently condenses real graphs into a small number of informative graphs with discrete structures.
We further justify the proposed method from both theoretical and empirical perspectives. Notably,
our experiments show that we are able to reduce the dataset size by 90% while approximating up
to 98% of the original performance. In the future, we plan to investigate interpretable condensation
methods and diverse applications of the condensed graphs.

9

References
[1] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure

Leskovec. Hierarchical graph representation learning with differentiable pooling. In NeurIPS,
2018.

[2] Daixin Wang, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming Fang, Quan Yu, Jun
Zhou, Shuang Yang, and Yuan Qi. A semi-supervised graph attentive network for financial
fraud detection. In ICDM, 2019.

[3] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Yihong Eric Zhao, Jiliang Tang, and Dawei Yin. Graph
neural networks for social recommendation. In WWW, 2019.

[4] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[5] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

[6] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zam-
baldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner,
et al. Relational inductive biases, deep learning, and graph networks. ArXiv preprint, 2018.

[7] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. ArXiv preprint, 2019.

[8] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture search.
In ICLR, 2019.

[9] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935–2947, 2017.

[10] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation.
ArXiv preprint, 2018.

[11] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching.
In ICLR, 2021.

[12] Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In
ICML, Proceedings of Machine Learning Research, 2021.

[13] Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-learning from kernel
ridge-regression. In ICLR, 2021.

[14] Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with
infinitely wide convolutional networks. NeurIPS, 34, 2021.

[15] George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu.
Dataset distillation by matching training trajectories. In CVPR, 2022.

[16] Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan
Bilen, Xinchao Wang, and Yang You. Cafe: Learning to condense dataset by aligning features.
In CVPR, 2022.

[17] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

[18] Abubakar Abid, Muhammad Fatih Balin, and James Zou. Concrete autoencoders for differen-
tiable feature selection and reconstruction. arXiv preprint arXiv:1901.09346, 2019.

[19] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Wein-
berger. Simplifying graph convolutional networks. In ICML, 2019.

[20] Max Welling. Herding dynamical weights to learn. In ICML, 2009.

10

[21] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In ICLR, 2018.

[22] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
In NeurIPS, 2020.

[23] Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv
preprint arXiv:2007.08663, 2020.

[24] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

[25] Reza Zanjirani Farahani and Masoud Hekmatfar. Facility location: concepts, models, algorithms
and case studies. 2009.

[26] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. icarl:
Incremental classifier and representation learning. In CVPR, 2017.

[27] Francisco M Castro, Manuel J Marín-Jiménez, Nicolás Guil, Cordelia Schmid, and Karteek
Alahari. End-to-end incremental learning. In ECCV, 2018.

[28] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, (11), 2008.

[29] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In ICLR 2019, 2019.

[30] Xianfeng Tang, Yandong Li, Yiwei Sun, Huaxiu Yao, Prasenjit Mitra, and Suhang Wang.
Transferring robustness for graph neural network against poisoning attacks. In WSDM, 2020.

[31] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. In KDD, 2020.

[32] Meng Liu, Youzhi Luo, Kanji Uchino, Koji Maruhashi, and Shuiwang Ji. Generating 3d
molecules for target protein binding. In ICML, 2022.

[33] Yu Wang, Yuying Zhao, Yushun Dong, Huiyuan Chen, Jundong Li, and Tyler Derr. Improving
fairness in graph neural networks via mitigating sensitive attribute leakage. In KDD, 2022.

[34] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

[35] Zhichun Guo, Chuxu Zhang, Wenhao Yu, John Herr, Olaf Wiest, Meng Jiang, and Nitesh V
Chawla. Few-shot graph learning for molecular property prediction. In Proceedings of the Web
Conference 2021, pages 2559–2567, 2021.

[36] Wenqi Fan, Xiaorui Liu, Wei Jin, Xiangyu Zhao, Jiliang Tang, and Qing Li. Graph trend
filtering networks for recommendation. In Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 112–121, 2022.

[37] Guohao Li, Matthias Müller, Ali K. Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as
deep as cnns? In ICCV, 2019.

[38] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli,
Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. Convolutional networks on graphs
for learning molecular fingerprints. In NeurIPS, 2015.

