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Abstract

Distinguished from unsupervised domain adaptation (UDA), semi-supervised domain adap-
tation (SSDA) could access a few labeled target samples during learning additionally. Al-
though achieving remarkable progress, target supervised information is easily overwhelmed
by massive source supervised information, as there are many more labeled source samples
than those in the target domain. In this work, we propose a novel method BVCR that
better utilizes the supervised information by three schemes, i.e., modeling, exploration, and
interaction. In the modeling scheme, BVCR models the source supervision and target su-
pervision separately to avoid target supervised information being overwhelmed by source
supervised information and better utilize the target supervision. Besides, as both supervised
information naturally offer distinct views for the target domain, the exploration scheme per-
forms consistency regularization within each domain to better explore target information
with bidirectional views. Moreover, as both views are complementary to each other, the
interaction scheme performs consistency regularization across domains to exchange comple-
mentary information for better learning. The proposed method is elegantly symmetrical by
design and easy to implement. Extensive experiments are conducted, and the results show
the effectiveness of the proposed method.

∗Corresponding author.
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1 Introduction

Deep neural networks have achieved remarkable progress in many fields when the train and the test samples
are drawn from the same distributions Krizhevsky et al. (2012); He et al. (2016). However, existing deep
learning methods need many labeled samples to train the model while annotating the samples is difficult
and time-costing in some situations Chen et al. (2019). Besides, the model usually suffers from performance
degradation when applying a trained model to a different environment because of domain shift Donahue et al.
(2014); Pan & Yang (2010). To solve such a challenge, unsupervised domain adaptation (UDA) has been
proposed to address this distribution mismatch by transferring knowledge from the labeled source domain to
the fully unlabeled target domain. UDA methods obtain a model that generalizes well on the target domain
with no labeled examples from the target domain Pan & Yang (2010); Long et al. (2015).

Recently, Semi-Supervised Domain Adaptation (SSDA) Saito et al. (2019); Jiang et al. (2020) has attracted a
lot of attention due to its remarkable performance compared with Unsupervised Domain Adaptation (UDA)
Pan & Yang (2010); Long et al. (2015). As few labeled samples of the target domain are available in SSDA
and these labeled samples could effectively boost the performance by offering more supervised information.

To better utilize labeled target samples and avoid the learned model being biased towards the source domain,
a line of methods learn invariant features to reduce inter-domain discrepancy via minimax entropy Saito et al.
(2019), joint representations and risks alignment Li et al. (2021a), and bidirectional adversarial training Jiang
et al. (2020). Besides, Kim & Kim (2020) further identifies the intra-domain discrepancy problem within
the target domain, and solves this problem by adversarial perturbation. To better reduce the domain
discrepancy, following methods reduce both the intra-domain and the inter-domain discrepancy for good
adaptation by contrastive learning Li et al. (2021c); Singh (2021), sample-to-sample self-distillation Yoon
et al. (2021), and cross-domain adaptive clustering Li et al. (2021b). Beyond these works, DECOTA Yang
et al. (2021) proposes to decompose the SSDA task into a semi-supervised learning and an unsupervised
domain adaptation task.

Although achieving remarkable progress, there are still some issues that are needed to be addressed to
further improve the adaptation performance. For example, existing SSDA methods have not adequately
utilized the labeled target samples and target supervised information is easily overwhelmed by massive
source supervised information. As there are many labeled samples in the source domain but a few labeled
samples in the target domain, therefore the learned discriminative features with a single model are biased
towards the source domain Yang et al. (2021). To deal with these issues, we aim to emphasize the importance
of the target supervised information and better utilize target supervised information together with source
supervised information.

Besides, we find the supervised information from two domains are both useful for the predictions on the
unlabeled target samples and complementary to each other. The large amount of labeled source samples
is useful for learning discriminative features, while there are domain shifts between the source and the
target domain. On the contrary, the labeled target samples share similar distribution with unlabeled target
samples (with smaller intra-domain shifts), while the number of labeled samples is limited. As we can
see, both supervised information naturally offer two complementary views for the target unlabeled target
samples. Thus, we aim to explore the supervised information beneficial to the unlabeled target samples from
bidirectional views and combine both information for better learning.

In this work, we propose a simple yet effective method Bidirectional View based Consistency Regularization
(BVCR) to achieve the above goals. BVCR is composed of three schemes, i.e., modeling, exploration, and
interaction. In the modeling scheme, to avoid the target supervised information being overwhelmed by
source supervised information, we propose to model both supervised information independently. We learn
a classification model for each domain with the same but unshared structure such that the supervised
information is modeled by the corresponding model in each domain. In the exploration scheme, we
further explore both supervised information from different views and we resort to consistency regularization
to achieve this goal as it is a simple yet effective solution to various label scare problems Sohn et al.
(2020). We design intra-domain consistency regularization (Intra-CR), which is applied to the unlabeled
target samples and performed within each domain (model). Especially, the consistency regularization within

2



Published in Transactions on Machine Learning Research (03/2023)

the source model could help the source model explore the information relevant to the target domain. And
the consistency regularization within the target model could help the target model further explore the
internal structure within the unlabeled target samples. In the interaction scheme, as both views offer
complementary information to each other, we design inter-domain consistency regularization (Inter-CR)
to encourage information interaction between both views, which is also applied on the unlabeled target
samples but is performed across domains (models). The Inter-CR is performed with an alternative supervised
direction such that it could not only promote the learning of each model but also achieve bidirectional transfer
across domains.

