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Abstract

Graph convolutional networks (GCNs) suffer
from the curse of depth, a phenomenon where
performance degrades significantly as network
depth increases. While over-smoothing has been
considered the primary cause of this issue, we dis-
cover that gradient vanishing or exploding under
commonly-used initialization methods also con-
tributes to the curse of depth. To this end, we pro-
pose to evaluate GCN initialization quality from
three aspects: forward-propagation, backward-
propagation, and output diversity. We theoreti-
cally prove that conventional initialization meth-
ods fail to simultaneously maintain reasonable for-
ward propagation and output diversity. To tackle
this problem, We develop a new GCN initializa-
tion method called Signal Propagation on Graph
(SPoGInit). By carefully designing and optimiz-
ing initial weight metrics, SPoGInit effectively
alleviates performance degradation in deep GCNs.
We further introduce a new architecture termed
ReZeroGCN, which simultaneously addresses the
three aspects at initialization. This architecture
achieves performance gains on node classification
tasks when increasing the depth from 4 to 64, e.g.,
10% gain in training and 3% gain in test accuracy
on OGBN-Arxiv. To the best of our knowledge,
this is the first result to fully resolve the curse
of depth on OGBN-Arxiv over such a range of
depths.
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1. Introduction
Deep neural networks (DNNs) have consistently shown
remarkable success across various domains, with their per-
formance often improving with the increase in depth. For in-
stance, the VGG16 network (Simonyan & Zisserman, 2015),
which expanded AlexNet’s (Krizhevsky et al., 2012) 8-layer
architecture to 16 layers, exhibited a significant boost in test
accuracy from 63.3% to 74.4% on ImageNet (Deng et al.,
2009). This trend continued with ResNet (He et al., 2016),
which achieved 78.57% test accuracy by increasing the net-
work depth to 152 layers. However, in the realm of Graph
Convolutional Networks (GCNs) (Wu et al., 2020), deepen-
ing the network doesn’t always yield similar benefits, and
can potentially deteriorate performance. This phenomenon,
which we refer to as the curse of depth, poses a major chal-
lenge in the development of effective GCNs.

In recent years, over-smoothing (Li et al., 2018; Oono &
Suzuki, 2019) has been identified as one of the major reasons
behind the curse of depth. Over-smoothing occurs when, as
a GCN becomes deeper, embeddings among different nodes
become increasingly similar, rendering nodes challenging
to differentiate. This phenomenon is particularly harmful
to GCNs in node classification tasks, where the objective is
to assign labels or categories to nodes in a graph based on
their features and the graph topology.

A variety of approaches have been explored to tackle the
over-smoothing issue within the GCN family, such as nodes
or edges dropping techniques (Srivastava et al., 2014; Zou
et al., 2019; Rong et al., 2020; Huang et al., 2020; Lu et al.,
2021), normalization techniques (Ioffe & Szegedy, 2015;
Zhao & Akoglu, 2020; Zhou et al., 2020; Yang et al., 2020;
Zhou et al., 2021a; Li et al., 2020; Guo et al., 2023), and
regularization techniques (Chen et al., 2020a; Yang et al.,
2020; Zhou et al., 2021b). Despite their good performance,
they have not fully alleviated the curse of depth. In fact,
the optimal performance for GCNs in most of these studies
is still achieved with less than 20 layers, suggesting that
the curse of depth continues to constrain the potential of
GCN. (We summarize the optimal performance and the cor-
responding depths in Appendix E.) Such limitation signifies
an ongoing need for new perspectives and strategies to fully
resolve the curse of depth.
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(a) Output diversity
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(b) Forward propagation
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(c) Backward propagation
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Figure 1. Plots of (a) the output diversity metric, (b) the forward
propagation metric, (c) the backward propagation metric, and (d)
the training and test accuracy of the vanilla GCN with conven-
tional weight initialization on Cora. (Sub-figures (a-c) present
the results at initialization, while sub-figure (d) presents the re-
sults after training.) Besides the over-smoothing problem, we also
observe significant gradient vanishing as depth increases under
commonly-used initialization methods.

In this paper, we investigate the curse of depth from the
perspective of weight initialization. As depicted in Figure
1, GCNs with conventional initialization encounter evident
over-smoothing issues, examined by the decrease of the
output diversity metric.1 Moreover, we observe that the
forward and backward propagation metrics exhibit steeper
declines as the depth increases. This points to a severe gra-
dient vanishing problem during the training process. These
observations suggest that merely addressing over-smoothing
is insufficient to tackle the curse of depth. Instead, it is nec-
essary to have a more comprehensive initialization method
that simultaneously addresses both over-smoothing and po-
tential gradient pathology.

Fortunately, the signal propagation theory (Poole et al.,
2016; Schoenholz et al., 2017; Pennington et al., 2017; 2018;
Hanin, 2018) derived from DNNs provides valuable insights
into the causes and potential solutions for gradient-related
issues in GCNs. Applying this theory, we propose to assess
the quality of signal propagation in GCNs from three per-
spectives: (1) forward propagation, (2) backward prop-
agation, and (3) output diversity propagation. While
forward propagation and backward propagation are derived
from classical signal propagation theory, output diversity
propagation is specifically introduced to address the over-
smoothing problem in GCNs. With these three criteria in
mind, we critically assess the commonly-used initialization
strategies for GCNs and design new initialization methods.

1The output diversity, forward, and backward propagation met-
rics will be formally introduced in Section 4.

Our contributions are summarized below.

• We theoretically prove that conventional initialization
schemes on GCNs often compromise on either forward
propagation or output diversity propagation. Empirical
evidence is provided to support our theory.

• We propose a random initialization searching algorithm,
Signal Propagation on Graph (SPoGInit), designed to op-
timize the signal propagation metrics simultaneously. Val-
idation on multiple datasets showcases the performance
enhancement provided by SPoGInit in deep vanilla GCNs,
indicating a strong correlation between our signal propa-
gation metrics and GCN performance.

• We introduce ReZeroGCN, a GCN architecture equipped
with skip connection and zero-initialized gating parame-
ters. This architecture addresses all three signal propaga-
tion aspects. Experimental results on large-scale datasets
show consistent performance improvements when the
network depth increases from 4 to 64. For instance, on
OGBN-Arxiv, ReZeroGCN achieves gains of 10% and
3% in training and test accuracy, respectively. To the best
of our knowledge, this is the first result to fully resolve
the curse of depth on OGBN-Arxiv over such a range of
depths.

2. Related works
Over-smoothing in GCNs. The over-smoothing issue was
first purposed in (Li et al., 2018) to explain the curse of depth
in deep GCNs and then studied in (Oono & Suzuki, 2019;
Cai & Wang, 2020; Yang et al., 2020; Chen et al., 2020a;
Rusch et al., 2023b; Luan et al., 2020; Cong et al., 2021;
Zhang et al., 2022). Although the smoothing effects of graph
convolution may benefit shallow GCNs (Keriven, 2022; Wu
et al., 2023), they adversely affect the performance of deep
GCNs. To alleviate over-smoothing, a variety of techniques
are adopted (Chen et al., 2022b). For vanilla GCNs, tech-
niques such as nodes or edges dropping (Srivastava et al.,
2014; Zou et al., 2019; Rong et al., 2020; Huang et al.,
2020; Lu et al., 2021), normalization (Ioffe & Szegedy,
2015; Zhao & Akoglu, 2020; Zhou et al., 2020; Yang et al.,
2020; Zhou et al., 2021a; Li et al., 2020; Guo et al., 2023),
and regularization (Chen et al., 2020a; Yang et al., 2020;
Zhou et al., 2021b) were explored. Efforts were also taken
on different variants of GCN architectures, including GCNs
with residual connections (Kipf & Welling, 2017; Jaiswal
et al., 2022), GCNs with jumping connections (Xu et al.,
2018; Liu et al., 2020; Zhu et al., 2020), and so on (Bose
& Das, 2023; Di Giovanni et al., 2022; Chien et al., 2021;
Gasteiger et al., 2019; Luan et al., 2019; Chen et al., 2020b;
Li et al., 2019; Yan et al., 2022; Guo et al., 2022; Min et al.,
2020; Chen et al., 2022a; Jin et al., 2022; Zheng et al., 2021;
Yang et al., 2023b; Li et al., 2021). In contrast to these
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existing works, our paper delves into the impact of weight
initialization to tackle over-smoothing (as well as gradient
pathology) in GCNs.

Signal propagation. Classical signal propagation theory
has built up a foundation for understanding how informa-
tion flows through deep neural networks (DNNs) and guides
the random weight initialization. At first, (Glorot & Ben-
gio, 2010; He et al., 2015) studied the forward-backward
propagation in linear or ReLU-activated models. Then, the
mean-field theory (Neal, 1996; Lee et al., 2018; Matthews
et al., 2018) was incorporated to study the signal propagation
in models with general non-linear activation. Theoretical
analysis on fully-connected neural networks (FCNNs) in-
cludes the study of Edge-of-Chaos (EOCs) (Poole et al.,
2016; Schoenholz et al., 2017; Hayou et al., 2019; 2022)
and dynamical isometry (Saxe et al., 2014; Pennington et al.,
2017; 2018). Other works studied the signal propagation
in deep CNN (Xiao et al., 2018), RNN (Chen et al., 2018),
ResNet (Yang & Schoenholz, 2017; Hayou et al., 2022), au-
toencoder (Li & Nguyen, 2019), and LSTM/GRU (Gilboa
et al., 2019). In the realm of GCNs, (Guo et al., 2022;
Jaiswal et al., 2022) designed weight initialization methods
via traditional forward and backward propagation. Our work
further analyzes the output diversity propagation. Output
diversity propagation is specifically tailored for GCN-like
architectures, and is shown to be crucial to resolving the
curse of depth.

Weight searching and gating parameters. In addition
to signal propagation, other factors that reflect the train-
ing dynamics have also been exploited to guide the search-
ing of initial weights (Dauphin & Schoenholz, 2019; Zhu
et al., 2021). Our SPoGInit draws inspiration from MetaInit
(Dauphin & Schoenholz, 2019) and is further tailored to
vanilla GCNs. For DNNs with residual connections, (De &
Smith, 2020; Zhang et al., 2019; Bachlechner et al., 2021)
introduced trainable gating parameters to preserve signal
propagation. We borrow the idea from ReZero (Bachlechner
et al., 2021) and propose ReZeroGCN, which incorporates
skip connections and gating parameters in GCNs.

Other works. Some existing works studied graph neural
tangent kernel (GNTK) (Bayer et al., 2022; Du et al., 2019;
Huang et al., 2022; Jiang et al., 2022; Sabanayagam et al.,
2021; 2022; Zhou & Wang, 2022; Xu et al., 2021; Gebhart,
2022; Krishnagopal & Ruiz, 2023; Yang et al., 2023a). They
analyzed the training dynamics of GCNs under the infinite-
width limit.

3. Preliminaries and background
3.1. Notation

For any integer n ∈ N, we define [n] ≜ {1, 2, . . . , n}. We
may denote a matrix X ∈ Rm×n by (xij)i∈[m],j∈[n], where

xij is the entry in the i-the row and the j-th column. We
further use Xi,: ∈ R1×n and X:,j ∈ Rm×1 to denote the i-
th row and the j-th column of X , respectively. ∥·∥F denotes
the Frobenius norm. Given any function f : Rm×n → R,
its derivative ∂f/∂X with respect to X ∈ Rm×n is the
m × n matrix with (∂f/∂X)ij = ∂f(X)/∂xij . For any
activation function σ : R → R, we use σ(X) ∈ Rm×n to
denote the output of applying σ entry-wise to the matrix
X , i.e., (σ(X))ij = σ(xij). We denote ReLU activation by
ReLU(x) ≜ max(0, x) and tanh activation by tanh(x) ≜
(ex − e−x)/(ex + e−x). For brevity, we use θ to denote the
collection of all trainable parameters in a GCN model.

3.2. Graph convolutional networks

Featured graph. Let G = (V, E) be an undirected graph,
where V is the set of nodes with |V| = n, and E is the
collection of edges. Assume that each node is associated
with a d0-dimensional feature and a label belonging to
[C]. Let xi ∈ Rd0×1 and yi ∈ [C] denote the feature
and the label of node i, respectively. Define the node fea-
ture matrix as X = (xT

1 , x
T
2 , . . . , x

T
n )

T ∈ Rn×d0 . Let
A = (1{(i,j)∈E})i,j∈[n] ∈ Rn×n represent the adjacency
matrix and D = diag(A1n) ∈ Rn×n represent the degree
matrix. Further, Ã = A+I and D̃ = D+I denote the adja-
cency matrix degree matrix of graph G with self-loop added
to each node. Finally, the normalized adjacency matrix is
given by Â = D̃− 1

2 ÃD̃− 1
2 .

Vanilla GCN. Vanilla GCN (Kipf & Welling, 2017) stacks
neighborhood aggregations and feature transformations al-
ternately. Specifically, let H(l), X(l) ∈ Rn×dl denote the
pre-activation and the post-activation embedding matrix at
the l-th layer of the vanilla GCN, respectively. They are
defined recursively by

H(l) := ÂX(l−1)W (l) + 1n · b(l), X(l) := σ(H(l)),

where W (l) ∈ Rdl−1×dl and b(l) ∈ R1×dl are the weight
and the bias term at the l-th layer, respectively. The input to
the first layer is given by X(0) = X , and the output matrix
of an L-layer vanilla GCN is H(L) ∈ Rn×C , which is then
fed into a softmax layer to obtain the predicted labels.

ResGCN. Inspired by He et al. (2016), ResGCN (Kipf &
Welling, 2017) combines residual connections with vanilla
GCN. An L-layer ResGCN adds skip connections to the
post-activation embeddings, i.e.,

H(l) := ÂX(l−1)W (l) + 1n · b(l),
X(l) := ασ(H(l)) + βX(l−1), ∀l ∈ [L],

where α, β ∈ R are trainable gating hyperparameters. 2

Linear transformations (trainable) are applied before X(0)

2This is slightly different from the original version of ResGCN
(Kipf & Welling, 2017), which does not present the gate parameters.
Equivalently, the original ResGCN imposes (α, β) = (1, 1).
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and after H(L) to ensure consistency of embedding sizes.
We denote the output matrix of an L-layer ResGCN by
H(out,L) ∈ Rn×C .

3.3. Initialization

Kaiming initialization (He et al., 2015) and Xavier initial-
ization (Glorot & Bengio, 2010) are two popular random
initialization methods in DNNs. Kaiming initialization, of-
ten in conjunction with ReLU activation, samples W

(l)
ij

independently from a random distribution with mean 0 and
variance 2/dl−1. Xavier initialization samples W (l)

ij inde-
pendently from a random distribution with mean 0 and vari-
ance 2/(dl−1 + dl).