[39] Hongzhi Wen, Jiayuan Ding, Wei Jin, Yiqi Wang, Yuying Xie, and Jiliang Tang. Graph neural
networks for multimodal single-cell data integration. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 4153–4163, 2022.

[40] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In ICML, 2017.

11

[41] Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun Jeong,
Jung-Woo Ha, and Hyun Oh Song. Dataset condensation via efficient synthetic-data parameteri-
zation. arXiv:2205.14959, 2022.

[42] Saehyung Lee, Sanghyuk Chun, Sangwon Jung, Sangdoo Yun, and Sungroh Yoon. Dataset
condensation with contrastive signals. In ICML, 2022.

[43] Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. arXiv preprint
arXiv:2110.04181, 2021.

[44] Shuo Yang, Zeke Xie, Hanyu Peng, Min Xu, Mingming Sun, and Ping Li. Dataset pruning:
Reducing training data by examining generalization influence. arXiv preprint arXiv:2205.09329,
2022.

[45] Tian Dong, Bo Zhao, and Lingjuan Lyu. Privacy for free: How does dataset condensation help
privacy? In ICML, 2022.

[46] Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph
condensation for graph neural networks. In ICLR 2022, 2022.

[47] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna.
Graphsaint: Graph sampling based inductive learning method. In ICLR, 2020.

[48] Krishnateja Killamsetty, Durga S, Ganesh Ramakrishnan, Abir De, and Rishabh Iyer. Grad-
match: Gradient matching based data subset selection for efficient deep model training. In
ICML. PMLR, 2021.

[49] Jeremy Watt, Reza Borhani, and Aggelos K Katsaggelos. Machine learning refined: Founda-
tions, algorithms, and applications. Cambridge University Press, 2020.

[50] Rahul Yedida, Snehanshu Saha, and Tejas Prashanth. Lipschitzlr: Using theoretically computed
adaptive learning rates for fast convergence. Applied Intelligence, 51(3):1460–1478, 2021.

12

A Experimental Setup

A.1 Parameter Settings.

When learning the synthetic graphs, we adopt 3-layer GCN with 128 hidden units as the model for
gradient matching. The learning rates for structure and feature parameters are set to 1.0 (0.01 for
ogbg-molbace and CIFAR10) and 0.01, respectively. We set K1 to 1000 and β to 0.1. Additionally,
we use mean pooling to obtain graph representation for all datasets except ogbg-molhiv. We use sum
pooling for ogbg-molhiv as it achieves better classification performance on the real dataset. During
the test stage, we use GCN with the same architecture and we train the model for 500 epochs (100
epochs for ogbg-molhiv) with an initial learning rate of 0.001.

A.2 Dataset Statistics

Dataset statistics for node classification and graph classification are shown in Table 3 and 4, respec-
tively.

Table 3: Graph classification dataset statistics.
Dataset Type #Clases #Graphs Avg. Nodes Avg. Edges

CIFAR10 Superpixel 10 60,000 117.6 941.07
ogbg-molhiv Molecule 2 41,127 25.5 54.9
ogbg-molbace Molecule 2 1,513 34.1 36.9
ogbg-molbbbp Molecule 2 2,039 24.1 26.0
MUTAG Molecule 2 188 17.93 19.79
NCI1 Molecule 2 4,110 29.87 32.30
DD Molecule 2 1,178 284.32 715.66
E-commerce Transaction 2 1,109 33.7 56.3

Table 4: Node classification dataset statistics.
Dataset #Nodes #Edges #Classes #Features

Cora 2,708 5,429 7 1,433
Citeseer 3,327 4,732 6 3,703
Pubmed 19,717 44,338 3 500
Arxiv 169,343 1,166,243 40 128
Flickr 89,250 899,756 7 500

A.3 Algorithm

We provide the details of our proposed framework in Algorithm 1. Specifically, we sample K1 model
initializations θ0 to perform one-step gradient matching. Following the convention in DC [11], we
match gradients and update synthetic graphs for each class separately in order to make matching
easier. For class c, we first retrieve the synthetic graphs of that class, denoted as (A′

c,X
′
c,Y ′

c) ∼ S,
and sample a batch of real graphs (Ac,Xc,Yc). We then forward them to the graph neural network
and calculate the one-step gradient matching loss together with the regularization term. Afterwards,
Ω and X′ are updated via gradient descent. It is worth noting that the training process for each class
can be run in parallel since the graph updates for one class is independent of another class.