As we can see, BVCR is a symmetric method in the model architecture, the losses, and the importance of
information by design. It is easy to implement without complex adversarial training as previous methods
Saito et al. (2019); Li et al. (2021b); Kim & Kim (2020). Extensive experiments are conducted, and the
results show the effectiveness of the proposed method. To sum up, the main contributions are as follows:

• We propose an SSDA framework based on bidirectional views to better utilize the supervised infor-
mation via three schemes, i.e., modeling, exploration, and interaction.

– In the modeling scheme, BVCR independently models both supervised information to avoid the
target supervised information being overwhelmed by source supervised information.

– In the exploration scheme, we propose Intra-CR to explore the information beneficial to unla-
beled target samples from both views separately.

– In the interaction scheme, we propose Inter-CR to exchange complementary information from
bidirectional views to promote the learning of each model.

• We conduct extensive experiments on three common datasets. The proposed method obtains better
results than baseline methods in these real-world datasets and we also systematically study the
components of BVCR.

2 Related Work

2.1 Unsupervised Domain Adaptation

Existing unsupervised domain adaptation methods are divided into moment matching and adversarial domain
adaptation. The goal of the former is to reduce the statistical distribution discrepancy across domains. The
widely used statistical measurements include the first-order moment Long et al. (2015), the second-order
momentSun et al. (2016), and other statistical measurements Shen et al. (2018); Lee et al. (2019). Adversarial
domain adaptation reduces the distribution discrepancy in an adversarial manner. DANN Ganin et al. (2016)
introduces a domain discriminator which plays a min-max game with the feature extractor by the domain
adversarial loss. MCD Saito et al. (2018b) introduces two classifiers as a discriminator to play a min-max
game with the feature extractor. Considering the practical multi-class problem, MDD Zhang et al. (2019)
proposes a margin-based theory and a new method based on this theory is proposed. Following methods
Cicek & Soatto (2019) adopt the multi-class discriminator, which considers the domain and class information
simultaneously. However, recent works show that the well-known UDA approaches may not generalize well
in SSDA scenarios Saito et al. (2019) as they could not effectively utilize the supervised information in the
target domain.

2.2 Semi-Supervised Domain Adaptation

Semi-supervised domain adaptation is a practical scenario where a few labeled samples are available on
the target domain. Early methods focus on reducing inter-domain discrepancy. MME Saito et al. (2019)
proposes to align the distribution by minimax entropy. BiAT Jiang et al. (2020) aims to generate bidirectional
adversarial examples to fill the domain gap. Furthermore, APE Kim & Kim (2020) introduces the intra-
domain discrepancy issue within the target domain in the SSDA problem and solves this issue based on
adversarial perturbation. The following methods aim to reduce both inter-domain discrepancy and intra-
domain discrepancy simultaneously. ECACL Li et al. (2021c) proposes enhanced categorical alignment to
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deal with inter-domain discrepancy and consistency alignment to deal with intra-domain discrepancy. CLDA
Singh (2021) designs a contrastive learning framework, where class-wise contrastive learning is adopted
to reduce the inter-domain gap and instance-level contrastive alignment are used to minimize the intra-
domain discrepancy. CDAC Li et al. (2021b) propose adversarial adaptive clustering loss to minimize both
discrepancy. Another line of methods is inspired by the recent process of semi-supervised learning. DECOTA
Yang et al. (2021) decomposes SSDA into semi-supervised learning (SSL) sub-task and a UDA sub-task, and
it adopts a co-training-based framework to learn from each other. MCL Yan et al. (2022) performs consistency
learning at multi-level to fully utilize consistency regularization in SSDA.

2.3 Semi-Supervised Learning

Deep semi-supervised learning (SSL) methods include pseudo-labeling Berthelot et al. (2019); Iscen et al.
(2019) and consistency regularization. In this work, the most related methods are based on consistency
regularization, a variant of self-training. It constrains the learned model to make consistent predictions on
the same example under variants of noises. Methods falling into this category differ in the level of noise,
models for making two predictions, and the distance measurement. For example, VAT Miyato et al. (2019)
generates noise in an adversarial manner. Π-Model Laine & Aila (2017) performs Gaussian noise, dropout,
etc., to augment images. Mean Teacher Tarvainen & Valpola (2017) instead maintains an Exponential Moving
Average (EMA) of the models parameters. Further, Fixmatch Sohn et al. (2020) proposes to augment the
sample with weak and strong augmentation to produce two variants of samples. The learning strategy of
our work is inspired by Fixmatch, but the goal is different. Fixmatch is used for improving the performance
of supervised learning, while the goal of our method is to transfer knowledge from one domain to the other
domain.

3 Method

In SSDA, we have datasets sampled from two different domains. Let us consider three datasets in this
content: a source dataset contains labeled source samples Ds = {(xs

i , ys
i )}Ns

i=1, a labeled target dataset
which contains labeled target samples Dt = {(xt

i, yt
i)}

Nt
i=1, and an unlabeled target dataset that contains

large number of images without any corresponding labels Du = {(ui)}Nu
i=1. Usually, we have Nt ≪ Nu and

Nt ≪ Ns. Labels ys
i and yt

i of the samples from source and labeled target sets correspond to the same label
space, i.e., Y = {1, 2, ..., K}. SSDA seeks to learn a classification model using Ds, Dt, and Du and evaluate
on Du.

As shown in Figure 1, the proposed method contains two symmetric models, i.e., the source model Fs and
the target model Ft. Both models are composed of the feature extractor and classifier, i.e., Fs = fs ◦ gs and
Ft = ft ◦ gt. Different from previous methods Saito et al. (2019); Li et al. (2021c), the structures of both
models are the same but the parameters are not shared across the domain. In in the modeling scheme (section
3.1), by learning a separate model for each domain on supervised samples, we could avoid target supervised
information getting overwhelmed by source supervised information. In the exploration scheme (section 3.2),
before exchanging the information from these two models, we use the unlabeled target samples to adapt the
models by intra-domain consistency regularization, such that the source model could concentrate more on
the domain-shared information (features) and less on source-private information (features), and the target
model could learn better representations by utilizing the structural information within the unlabeled target
samples. In the interaction scheme (section 3.3), we exchange complementary information for better learning
by inter-domain consistency regularization.