In practice, the weight distributions are usually
set to be uniform distributions in DNNs, e.g.,
Uniform

(
−
√

6
dl−1

,
√

6
dl−1

)
for Kaiming initializa-

tion and Uniform
(
−
√

6
dl−1+dl

,
√

6
dl−1+dl

)
for Xavier

initialization. In GCN models, uniform weight distributions
are also widely used. Particularly, most cited works such
as PairNorm (Zhao & Akoglu, 2020), DropEdge (Rong
et al., 2020), DropNode (Huang et al., 2020), SkipNode (Lu
et al., 2021), GCNII (Chen et al., 2020b), set the weight
initialization to be Uniform(−1/

√
dl−1, 1/

√
dl−1).

We simply refer to this initialization as “Conventional
initialization” in the rest of this paper.

For theory, existing studies on signal propagation (Poole
et al., 2016; Schoenholz et al., 2017) and neural tangent
kernel (NTK) (Jacot et al., 2018) adopt Gaussian distribu-
tion for the simplicity of theoretical analysis. Following
this convention, we adopt the following assumption for our
theoretical derivation.
Assumption 3.1. At any layer l ∈ [L], each W

(l)
k′k is drawn

i.i.d. from Gaussian distribution N(0, σ2
w/dl−1), and each

bias term b
(l)
k is set to be 0 at initialization.

Here, σw is a hyper-parameter controlling the variance of
the random distribution. In particular, we note that σ2

w = 2
corresponds to Kaiming initialization, σ2

w = 1 corresponds
to Xavier initialization for identical hidden layer width (i.e.,
dl−1 = dl), and σ2

w = 1/3 corresponds to Conventional
initialization.

Throughout this paper, we use uniformly distributed initial-
ization in all our experiments, and use Gaussian distributed
initialization (Assumption 3.1) in all our theoretical analy-
sis.

4. Evaluation of commonly-used initialization
in GCNs

In this section, we evaluate the quality of commonly-used
initialization in GCNs. The evaluation is based on the signal

propagation quality at initialization from the following three
aspects.

Forward signal propagation is responsible to extract ab-
stract and higher-level representations from the input data
as the information flows through the network. We take the
expected output-input norm ratio Eθ[∥H(L)(θ)∥2F/∥X∥2F]
at initialization as the forward propagation metric. A proper
initialization method should prevent this metric from either
vanishing or exploding as L→∞.

Backward signal propagation is responsible for updating
the weights by utilizing gradients computed via the back-
propagation algorithm. In vanilla GCN, the gradient of
the weight W (l) at the l-th layer can be decomposed as
∂ℓ/∂W (l) = σ(H(l−1))T · Â · [∂ℓ/∂H(l)] where ℓ is the
training loss. A stable magnitude of ∂ℓ/∂H(l) with respect
to the layer l suggests that the gradient is less susceptible to
vanishing or exploding. We take Eθ[∥∂ℓ/∂W (1)∥2F] as the
backward propagation metric at initialization. A proper ini-
tialization method should prevent this metric from vanishing
or exploding as L→∞.

Output diversity propagation is responsible for tackling
the over-smoothing issue, a GCN-specific problem. A num-
ber of existing works measure over-smoothing by Dirich-
let energy (Cai & Wang, 2020; Zhou et al., 2021b; Rusch
et al., 2023a), defined as Dir(H(L)) = tr(H(L)T L̂H(L)) =∑

(i,j)∈E ∥H
(L)
i,: /
√
1 +Dii − H

(L)
j,: /

√
1 +Djj∥2, where

L̂ = I − Â is the normalized Laplacian of graph G. To
mitigate the influence of the weight randomness and the em-
bedding norm, we select the expected normalized Dirichlet
energy Eθ[Dir(H(L))/∥H(L)∥2F] at initialization as the out-
put diversity metric. A proper initialization method should
prevent this metric from vanishing as L→∞.

4.1. Vanilla GCN

As mentioned in Section 3.3, most GCN models use Conven-
tional weight initialization. Now we theoretically evaluate
the signal propagation quality of Conventional initialization
in vanilla GCN. Analogous to the mean-field analysis in
DNNs, we consider the infinite-width limit of vanilla GCN.
Under this approximation, all the channels {H(l)

:,k}
dl

k=1 of
each embedding at the l-th layer are i.i.d., following Gaus-
sian distribution N(0,Σ(l)) (see Appendix C.1 for the de-
tails), which is also referred to as the neural network Gaus-
sian process (NNGP) correspondence.

Under the NNGP correspondence, the forward propagation
metric can be approximated by

Eθ

[
∥H(L)∥2F/∥X∥2F

]
≈ EH∼N(0n,Σ(L))

[
∥H∥2F/∥X∥2F

]
,

and the output diversity metric can be approximated by

Eθ

[
Dir(H(L)

∥H(L)∥2F

]
≈ EH∼N(0n,Σ(L))

[
Dir(H)

∥H∥2F

]
,
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where H ∼ N(0n,Σ
(L)) means that the columns

{H:,k}Ck=1 of H ∈ Rn×C are i.i.d. N(0n,Σ
(L)).

Now we analyze the signal propagation of GCN under var-
ious activation functions. We start with ReLU since it is
the most commonly used activation in popular GCN models
(e.g., (Zhao & Akoglu, 2020; Rong et al., 2020; Huang et al.,
2020; Lu et al., 2021; Chen et al., 2020b)). The following
theorem states that under ReLU activation, if the initial
weight variance σ2

w ≤ 2, which covers Conventional, Kaim-
ing, and Xavier initialization, deep vanilla GCNs suffer from
poor forward and output diversity propagation.

Theorem 4.1. Under Assumption 3.1 and the NNGP corre-
spondence approximation, when the activation function σ is
ReLU, we have

1. The output diversity metric

EH∼N(0n,Σ(L))[Dir(H)/∥H∥2F]

is independent of the choice of σ2
w.

2. If σ2
w = 2, either the limit output diversity metric

lim
L→∞

EH∼N(0n,Σ(L))

[
Dir(H)/∥H∥2F

]
= 0,

or the limit forward propagation metric

lim
L→∞

EH∼N(0n,Σ(L))[∥H∥2F/∥X∥2F] = 0.

3. When σ2
w < 2, we have

EH∼N(0n,Σ(L))[∥H∥2F/∥X∥2F] ≤
2C

d0
· (σ2

w/2)
L,

for any L ≥ 1.

Part 1 of Theorem 4.1 states that it is impossible to improve
output diversity by simply refining σ2

w. Part 2 shows that un-
der Kaiming initialization in ReLU-activated vanilla GCN,
either the forward propagation metric or the output diversity
metric vanishes as L→∞. Part 3 characterizes the shrink-
age of the forward propagation metric when σ2

w is less than
that of Kaiming initialization.

The purple lines in Figure 2(a)-(c) illustrate the shrinkage
of the three signal propagation metrics under Conventional
initialization as the network depth increases. Figure 2(a)
presents the vanishing pattern of the forward propagation
metric when σ2

w is no greater than that of Kaiming ini-
tialization, which validates Part 2 and 3 in Theorem 4.1.
Figure 2(b) shows that the backward propagation metric
transits from vanishing to stable, and then to exploding as
σ2
w increases. Figure 2(c) shows that the output diversity
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Figure 2. Plots of (a,d) forward metrics, (b,e) backward metrics,
and (c,f) output diversity metrics of deep vanilla GCNs with differ-
ent initialization variances and activations on Cora. (Sub-figures
(a)-(c) are for ReLU activation, while sub-figures (d)-(f) are for
tanh activation.) The choice of initialization variance plays a
crucial role in forward and backward propagation. The output
diversity propagation can be made stable with proper initialization
variance for tanh activation, but not for ReLU activation.

propagation cannot be improved via merely changing σ2
w,

which validates Part 1 of Theorem 4.1.3

The following theorem states that under tanh activation, if
the initial weight variance σ2

w ≤ 1, which covers Conven-
tional and Xavier initialization, deep vanilla GCN suffer fro
poor forward propagation.

Theorem 4.2. Under Assumption 3.1 and the NNGP corre-
spondence approximation, when the activation function σ is
tanh, we have

1. When σ2
w = 1, we have

lim
L→∞

EH∼N(0n,Σ(L))[∥H∥2F/∥X∥2F] = 0.

2. When σ2
w < 1, we have

EH∼N(0n,Σ(L))[∥H∥2F/∥X∥2F] ≤
C

d0
· σ2L

w ,

for any L ≥ 1.

Different from ReLU-activated GCNs, Figure 2(f) shows
propagation transits from vanishing to stable for tanh-
activated models as σ2

w increases. With proper σ2
w, stable

propagation for all three types of signals can be achieved;
see the orange lines in Figure 2(d)-2(f).

3In all the figures illustrating signal propagation metrics, dis-
appearing nodes and vertical lines are caused by surpassing the
machine precision. Specifically, the vanishing forward propagation
metric result in vertical lines in the plots of the output diversity
metric, while the exploding forward propagation metric leads to
node disappearance in the plots of the output diversity metric.
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4.2. GCNs with residual connections

Similarly to vanilla GCN, the curse of depth has also been
reported in deep ResGCN (Huang et al., 2020; Rusch et al.,
2023a). In this subsection, we focus on the signal propaga-
tion in ResGCN.
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Figure 3. (a) The forward metrics and (b) the output diversity met-
rics of ReLU-activated deep ResGCN on Cora. ResGCNs with
non-zero initialization variances always suffer from exploding for-
ward propagation and over-smoothing.

In the theoretical analysis, we assume identity activation
function for simplicity (and hence ResGCN reduces to a
linear model), but use ReLU activation in the experiments.
As in the analysis of vanilla GCN, all the channels of X(l)

and H(out,L) are i.i.d. Gaussian under the infinite-width
limit (see Proposition D.1), whose distributions are denoted
by N(0n, Σ̃

(l)) and N(0n, Σ̃
(out,L)), respectively. Thus,

linear ResGCN also has its NNGP correspondence. The
following theorem implies that the linear version of the
original ResGCN in (Kipf & Welling, 2017) suffers from
forward signal explosion and output diversity shrinkage
under the NNGP approximation at initialization.

Theorem 4.3. Suppose that there exists an eigenvector u
of Â corresponding to the eigenvalue 1, such that the input
feature X ∈ Rn×d0 satisfies XTu ̸= 0d0×1. Under the
initialization in Assumption 3.1 and the NNGP correspon-
dence approximation for linear ResGCN, if α2σ2

w + β2 > 1
and α ̸= 0, then we have

1. limL→∞ EH∼N(0n,Σ̃(out,L))[∥H∥2F/∥X∥2F] = +∞;

2. limL→∞ EH∼N(0n,Σ̃(out,L))[Dir(H)/∥H∥2F] = 0.

Since (α, β) = (1, 1) for the original ResGCN, α2σ2
w +

β2 > 1 and α ̸= 0 always hold for any nonzero initializa-
tion variance. Part 1 and Part 2 of Theorem 4.3 indicate
exploding forward propagation and over-smoothing, respec-
tively, in the original ResGCN.

We now provide numerical evidence for Theorem 4.3. In
Figure 3, we plot the forward and output diversity propaga-
tion of ReLU-activated ResGCN with different initialization
variances. We see that the widely used Conventional and
Kaiming initialization schemes (Huang et al., 2020; Kipf
& Welling, 2017) (and essentially any non-zero initializa-
tion variance) lead to exploding forward propagation and
over-smoothing.

In summary, the discussions in Section 4.1 and 4.2 high-
light that conventional initialization schemes used in vanilla
GCN and ResGCN all fail to achieve proper signal propaga-
tion. To tackle this challenge, we propose new initialization
schemes in the next section.

5. New initialization schemes
5.1. SPoGInit: initialization guided by signal

propagation on graph

Borrowing the idea from MetaInit (Dauphin & Schoen-
holz, 2019), we propose a random weight-searching al-
gorithm called ‘Signal Propagation on Graph’ guided
Initialization (SPoGInit). Given any Xavier-initialized
{Ŵ (l)}Ll=1, we scale the weights layer-wise by γ =
(γ(l))l∈[L] ∈ RL

>0 to yield new initialization θ(γ) =

{W (l)}Ll=1 = {γ(l)Ŵ (l)}Ll=1 that achieves proper signal
propagation. To achieve this goal, SPoGInit aims to find the
optimal scaling vector γ by solving the following problem:

min
γ

F (θ(γ)) := w1

[
∥H(1)(θ(γ))∥F

∥H(L−1)(θ(γ))∥F
− 1

]2

︸ ︷︷ ︸
(a)

+ w2

[
∥g(2)(θ(γ))∥F

∥g(L−1)(θ(γ))∥F
− 1

]2

︸ ︷︷ ︸
(b)

−w3
Dir(H(L)(θ(γ))

∥H(L)(θ(γ)∥2F︸ ︷︷ ︸
(c)

,

where g(l)(θ(γ)) ≜ ∂ℓ/∂W (l), and w1, w2, w3 > 0 are
pre-determined hyper-parameters. Term (a) and (b) are
designed to stabilize forward and backward propagation, re-
spectively, while term (c) is to suppress over-smoothing.
For term (a), we use ∥H(1)(θ(γ))∥F/∥H(L−1)(θ(γ))∥F
instead of ∥H(L)(θ(γ))∥F/∥X∥F, because H(1)(θ(γ)),
H(L−1)(θ(γ)) are both intermediate embeddings dur-
ing the signal propagation process and share iden-
tical dimensions. For the same reason, we use
∥g(2)(θ(γ))∥F/∥g(L−1)(θ(γ))∥F in term (b). More details
about SpoGInit are in Appendix F.

5.2. ReZeroGCN

Inspired by ReZero (Bachlechner et al., 2021), we propose
a modified ResGCN architecture called ReZeroGCN by
replacing the hyperparameters (α, β) with trainable param-
eters (α(l), β(l)) initialized to be (0, 1). That is,

H(l) = ÂX(l−1)W (l) + 1n · b(l),
X(l) = α(l)σ(H(l)) + β(l)X(l−1).

Additionally, we use Xavier initialization to randomly ini-
tialize the weights {W (l)}.

Since X(L) = X(L−1) = · · · = X(0) under this initializa-
tion, deep ReZeroGCN naturally exhibits stable forward

6
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signal propagation and reasonable output diversity at initial-
ization.