B More Experiments

B.1 Scale of the two terms in Eq. (9).

As mentioned earlier in Section 2.3, the scale of the first term is essentially larger than the second
term in Eq. (9). We now perform empirical study to verify this statement. Since both terms contain
the factor M , we simply drop it and focus on studying ℓ1 =

√
2∥∇θℓT (θ0) − ∇θℓS (θ0) ∥ and

13

Algorithm 1: DosCond for Condensing Graphs
1: Input: Training data T = (A,X,Y)
2: Required: Pre-defined condensed labels Y ′, graph neural network fθ, temperature τ , desired

sparsity ϵ, regularization coefficient β, learning rates η1, η2, number of epochs K1.
3: Initialize Ω,X′

4: for k = 0, . . . ,K1 − 1 do
5: Sample θ0 ∼ Pθ0
6: Sample α ∼ Uniform(0, 1)
7: Compute A′ = σ ((logα− log(1− α) +Ω) /τ)
8: for c = 0, . . . , C − 1 do
9: Sample (Ac,Xc,Yc) ∼ T and (A′

c,X
′
c,Y ′

c) ∼ S
10: Compute ℓT = ℓ (fθ0(Ac,Xc),Yc)
11: Compute ℓS = ℓ (fθ0(A

′
c,X

′
c),Y ′

c)
12: Compute ℓreg = max(

∑
i,j σ(Ωij)− ϵ, 0)

13: Update Ω← Ω− η1∇Ω(D(∇θ0ℓT ,∇θ0ℓS) + βℓreg)
14: Update X′ ← X′ − η2∇X′(D(∇θ0ℓT ,∇θ0ℓS) + βℓreg)
15: end for
16: end for
17: Return: (Ω,X′,Y ′)

ℓ2 = 3
2
√
T
· C−1
CN ′

√∑
i γi∥1⊤A′K

(i)X
′
(i)∥2. Specifically, we set T to 500 and N ′ to 50, and plot the

changes of these two terms during the training process of DosCond. The results on DD (with mean
pooling) and ogbg-molhiv (with sum pooling) are shown in Figure 3. We can observe that the scale
of ℓ1 is much larger than ℓ2 at the first few epochs when using mean pooling as shown in Figure 3a.
By contrast, ℓ2 is not negligible when using sum pooling as shown in Figure 3b and it is desired to
include it as a regularization term in this case. These observations provide support for ours discussion
of theoretical analysis in Section 2.3.

0 200 400 600 800 1000
Epoch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Lo
ss

 V
al

ue

1
2

(a) DD

0 200 400 600 800 1000
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

 V
al

ue

1
2

(b) ogbg-molhiv

Figure 3: Scale of the two terms in Eq. (11).

B.2 Node Classification

Next, we investigate whether the proposed method works well in node classification so as to support
our analysis in Theorem 2 in Appendix C.2. Specifically, following GCond [46], a condensation
method for node classification, we use 5 node classification datasets: Cora, Citeseer, Pubmed [4],
ogbn-arxiv [22] and Flickr [47]. The dataset statistics are shown in 4. We follow the settings in
GCond to generate one condensed graph for each dataset, train a GCN on the condensed graph,
and evaluate its classification performance on the original test nodes. To adopt DosCond into node
classification, we replace the bi-level gradient matching scheme in GCond with our proposed one-step
gradient matching. The results of classification accuracy and running time per epoch are summarized
in Table 5. From the table, we make the following observations:

(a) The proposed DosCond achieves similar performance as GCond and the performance is also
comparable to the original dataset. For example, we are able to approximate the original training

14

Table 5: Node classification accuracy (%) comparison. The numbers in parentheses indicate the
running time for 100 epochs and r indicates the ratio of number of nodes in the condensed graph to
that in the original graph.