Especially, following the principle of the recent successful semi-supervised learning (SSL) algorithm Sohn
et al. (2020), this proposed method utilizes image augmentation techniques with a “weak and strong augmen-
tation” strategy to implement consistency regularization. It uses predictions on weakly augmented images,
which are relatively more accurate Chen et al. (2022), to correct the predictions on strongly augmented
images. In the next subsections, we introduce each component in detail.
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Figure 1: The model structure of BVCR. There are two symmetric models Fs and Ft in BVCR. The Intra-CR
is performed within each domain (model) at the first stage, while the Inter-CR is performed across domains
(models) at the second stage and it changes the supervised direction every epoch. Note that these two models
are trained with different samples, thus, they would not become similar soon.

3.1 Modeling: Supervised Training

To model both the source and target supervised information independently, the corresponding models in both
domains are trained to minimize the empirical risks on labeled samples as conventional supervised methods.
Taking the source model Fs as an example, the feature extractor gs maps a source sample xs

i into the feature
and the classifier fs would classify the feature into K categories, i.e., ps(y|xs

i ) = Fs(xs
i ) = σ(fs(gs(xs

i ))),
where σ is the softmax function. Then, cross-entropy loss Lce(·, ·) is adopted to minimize the empirical risk:

Lsrc = E(xs
i
,ys

i
)∼Ds

Lce(ys
i , ps(y|xs

i )) (1)

Similarly, the classification loss on the labeled target samples of the target model Ft is,

Ltar = E(xt
i
,yt

i
)∼Dt

Lce(yt
i , pt(y|xt

i)) (2)

where pt(y|xt
i) = Ft(xt

i) = σ(ft(gt(xt
i))) is the prediction on target sample xt

i of target model Ft. For the
labeled samples in both domains, besides adopting the cross-entropy loss on the original images, we also
apply this loss on both the weakly augmented and strongly augmented images additionally such that the
learned model can be more accurate.

3.2 Exploration: Intra-domain Consistency Regularization

To better explore the target information from bidirectional views, we introduce intra-domain consistency
regularization (Intra-CR) in both domains.

For the target domain, the target model learned with few labeled target samples only contains partial
information about the target domain, while the large amount of unlabeled target samples contain more useful
information (e.g., internal structure) that is not learned by the model. Thus, performing the consistency
regularization within the target domain could help the target model further explore the internal structure
within the unlabeled target samples. Besides, by forcing the target model learned with labeled target samples
to produce consistent predictions on the unlabeled target samples, the model could achieve implicit alignment
between labeled and unlabeled target samples. Thus, it reduces the intra-domain discrepancy within the
target domain.

Specially, we follow previous methods Sohn et al. (2020) and adopt the “weak and strong augmentation”
strategy to implement consistency regularization. The weak and strong augmentation functions differ in the
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degree of image augmentation and more noise is added in strong augmentation. For each unlabeled target
sample ui, both the weak augmentation α(·) and strong augmentation A(·) are applied:

uw
i = α(ui), us

i = A(ui) (3)

Generally, the predictions on weakly augmented images are more accurate than those on strong augmented
images as the latter was more severely damaged Chen et al. (2022). So we use the predictions of weakly
augmented images to supervise the predictions on the strong augmentation samples. The pseudo label of
the weakly augmented image ŷt,w

i with target model Ft is obtained by,

ŷt,w
i = arg max

y∈{1,...,K}
pt(y|uw

i ) (4)

where pt(y|uw
i ) = Ft(uw

i ) is the prediction on the weakly augmented sample of target model Ft. And the
consistency loss within the target domain is,

Lt
con =

∑
ui∈Du

[I(max(pt(y|uw
i )) ≥ γ)Lce(ŷt,w

i , pt(y|us
i ))] (5)

where I(·) is the indicator function and pt(y|us
i ) = Ft(us

i ) is the prediction on the strongly augmented sample.
To mitigate the affect of incorrect pseudo labels, only the samples with high confident predictions are used
for loss computation and γ is the confidence threshold.

For the source domain, we could simply train source model with only labeled source samples without using
any target samples and then apply this model for unlabeled target samples. Such strategy is similar to
single-domain domain generalization Zhou et al. (2021a); Wang et al. (2021); Fan et al. (2021). While the
results show that the performance of domain generalization methods is worse than that of domain adaptation
methods as it is difficult to expect the trained source model to generalize better in the target domain without
seeing any target samples Zhou et al. (2021a); Wang et al. (2021).

Thus, we implement the Intra-CR on the source model with unlabeled target samples instead of the source
samples. Besides, as the learned source model contains both information specific to the source domain
and information shared with the target domain, the Intra-CR within the source domain could help the
source model concentrate more on the information relevant to the target domain. Similarly, we also use the
predictions of weakly augmented images to supervise the predictions on the strongly augmented samples and
the consistency loss within the source domain is,

Ls
con =

∑
ui∈Du

[I(max(ps(y|uw
i )) ≥ γ)Lce(ŷs,w

i , ps(y|us
i ))] (6)

where ps(y|uw
i ) = Fs(uw

i ), ps(y|us
i ) = Fs(us

i ), and ŷs,w
i = arg maxy∈{1,...,K} ps(y|uw

i ). Combining these two
losses, the intra-domain loss is,

Lintra
con = Ls

con + Lt
con (7)

3.3 Interaction: Inter-domain Consistency Regularization

Based on the observation that both views are useful for the target domain and are complementary to each
other, we propose to make the interaction between them to promote the learning of each model. Thus, we
propose inter-domain consistency regularization (Inter-CR), which is applied across models (domains) with
unlabeled target samples.