Next, we analyze the backward propagation of deep ReZe-
roGCN. The gradient of weight matrix W (l) at the l-th layer
is given by

∂ℓ

∂W
(l)
:,k

=
∂H

(l)
:,k

∂W
(l)
:,k

∂X
(l)
:,k

∂H
(l)
:,k

∂ℓ

∂X
(l)
:,k

= α(l) ·

[
X(l−1)T Â · diag{σ′(H(l))} ∂ℓ

∂X
(l)
:,k

] (1)

for any channel k ∈ [d].

As shown in equation (1), the initial (α(l), β(l)) = (0, 1)
results in zero gradients of weight matrices at initialization.
However, the gradient of α(l) can be non-zero at initializa-
tion (See Appendix G.5) and help W (l) get updated in the
following training epochs. In the next section, we will show
by experiments that the gradient norms quickly improve in
the early stage of training.

We summarize the behaviors on signal propagation for popu-
lar skip-connection-based GCN models in Table 1. Relevant
experiments will be presented in the next section.
Table 1. Summary of signal propagation for popular skip-
connection-based GCNs. ✓ means that the corresponding signal
propagation is well-behaved. The proposed ReZeroGCN addresses
all three signal propagation aspects properly.

Models Forward Backward Output diversity
JKNet vanish vanish ✓

ResGCN explode explode vanish
GCNII ✓ vanish ✓

ReZeroGCN ✓ ✓ ✓

6. Experiments
Due to the limited space, we introduce all descriptions of
datasets, the experimental settings, and hyperparameters in

Appendix G.1 and G.2.

6.1. Vanilla GCNs and proposed SPoGInit methods

We first examine whether SPoGInit tackles the sig-
nal propagation and performance degradation of deep
GCNs. We set Conventional and Xavier initialization
schemes as our baselines.

In Figure 5(a)-5(c), we report the average signal propaga-
tion metrics for vanilla GCNs with different initializations
and varying depths. The results indicate that SPoGInit stabi-
lizes the forward-backward propagations and enhances the
output diversity. Notably, SPoGInit successfully prevents
gradient vanishing, a common issue encountered by other
initialization. As a result, SPoGInit effectively alleviates
the performance degradation of deep vanilla GCNs. It out-
performs the baselines (Xavier, Conventional) by 7.5% and
35.2% test accuracy at depth 128 (see Figure 5(d)). Similar
phenomena are also observed in various other datasets. We
present more experiments in Appendix G.3. These results
also demonstrate a strong correlation between the proposed
signal propagation metrics and the actual performance of
deep GCNs.

6.2. Skip-connection-based GCN models and
ReZeroGCN

We examine whether deep ReZeroGCN overcomes the
curse of depth. We adopt three popular skip-connection-
based GCN models, JKNet, ResGCN, and GCNII, as base-
lines. Due to the powerful expressivity brought by skip
connections (Chen et al., 2020b), baseline models achieve
perfect training accuracies on small-sized datasets. Thus,
we only consider large-scale datasets to examine the curse
of depth.

Figure 4 presents the average training and test accuracies of
ReLU-activated models with various depths. (The results
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Figure 4. The average training accuracies (a)-(d) and test accuracies (e)-(h) of different skip-connection-based GCNs with ReLU activation
on various datasets. ReZeroGCN outperforms baselines on all datasets and achieves consistent training gains with increasing depth.
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Figure 5. (a) The forward metrics, (b) backward metrics, and (c)
output diversity metrics of deep GCNs with different initializations
on the Cora dataset. (d) Training accuracies (dashed lines) and test
accuracies (solid lines) of deep GCNs after training on Cora. We
find that SPoGInit simultaneously addresses three signal propaga-
tion aspects, and alleviates the performance degradation.

of tanh-activated models are presented in Appendix G.4.)
We see that ReZeroGCN stands out by achieving consistent
performance gains as the depth increases. Additionally,
on the OGBN-Arxiv and Arxiv-year datasets, ReZeroGCN
achieves around 3% gain in test accuracy by deepening the
model from 4 to 64 layers. These results demonstrate that
ReZeroGCN successfully overcomes the curse of depth.
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Figure 6. (a) The forward metrics and (b) the output diversity met-
rics of different models and depths on the Cora dataset. ResGCN
suffers from forward exploding and output diversity vanishing.
In contrast, ReZeroGCN addresses the forward propagation and
preserves the output diversity.

Next, we investigate whether ReZeroGCN achieves well-
behaved signal propagation. Figure 6 presents the average
forward metric and output diversity metric of different mod-
els with various depths. Results indicate that ReZeroGCN
effectively addresses forward propagation and output diver-
sity.

Skip connections significantly change the back-propagation
computation. Therefore, we select the middle hidden layer
(the L/2-th layer in an L-layer model) as the representative
layer to measure the backward propagation. Figure 7 plots
the average backward metrics of the skip-connection-based
GCNs with various depths L during early training. We see
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(d) ReZeroGCN

Figure 7. The backward metrics at the L/2-th layer of different
ReLU-activated skip-connection-based GCNs with various depths
L during early training on the IGB-Tiny19 dataset. Baselines suffer
from gradient vanishing or exploding problems. Across early 300
epochs, the gradient norms of (a) JKNet and (c) GCNII vanish
as the depths increase, while the gradient norms of (b) ResGCN
explode. In contrast, the gradient norms of (d) ReZeroGCN quickly
improve in the early training. The disappearing lines in (b)-(c) are
caused by surpassing the machine precision.

that the baseline models suffer from poor backward propaga-
tion. Similar phenomena are also observed at initialization;
see Appendix G.5. In contrast, the backward propagation of
deep RezeroGCN with different depths rapidly tends to sta-
bilize during early training. The results of other layers in the
skip-connection-based models are presented in Appendix
G.5.

In conclusion, ReZeroGCN offers a straightforward yet ef-
fective solution to address the signal propagation challenges.
As a result, deep ReZeroGCN possesses powerful training
capability and ultimately overcomes the curse of depth.

7. Conclusion
We state that it is crucial to overcome performance degrada-
tion in deep GCNs by addressing the forward propagation,
backward propagation, and output diversity propagation
issues. However, theoretical analysis and empirical stud-
ies have revealed that widely used initialization methods
in GCNs fail to meet these requirements, resulting in sig-
nificant training issues (e.g., gradient vanishing and over-
smoothing) in deep networks. To tackle these challenges,
new initialization methods, SPoGInit and ReZeroGCN, are
proposed for vanilla GCN and ResGCN, respectively. The
experiments demonstrate that SPoGInit effectively allevi-
ates performance degradation in deep GCNs. Furthermore,
ReZeroGCN significantly overcomes the curse of depth. In-
teresting directions for future work include applying signal
propagation on the GNNs with attention mechanisms.
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A. Supplemental notation and preliminaries
A.1. Notation

For any matrix X = (xij) ∈ Rm×n, the vectorizaion of X is defined by

vec(X) := (x11, . . . , xm1, x12, . . . , xm2, . . . , x1n, . . . , xmn)
T ∈ Rmn×1.

For any matrix X = (xij) ∈ Rm×n and Y = (yij) ∈ Rp×q , the Kronecker product of X and Y is a mp× nq block matrix
defined by

X ⊗ Y :=

x11Y . . . x1nY
...

. . .
...

xm1Y . . . xmnY

 .

For a matrix X = (xij) ∈ Rm×n, if xij = 0 for all i ∈ [m] and j ∈ [n], we denote X = 0m×n; if xij = 1 for all i ∈ [m]
and j ∈ [n], we denote X = 1m×n. For a vector Z = (zi) ∈ Rn, if zi = 0 for all i ∈ [n], we denote Z = 0n; if zi = 1 for
all i ∈ [n], we denote Z = 1n.

A.2. Supplemental skip-connected-based GCN architectures

JKNet. Xu et al. (2018) proposes jumping knowledge network (JKNet) by only combining all embeddings in the hidden
layers before getting the output. To be more specific, an L-layer JKNet is defined by

X(0) := XW (0) + 1n · b(0),
H(l) := ÂX(l−1)W (l) + 1n · b(l), for any l ∈ [L],

X(l) := σ(H(l)), for any l ∈ [L],

H(out,L) := COMBINE(X(1), X(2), . . . , X(L)).

We assume that COMBINE is a linear transformation from the concatenation of {X(l)}Ll=1 to the output embedding.

GCNII. Chen et al. (2020b) designs GCNII by (1) using residual connection to the initial layer and (2) combining identity
matrices with the weight matrices. Specifically, an L-layer GCNII is defined by

X(0) := XW (0) + 1n · b(0),

H(l) := (1− αl)ÂX(l−1) ·
[
(1− βl)Id + βlW

(l)
1

]
+ αlX

(0) ·
[
(1− βl)Id + βlW

(l)
2

]
, for any l ∈ [L],

X(l) := σ(H(l)), for any l ∈ [L],

H(out,L) := X(L)W (L+1) + 1n · b(L+1),

(2)

where {αl, βl}Ll=1 are predetermined hyperparameters and βl, set to be log( λ
l+1 + 1), vanishes to 0 as l→∞, where λ is

a predetermined hyperparameter. Chen et al. (2020b) call the architecture imposing W
(l)
1 = W

(l)
2 by GCNII and call its

improved version by (2) GCNII* in their paper. For the sake of brevity, we refer to the architecture (2) as GCNII without
bringing any confusion.
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B. Convolutional kernel
Suppose that graph G has M connected components. The m-th component is a subgraph denoted by Gm = (Vm, Em) for
m ∈ [M ]. We present a well-known result characterizing the eigenvalues and the eigenvectors of Â without giving proof,
see, e.g., Proposition 1 in Oono & Suzuki (2019).

Proposition B.1. Suppose that G = (V, E) has M connected components {Gm = (Vm, Em)}Mm=1 and the eigenvalues of Â
are λ1 ≥ λ2 ≥ · · · ≥ λn. Then we have

• λi = 1, for any 1 ≤ i ≤M .

• λi ∈ (−1, 1), for any M + 1 ≤ i ≤ n.

Moreover, the set {v(m) = D̃
1
2u(m) : m ∈ [M ]} is a basis of the m-dimensional eigenspace of Â corresponding to the

eigenvalue 1, where u(m) = (1{i∈Vm})i∈[n] ∈ Rn×1 is the indicator vector of the m-th connected component Gm.

Lemma B.2. Given any H ∈ Rn×C and H ̸= 0n×C , we have 0 ≤ Dir(H)/∥H∥2F ≤ 2.

Proof. Recall that L̂ = I − Â is the normalized Laplacian of graph G. By Proposition B.1, all the eigenvalues of L̂ belong
to [0, 2).

Given any H ∈ Rn×C , we have

Dir(H) = tr(HT L̂H) =

C∑
k=1

HT
:,kL̂H:,k ≤

C∑
k=1

2 ·HT
:,kH:,k = 2∥H∥2F.

Similarly, we have

Dir(H) = tr(HT L̂H) =

C∑
k=1

HT
:,kL̂H:,k ≥

C∑
k=1

0 ·HT
:,kH:,k = 0.

Therefore, we conclude that
0 ≤ Dir(H)/∥H∥2F ≤ 2.
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C. Signal propagation theory for vanilla GCN
C.1. NNGP correspondence for vanilla GCN

Proposition C.1 (NNGP correspondence for vanilla GCN). Under the initialization in Assumption 3.1, as the network
widths d1, d2, . . . , dL−1 sequentially go to infinity, the l-th layer’s pre-activation embedding channels {H(l)

:,k}k∈[dl] converge
to i.i.d. n-dimensional Gaussian random variables N(0n,Σ

(l)) in distribution. The covariance matrices are

Σ(1) =
σ2
w

d0
ÂXXT Â,

Σ(l+1) = σ2
wÂG(Σ(l))Â,

(3)

where G(Σ) = Eh∼N(0n,Σ)[σ(h)σ(h)
T ] for any n× n positive semi-definite matrix Σ.

Proof of Proposition C.1. We will prove Proposition C.1 by mathematical induction as follows.

Base case. Since the bias terms are initialized to be zero in Assumption 3.1, when l = 1, the k-th channel of the embedding
is

H
(1)
:,k = ÂXW

(1)
:,k + 1n · b(1)k = ÂXW

(1)
:,k . (4)

According to Assumption 3.1, {W (1)
:,k }k∈[d1] are i.i.d. Gaussian distributed, so {H(1)

:,k }k∈[d1] are also i.i.d. Gaussian
distributed. Taking the expectation of (4), we get

E[H(1)
:,k ] = ÂX · E[W (1)

:,k ] = 0.

Calculating the covariance matrix of (4), we have

Cov[H
(1)
:,k , H

(1)
:,k ] = E[H(1)

:,k ·H
(1)T
:,k ] = E[ÂXW

(1)
:,k W

(1)T
:,k XT Â]

= ÂX · E[W (1)
:,k W

(1)T
:,k ] ·XT Â = ÂX ·

(
σ2
w

d0
· Id0

)
·XT Â

=
σ2
w

d0
ÂXXT Â

Thus, if we define Σ(1) = σ2
wÂXXT Â/d0, then we have {H(1)

:,k }k∈[d1] are exactly i.i.d. from N(0n,Σ
(1)).

Induction step. Suppose that {H(l)
:,k}k∈[dl] converge to i.i.d. n-dimensional Gaussian random variables N(0,Σ(l)) in

distribution as d1, . . . , dl−1 sequentially go to infinity, we look at the (l + 1)-th layer. Recall from the formation of the l-th
layer in vanilla GCN, we have

H(l+1) = ÂX(l)W (l+1) + 1n · b(l+1),

X(l) = σ(H(l)),

for any l ≥ 1. We vectorize the first equation and get

vec(H(l+1)) = vec(ÂX(l)W (l+1)) + vec(1n · b(l+1))

=

dl∑
k=1

vec

[ÂX
(l)
:,k ]︸ ︷︷ ︸

n×1

·W (l+1)
k,:︸ ︷︷ ︸

1×dl+1

 ,
(5)

because b(l+1) is initialized to be 0dl+1
under Assumption 3.1. Suppose that Σ(l+1) = σ2

wÂG(Σ(l))Â, we only need to show
that vec(H(l+1)) converges to a Gaussian random variable N(0ndl+1

, Idl+1
⊗Σ(l+1)) in distribution as d1, d2, . . . , dl−1, dl

sequentially go to infinity.