Cora, r=2.6% Citeseer, r=1.8% Pubmed, r=0.3% Arxiv, r=0.25% Flickr, r=0.1%

GCond 80.1 (75.9s) 70.6 (71.8s) 77.9 (51.7s) 59.2 (494.3s) 46.5 (51.9s)
DosCond 80.0 (3.5s) 71.0 (2.8s) 76.0 (1.3s) 59.0 (32.9s) 46.1 (14.3s)

Whole Dataset 81.5 71.7 79.3 71.4 47.2

performance by 99% with only 2.6% data on Cora. It demonstrates the effectiveness of DosCond
in the node classification case and justifies Theorem 2 from an empirical perspective.

(b) The training cost of DosCond is essentially lower than GCond as DosCond avoids the expensive
bi-level optimization. By examining their running time, we can see that DosCond is up to 40
times faster than GCond.

We further note that GCond produces weighted graphs which require storing the edge weights in
float formats, while DosCond outputs discrete graph structure which can be stored as binary values.
Hence, the graphs learned by DosCond are more memory-efficient.

C Proofs

C.1 Proof of Theorem 1

Let A(i), X(i) denote the adjacency matrix and the feature matrix of i-th real graph, respectively. We
denote the cross entropy loss on the real samples as ℓT (θ) =

∑
i ℓi(A(i), X(i), θ) and denote that on

synthetic samples as ℓS(θ) = ℓS(A
′
(i),X

′
(i), θ). Let θ∗ denote the optimal parameter and let θt be the

parameter trained on condensed data at t-th epoch by optimizing ℓS(θ). For simplicity of notations,
we assume A and A′ are already normalized. Part of the proof is inspired from the work [48].

Theorem 1 When we use a linearized K-layer SGC as the GNN used in condensation, i.e.,
fθ(A(i),X(i)) = Pool(AK

(i)X(i)W1)W2 with θ = [W1;W2] and assume that all network pa-
rameters satisfy ∥θ∥2 ≤M2(M > 0), we have

min
t=0,1,...,T−1

ℓT (θt)− ℓT (θ∗) ≤
T−1∑
t=0

√
2M

T
∥∇θℓT (θt)−∇θℓS (θt) ∥

+
3M

2
√
T
· C − 1

CN ′

√∑
i

γi∥1⊤A′K
(i)X

′
(i)∥2 (12)

where γi = 1 if we use sum pooling in fθ; γi = 1
ni

if we use mean pooling, with ni being the number
of nodes in i-th synthetic graph.

We start by proving that ℓT (θ) is convex and ℓS(θ) is lipschitz continuous when we use
fθ(A(i),X(i)) = Pool(AK

(i)X(i)W1)W2 as the mapping function. Before proving these two proper-
ties, we first rewrite fθ(A(i),X(i)) as:

fθ(A(i),X(i)) =

{
1⊤AK

(i)X(i)W1W2 if use sum pooling,
1
ni
1⊤AK

(i)X(i)W1W2 if use mean pooling,
(13)

where n is the number of nodes in A(i) and 1 is an ni × 1 matrix filled with constant one. From
the above equation we can see that fθ with different pooling methods only differ in a multiplication
factor 1

ni
. Thus, in the following we focus on fθ with sum pooling to derive the major proof.

I. For fθ with sum pooling:

Substitute W for W1W2 and we have fθ(A(i),X(i)) = 1⊤AK
(i)X(i)W for the case with sum

pooling. Next we show that ℓT (θ) is convex and ℓS(θ) is lipschitz continuous when we use
fθ(A(i),X(i)) = 1⊤AK

(i)X(i)W with θ = W.

15

(a) Convexity of ℓT (θ). From chapter 4 of the book [49], we know that softmax classification
f(W) = XW with cross entropy loss is convex w.r.t. the parameters W. In our case, the mapping
function fθ(A(i),X(i)) = 1⊤AK

(i)X(i)W applies an affine function on XW. Given that applying
affine function does not change the convexity, we know that ℓT (θ) is convex.