After augmenting original images with weak and strong augmentations, the weakly augmented images are
fed to one model and the strongly augmented images are fed to the other model. As the predictions on
weakly augmented images are more accurate and we pay equal importance to each model (view), we change
the supervised direction every epoch. Namely, we feed the weakly augmented images to the source model
in even epoch and feed the weakly augmented images to the target model in odd epoch. The same strategy
is also applied to strongly augmented images and note that only the model fed with strongly augmented
samples is optimized by Inter-CR.
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Taking the latter scenario as an example, the weakly augmented image uw
i is fed to the target model Ft, and

we get the pseudo label by Equ 4. The consistency loss across domains at odd epoch is,

Linter
con =

∑
ui∈Du

[I(max(pt(y|uw
i )) ≥ γ)Lce(ŷt,w

i , ps(y|us
i ))] (8)

At even epoch, we change the supervised direction, and the consistency loss across domains is,

Linter
con =

∑
ui∈Du

[I(max(ps(y|uw
i )) ≥ γ)Lce(ŷs,w

i , pt(y|us
i ))] (9)

The proposed Inter-CR has several benefits. Firstly, to some content, the inter-domain consistency regular-
ization can be seen as a variant of co-training Blum & Mitchell (1998). Through this mutual promotion,
both models could learn complementary information from each other and be trained better. However, our
method is different from the standard co-training framework, as the bidirectional teaching is performed si-
multaneously and repeated every epoch in co-training. Another strategy to perform Inter-CR is to train the
models with simultaneous bidirectional training, i.e., training with Eq 8 and 9 simultaneously every epoch
just like standard co-training. Although this strategy is also a possible training method, it may make the two
models become similar quickly while BVCR could mitigate this problem by training alternately. Besides, we
also experimentally find that alternative teaching achieves better than simultaneous bidirectional training
and the comparison is shown in section experiments. Secondly, the Inter-CR can be seen as an implicit
alignment across domains, thus reducing the inter-domain discrepancy across domains. Thirdly, previous
SSDA methods concentrate on unidirectional knowledge transfer, i.e., from the source domain to the target
domain, while the Inter-CR achieves the bidirectional transfer across domains Liu et al. (2021); Xie et al.
(2022). Thus, the domain shifts could be better bridged.

3.4 Overall

Strong and Weak Augmentation Strategy. Data augmentation is an effective way to prevent overfit-
ting and plays an important role in machine learning. In this work, the weak augmentation functions apply
random horizontal flip and random crop. RandAugment Cubuk et al. (2020) and Cutout Devries & Taylor
(2017) constitute the strong data augmentation. More details about them are reported in the appendix.

Training Objective. The overall learning process is composed of two ordinal stages in one epoch and
the pseudo code of BVCR is shown in appendix. At the first stage, the objective of our method is a
weighted combination of the classification loss in both domains and the intra-domain consistency loss, The
optimization problem is formulated as:

min
gs,gt,fs,ft

Lsrc + Ltar + λLintra
con (10)

where λ is the trade-off hyper-parameter. At the second stage, the learning objective is only the inter-domain
consistency loss and the optimization problem at odd (even) epoch is formulated as Equ 11a (Equ 11b):

min
gs,fs

Linter
con (11a)

min
gt,ft

Linter
con (11b)

3.5 Comparison with Existing Methods

In this subsection, we compare BVCR with related methods including Fixmatch Sohn et al. (2020), co-
training Blum & Mitchell (1998), and MCL Yan et al. (2022).

• Connection with Fixmatch Sohn et al. (2020): Fixmatch is a representative SSL approach based
on consistency regularization. However, such method only implements consistency within one do-
main. Instead, we follow the same strategy to implement consistency while we not only implement
consistency within each domain but also extend it to cross-domain scenario by Inter-CR to effec-
tively exchange the bidirectional supervised information. It is also noticed that although Intra-CR
is similar with Fixmatch, while it is the cornerstone of Inter-CR.
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• Connection with Co-training Blum & Mitchell (1998): To some degree, the training strategy of Inter-
CR could be seen as a variant of co-training. While co-training performs simultaneous bidirectional
training but our strategy performs alternative bidirectional training. The proposed strategy could
avoid the learned two models becoming similar quickly and the results in section experiments also
verifies the superiority of the proposed strategy.

• Comparison with MCL Yan et al. (2022). MCL also adopts consistency regularization for SSDA
and it implements consistency at multi level. However, it needs extra class prototypes and complex
optimal transport mapping Courty et al. (2017) to perform intra and inter domain consistency.
Instead, BVCR adopts unified sample-level consistency, which is more simple.

4 Experiments

4.1 Setups

Datasets: We evaluate the proposed method on several latest SSDA benchmarks including Office311

Saenko et al. (2010), Office-Home2 Venkateswara et al. (2017), and DomainNet3 Peng et al. (2019).
Office31 is a relatively small dataset and it is composed of three domains with 31 classes: Dslr (D), Webcam
(W), and Amazon (A). Office-Home is a middle-size dataset, which contains 4 domains including Real (R),
Clipart (C), Art (A), and Product (P) with 65 classes. DomainNet is the largest benchmark and there are
4 domains with 126 classes. The four domains are Real (R), Painting (P), Clipart (C), and Sketch (S).

Baselines: We compare BVCR with previous methods, including,

• S+T, which trains a single model by labeled source and target samples only.

• SSL methods: including ENT Grandvalet & Bengio (2004), which trains a single model with
labeled source and target and unlabeled target using standard entropy minimization.