For brevity, we define
ω
(l+1)
kk′ :=

√
dl ·W (l+1)

kk′ , for all k ∈ [dl] and k′ ∈ [dl+1],
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and
Z

(l+1)
k := vec

(
[ÂX

(l)
:,k ] · ω

(l+1)
k,:

)
, for all k ∈ [dl]. (6)

Then we get that {ω(l+1)
kk′ }k∈[dl],k′∈[dl+1] are i.i.d. from N(0, σ2

w) and

RHS of (5) =
1√
dl

dl∑
k=1

Z
(l+1)
k . (7)

By the induction hypothesis, as d1, d2. . . . , dl−1 sequentially go to infinity, {X(l)
:,k}k∈[dl] = {σ(H

(l)
:,k )}k∈[dl] converge to i.i.d.

n-dimensional random vectors in distribution. Because X(l) can be regarded as a function of {W (l′)}ll′=1 at initialization,
we get that X(l) and W (l+1) are independent. Thus, as d1, d2. . . . , dl−1 sequentially go to infinity, {Z(l+1)

k }k∈[dl] converge
to i.i.d. random vectors in distribution. Moreover, in this limiting case, by taking the expectation of (6), we have

E[Z(l+1)
1 ] = vec

([
ÂE[X(l)

:,k ]
]
· E[ω(l+1)

k,: ]
)
= vec

(
0n×1 · 01×dl+1

)
= 0ndl+1

.

Calculating the covariance matrix of (6), we have

Cov[Z
(l+1)
1 , Z

(l+1)
1 ] = E[Z(l+1)

1 · Z(l+1)T
1 ]

= E
[
vec
(
[ÂX

(l)
:,1 ] · ω

(l+1)
1,:

)
· vec

(
[ÂX

(l)
:,1 ] · ω

(l+1)
1,:

)T]
= E

[
(ω

(l+1)T
1,: ⊗ ÂX

(l)
:,1 ) · (ω

(l+1)
1,: ⊗X

(l)T
:,1 Â)

]
= E

[
ω
(l+1)T
1,: ω

(l+1)
1,: ⊗ ÂX

(l)
:,1X

(l)T
:,1 Â

]
= E

[
ω
(l+1)T
1,: ω

(l+1)
1,:

]
⊗
{
Â · E

[
X

(l)
:,1X

(l)T
:,1

]
· Â
}

= σ2
wIdl+1

⊗ ÂG(Σ(l))Â

= Idl+1
⊗ σ2

wÂG(Σ(l))Â = Idl+1
⊗ Σ(l+1).

Here X(l)
:,1 actually stands for the limit of true X(l)

:,1 as d1, . . . , dl−1 sequentially go to infinity without bringing any confusion.

By multivariate central limit theorem, 1√
dl

∑dl

k=1 Z
(l+1)
k converges to a Gaussian random variable N(0ndl+1

, Idl+1
⊗Σ(l+1))

in distribution as dl →∞. Recalling (5) and (7), we conclude that vec(H(l+1)) converges to a Gaussian random variable
N(0ndl+1

, Idl+1
⊗ Σ(l+1)) as d1, . . . , dl sequentially go to infinity.

Conclusion. By the principle of mathematical induction, we have proven this proposition.

C.2. Some discussion w.r.t. G

We claim that the function G is well-defined in Proposition C.1 on the collection of positive semi-definite matrices

S = {Σ ∈ Rn×n : xTΣx ≥ 0 for all x ∈ Rn×1}. (8)

Remark C.2. To show that G(Σ) = Eh∼N(0n,Σ)[σ(h)σ(h)
T ] is well-defined at any Σ ∈ S, we only need to show that

such Σ is always a feasible covariance matrix of Gaussian distribution. For any Σ ∈ S, there exists P ∈ Rn×n, such
that PPT = Σ. Let ξ ∼ N(0n, In) be an n-dimensional standard normal random variable, then the random variable
Pξ ∼ N(0n,Σ). Thus, all positive semi-definite matrices are feasible covariance matrices for Gaussian distributions.

Definition C.3. Given any positive semi-definite matrix Σ ∈ S, we define

G1(Σ) := q(Σ)q(Σ)T , (9)

where q(Σ) ∈ Rn×1 is defined by
q(Σ)i :=

√
G(Σ)ii, for all i ∈ [n]. (10)
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Lemma C.4. Given any positive semi-definite matrix Σ ∈ S, it holds that

G1(Σ)ij ≥ G(Σ)ij for any i, j ∈ [n]. (11)

Proof. Recalling the formation of function G in Proposition C.1 (NNGP correspondence for vanilla GCN), for any i, j ∈ [n],
we have

G(Σ)ij = Eh∼N(0n,Σ)[σ(hi) · σ(hj)].

Recalling (9) and (10) in Definition C.3, we get

G1(Σ)ij := q(Σ)i · q(Σ)j =
√

G(Σ)ii ·
√
G(Σ)jj

= Eh∼N(0n,Σ)[σ(hi)
2]

1
2 · Eh∼N(0n,Σ)[σ(hj)

2]
1
2

(12)

From Hölder’s inequality (Hardy et al., 1952), we get

RHS of (12) ≥ Eh∼N(0n,Σ) [|σ(hi) · σ(hj)|]
≥ Eh∼N(0n,Σ) [σ(hi) · σ(hj)] = G(Σ)ij .

Lemma C.5. Given the NNGP covariance matrices {Σ(l)}∞l=1 defined by (3), it holds that

tr(Σ(l+1)) ≤ σ2
w tr(G(Σ(l))).

Proof. Recalling the NNGP correspondence formula for vanilla GCN (3) in Proposition C.1, we have

tr(Σ(l+1)) = tr(σ2
w(ÂG(Σ(l))Â)) = σ2

w tr(ÂG(Σ(l))Â)). (13)

Since all entries of Â are non-negative, by Lemma C.4, we have

(ÂG(Σ(l))Â)ii ≤ (ÂG1(Σ
(l))Â)ii, for any i ∈ [n].

Taking the summation of w.r.t i ∈ [n], we get

tr(ÂG(Σ(l))Â) ≤ tr(ÂG1(Σ
(l))Â). (14)

Recalling the definition of function G1 in (9), we get

tr(ÂG1(Σ
(l))Â) = tr(Âq(Σ(l))q(Σ(l))T Â) = ∥Âq(Σ(l))∥2. (15)

By Proposition B.1, all the eigenvalues of Â belong to (−1, 1]. Recalling the definition of function q in (10), we get

∥Âq(Σ(l))∥2 ≤ ∥q(Σ(l))∥2 =

n∑
i=1

q(Σ(l))2i = tr(G(Σ(l))). (16)

Finally, combining (13), (14), (15), and (16), we complete the proof.

C.3. Proof of Theorem 4.1 (signal propagation on ReLU-like-activated vanilla GCN)

We will give a more general signal propagation analysis on vanilla GCN with ReLU-like activation.

Definition C.6 (ReLU-like activation). An activation function σ : R→ R is (α, β)-ReLU if it has the form

σ(x) =

{
αx, x ≥ 0,

βx, x < 0,
(17)

where α, β ∈ R+ and not both of them are 0. We also call such σ a ReLU-like activation function.
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Then we extend Theorem 4.1 from the special (1, 0)-ReLU-activated case to the general (α, β)-ReLU-activated case.

Theorem C.7. Under Assumption 3.1 and the NNGP correspondence approximation, when the activation function σ is
(α, β)-ReLU in Definition C.6, we have

1. The output diversity metric EH∼N(0n,Σ(L))[Dir(H)/∥H∥2F] is independent of the choice of σ2
w.

2. When σ2
w = 2/(α2 + β2), either the output diversity metric

lim
L→∞

EH∼N(0n,Σ(L))

[
Dir(H)/∥H∥2F

]
= 0,

or the forward propagation metric

lim
L→∞

EH∼N(0n,Σ(L))[∥H∥2F/∥X∥2F] = 0.

3. When σ2
w < 2, for any L ≥ 1, the forward propagation metric satisfies

EH∼N(0n,Σ(L))[∥H∥2F/∥X∥2F] ≤
2C

(α2 + β2)d0
·
(
σ2
w(α

2 + β2)

2

)L

.

We first prove part 1 of Theorem C.7 and leave the rest of proof in the end of this subsection.

Proof of part 1 in Theorem C.7 (the generalized version of Theorem 4.1). Under the Gaussian random initialization as-
sumption 3.1 and the NNGP correspondence approximation, we only need to prove that

Σ(l)(σ2
w)

σ2l
w

=
Σ(l)(σ̃2

w)

σ̃2l
w

, for any l ≥ 1 and σ2
w, σ̃

2
w > 0. (18)

If (18) holds, then H ∼ N(0n,Σ
(L)(σ2

w)) implies σ̃L
wH/σL

w ∼ N(0n,Σ
(L)(σ̃2

w)). In this way, we have

EH∼N(0n,Σ(L)(σ2
w))

[
Dir(H)

∥H∥2F

]
= EH∼N(0n,Σ(L)(σ2

w))

[
Dir(σ̃L

wH/σL
w)

∥σ̃L
wH/σL

w∥2F

]
= EH∼N(0n,Σ(L)(σ̃2

w))

[
Dir(H)

∥H∥2F

]
.

Now we prove (18) by mathematical induction. When l = 1, by Proposition C.1, we have

Σ(1)(σ2
w)

σ2
w

=
1

d0
ÂXXT Â =

Σ(1)(σ̃2
w)

σ̃2
w

, for any σ2
w, σ̃

2
w > 0.

If (18) holds for L, we look at the case for L + 1. Since the activation σ is (α, β)-ReLU, for any c ∈ R+, we have
σ(cx) = cσ(x). Recalling the definition of G in Proposition C.1, for any positive semi-definite matrix Σ ∈ S, we have

G(c2Σ)ij = Eh∼N(0n,c2Σ)[σ(hi) · σ(hj)] = Eh∼N(0n,Σ)[σ(chi) · σ(chj)]

= c2Eh∼N(0n,Σ)[σ(hi) · σ(hj)] = c2G(Σ)ij ,

for any i, j ∈ [n] and c ∈ R+. Thus, by Proposition C.1, we have(
σ̃2
w

σ2
w

)L+1

· Σ(L+1)(σ2
w)

(a)
=

(
σ̃2
w

σ2
w

)L+1

· σ2
wÂG

(
Σ(L)(σ2

w)
)
Â

= σ̃2
w ·
(
σ̃2
w

σ2
w

)L

· ÂG
(
Σ(L)(σ2

w)
)
Â

(b)
= σ̃2

w · ÂG
(
Σ(L)(σ̃2

w)
)

(c)
= Σ(L+1)(σ̃2

w),

18
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Figure 8. Roadmap for the proof of part 2 and 3 in Theorem C.7 (the generalized version of Theorem 4.1)

where (a) and (c) are due to Proposition C.1 and (b) are from the induction hypothesis.

Therefore, (18) holds for all L ≥ 1 and we have completed the proof.

For the convenience of following the proof of part 2 and 3, we provide a roadmap here.
Lemma C.8. For any x ∈ Rn, it holds that

Dir(Âx) ≤ λ2Dir(x), (19)

where λ is the second largest absolute eigenvalue of Â, i.e.,

λ = max
i∈[n],λi ̸=1

|λi|.

Proof. Since Â is a symmetric real matrix, by Proposition B.1, it can be decomposed as Â = UΛUT , where Λ =
diag(λ1, λ2, . . . , λn) and U ∈ Rn×n is an orthogonal matrix. The i-th column ui of U is the eigenvector corresponding to
λi.

By Proposition B.1, we have λi ∈ (−1, 1] for all i ∈ [n]. Since L̂ = I − Â, we conclude that

Dir(Âx) = (Âx)T L̂Âx = xT ÂL̂Âx = zTUT (UΛU−1)(U(I − Λ)U−1)(UΛU−1)z

= zTΛ(I − Λ)Λz =

n∑
i=1

(1− λi)λ
2
i z

2
i ≤ λ2

n∑
i=1

(1− λi)z
2
i

= λ2zT (I − Λ)z = λ2Dir(x).

Lemma C.9. When the activation function σ is (α, β)-ReLU, it holds that

(σ(x)− σ(y))2 + (σ(−x)− σ(−y))2 ≤ (α2 + β2)(x− y)2, (20)

for any x, y ∈ R. Moreover, the inequality becomes an equality if and only if xy ≥ 0.

Proof. When x, y ≥ 0, it holds that

LHS of (20) = (αx− αy)2 + (−βx+ βy)2 = RHS of (20).

Similarly, the equality holds when x, y ≤ 0. When xy < 0,

LHS of (20) = (αx− βy)2 + (−βx+ αy)2

= (α2 + β2)(x2 + y2)− 4αβxy

= (α2 + β2)(x− y)2 + 2(α− β)2xy

< RHS of (20).

19
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Lemma C.10. When the activation function σ is (α, β)-ReLU, it holds that

Dir(σ(h)) + Dir(σ(−h)) ≤ (α2 + β2)Dir(h). (21)

Proof. Since the activation function σ is (α, β)-ReLU, we have

σ(cx) = cσ(x), for any c ∈ R+, x ∈ R. (22)

Then we get

LHS of (21) =
∑

(i,j)∈E

[
σ(hi)√
1 + di

− σ(hj)√
1 + dj

]2
+

[
σ(−hi)√
1 + di

− σ(−hj)√
1 + dj

]2

=
∑

(i,j)∈E

[
σ

(
hi√
1 + di

)
− σ

(
hj√
1 + dj

)]2
+

[
σ

(
−hi√
1 + di

)
− σ

(
−hj√
1 + dj

)]2
.

(23)

By Lemma C.9, we have

LHS of (21) ≤ (α2 + β2)
∑

(i,j)∈E

[
hi√
1 + di

− hj√
1 + dj

]2
= RHS of (21). (24)

Lemma C.11. When the activation function σ is (α, β)-ReLU, for any feasible covariance matrix Σ ∈ Rn×n, it holds that

Eh∼N(0n,Σ)[Dir(σ(h))] ≤ α2 + β2

2
· Eh∼N(0n,Σ)[Dir(h)].

Proof. By symmetry, for any n-dimensional random variable h ∼ N(0n,Σ), it holds that −h ∼ N(0n,Σ). By Lemma
C.10, we have

2Eh∼N(0n,Σ)[Dir(σ(h))] = Eh∼N(0n,Σ)[Dir(σ(h)) + Dir(σ(−h))]
≤ (α2 + β2)Eh∼N(0n,Σ)[Dir(h)].

(25)

Lemma C.12. Under Assumption 3.1 and the NNGP correspondence approximation, suppose that the activation function σ
is (α, β)-ReLU in Definition C.6. If

σ2
w <

2

λ2(α2 + β2)
,

then we have

Eh∼N(0n,Σ(l))[Dir(h)] = O

((
λ2σ2

w(α
2 + β2)

2

)l
)
, as l→∞, (26)

where λ is the second largest non-one absolute eigenvalue of Â, i.e.,

λ = max
i∈[n],λi ̸=1

|λi|.