(b) Lipschitz continuity of ℓS(θ). In [50], it shows that the lipschitz constant of softmax regression
with cross entropy loss is C−1

Cm ∥X∥, where X is the input feature matrix, C is the number of classes
and m is the number of samples. Since ℓS(θ) is cross entropy loss and fθ is linear, we know that the
fθ is lipschitz continuous and it satisfies:

∇θℓS(θ) ≤
C − 1

CN ′

√∑
i

∥1⊤A′K
(i)X

′
(i)∥2 (14)

With (a) and (b), we are able to proceed our proof. First, from the convexity of ℓT (θ) we have

ℓT (θt)− ℓT (θ∗) ≤ ∇θℓT (θt)
T
(θt − θ∗) (15)

We can rewrite∇θℓT (θt)
T
(θt − θ∗) as follows:

∇θℓT (θt)
T (θt − θ∗) = (∇θℓT (θt)

T −∇θℓS (θt)
T +∇θℓS (θt)

T) (θt − θ∗)

= (∇θℓT (θt)
T −∇θℓS (θt)

T) (θt − θ∗) +∇θℓS (θt)
T (θt − θ∗) (16)

Given that we use gradient descent to update network parameters, we have∇θℓS (θt) =
1
η (θt − θt+1)

where η is the learning rate. Then we have,

∇θℓS (θt)
T
(θt − θ∗) =

1

η
(θt − θt+1)

T
(θt − θ∗)

=
1

2η

(
∥θt − θt+1∥2 + ∥θt − θ∗∥2 − ∥θt+1 − θ∗∥2

)
=

1

2η

(
∥η∇θℓS (θt)∥2 + ∥θt − θ∗∥2 − ∥θt+1 − θ∗∥2

)
(17)

Combining Eq. (15) and Eq. (17) we have,
ℓT (θt)−ℓT (θ∗) ≤ (∇θℓT (θt)

T −∇θℓS (θt)
T) (θt − θ∗)

+
1

2η

(
∥η∇θℓS (θt)∥2 + ∥θt − θ∗∥2 − ∥θt+1 − θ∗∥2

)
(18)

We sum up the two sides of the above inequality for different values of t ∈ [0, T − 1]:
T−1∑
t=0

ℓT (θt)− ℓT (θ∗) ≤
T−1∑
t=0

(∇θℓT (θt)
T −∇θℓS (θt)

T
) (θt − θ∗)

+
1

2η

T−1∑
t=0

∥η∇θℓS (θt)∥2 +
1

2η
∥θ0 − θ∗∥2 − 1

2η
∥θT − θ∗∥2 (19)

Since 1
2η ∥θT − θ∗∥2 ≥ 0, we have

T−1∑
t=0

ℓT (θt)−ℓT (θ∗) ≤
T−1∑
t=0

(∇θℓT (θt)
T −∇θℓS (θt)

T
) (θt − θ∗)

+
1

2η

T−1∑
t=0

∥η∇θℓS (θt)∥2 +
1

2η
∥θ0 − θ∗∥2 (20)

As we assume that ∥θ∥2 ≤M2, we have ∥θ−θ∗∥2 ≤ 2∥θ∥2 = 2M2. Then Eq. (20) can be rewritten
as,

T−1∑
t=0

ℓT (θt)− ℓT (θ∗) ≤
T−1∑
t=0

√
2M∥∇θℓT (θt)−∇θℓS (θt) ∥

+
1

2η

T−1∑
t=0

∥η∇θℓS (θt)∥2 +
M2

η
(21)

16

Recall that ℓS(θ) is lipschitz continuous as shown in Eq. (14), and combine

min
t=0,1,...,T−1

(ℓT (θt)− ℓT (θ∗)) ≤
∑T−1

t=0 ℓT (θt)−ℓT (θ∗)
T :

min
t=0,1,...,T−1

ℓT (θt)−ℓT (θ∗) ≤
T−1∑
t=0

√
2M

T
∥∇θℓT (θt)−∇θℓS (θt) ∥

+
η(C − 1)2

2C2N ′2

∑
i

∥1⊤A′K
(i)X

′
(i)∥

2 +
M2

Tη
(22)

Then we choose η = M√
T
√∑

i ∥1⊤A′K
(i)

X′
(i)