• UDA methods: including DANN Ganin et al. (2016), ADR Saito et al. (2018a), CDAN Long et al.
(2018), and BNM Cui et al. (2020).

• SSDA methods: including MME Saito et al. (2019), Meta-MME Li & Hospedales (2020), BiAT
Jiang et al. (2020), APE Kim & Kim (2020), UODA Qin et al. (2020), CLDA Singh (2021), DECOTA
Yang et al. (2021), and MCL Yan et al. (2022).

Implementation: Our method is implemented by PyTorch Paszke et al. (2019), with an open-source
library4 Zhou et al. (2021b). The experiments are conducted on Linux operating system with Tesla V100 (32G
memory) and GeForce RTX 3090 (24G memory). We adopt ResNet-34, Alexnet, and VGG-16 pretrained on
ImageNet Deng et al. (2009) as the backbone network of the feature extractor. The two classifiers fs and ft

take a two-layer MLP with randomly initialed weights. All the methods are evaluated under one-shot and
three-shot settings, i.e., there are one or three labeled samples in each class. The top-1 accuracy is reported
over all the unlabeled samples. At the inference time, we make prediction by equally averaging the source
model Fs and target model Ft. The results of MCT5 is implemented by ourselves using the open-source code
and the result of baselines are taken from their respective publications if the evaluation protocol is the same.

For the fair comparison, parts of target samples are split as valitaion set, and they are not used for training
and only used for selecting the models and hyper-parameters. The split stargey of Office-Home and Domain-
Net dataset is following previous work Saito et al. (2019) released on Github6, while the Office31 dataset is

1https://www.cc.gatech.edu/~judy/domainadapt/
2https://www.hemanthdv.org/officeHomeDataset.html
3http://ai.bu.edu/M3SDA/
4https://github.com/KaiyangZhou/Dassl.pytorch
5https://github.com/chester256/MCL
6https://github.com/VisionLearningGroup/SSDA_MME
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Table 1: Accuracy (%) on DomainNet under 1-shot and 3-shot settings using Alexnet as backbone.

Method R→C R→P P→C C→S S→P R→S P→R Mean
1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

S+T 43.3 47.1 42.4 45.0 40.1 44.9 33.6 36.4 35.7 38.4 29.1 33.3 55.8 58.7 40.0 43.4
DANN 43.3 46.1 41.6 43.8 39.1 41.0 35.9 36.5 36.9 38.9 32.5 33.4 53.5 57.3 40.4 42.4
ADR 43.1 46.2 41.4 44.4 39.3 43.6 32.8 36.4 33.1 38.9 29.1 32.4 55.9 57.3 39.2 42.7
CDAN 46.3 46.8 45.7 45.0 38.3 42.3 27.5 29.5 30.2 33.7 28.8 31.3 56.7 58.7 39.1 41.0
ENT 37.0 45.5 35.6 42.6 26.8 40.4 18.9 31.1 15.1 29.6 18.0 29.6 52.2 60.0 29.1 39.8
MME 48.9 55.6 48.0 49.0 46.7 51.7 36.3 39.4 39.4 43.0 33.3 37.9 56.8 60.7 44.2 48.2
Meta-MME - 56.4 - 50.2 51.9 - 39.6 - 43.7 - 38.7 - 60.7 - 48.8
BiAT 54.2 58.6 49.2 50.6 44.0 52.0 37.7 41.9 39.6 42.1 37.2 42.0 56.9 58.8 45.5 49.4
APE 47.7 54.6 49.0 50.5 46.9 52.1 38.5 42.6 38.5 42.2 33.8 38.7 57.5 61.4 44.6 48.9
CLDA 56.3 59.9 56.0 57.2 50.8 54.6 42.5 47.3 46.8 51.4 38.0 42.7 64.4 67.0 50.7 54.3
BVCR 61.6 62.7 56.7 58.4 54.8 56.5 47.5 50.3 46.8 49.6 51.5 51.8 61.4 62.8 54.3 56.0

Table 2: Accuracy (%) on Office-Home for under 1-shot and 3-shot settings using VGG-16 as backbone.

Method R→C R→P R→A P→R P→C P→A A→P A→C A→R C→R C→A C→P Mean
1-shot

S+T 39.5 75.3 61.2 71.6 37.0 52.0 63.6 37.5 69.5 64.5 51.4 65.9 57.4
DANN 52.0 75.7 62.7 72.7 45.9 51.3 64.3 44.4 68.9 64.2 52.3 65.3 60.0
ADR 39.7 76.2 60.2 71.8 37.2 51.4 63.9 39.0 68.7 64.8 50.0 65.2 57.4
CDAN 43.3 75.7 60.9 69.6 37.4 44.5 67.7 39.8 64.8 58.7 41.6 66.2 55.8
ENT 23.7 77.5 64.0 74.6 21.3 44.6 66.0 22.4 70.6 62.1 25.1 67.7 51.6
MME 49.1 78.7 65.1 74.4 46.2 56.0 68.6 45.8 72.2 68.0 57.5 71.3 62.7
BNM 51.0 79.5 62.8 72.3 44.0 51.8 67.1 45.7 68.4 65.3 52.7 69.1 60.8
UODA 49.6 79.8 66.1 75.4 45.5 58.8 72.5 43.3 73.3 70.5 59.3 72.1 63.9
DECOTA 47.2 80.3 64.6 75.5 47.2 56.6 71.1 42.5 73.1 71.0 57.8 72.9 63.3
MCL 41.4 78.9 66.1 76.6 42.2 58.6 72.2 38.8 73.6 67.5 56.5 70.2 61.9
BVCR 55.6±1.1 81.9±0.44 68.0±0.52 75.7±0.31 48.9±1.8 57.7±1.1 70.2±0.3 51.7±1.2 72.9±0.4 69.4±0.6 57.8±0.5 73.4±1.4 65.3±0.1