Proof. For any positive semi-definite matrix Σ ∈ S and any n-dimensional Gaussian random variable h ∼ N(0n,Σ), we
have

Eh∼N(0n,Σ)[Dir(h)] = Eh∼N(0n,Σ)[tr(h
T L̂h)] = Eh∼N(0n,Σ)[tr(L̂hh

T )] = tr(L̂Σ).
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Then according the NNGP correspondence formula (3) in Proposition C.1, for any l ∈ N, we have

Eh∼N(0n,Σ(l+1))[Dir(h)] = tr(L̂Σ(l+1))

= σ2
w tr(L̂ÂG(Σ(l))Â) = σ2

w tr
(
L̂Â · Eh∼N(0n,Σ(l))[σ(h)σ(h)

T ] · Â
)

= σ2
wEh∼N(0n,Σ(l))

[
tr
(
L̂Âσ(h)σ(h)T Â

)]
= σ2

wEh∼N(0n,Σ(l))

[
tr
(
σ(h)T ÂL̂Âσ(h)

)]
= σ2

wEh∼N(0n,Σ(l))

[
Dir

(
Âσ(h)

)]
.

(27)

By Lemma C.8 and Lemma C.11, we get

RHS of (27) ≤ λ2σ2
w · Eh∼N(0n,Σ(l))[Dir(σ(h))] ≤ λ2σ2

w(α
2 + β2)

2
· Eh∼N(0n,Σ(l))[Dir(h)]. (28)

Thus, combining (27) and (28), by induction, we have

Eh∼N(0n,Σ(l))[Dir(h)] = O

((
λ2σ2

w(α
2 + β2)

2

)l
)
, as l→∞.

Proof of part 2 and 3 in Theorem C.7 (the generalized version of Theorem 4.1). First of all, we will prove part 3 of this
theorem. For any positive semi-definite matrix Σ ∈ S, we have

Eh∼N(0n,Σ)[∥h∥2] = Eh∼N(0n,Σ)[tr(h
Th)] = Eh∼N(0n,Σ)[tr(hh

T )] = tr(Σ).

For this reason, we only need to focus on {tr(Σ(l))}∞l=1 in the following proof.

We will show that {tr(Σ(l))}∞l=1 is a decreasing sequence if σw ≤ 2/(α2 + β2). By Lemma C.5, we have

tr(Σ(l+1)) ≤ σ2
w tr(G(Σ(l))). (29)

When the activation function σ is (α, β)-ReLU, for any c ∈ R+, it holds that

EZ∼N(0,1)[σ(cZ)2] = EZ∼N(0,1)[α
2c2Z21{Z>0}] + EZ∼N(0,1)[β

2c2Z21{Z≤0}]

=
α2 + β2

2
· EZ∼N(0,1)[c

2Z2].

Accordingly, for any positive semi-definite matrix Σ ∈ S and i ∈ [n], we have

G(Σ)ii = Eh∼N(0n,Σ)[σ(hi)
2] = EZ∼N(0,1)

[
σ(
√
ΣiiZ)2

]
=

α2 + β2

2
· EZ∼N(0,1)

[
ΣiiZ

2
]
=

α2 + β2

2
· Σii.

(30)

Combining (29) and (30), we get

tr(Σ(l+1)) ≤ σ2
w(α

2 + β2)

2
tr(Σ(l)).

Thus, we have shown that {tr(Σ(l))}∞l=1 is a decreasing sequence if σw ≤ 2/(α2 + β2). In addition, if σw < 2/(α2 + β2),
we get

tr(Σ(L)) ≤
(
σ2
w(α

2 + β2)

2

)L−1

tr(Σ(1)). (31)

By Proposition C.1, we have

tr(Σ(1)) =
σ2
w

d0
tr(ÂXXT Â) =

σ2
w

d0

d0∑
k=1

tr(ÂX:,kX
T
:,kÂ) =

σ2
w

d0

d0∑
k=1

∥ÂX:,k∥2 (32)
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Since all the eigenvalues of Â belong to (−1, 1] by Propositon B.1, we get

RHS of (32) ≤ σ2
w

d0

d0∑
k=1

∥X:,k∥2 =
σ2
w

d0
tr(XXT ). (33)

Combining (31), (32), and (33), we have

tr(Σ(L)) ≤ σ2
w

d0
·
(
σ2
w(α

2 + β2)

2

)L−1

tr(XXT ).

Thus, the forward propagation metric at the L-th layer satisfies

EH∼N(0n,Σ(L))

[
∥H∥2F
∥X∥2F

]
=

C

tr(XXT )
· Eh∼N(0n,Σ(L))[∥h∥2] =

C

tr(XXT )
tr(Σ(L))

≤ Cσ2
w

d0
·
(
σ2
w(α

2 + β2)

2

)L−1

=
2C

(α2 + β2)d0
·
(
σ2
w(α

2 + β2)

2

)L

.

Then we have completed part 3 of this theorem. If σ is ReLU activation function, i.e., (1, 0)-ReLU. If σ < 2 = 2
12+02 , we

have

EH∼N(0n,Σ(L))

[
∥H∥2F
∥X∥2F

]
=

2C

(12 + 02)d0
·
(
σ2
w(1

2 + 02)

2

)L

=
2C

d0
·
(
σ2
w

2

)L

,

which coincides with part 3 in Theorem 4.1.

Next, we will prove part 2 of this theorem. Let’s study the case when σw = 2/(α2 + β2). Suppose that

lim
l→∞

tr(Σ(l)) = δ0.

If δ0 = 0, then we have completed the first part of this theorem by getting

lim
L→∞

EH∼N(0n,Σ(L))[∥H∥2F/∥X∥2F] = lim
L→∞

C

∥X∥2F
· Eh∼N(0n,Σ(L))[∥h∥2]

=
C

∥X∥2F
· lim
L→∞

tr(Σ(L)) = 0.

Now we study the case when δ0 > 0. In order to show part 2 of the theorem, we only need to demonstrate that

lim
L→∞

EH∼N(0n,Σ(L))

[
Dir(H)

∥H∥2F

]
= 0.

Given any fixed ϵ > 0, we have

EH∼N(0n,Σ(L))

[
Dir(H)

∥H∥2F

]
= EH∼N(0n,Σ(L))

[
Dir(H)

∥H∥2F
1{∥H∥F≥ϵ}

]
+ EH∼N(0n,Σ(L))

[
Dir(H)

∥H∥2F
1{∥H∥F≤ϵ}

]
.

(34)

From Lemma B.2, it holds that Dir(H)/∥H∥2F ≤ 2, so we get

RHS of (34) ≤ 1

ϵ2
· EH∼N(0n,Σ(L))

[
Dir(H)1{∥H∥F≥ϵ}

]
+ 2 · PH∼N(0n,Σ(L)) [∥H∥F ≤ ϵ]

≤ 1

ϵ2
· EH∼N(0n,Σ(L)) [Dir(H)] + 2 · PH∼N(0n,Σ(L)) [∥H∥F ≤ ϵ] .

(35)
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For any L ≥ 1, there exists i ∈ [n], such that Σ(L)
ii ≥ tr(Σ(L))/n. Then for any n× C random matrix H ∼ N(0n,Σ

(L)),
we have Hi,1 ∼ N(0,Σ

(L)
ii ). For this reason, we have

PH∼N(0n,Σ(L)) [∥H∥F ≤ ϵ] ≤ PH∼N(0n,Σ(L)) [|Hi,1| ≤ ϵ] = PZ∼N(0,1)

[
|Z| ≤ ϵ√

Σii

]
≤ PZ∼N(0,1)

[
|Z| ≤ ϵ ·

√
n

tr(Σ(L))

]
= 2Φ

(
ϵ ·
√

n

tr(Σ(L))

)
− 1,

(36)

where Φ(x) = PZ∼N(0,1)[Z ≤ x] denotes the cumulative distribution function of the standard normal distribution N(0, 1).

Combining (34), (35), and (36), we get

EH∼N(0n,Σ(L))

[
Dir(H)

∥H∥2F

]
≤ 1

ϵ2
· EH∼N(0n,Σ(L)) [Dir(H)] + 4Φ

(
ϵ ·
√

n

tr(Σ(L))

)
− 2,

for any L ≥ 1.

Since
σ2
w =

2

α2 + β2
<

2

λ2(α2 + β2)
,

by Lemma C.12, we have
lim

L→∞
EH∼N(0n,Σ(L))[Dir(H)] = 0.

We let L→∞ in (34) and get

lim sup
L→∞

EH∼N(0n,Σ(L))

[
Dir(H)

∥H∥2F

]
≤ 1

ϵ2
· lim sup

L→∞
EH∼N(0n,Σ(L)) [Dir(H)] + 4 · lim sup

L→∞
Φ

(
ϵ ·
√

n

tr(Σ(L))

)
− 2

=
1

ϵ2
· 0 + 4Φ

(
ϵ ·
√

n

δ0

)
− 2 = 4Φ

(
ϵ ·
√

n

δ0

)
− 2.

(37)

Notice that the left hand side of (37) is independent of the choice of ϵ. Since Φ is a continuous map, we let ϵ→ 0+ and get

lim sup
L→∞

EH∼N(0n,Σ(L))

[
Dir(H)

∥H∥2F

]
≤ 4Φ(0)− 2 = 0.

Therefore, we have

lim
L→∞

EH∼N(0n,Σ(L))

[
Dir(H)

∥H∥2F

]
= 0.

C.4. Proof of Theorem 4.2 (signal propagation on tanh-activated vanilla GCN)

Lemma C.13. The collection of positive semi-definite matrices S defined by (8) is a closed subset of Rn×n.

Proof. We only need to show that given any convergent sequence {Q(k)}∞k=1 ⊂ S , its limit also belongs to S . Suppose that

lim
k→∞

Q(k) = Q∗.

Since all {Q(k)}∞k=1 are positive semi-definite matrices, so given any x ∈ Rn×1, we have

xTQ(k)x ≥ 0, for all k ∈ N.
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Then we get
xTQ∗x = lim

k→∞
xTQ(k)x ≥ 0.

Thus, Q∗ also belongs to S.

Lemma C.14. When the activation function σ is tanh, i.e., σ(x) = (ex − e−x)/(ex + e−x), then we have |σ(x)| ≤ |x| for
any x ∈ R. Moreover, the equality holds if and only if x = 0.

Proof. It is easy to verify that σ(0) = 0. Given any x ≥ 0, we have

σ(−x) = e−x − ex

e−x + ex
= −ex − e−x

e−x + ex
= −σ(x).

For this reason, we only need to prove that |σ(x)| < |x| for any x > 0. In the following part, we will show that 0 < σ(x) < x
when x > 0.

We define f(x) := σ(x)− x for any x ≥ 0. Let’s consider the derivative of f :

f ′(x) =
d

dx

(
ex − e−x

ex + e−x
− x

)
=

1

(ex + e−x)2

[
(ex + e−x) · d

dx
(ex − e−x)− (ex − e−x) · d

dx
(ex + e−x)

]
− 1

=
(ex + e−x)2 − (ex − e−x)2

(ex + e−x)2
− 1

=
−(ex − e−x)2

(ex + e−x)2
.

Then if x > 0, we have f ′(x) < 0; if x = 0, we have f ′(x) = 0. Thus, f(x) = σ(x)− x is a strictly decreasing function in
[0,+∞). Since f(0) = σ(0)− 0 = 0, we have

f(x) = σ(x)− x < 0, for any x > 0.

Since 0 < ex − e−x < ex + e−x for any x > 0, it holds that

σ(x) = (ex − e−x)/(ex + e−x) > 0, for any x > 0.

Therefore, we get that 0 < σ(x) < x for any x > 0 and have completed the proof of this lemma.

Now it is time for Theorem 4.2.

Proof of Theorem 4.2. First of all, we will prove part 2 of this theorem. For any positive semi-definite matrix Σ ∈ S, we
have

Eh∼N(0n,Σ)[∥h∥2] = Eh∼N(0n,Σ)[tr(h
Th)] = Eh∼N(0n,Σ)[tr(hh

T )] = tr(Σ).

For this reason, we only need to focus on {tr(Σ(l))}∞l=1 in the following proof.

We will show that {tr(Σ(l))}∞l=1 is a decreasing sequence if σw ≤ 1. By Lemma C.5, we have

tr(Σ(l+1)) ≤ σ2
w tr(G(Σ(l))). (38)

By Lemma C.14, we have |σ(x)| ≤ |x| for any x ∈ R. Moreover, the equality holds if and only if x = 0. For this reason,
given any positive semi-definite matrix Σ ∈ S, we have

tr(G(Σ)) =

n∑
i=1

Eh∼N(0n,Σ)[σ(hi)
2] =

n∑
i=1

EZ∼N(0,1)

[
σ(
√

ΣiiZ)2
]

≤
n∑

i=1

EZ∼N(0,1)

[
(
√
ΣiiZ)2

]
=

n∑
i=1

Eh∼N(0n,Σ)[h
2
i ] = tr(Σ),

(39)
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and the inequality becomes an equality if and only if
√
ΣiiZ = 0 holds P-a.s. for all i ∈ [n]. Since Z ∼ N(0, 1) follows a

standard normal distribution, it is equivalent to Σii = 0 for all i ∈ [n], i.e., tr(Σ) = 0.

Combining (38) and (39), we get
tr(Σ(l+1)) ≤ σ2

w tr(Σ(l)).

Thus, we have shown that {tr(Σ(l))}∞l=1 is a decreasing sequence if σw ≤ 1. In addition, if σw < 1, we get

tr(Σ(L)) ≤ σ2(L−1)
w tr(Σ(1)). (40)

Analogous to the proof of part 3 in Theorem C.7 for ReLU-activated model, by Proposition C.1 and Proposition B.1, we
have

tr(Σ(1)) =
σ2
w

d0
tr(ÂXXT Â) =

σ2
w

d0

d0∑
k=1

tr(ÂX:,kX
T
:,kÂ)

=
σ2
w

d0

d0∑
k=1

∥ÂX:,k∥2 ≤
σ2
w

d0

d0∑
k=1

∥X:,k∥2 =
σ2
w

d0
∥X∥2F.

(41)

Combining (40) and (41), we have

tr(Σ(1)) ≤ σ2L
w

d0
∥X∥2F.