∥2
and we can get:

min
t=0,1,...,T−1

ℓT (θt)−ℓT (θ∗) ≤
T−1∑
t=0

√
2M

T
∥∇θℓT (θt)−∇θℓS (θt) ∥

+
3M

2
√
T
· C − 1

CN ′

√∑
i

∥1⊤A′K
(i)X

′
(i)∥2 (23)

II. For fθ with mean pooling:

Following similar derivation as in the case of sum pooling, we have

min
t=0,1,...,T−1

ℓT (θt)−ℓT (θ∗) ≤
T−1∑
t=0

√
2M

T
∥∇θℓT (θt)−∇θℓS (θt) ∥

+
3M

2
√
T
· C − 1

CN ′

√∑
i

1

ni
∥1⊤A′K

(i)X
′
(i)∥2 (24)

where ni is the number of nodes in i-th synthetic graph.

C.2 Theorem for Node Classification Case

We adopt similar notations for representing the data in node classification but note that there is only
one graph for node classification task. Let A ∈ {0, 1}N×N , A′ ∈ {0, 1}N ′×N ′

denote the adjacency
matrix for real graph and synthetic graph, respectively. Let X ∈ RN×d, X′ ∈ RN ′×d denote the
feature matrix for real graph and synthetic graph, respectively. We denote the cross entropy loss on
the real samples as ℓT (θ) and denote that on synthetic samples as ℓS(θ).

Theorem 2 When we use a K-layer SGC as the model used in condensation, i.e., fθ(A,X, θ) =
AKXW with θ = W and assume that all network parameters satisfy ∥θ∥2 ≤ M2(M > 0), we
have

min
t=0,1,...,T−1

ℓT (θt)−ℓT (θ∗) ≤
T−1∑
t=0

√
2M

T
∥∇θℓT (θt)−∇θℓS (θt) ∥

+
3M

2
√
T
· C − 1

CN ′ ∥A
′KX′∥ (25)

We start by proving that ℓT (θ) is convex and ℓS(θ) is lipschitz continuous when fθ(A,X, θ) =
AKXW.

(a) Convexity of ℓT (θ): Similar to the graph classification case, the Hessian matrix of ℓT (θ) in node
classification is positive semidefinite and thus ℓT (θ) is convex.

(b) Lipschitz continuity of ℓS(θ): As shown in [50], the lipschitz constant of softmax regression
with cross entropy loss is C−1

Cm ∥X∥ with C being the number of classes and m being the number
of samples. Thus, we know that the lipschitz constant of ℓS(θ) is C−1

CN ′ ∥A′KX′∥, which indicates
∇θℓS(θ) ≤ C−1

CN ′ ∥A′KX′∥.

17

From the convexity of ℓT (θ), we still have the following inequality (see Eq. (21)). Then
recall that ℓS(θ) is lipschitz continuous and ∇θℓS(θ) ≤ C−1

CN ′ ∥A′KX′∥, and combine

min
t

(ℓT (θt)− ℓT (θ∗)) ≤
∑T−1

t=0 ℓT (θt)−ℓT (θ∗)
T :

min
t=0,1,...,T−1

ℓT (θt)− ℓT (θ∗) ≤
T−1∑
t=0

√
2M

T
∥∇θℓT (θt)−∇θℓS (θt) ∥

+
η(C − 1)2

2C2N ′2 ∥A′KX′∥2 + M2

Tη
(26)

Then we choose η = M√
T∥A′KX′∥ and we can get:

min
t=0,1,...,T−1

ℓT (θt)− ℓT (θ∗) ≤
T−1∑
t=0

√
2M

T
∥∇θℓT (θt)−∇θℓS (θt) ∥

+
3M

2
√
T

· C − 1

CN ′ ∥A
′KX′∥ (27)

18

	Introduction
	The Proposed Framework
	Gradient Matching as the Objective
	Learning Discrete Graph Structure
	One-Step Gradient Matching
	Final Objective and Training Algorithm

	Experiment
	Experimental settings
	Performance with Condensed Graphs
	Further Investigation

	Related Work
	Conclusion
	Experimental Setup
	Parameter Settings.
	Dataset Statistics
	Algorithm

	More Experiments
	Scale of the two terms in Eq. (9).
	Node Classification

	Proofs
	Proof of Theorem 1
	Theorem for Node Classification Case