3-shot
S+T 49.6 78.6 63.6 72.7 47.2 55.9 69.4 47.5 73.4 69.7 56.2 70.4 62.9
DANN 56.1 77.9 63.7 73.6 52.4 56.3 69.5 50.0 72.3 68.7 56.4 69.8 63.9
ENT 48.3 81.6 65.5 76.6 46.8 56.9 73.0 44.8 75.3 72.9 59.1 77.0 64.8
APE 56.0 81.0 65.2 73.7 51.4 59.3 75.0 54.4 73.7 71.4 61.7 75.1 66.5
MME 56.9 82.9 65.7 76.7 53.6 59.2 75.7 54.9 75.3 72.9 61.1 76.3 67.6
UODA 57.6 83.6 67.5 77.7 54.9 61.0 77.7 55.4 76.7 73.8 61.9 78.4 68.9
DECOTA 59.9 83.9 67.7 77.3 57.7 60.7 78.0 54.9 76.0 74.3 63.2 78.4 69.3
MCL 54.0 81.7 68.5 76.7 51.5 62.5 75.8 52.0 74.6 73.0 64.0 77.7 67.7
BVCR 63.5±0.3 84.2±0.14 69.1±0.1 76.9±0.3 60.3±0.5 61.8±0.7 79.9±0.9 58±0.5 75.8±0.6 73.4±0.1 61.7±0.2 79±0.6 70.3±0.2

randomly split by ourself and the split strategy is shown in the code. The specific number of train, validation,
and test sets used in three datasets are present in Table 8 in appendix.

Following ReMixMatch Berthelot et al. (2020), we also employ distribution alignment to modify the output
of the model for encouraging the unlabeled target distribution of pseudo-labels to follow the source label
distribution. We experimentally set the temperature parameter of softmax function as 1 initially and increase
it uniformly to 1.5 over the training process to make the predicted probability distribution smoother, avoiding
the overconfidence of the model with training.

The learning rate, hyper-parameter λ, and the initial value of confidence threshold γ are searched from {1e-5,
5e-5, 1e-4, 5e-4, 5e-3}, {0.5, 1.0, 2.0}, and {0.5, 0.8, 0.85, 0.9, 0.95} on validation set, respectively. The
value of the confidence threshold γ is 0.9 and we set λ as 1 for all datasets. The number of epoch ans the
random seed is all set to be 100 and 123 on three datasets. We set λ as 1 for all datasets and batchsize B to
be 32, 16, and 16 for Office-Home, Office31, and DomainNet, respectively. We use SGD with momentum for
optimization and set the momentum as 0.95. The learning rate is set to be 5e−4 and adjusted with cosine
annealing strategy.

4.2 Results

This subsection shows the main results, and more results are shown in the appendix.

DomainNet. We summarize the performance of 7 tasks on the DomainNet dataset in Table 1. Using
Alexnet backbone, our method outperforms the the second-best method CLDA by 3.6% and 1.7% under
1-shot and 3-shot settings on average. Our approach surpasses the well-known semi-supervised domain
adaptation benchmarks methods in most tasks of the DomainNet dataset. Such improved performance
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Table 3: Accuracy (%) on Office31 under 1-shot and 3-shot settings with Alexnet.

Method W→A D→A Mean
1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

S+T 50.4 61.2 50.0 62.4 50.2 61.8
DANN 57.0 64.4 54.5 65.2 55.8 64.8
ADR 50.2 61.2 50.9 61.4 50.6 61.3
CDAN 50.4 60.3 48.5 61.4 49.5 60.8
ENT 50.7 64.0 50.0 66.2 50.4 65.1
MME 57.2 67.3 55.8 67.8 56.5 67.6
BiAT 57.9 68.2 54.6 68.5 56.3 68.4
APE - 67.6 - 69.0 - 68.3
BVCR 62.6 66.3 58.3 70.0 60.5 68.1

shows that our approach better utilizes the supervised information in SSDA. In some tasks (e.g., P→R),
BVCR does not achieve the best performance. It may be because that the domain discrepancy between task
P→R is smaller than other tasks (with better S+T accuracy) and supervised information across domains
are less complementary. Thus, BVCR gets less gain in these tasks. But with the proposed Intra-CR and
Inter-CR, BVCR also achieves the second-best results.

Office-Home. Table 2 reports the results of the Office-Home dataset under 1-shot and 3-shot settings with
VGG-16. Our method shows the best performance in most of the scenarios. Specially, the improvement of
mean accuracy is 1.4% and 1.0% compared with the second-best method in 1-shot and 3-shot, respectively.
Our method achieves more performance gain when giving less labeled target samples. Similar to the results
on DomainNet, our approach surpasses the state-of-the-art SSDA approaches in most of the adaptation
tasks. Besides, In some domain adaptation cases under 1-shot, such as R→C and A→C, the proposed
method exceeds DECOTA and MCL by more than 3%.

Office31. The results of the Office31 dataset with Alexnet are shown in Table 3. Our method also outper-
forms other baselines in most tasks. The improvement is 4.2% compared with BiAT under the 1-shot setting
and the results of 3-shot is slightly lower than BiAT by 0.3% on average. Improvement on this dataset is
less than that of Office-Home and DomaiNet may be due to small size of samples.