Then we have completed part 2 of the theorem by getting

EH∼N(0n,Σ(L))

[
∥H∥2F
∥X∥2F

]
=

C

∥X∥2F
Eh∼N(0n,Σ(L))[∥h∥2] =

C

∥X∥2F
tr(Σ(L))

≤ C

∥X∥2F
· σ

2L
w

d0
· ∥X∥2F ≤

C

d0
· σ2L

w .

Next, we will prove part 1 of this theorem. Let’s study the case when σw = 1.

Since Σ(l) is a positive semi-definite matrix for any l ∈ N, we have

|Σ(l)
ij |

2 ≤ Σ
(l)
ii Σ

(l)
jj ≤ tr(Σ(l))2 ≤ tr(Σ(1))2, for all i, j ∈ [n].

Taking the summation of both sides w.r.t. i and j, we get

∥Σ(l)∥2F =

n∑
i,j=1

|Σ(l)
ij |

2 ≤ n2 tr(Σ(1))2 <∞.

Thus, the matrix sequence {Σ(l)}∞l=1 lies in

S ′ = S ∩ {Σ ∈ Rn×n : ∥Σ∥F ≤ n tr(Σ(1))}.

By Lemma C.13, S ′ is a bounded and closed subset, i.e., a compact subset, of Rn×n. By the Bolzano–Weierstrass theorem,
there exists a subsequence {Σ(lk)}∞k=1 of {Σ(l)}∞l=1 and Σ∗ ∈ S ′ such that

lim
k→∞

Σ(lk) = Σ∗.

Recalling (38) and that {tr(Σ(l))}∞l=1 is a decreasing sequence, we have

tr(Σ(lk+1)) ≤ tr(Σ(lk+1)) ≤ tr(G(Σ(lk))).

Since G is a continuous function, we let k →∞ and get

tr(Σ∗) = lim
k→∞

tr(Σ(lk+1)) ≤ lim
k→∞

tr(G(Σ(lk))) = tr(G(Σ∗)).
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According to (39), we have
tr(G(Σ∗)) = tr(Σ∗).

This implies tr(Σ∗) = 0 by (39).

Then, since {tr(Σ(l))}∞l=1 is a decreasing sequence, we have

lim
l→∞

Eh∼N(0n,Σ(l))[∥h∥2] = lim
l→∞

tr(Σ(l)) = lim
k→∞

tr(Σ(lk)) = tr(Σ∗) = 0.

Consequently, we have

lim
L→∞

EH∼N(0n,Σ(L))

[
∥H∥2F
∥X∥2F

]
=

C

∥X∥2F
lim

L→∞
Eh∼N(0n,Σ(L))[∥h∥2] = 0.

26



Breaking the Curse of Depth in Graph Convolutional Networks via Refined Initialization Strategy

D. Signal propagation theory for linear ResGCN
D.1. NNGP correspondence for linear ResGCN

Proposition D.1 (NNGP correspondence for linear ResGCN). Under the initialization in Assumption 3.1, as the width
of the hidden layers d→∞, the l-th layer’s post-activation embedding channels {X(l)

:,k}k∈[d] converge to i.i.d. Gaussian
random variables N(0n, Σ̃

(l)) in distribution. The covariance matrices are

Σ̃(0) =
σ2
w

d0
XXT ,

Σ̃(l+1) = σ2
wα

2ÂΣ̃(l)Â+ β2Σ̃(l).

(42)

Moreover, for an L-layer linear ResGCN, all the channels of H(out,L) converge to i.i.d. Gaussian random variables
N(0n, Σ̃

(out,L)) in distribution, where
Σ̃(out,L) = σ2

wΣ̃
(L). (43)

Proof of Proposition D.1. In linear ResGCN defined in Section 3.2, the post-activation embeddings {X(l)}Ll=1 satisfy

X(0) = XW (0) + 1n · b(0),
X(l) = ασ(H(l)) + βX(l−1) = α(ÂX(l−1)W (l) + 1n · b(l)) + βX(l−1).

(44)

Similar to the proof of Proposition C.1, We will prove the first part of Proposition D.1 by mathematical induction.

Base case. Under the initialization in Assumption 3.1, when l = 0, the k-th channel of X(0) is

X
(0)
:,k = XW

(0)
:,k + 1n · b(0)k = XW

(0)
:,k . (45)

According to Assumption 3.1, the weights {W (0)
:,k }k∈[d] are i.i.d. Gaussian distributed, so {X(0)

:,k }k∈[d] are also i.i.d. Gaussian
distributed. Taking the expectation of (45), we get

E[X(0)
:,k ] = X · E[W (0)

:,k ] = 0.

Calculating the covariance matrix of (45), we have

Cov[X
(0)
:,k , X

(0)
:,k ] = E[X(0)

:,k ·X
(0)T
:,k ] = E[XW

(0)
:,k W

(0)T
:,k XT ]

= X · E[W (0)
:,k W

(0)T
:,k ] ·XT = X

(
σ2
w

d0
· Id0

)
XT

=
σ2
w

d0
XXT .

Thus, if we define Σ̃(0) =
σ2
w

d0
XXT , then we have {X(0)

:,k }k∈[d] are exactly i.i.d. from N(0n, Σ̃
(0)).

Induction step. The proof of the induction step is a little bit more complex than that of Proposition C.1 (NNGP correspon-
dence for vanilla GCN). Suppose that {X(l)

:,k}k∈[d] converge to i.i.d. n-dimensional Gaussian random variables N(0, Σ̃(l)) in
distribution as d→∞, then we look at the (l + 1)-th layer. We define the characteristic function of a random variable Z by

φZ(v) = E
[
exp(i · vTZ)

]
, for any v ∈ Rn×1,

and denote the characteristic function of an n×m random variable (Z1, Z2, . . . , Zm) by

φ(Z1,...,Zm)(v1, . . . ,vm) = E

[
exp

(
i ·

m∑
k=1

vT
k Zk

)]
for any v1, . . . ,vm ∈ Rn×1.

In order to demonstrate that {X(l+1)
:,k } converge to i.i.d. n-dimensional Gaussian random variables N(0, Σ̃(l+1)) in

distribution as d→∞, we only need to show that

φ
(X

(l+1)
:,k )k∈K

((vk)k∈K)→
∏
k∈K

exp

(
−1

2
vT
k Σ̃

(l+1)vk

)
, for any K ⊂ N, {vk}k∈K ⊂ Rn×1.
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Recalling (44), we take the k-th channel of X(l+1) at initialization and get

X
(l+1)
:,k = α(ÂX(l)W

(l+1)
:,k + 1n · b(l+1)

k ) + βH
(l)
:,k

= αÂX(l)W
(l+1)
:,k + βX

(l)
:,k , for any k ∈ [d].

Given any fixed K ⊂ N and {vk}k∈K ⊂ Rn×1, then we have∑
k∈K

vT
k X

(l+1)
:,k = α

∑
k∈K

vT
k ÂX(l)W

(l+1)
:,k + β

∑
k∈K

vT
k X

(l)
:,k .

Next we get

exp

(
i ·
∑
k∈K

vT
k X

(l+1)
:,k

)
=
∏
k∈K

exp
(
i · αvT

k ÂX(l)W
(l+1)
:,k

)
·
∏
k∈K

exp
(
i · βvT

k X
(l)
:,k

)
.

Taking the conditional expectation on both sides given H(l), we have

E

[
exp

(∑
k∈K

i · vT
k X

(l+1)
:,k

)∣∣∣∣X(l)

]

=
∏
k∈K

E
[
exp

(
i · αvT

k ÂX
(l)W

(l+1)
:,k

) ∣∣∣∣X(l)

]
·
∏
k∈K

exp
(
i · βvT

k X
(l)
:,k

)
=
∏
k∈K

exp

(
−σ2

wα
2

2d
vT
k ÂX(l)X(l)T Âvk

)
·
∏
k∈K

exp
(
i · βvT

k X
(l)
:,k

)
.

(46)

By the induction hypothesis, {X(l)
:,k}dk=1 converge to i.i.d. Gaussian random variables N(0, Σ̃(l)) in distribution as d→∞.

By the law of large numbers, as d→∞, the first term in (46)∏
k∈K

exp

(
−σ2

wα
2

2d
vT
k ÂX(l)X(l)T Âvk

)
→
∏
k∈K

exp

(
−σ2

wα
2

2
vT
k ÂΣ(l)Âvk

)
, P-almost surely.

Thus, if we set Σ̃(l+1) = σ2
wα

2ÂΣ̃(l)Â+ β2Σ̃(l), as d→∞, we have

φ
(X

(l+1)
:,k )k∈K

((vk)k∈K) = E

[
exp

(∑
k∈K

i · vT
k X

(l+1)
:,k

)]

→
∏
k∈K

exp

(
−σ2

wα
2

2
vT
k ÂΣ̃(l)Âvk

)
·
∏
k∈K

exp

(
−β2

2
vT
k Σ̃

(l)vk

)
=
∏
k∈K

exp

(
−1

2
vT
k Σ̃

(l+1)vk

)
.

Therefore, {X(l+1)
:,k }dk=1 converge to i.i.d. Gaussian random variables N(0, Σ̃(l+1)) in distribution as d→∞.

Conclusion. By the principle of mathematical induction, we have proven the first part of this proposition.

Next, we will show the second part. For an L-layer ResGCN, under the initialzation in Assumption 3.1, the output matrix
H(out,L) ∈ Rn×C is expressed as

H(out,L) = X(L)W (out,L) + 1n · b(out,L) = X(L)W (out,L),

Similar to the proof in Proposition C.1 (NNGP correspondence for vanilla GCN), we vectorize the both sides and get

vec(H(out,L)) = vec(X(L)W (out,L)) =

d∑
k=1

vec

X
(L)
:,k︸ ︷︷ ︸

n×1

·W (out,L)
k,:︸ ︷︷ ︸
1×d

 . (47)
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For brevity, we define
ω
(out,L)
kk′ :=

√
d ·W (out,L)

kk′ , for all k ∈ [d] and k′ ∈ [C],

and
Z

(out,L)
k := vec

(
X

(L)
:,k · ω

(out,L)
k,:

)
, for all k ∈ [d].

Then we get that {ω(out,L)
kk′ }k∈[d],k′∈[C] are i.i.d. from N(0, σ2

w) and

RHS of (47) =
1√
d

d∑
k=1

Z
(out,L)
k . (48)

According to the first part of this proposition, as d→∞, {X(L)
:,k }k∈[d] converge to i.i.d. n-dimensional random vectors in

distribution, thus {Z(out,L)
k }k∈[d] converge to i.i.d. random vectors in distribution. Moreover, in this limiting case, by taking

the expectation of (47), we have

E[Z(out,L)
1 ] = vec

(
E[X(L)

:,1 ] · E[ω(out,L)
1,: ]

)
= vec (0n×1 · 01×C) = 0nC .

Calculating the covariance matrix of (47), we have

Cov[Z
(out,L)
1 , Z

(out,L)
1 ] = E[Z(out,L)

1 · Z(out,L)T
1 ]

= E
[
vec
(
X

(L)
:,1 · ω

(out,L)
1,:

)
· vec

(
X

(L)
:,1 · ω

(out,L)
1,:

)T]
= E

[
(ω

(out,L)T
1,: ⊗X

(L)
:,1 ) · (ω(out,L)

1,: ⊗X
(L)T
:,1 )

]
= E

[
ω
(out,L)T
1,: ω

(out,L)
1,: ⊗X

(L)
:,1 X

(L)T
:,1

]
= E

[
ω
(out,L)T
1,: ω

(out,L)
1,:

]
⊗ E

[
X

(L)
:,1 X

(L)T
:,1

]
= σ2

wIC ⊗ Σ̃(L)

= IC ⊗ σ2
wΣ̃

(L).

By multivariate central limit theorem, 1√
d

∑d
k=1 Z

(out,L)
k converges to a Gaussian random variable N(0nC , IC ⊗ σ2

wΣ̃
(L))

in distribution as d→∞. Recalling (47) and (48), all the channels of H(out,L) converge to i.i.d. Gaussian random variables
N(0n, Σ̃

(out,L)), where Σ̃(out,L) = σ2
wΣ̃

(L).

Now we have complete the proof of the second part.

D.2. Proof of Theorem 4.3 (signal propagation on linear ResGCN)

Theorem D.2. Suppose that there exists an eigenvector u of Â corresponding to the eigenvalue 1, such that the input
feature X ∈ Rn×d0 satisfies XTu ̸= 0d0×1. Under the initialization in Assumption 3.1 and the NNGP correspondence
approximation for linear ResGCN, if α2σ2

w + β2 > 1, then we have

1. limL→∞ EH∼N(0n,Σ̃(out,L))[∥H∥2F/∥X∥2F] = +∞.

2. limL→∞ EH∼N(0n,Σ̃(out,L))[Dir(H)/∥H∥2F] = 0.

Proof of part 1 in Theorem 4.3. For any positive semi-definite matrix Σ ∈ S, we have

Eh∼N(0n,Σ)[∥h∥2] = Eh∼N(0n,Σ)[tr(h
Th)] = Eh∼N(0n,Σ)[tr(hh

T )] = tr(Σ).

Recalling the NNGP correspondence formula for linear ResGCN (42) in Proposition D.1, we have

Σ̃(0) =
σ2
w

d0
XXT ,

Σ̃(l+1) = σ2
wα

2ÂΣ̃(l)Â+ β2Σ̃(l).

(49)
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By Proposition B.1, we can assume that A = UΛUT , where Λ = diag(λ1, . . . , λn) with 1 = λ1 ≥ · · · ≥ λn > −1 and
U ∈ Rn×n is an orthogonal matrix, i.e., UUT = UTU = In. Then from (49), we get

UT Σ̃(l+1)U = σ2
wα

2 · UT ÂΣ̃(l)ÂU + β2 · UT Σ̃(l)U

= σ2
wα

2 · ΛUT Σ̃(l)UΛ + β2 · UT Σ̃(l)U.
(50)

So for any i ∈ [n] and l ∈ N, we have

(UT Σ̃(l+1)U)ii = σ2
wα

2 · λi(U
T Σ̃(l)U)iiλi + β2(UT Σ̃(l)U)ii

= (α2λ2
iσ

2
w + β2) · (UT Σ̃(l)U)ii.

Thus, for any i ∈ [n] and L ∈ N, we have

(UT Σ̃(L)U)ii = (α2λ2
iσ

2
w + β2)L · (UT Σ̃(0)U)ii.

According to the assumption on input feature X , there exists an eigenvector u of Â corresponding to the eigenvalue 1,
such that XTu ̸= 0d0×1. Suppose that u1, u2, . . . , un ∈ Rn×1 are the columns of U , then there exists i ∈ [M ] such that
XTui ̸= 0. Otherwise, suppose that u =

∑M
j=1 cjuj and XTuj = 0 for any j ∈ [M ], then XTu =

∑M
j=1 cjX

Tuj = 0.
Contradiction!