4.3 Insight Analysis

Ablation study. The proposed method contains three losses (schemes): the classification loss (modeling
scheme), the Intra-CR loss (exploration scheme), and the Inter-CR loss (Interaction). We investigate the
effect of each component by different combination during training. Besides, we also analyze the effectiveness
of data augmentation (both strong and weak augmentation) on labeled samples. The results on the tasks
A→C and R→P of Office-Home dataset under 3-shot setting with VGG-16 are shown in Table 4. As we can
see, data augmentation is an effective method for improving generalization, and it improves the performance
by 5.2% and 2.1% when only using classification losses. Following settings all adopt the data augmentation
on labeled samples. As for the losses, after adding the Intra-CR loss, the performance is improved by 3.1%
and 2.4%, which implies that the Intra-CR can help the models better explore the target information from

Table 4: Results (%) of ablation study on two tasks of Office-Home under 3-shot.

Augmentations
on labeled samples Lsrc Ltar Lintra

con Linter
con A→C R →P

√ √
42.8 77.5

√ √ √
48.0 79.6√ √ √ √
51.1 82.0√ √ √ √ √
57.4 84.4
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Figure 2: (a) Analysis of supervised direction. (b) Impact of varying labeled samples.
different views. Moreover, by interacting both views with Inter-CR, the performance is further improved by
6.3% and 2.4% and the combination of all losses achieves the best results.

Effect of backbone. We analyze the network architecture with Alexnet, VGG-16, and ResNet-34 on
Office-Home with four tasks under 3-shot. As shown in Table 5, we can see that our BVCR outperforms all
comparison methods on average accuracy and achieve 55.1%, 69.2%, and 73.4% mean accuracy with Alexnet,
VGG-16, and ResNet-34, respectively. The results on other tasks are shown in appendix and our method also
achieves better performance. The different results with different backbones demonstrate that our method
works well with multiple network structures.

Table 5: Accuracy (%) on Office-Home under 3-shot setting using Alexnet, VGG-16, and ResNet-34 as
backbone networks.

Network Method R→P P→A A→C C→R Mean

Alexnet
S+T 66.7 36.1 38.8 54.3 49.0
APE 74.6 42.1 44.5 58.1 54.8

BVCR 74.0 41.9 45.3 59.4 55.1

VGG-16
S+T 78.6 55.9 47.5 69.7 62.9
APE 81.0 59.3 54.4 71.4 66.5

BVCR 84.4 61.7 57.4 73.4 69.2

ResNet-34
S+T 80.8 63.5 54.0 68.3 66.7
APE 86.2 66.1 63.9 76.8 73.3

BVCR 86.9 66.8 64.7 75.1 73.4

Table 6: Analysis of training strtegy.

A→C R→P
Simultaneously 53.7 83.2
Alternatively 57.4 84.4

Effectiveness of bidirectional training. Inter-CR is imple-
mented in an alternative bidirecitional training manner. Another
strategy to implement Inter-CR is to perform Inter-CR with Equ 8
and Equ 9 simultaneously like co-training and we denote this strat-
egy as simultaneous bidirectional training. We compare these two
strategies on tasks A→C and P→R and the results are shown in
Table 6. We can see that alternatively training two models achieves
better performance as it could effectively avoid these two models
becoming similar quickly and encourage better information exchange.

Analysis of supervised direction in Inter-CR. To analyze the effect of changing supervised direction
in Inter-CR, we compare our method with two variants on tasks A→C and R→P of Office-Home under 3-shot.
1) We always feed the weakly augmented samples to the source model (denoted as S → T). 2) We always
feed the weakly augmented samples to the target model (denoted as T → S). Note that the supervised
direction of the former is always from the source domain to the target domain, and the direction of the
latter is always from the target domain to the source domain. While the supervised direction is changed
every epoch in BVCR. The results are shown in Figure 2(a). As we can see, the proposed strategy achieves
better performance for both tasks, which implies that bidirectional transfer across domains could yield better
adaptation than unidirectional transfer.

Impact of the number of labeled samples. We compare the performance changes with the number of
labeled target samples from 1 to 20 for each class on task R→P on Office-Home with VGG-16. As shown in
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Figure 2(b), the performance of all methods is increased with more labeled target samples. Besides, BVCR
consistently reaches the best performance for all the cases. The results show the benefit of our method for
flexibly exploiting a different number of labeled target samples.

Feature visualization. To qualitatively evaluate the results, we adopt the t-SNE van der Maaten &
Hinton (2008) to visualize the features produced by our method and the S+T method for adaptation task
A→C on the Office-Home dataset under 3-shot setting. The results in Figure 3(a) and 3(b) show that the
learned features exhibit a favorable clustering structure, which implies the proposed methods could achieve
cross-domain alignment and learn discriminative features.

(a) t-sne by S+T (b) t-sne by BVCR

Figure 3: Feature visualization by t-sne

Comparison with Fixmatch We compare with Fixmatch on Office-Home dataset with VGG backbone
under 3-shot and the results are shown in Table 7. As we can see, Fixmatch achieves better performance than
S+T but the improvement is limited, i.e., 0.5%, which implies that simply treating a semi-supervised domain
adaptation(SSDA) problem as a semi-supervised learning (SSL) problem is a trivial solution as this strategy
could not deal with the domain distribution shifts effectively. BCVR considers the SSDA problem from
a complementary view, i.e., intra-domain supervised information and inter-domain supervised information,
which could better deal with the domain discrepancy and promote model learning.

Table 7: Comparison with Fixmatch on Office-Home for under 3-shot settings using VGG-16 as backbone.

Method R→C R→P R→A P→R P→C P→A A→P A→C A→R C→R C→A C→P Mean
S+T 49.6 78.6 63.6 72.7 47.2 55.9 69.4 47.5 73.4 69.7 56.2 70.4 62.9
Fixmatch 52.3 78.7 63.7 72.9 47.7 54.9 70.5 49.7 72.8 69.4 57.7 70.0 63.4
BVCR 63.2 84.4 69.1 76.7 60.9 61.7 79.0 57.4 76.1 73.4 62.4 79.4 70.3

5 Conclusions

In this paper, we focus on SSDA. Considering that target supervised information is easily overwhelmed by
massive source supervised information in existing SSDA methods, we propose BVCR to model the source
supervised information and supervised target information separately. As both of the supervised information
are complementary to each other, we explore the target information from both views and make information
interaction between views. With the help of consistency regularization, we design Intra-CR and Inter-CR to
achieve the above goals. The experimental results show that the proposed method outperforms baselines. As
for limitation, our method adopts pseudo labels for learning and it may be affected by noisy pseudo labels.
Thus, it is our further work to explore a more flexible strategy to generate or filter unreliable pseudo labels
than a fixed threshold.
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Table 8: The number of train set, validation set, and test set when each domain is selected as target domain
under 3-shot setting.

Office31 Office-Home DomainNet
Dslr Webcam Amazon Real Clipart Art Product Real Painting Clipart Sketch

# Labeled target samples in train set 93 93 93 195 195 195 195 378 378 378 378
# Unlabeled target samples in train set 312 609 2631 3967 3975 2037 4049 69602 30746 17947 23448
# Validation 93 93 93 195 195 195 195 378 378 378 378
# Test 312 609 2631 3967 3975 2037 4049 69602 30746 17947 23448

A Setup

A.1 Augmentation and pseudo code

In this paper, the weak and strong augmentation functions differ in the degree of image augmentation
and more noise is added in strong augmentation. Specifically, the weak image transformation function
applies random horizontal flip and random crop. Two augmentation techniques, namely RandAugment
Cubuk et al. (2020) and Cutout Devries & Taylor (2017), constitute the strong transformation function.
In RandAugment, a given number of operations are randomly selected from a fixed set of geometric and
photometric transformations, such as affine transformation, color adjustment. Then they are applied to
images with a stochastic magnitude. The operations of RandAugment are shown in Table 10. The range is
similar to the original version, so we do not elaborate on their meaning here. Cutout randomly masks out
square regions of images to gray. Both of them are applied sequentially in the strong augmentation. Besides,
the pseudo code of BVCR is shown in algorithm 1.

B More Results

More results on DomainNet. We summarize the performance of 7 tasks on the DomainNet dataset in
Table 9. It is obvious that the proposed method outperforms baseline methods on most tasks. On average,
our method outperformed the best-performed method APE by 1.2% under the 3-shot setting when ResNet-34
is adopted as the backbone network.
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Figure 4: Training cost of different methods

Analysis of training cost. We test the training time of
MME, UODA, and BVCR on task A→C of Office-Home
dataset under 3-shot with the same running steps. The com-
parison of running time for different methods is shown in
Figure 4. As we can see, BVCR needs more training time,
namely 2.2 times of MME and 1.07 times of UODA. It is
because that BVCR has two models and the samples are fed
into the models some times. But recent SSDA methods also
need much training time as they rely on contrastive learning
or adversarial training.

Table 9: Performance comparison in DomainNet under 3-shot setting using ResNet-34 as backbone network.

Method R→C R→P P→C C→S S→P R→S P→R Mean
S+T 60.0 62.2 59.4 55.0 59.5 50.1 73.9 60.0

DANN 59.8 62.8 59.6 55.4 59.9 54.9 72.2 60.7
ADR 60.7 61.9 60.7 54.4 59.9 51.1 74.2 60.4

CDAN 69.0 67.3 68.4 57.8 65.3 59.0 78.5 66.5
ENT 71.0 69.2 71.1 60.0 62.1 61.1 78.6 67.6
MME 72.2 69.7 71.7 61.8 66.8 61.9 78.5 68.9
UODA 75.4 71.5 73.2 64.1 69.4 64.2 80.8 71.2

Meta-MME 73.5 70.3 72.8 62.8 68.0 63.8 79.2 70.1
BiAT 74.9 68.8 74.6 61.5 67.5 62.1 78.6 69.7
APE 76.6 72.1 76.7 63.1 66.1 67.8 79.4 71.7

BVCR 76.4 73.9 71.3 69.2 71.2 69.4 79.0 72.9
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Algorithm 1 Bidirectional View based Consistency Regularization for SSDA (BVCR)
Input: Source samples Ds, Target labeled samples Dt , Target unlabeled samples Du, Batch-size B, trade-

off hyper-paramter λ, and running epoches T .
Output: Trained target model Ft and source model Fs.
1: Initialize t = 1
2: while t ≤ T do
3: // The first stage
4: Sample a mini-batch of B examples from Ds and Dt separately, B examples from Du.
5: Train the feature extractors gs, gt and classifiers fs, ft by Equ 10.
6: // The second stage
7: Sample a mini-batch of B examples from Du.
8: if odd epoch then
9: Train the source feature extractor gs and source classifier fs by Linter

con (Equ 8).
10: else
11: Train the target feature extractor gt and target classifier ft by Linter

con (Equ 9).
12: end if
13: end while=0

Table 10: List of operations for strong transformations of the RandAugment. Two transformations are
randomly chosen and performed with stochastic magnitude.

Operation Range

Identity [0.0, 1.0]
ShearX [0.0, 0.3]
ShearY [0.0, 0.3]
TranslateX [0.0, 0.33]
TranslateY [0.0, 0.33]
Rotate [0, 30]
AutoContrast [0, 1]
Invert [0, 1]
Equalize [0, 1]
Solarize [0, 110]
Posterize [4, 8]
Color [0.1, 1.9]
Brightness [0.1, 1.9]
Sharpness [0.1, 1.9]
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