Without loss of generality, we suppose that Au1 = u1 and XTu1 ̸= 0d×1. Then we have

(UT Σ̃(0)U)11 =
σ2
w

d0
· uT

1 XXTu1 =
σ2
w

d0
· ∥XTu1∥2 > 0.

It results in

tr(Σ̃(L)) = tr(UT Σ̃(L)U) ≥ (UT Σ̃(L)U)11 = (α2σ2
w + β2)L · σ

2
w

d0
∥XTu1∥2.

By (42) in Proposition D.1, we have

tr(Σ̃(out,L)) = σ2
w tr(Σ̃(L)) ≥ (α2σ2

w + β2)L · σ
4
w

d0
∥XTu1∥2. (51)

Therefore, if α2σ2
w + β2 > 1, we have

lim
L→∞

EH∼N(0n,Σ̃(out,L))[∥H∥
2
F/∥X∥2F] =

C

∥X∥2F
lim

L→∞
Eh∼N(0n,Σ̃(out,L))[∥h∥

2]

=
C

∥X∥2F
lim

L→∞
tr(Σ̃(out,L)) = +∞.

Proof of part 2 in Theorem 4.3. For any positive semi-definite matrix Σ ∈ S, we have

Eh∼N(0n,Σ)[Dir(h)] = Eh∼N(0n,Σ)[tr(h
T L̂h)] = Eh∼N(0n,Σ)[tr(L̂hh

T )] = tr(L̂Σ).

So when we want to study Eh∼N(0n,Σ)[Dir(h)], we only need to look at tr(L̂Σ) in the following of the proof.

Since ÂL̂ = Â(In− Â) = Â− Â2 = (In− Â)Â = L̂Â, we multiply L̂ on both sides of the second equation in (49) and get

L̂Σ̃(l+1) = σ2
wα

2 · L̂ÂΣ̃(l)Â+ β2L̂Σ(l)

= σ2
wα

2 · ÂL̂Σ̃(l)Â+ β2L̂Σ(l).

Then for any i ∈ [n] and l ∈ N, we have

(UT L̂Σ̃(l)U)ii = σ2
wα

2 · λi(U
T L̂Σ̃(0)U)iiλi + β2 · (UT L̂Σ̃(0)U)ii

= (α2λ2
iσ

2
w + β2) · (UT L̂Σ̃(0)U)ii.
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Thus, for any i ∈ [n] and L ∈ N, we have

(UT L̂Σ̃(L)U)ii = (α2σ2
wλ

2
i + β2)L · (UT L̂Σ̃(0)U)ii (52)

Since UT L̂U = UT (In − Â)U = In − Λ, we get

UT L̂Σ̃(0)U = (In − Λ)UT Σ̃(0)U

We denote
ri = (UT Σ̃(0)U)ii, for any i ∈ [n].

Then by (52), we have
(UT L̂Σ̃(L)U)ii = (α2σ2

wλ
2
i + β2)L · (1− λi)ri,

From Proposition B.1, we have

(UT L̂Σ̃(L)U)ii ≤ (α2σ2
wλ

2 + β2)L · (1− λi)ri, if λi ∈ (−1, 1);
(UT L̂Σ̃(L)U)ii = 0 = (α2σ2

wλ
2 + β2)L · (1− λi)ri, if λi = 1,

where λ = maxλi ̸=1 |λi| ∈ [0, 1). Thus, we get

tr(L̂Σ̃(out,L)) = σ2
w tr(L̂Σ̃(L)) = tr(UT L̂Σ̃(L)U) ≤ σ2

w(α
2σ2

wλ
2 + β2)L ·

n∑
i=1

(1− λi)ri.

We conclude that
EH∼N(0n,Σ̃(out,L))[Dir(H)] = C · Eh∼N(0n,Σ̃(L))[Dir(h)] = C · tr(L̂Σ̃(L))

≤ Cσ2
w(α

2σ2
wλ

2 + β2)L ·
n∑

i=1

(1− λi)ri.

Then we have
EH∼N(0n,Σ̃(out,L))[Dir(H)]

(α2σ2
w + β2)L

≤

(
Cσ2

w

n∑
i=1

(1− λi)ri

)
·
(
α2σ2

wλ
2 + β2

α2σ2
w + β2

)L

.

Since α2 + σ2
w + β2 > 1 and α ̸= 0 as assumed in the statement of this theorem, we have (α2σ2

wλ
2 + β2)/(α2σ2

w + β2) ∈
[0, 1). So we get that

lim
L→∞

EH∼N(0n,Σ̃(out,L))[Dir(H)]

(α2σ2
w + β2)L

= 0. (53)

Recalling (51) in part 1 of the proof, if we define

δ0 =
σ4
w

d0
∥XTu1∥ and K = α2σ2

w + β2,

then given any L ∈ N, we have
1

KL
· tr(Σ̃(out,L)) ≥ δ0 > 0. (54)

Similar to the proof of part 2 in Theorem C.7, we have

EH∼N(0n,Σ̃(out,L))

[
Dir(H)

∥H∥2F

]
= EH∼N(0n,Σ̃(out,L))

[
Dir(H)

∥H∥2F
1{∥H∥2

F>ϵKL}

]
+ EH∼N(0n,Σ̃(out,L))

[
Dir(H)

∥H∥2F
1{∥H∥2

F≤ϵKL}

]
≤

EH∼N(0n,Σ̃(out,L))[Dir(H)]

ϵKL
+ 2 · PH∼N(0n,Σ̃(out,L))[∥H∥

2
F ≤ ϵKL].

(55)
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For any L ≥ 1, there exists i ∈ [n], such that Σ
(out,L)
ii ≥ tr(Σ(out,L))/n. For any n × C random matrix

H ∼ N(0n,Σ
(out,L)), it holds that Hi,1 ∼ N(0,Σ

(out,L)
ii ). By (54), we have

PH∼N(0n,Σ̃(out,L))

[
∥H∥2F ≤ ϵKL

]
≤ PH∼N(0n,Σ̃(out,L))

[
H2

i,1 ≤ ϵKL
]

= PZ∼N(0,1)

[
Z2 ≤ ϵKL

Σ
(out,L)
ii

]
≤ PZ∼N(0,1)

[
Z2 ≤ ϵnKL

tr(Σ(out,L))

]
≤ PZ∼N(0,1)

[
Z2 ≤ ϵn

δ0

]
= 2Φ

(√
ϵn

δ0

)
− 1,

(56)

where Φ(x) = PZ∼N(0,1)[Z ≤ x] denotes the cumulative distribution function of the standard normal distribution N(0, 1).

Combining (55) and (56), we get

EH∼N(0n,Σ̃(out,L))

[
Dir(H)

∥H∥2F

]
≤ 1

ϵKL
· EH∼N(0n,Σ̃(out,L))[Dir(H)] + 4Φ

(√
ϵn

δ0

)
− 2.

By (53) , we let L→∞ and get

lim sup
L→∞

EH∼N(0n,Σ̃(out,L))

[
Dir(H)

∥H∥2F

]
≤ 1

ϵKL
· lim sup

L→∞
EH∼N(0n,Σ̃(out,L))[Dir(H)] + 4Φ

(√
ϵn

δ0

)
− 2

=
1

ϵ
· 0 + 4Φ

(√
ϵn

δ0

)
− 2 = 4Φ

(√
ϵn

δ0

)
− 2.

(57)

Notice that the left hand side of (57) is independent of the choice of ϵ. Since Φ is a continuous map, we let ϵ→ 0+ and get

lim sup
L→∞

EH∼N(0n,Σ̃(out,L))

[
Dir(H)

∥H∥2F

]
≤ 4Φ(0)− 2 = 0.

Therefore, we have

lim
L→∞

EH∼N(0n,Σ̃(out,L))

[
Dir(H)

∥H∥2F

]
= 0.
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E. Best reported depths of existing over-smoothing-related approaches on OGBN-Arxiv

Table 2. Summary of depths with optimal test accuracies of existing over-smoothing-related approaches on OGNB-Arxiv. The correspond-
ing optimal test accuracies are also indicated in parentheses.

Models Depth (test accuracy)
GCN(Kipf & Welling, 2017) 2 (69.53)
DropEdge(Rong et al., 2020) 2 (68.67)

PairNorm(Zhao & Akoglu, 2020) 2 (65.74)
DropNode(Huang et al., 2020) 16 (67.17)
MeanNorm(Yang et al., 2020) 16 (70.40)
GroupNorm(Zhou et al., 2020) 16 (70.50)
NodeNorm(Zhou et al., 2021a) 16 (70.75)

GCNII(Chen et al., 2020b) 16 (72.61)
GPRGNN(Chien et al., 2021) 16 (70.30)

DAGNN(Liu et al., 2020) 16 (71.82)
EGNN(Zhou et al., 2021b) 32 (72.7)

JKNet(Xu et al., 2018) 16 (66.41)
APPNP(Gasteiger et al., 2019) 16 (66.95)

ReZeroGCN(Ours) 64 (72.97)

In Table 2, we summarize the best depths of existing approaches aiming to tackle the over-smoothing issue. The best depth
refers to the depth that achieves the highest test accuracy on OGBN-Arxiv. For approaches that utilize random dropping or
normalization techniques, we all employ vanilla GCNs as the underlying model. Most of the results are directly cited from
(Chen et al., 2022b), while the result of EGNN is cited from the original paper (Zhou et al., 2021b). We see that the best
performance in most of these studies is still achieved with less than 20 layers, suggesting that the curse of depth continues to
constrain the potential of GCNs.
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F. SPoGInit algorithm details
In lines 1-2, we initialize the weight parameters by following Xavier initialization and set the initial scale γ(l)(0) to be 1 for
every layer l. Moreover, we initialize θ(γ(0)) with the settings θ(γ) = {W (l)}Ll=1 = {γ(l)Ŵ (l)}Ll=1 in Section 5.1. We
iteratively update θ(γ) as follows.

In lines 4-5, at each interaction, we sample random node features from a standard Gaussian distribution and node labels
from a discrete uniform distribution. Borrowing the idea from MetaInit (Dauphin & Schoenholz, 2019), this approach is to
enhance data independence and solve over-fitting problems. In line 6, we calculate the objective function F (θ(γ(t))) as
defined in Section 5.1:

F (θ(γ)) := w1

[
∥H(1)(θ(γ))∥F
∥H(L−1)(θ(γ))∥F

− 1

]2
︸ ︷︷ ︸

(a)

+w2

[
∥g(2)(θ(γ))∥F
∥g(L−1)(θ(γ))∥F

− 1

]2
︸ ︷︷ ︸

(b)

−w3
Dir(H(L)(θ(γ))

∥H(L)(θ(γ)∥2F︸ ︷︷ ︸
(c)

.

To be more specific, given the model parameters θ(γ), random features and the normalized adjacency matrix Â, we can
get the embeddings H(1)(θ(γ)), H(L−1)(θ(γ)), and H(L)(θ(γ)), which can be used to calculate term (a) and term (c).
Combined with the labels of the training nodes, we can get the training loss function and the gradients g(2)(θ(γ)) and
g(L−1)(θ(γ)), which can be used to calculate term (b). Here, g(l)(θ(γ)) = ∂ℓ/∂W (l) for each l ∈ [L] as claimed in Section
5.1.

Then, in lines 7-12, we update the weight parameters θ(γ(t)) by optimizing the objective function through the projected
gradient descent method to the scales {γ(l)(t)}Ll=1 for each layer. We adopt the projected gradient descent method to ensure
the scales {γ(l)(t)}Ll=1 remain positive.

Algorithm 1 SPoGInit: searching for weight initialization with better Signal Propagation on Graph

Input: normalized adjacency matrix Â, input dimension d0, number of labels C, network depth L, hidden dimension d,
learning rate η, total iterations T , metric weights w1, w2, w3.

1: initialize γ(l)(0) = 1 and generate {Ŵ (l)}Ll=1 with Ŵ
(l)
k′k

iid∼ Uniform(−
√

6
dl−1+dl

,
√

6
dl−1+dl

).

2: initialize θ(γ(0)) ≜ {W (l)(0)}Ll=1 by W (l)(0)← γ(l)(0) · Ŵ (l).
3: for t = 0, 1, · · · , T − 1 do
4: generate input X(t) ∈ Rn×d0 with X(t)ik

iid∼ N(0, 1).
5: generate label yi(t)

iid∼ Uniform{1, 2, . . . , C} for any node i ∈ [n].
6: calculate the objective function F (θ(γ(t))) (see Section 5.1) by Â, X(t), y(t) and θ(γ(t)).
7: for layers l = 1, 2, . . . , L do
8: γ(l)(t+ 1)← γ(l)(t)− η∇γ(l)F (θ(γ(t))).
9: γ(l)(t+ 1)← Proj[10−6,∞)(γ

(l)(t+ 1))

10: W (l)(t+ 1)← γ(l)(t+ 1) · Ŵ (l).
11: end for
12: θ(γ(t+ 1)) ≜ {W (l)(t+ 1)}Ll=1.
13: end for
Return: θ(γ(T )).

Specifically, we explain how to compute the derivative of the objective function with respect to the scale γ. Through the
chain rule, we can calculate the derivative of the objective function with respect to the scale γ(l) as follows:

∂F (θ(γ)

∂γ(l)
=

dl−1∑
k′=1

dl∑
k=1

∂F (θ(γ)

∂W
(l)
k′k

∂W
(l)
k′k

∂γ(l)
=

dl−1∑
k′=1

dl∑
k=1

∂F (θ(γ)

∂W
(l)
k′k

Ŵ
(l)
k′k

=

dl−1∑
k′=1

dl∑
k=1

∂F (θ(γ)

∂W
(l)
k′k

W
(l)
k′k

γ(l)
.

Additionally, we provide specific hyperparameter choices for SPoGInit. We set total iterations T as 500 and learning rate η
as 0.1. Considering the sensitivity of the training process to weight gradients, we assign a higher weight to the backward
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propagation. Finally, we set the forward propagation and backward propagation weights as w1 = 1 and w2 = 10. Moreover,
to balance the scale of the output diversity, we utilize the inverse of the Dirichlet energy of the input data as the weight:
w3 = ∥X∥2F/Dir(X).
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G. Supplemental experiment results
G.1. Datasets

Datasets: We focus on seven benchmark datasets for semi-supervised node classification. The small-scale datasets include
Cora, Pubmed, and Citeseer (Yang et al., 2016). The large-scale datasets comprise OGBN-Arxiv, IGB-tiny19, IGB-tiny2983,
and Arxiv-year. These large-scale datasets are selected from three popular publicly available graph benchmarks: Open
Graph Benchmark (OGB) (Hu et al., 2020), Illinois Graph Benchmark (IGB) (Khatua et al., 2023), and Large Scale
Non-Homophilous Graphs Benchmark (Lim et al., 2021). We use a standard training/validation/test split (Yang et al., 2016)
for Cora, Pubmed, and Citeseer datasets. On large-scale datasets, we adopt standard training/validation/test splits. Statistics
of the datasets are summarized in Table 3.

Table 3. Statistics of the seven datasets used in the experiments (Section 6 and Appendix G).

Dataset Nodes Features Edges Class Homophily Training/Validation/Test
Cora 2708 1433 10556 7 0.81 5.2%/18.5%/36.9%

Pubmed 19717 500 88648 3 0.80 0.3%/2.5%/5.1%
Citeseer 3327 3703 9104 6 0.74 3.6%/15.0%/30.1%

OGBN-Arxiv 169343 128 1166243 40 0.66 53.7%/17.6%/28.7%
IGB-Tiny19 100000 1024 447416 19 0.56 60%/20%/20%

IGB-Tiny2983 100000 1024 447416 235 0.47 60%/20%/20%
Arxiv-year 169343 128 1166243 5 0.22 50%/25%/25%

G.2. Experimental settings and hyperpameters

Settings for the initialization experiments of vanilla GCN.

In Figures 5, 9, and 10, the number of hidden units is set to be 64. The models are trained using the Adam optimizer with
the tanh activation function. For the Adam optimizer, we set the momentum coefficients to 0.9 and 0.9995, and perform
grid searches over the learning rates ranging from 10−3, 10−4, 5× 10−5, to 10−5. Table 4 reports the settings for training
epochs and early stopping patience with different network depths. To investigate the training degradation issue, we exclude
dropout (Srivastava et al., 2014) and weight decay.

In this work, we replicate all training experiments across three random seeds. Additionally, we replicate all experiments at
initialization across 20 random seeds.

Table 4. Epochs settings of Figures 5, 9, and 10.

GCN layers Hyperparameters
4/8/16 layers epochs; 800, patience: 200
32 layers epochs: 1200, patience: 300
64 layers epochs: 1500, patience: 375
128 layers epochs: 2000, patience: 400

Settings for the experiments of skip-connection-based GCNs.

• Model performance. In Figures 4 and 11, we set the number of hidden units to be 64. We add batch normalization
and dropout to all models to enhance the generalization performance, as they are commonly used in the training of
GNNs on large-scale datasets. The epoch settings of different datasets are as follows: 1000 epochs for OGBN-Arxiv,
1500 epochs for Arxiv-year, 1000 epochs for IGB-Tiny 19, and 1000 epochs for IGB-Tiny2983. The Adam optimizer’s
two momentum coefficients are set to be 0.9 and 0.9995. The weight decay is fixed to 0. We replicate all training
experiments across three random seeds. Additional hyperparameters are reported in Table 5.

• Backward propagation analysis. As discussed in Section 5.2, although the gradient norms of W (l) in ReZeroGCN are
zero at initialization, the non-zero gradients of α(l) (See Appendix G.5) facilitate the update of W (l) in the following
training epochs. Therefore, we evaluate the backward propagation by the gradient norms during early training. For the

36



Breaking the Curse of Depth in Graph Convolutional Networks via Refined Initialization Strategy

early training experiments in Figures 7, 14, 15, 16, and 17, we maintain most of the settings in the model performance
experiments (including learning rates, hidden units, initializations, weight decay, and momentum coefficients in
Adam). To investigate backward propagation issues, we exclude batch normalization and dropout. We replicate the
early-training experiments across five random seeds.

Table 5. Hyperparameters of Figures 4 and 11

Models Hyperparameters
JKNet hidden units: 64, initialization: Xavier, learning rate: 0.005, dropout:0.5.

ResGCN hidden units: 64, initialization: Conventional, learning rate: 0.005, dropout:0.6.
GCNII αl: 0.5, λ: 0.5, hidden units: 64, initialization: Xavier,

learning rate: 0.005, dropout:0.1.
ReZeroGCN hidden units: 64, initialization: Xavier, learning rate: 0.005, dropout:0.6.

Overall settings

All experiments on large-sized datasets, e.g., OGBN-Arxiv, are conducted on a single NVIDIA V100 32 GB GPU, while
small-sized datasets experiments are completed using a single NVIDIA T4 16 GB GPU.

G.3. Additional experiments for SPoGInit

Signal propagation experiments on additional datasets
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Figure 9. The (a) forward metrics, (b) backward metrics, and (c) output diversity metrics of deep vanilla GCNs with different initialization
methods on the Citeseer dataset.
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(c) Output diversity

Figure 10. The (a) forward metrics, (b) backward metrics, and (c) output diversity metrics of deep vanilla GCNs with different initialization
methods on the Pubmed dataset.

In Figures 9 and 10, we present the average forward propagation metrics, backward propagation metrics, and output
diversity metrics of tanh-activated vanilla GCNs with various initialization methods, depths, and datasets. We replicate
these experiments across 20 random seeds. Results demonstrate that deep vanilla GCNs with Xavier and Conventional
initializations suffer from poor forward-backward propagation and output diversity. In contrast, SPoGInit stabilizes the
forward-backward propagation and enhances the output diversity.

Performance on additional datasets
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Table 6. Training and test accuracies of vanilla GCNs with different initialization methods, depths, and datasets. The abbreviation ”OOM”
means out of memory.

Datasets Init Training accuracies for different depths Test accuracies for different depths
4 8 16 32 64 128 4 8 16 32 64 128

Cora Conventional 100 100 73.6 63.6 43.8 49.8 79.3 71.2 57.8 47.8 36.9 37.1
Xavier 100 100 100 91.0 87.4 81.0 79.4 78.4 75.2 71.6 70.5 64.8

SPoGInit 100 100 99.3 100 92.6 88.1 79.7 77.9 77.0 74.7 74.0 72.3
Pubmed Conventional 100 100 88.9 73.3 75.6 60.6 76.3 72.6 67.3 68.9 62.3 49.0

Xavier 100 100 100 97.8 91.7 74.4 76.6 75.9 75.9 76.3 78.1 68.7
SPoGInit 100 100 99.4 98.3 89.4 86.1 76.3 76.4 77.9 75.9 77.2 75.9

Citeseer Conventional 100 99.2 97.8 43.1 63.6 34.2 67.6 59.3 52.1 40.2 37.8 29.3
Xavier 100 100 98.1 94.7 91.9 85.6 67.5 67.5 62.3 56.5 56.7 54.1

SPoGInit 100 100 98.3 94.7 93.6 91.4 67.8 65.1 59.9 62.2 57.7 54.9
OGBN-Arxiv Conventional 74.5 70.5 50.3 31.7 27.3 OOM 70.1 67.8 49.9 33.2 35.9 OOM

Xavier 75.2 74.4 68.3 56.2 40.5 OOM 70.4 68.6 66.3 57.4 39.0 OOM
SPoGInit 75.5 75.1 70.9 63.5 OOM OOM 70.3 69.2 67.7 63.4 OOM OOM

In Table 6, we present the average training and test accuracies of tanh-activated GCNs with different initialization methods,
depths, and datasets. We replicate this experiment across three random seeds. The results show that vanilla GCNs with
Xavier initialization and Conventional initialization suffer from performance degradation on various datasets. Our proposed
SPoGInit effectively alleviates the performance degradation and outperforms the baseline initializations in deep GCNs on
various datasets.
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G.4. Performance of skip-connection-based GCNs

Experimental results of tanh-activated models
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(a) OGBN-Arxiv training
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(b) IGB-tiny19 training
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(c) IGB-Tiny2983 training
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(d) Arxiv-year training
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(e) OGBN-Arxiv test
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(f) IGB-tiny19 test
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(g) IGB-Tiny2983 test
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(h) Arxiv-year test

Figure 11. The average training accuracies (a)-(d) and test accuracies (e)-(h) of different skip-connection-based GCNs with tanh activation
on various datasets.

In Figure 11, we present the average training and test accuracies of tanh-activated models with various depths. We see that
ReZeroGCN stands out by achieving consistent performance gains as the depth increases. Additionally, on the OGBN-Arxiv
and Arxiv-year datasets, ReZeroGCN achieves around 3% gains in test accuracy by deepening the model from 4 to 64 layers.
These results demonstrate that ReZeroGCN, with both ReLU and tanh activations, successfully overcomes the curse of
depths.

Optimal performance and the corresponding depths

In Tables 7 and 8, we present the optimal test accuracies and the corresponding depths for various models and datasets.
These values are derived from the results presented in Figures 4 and 11. Notably, we see that ReZeroGCN outperforms all
the baseline models and achieves optimal performances at the largest depths across most datasets.

Table 7. Optimal test accuracies and the corresponding depths (the numbers in parentheses) of ReLU-activated models.

Models OGBN-Arxiv IGB-Tiny19 IGB-Tiny2983 Arxiv-year
JKNet 72.46±0.17 (16) 70.96±0.09 (4) 64.63±0.06 (4) 51.31±0.02 (8)

ResGCN 72.46±0.12 (16) 72.08±0.15 (4) 67.06±0.10 (4) 52.98±0.09 (16)
GCNII 72.51±0.39 (8) 71.96±0.07 (4) 66.12±0.10 (4) 52.39±0.23 (8)

ReZeroGCN 72.76±0.35 (64) 73.36±0.05 (64) 67.59±0.05 (4) 54.22±0.14 (64)

Table 8. Optimal test accuracies and the corresponding depths (the numbers in parentheses) of tanh-activated models.

Models OGBN-Arxiv IGB-Tiny19 IGB-Tiny2983 Arxiv-year
JKNet 72.25±0.28 (16) 71.12±0.03 (32) 64.73±0.02 (4) 48.11±0.10 (8)

ResGCN 71.61±0.09 (16) 71.96±0.04 (4) 66.82±0.22 (4) 48.38±0.06 (32)
GCNII 72.23±0.26 (16) 72.01±0.12 (4) 66.52±0.07 (4) 50.25±0.06 (8)

ReZeroGCN 72.97±0.16 (64) 73.35±0.03 (8) 67.59±0.06 (4) 53.04±0.14 (64)

G.5. Backward metrics of baseline GCNs with skip connections

Skip connections significantly change the back-propagation computation. Therefore, in this subsection, we evaluate
backward propagation by measuring the gradient norms of four representative layers in an L-layer model: the first, the
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L/4-th, the L/2-th, and the 3L/4-th layers. For GCNII, we evaluate its backward propagation metric by the gradient norms
of W (1)

1 (see Equation 2) in these layers. Additional settings can be seen in Appendix G.2.

Gradient norms of α(l) in ReZeroGCN at initialization
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Figure 12. The gradient norms of the α(l) in ReLU-activated ReZeroGCNs with various depths and layers at initialization on the Cora
dataset. We replicate this experiment across 50 random seeds.

In Figure 12, we present the average gradient norms of α(l) in ReLU-activated ReZeroGCNs at initialization. The results
demonstrate that α(l) in ReZeroGCNs exhibit non-vanishing and stable gradient norms at initialization in various depths and
layers.

Backward metrics of baseline GCNs with skip connections at initialization
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(a) JKNet
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(b) ResGCN

4 8 16 32 64 128 256
Depths

10 16

10 13

10 10

10 7

10 4

Gr
ad

ie
nt

 N
or

m

1st layer
L/4-th layer
L/2-th layer
3L/4-th layer

(c) GCNII

Figure 13. The backward metrics of four layers in ReLU-activated baseline models with various depths at initialization on the Cora dataset.
We replicate this experiment across 20 random seeds.

In Figure 13, we present the average backward metrics of baselines with different depths at initialization. Results demonstrate
that JKNet and GCNII suffer from serious gradient vanishing problems at initialization, while the gradient norms of ResGCN
explode at initialization.

Backward metrics of GCNs with skip connections during early training
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(b) L/4-th layer
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(c) L/2-th layer
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(d) 3L/4-th layer

Figure 14. The backward metrics of four layers in ReLU-activated JKNet with different depths in 300 epochs for training on IGB-Tiny19
dataset. We replicate this experiment across five random seeds.

In Figures 14, 15, 16, and 17, we present the backward metrics of JKNet, ResGCN, GCNII, and ReZeroGCN with different
depths in early training. We see that, across the early 300 epochs, JKNet exhibits stable backward propagation in its first
layer, while the gradient norms of the other layers vanish as the depth increases. Across early 300 epochs, the gradient
norms of GCNII vanish as the depths increase, while the gradient norms of ResGCN explode. In contrast, the gradient
norms of ReZeroGCN quickly improve during early training.
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(b) L/4-th layer
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(c) L/2-th layer

0 50 100 150 200 250 300
Epochs

10 2

10 1

100

101

102

103

104

105

106

Gr
ad

ie
nt

 N
or

m
 (3

L/
4-

th
 la

ye
r)

Depth: 4
Depth: 16
Depth: 64
Depth: 128
Depth: 256

(d) 3L/4-th layer

Figure 15. The backward metrics of the four layers in ReLU-activated ResGCN with different depths in 300 epochs for training on
IGB-Tiny19 dataset. We replicate this experiment across five random seeds. The disappearing lines are caused by surpassing the machine
precision.
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(b) L/4-th layer
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(c) L/2-th layer
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(d) 3L/4-th layer

Figure 16. The backward metrics of W (l)
1 (see equation 2) in ReLU-activated GCNII with various depths and layers in 300 epochs for

training on IGB-Tiny19 dataset. We replicate this experiment across five random seeds. The disappearing lines are caused by surpassing
the machine precision.
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(a) 1-st layer
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(b) L/4-th layer
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(c) L/2-th layer
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(d) 3L/4-th layer

Figure 17. The backward metrics of the four layers of ReLU-activated ReZeroGCN with different depths in 300 epochs for training on
IGB-Tiny19 dataset. We replicate this experiment across five random seeds.
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H. Limitation and negative social impact
In this paper, we employ signal propagation theory to analyze the curse of depth in Graph Convolutional Networks (GCNs).
Additionally, we propose solutions (SPoGInit and ReZeroGCNs) to address signal propagation issues and alleviate the curse
of depths in GCNs. Interesting directions for future work include applying signal propagation on the GNNs with attention
mechanisms.

This script may provide better guidance for deep graph convolution networks training. It would have potential negative
social impact if the models are deployed for illegal usage.
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