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Abstract

In numerous machine learning contexts, the relationship between input variables
and predicted outputs is not only statistically significant but also strictly monotonic.
Conventional approaches to ensuring monotonicity focus primarily on construc-
tion or regularization methods. This paper establishes that the problem of strict
monotonic probability can be interpreted as a comparison between an observable
revenue variable and a latent cost variable. This insight allows us to reformu-
late the original monotonicity challenge into modeling the latent cost variable
and estimating its distribution. To address this issue, we introduce a generative
model for the latent cost variable, called the Generative Cost Model (GCM),
and derive a corresponding loss function. We further enhance the estimation of
latent variables using variational inference, which reformulate our loss function
accordingly. Lastly, we validate our approach through experiments on an artifi-
cial gamble simulation and several public datasets, demonstrating that our method
significantly outperforms traditional techniques. The code of GCM is available in
https://github.com/iclr-2025-4464/GCM.

1 Introduction

Many machine learning problems exhibit a monotonic relationship between inputs and outputs.
Some of these relationships are statistical in nature, such as the correlation between a person’s height
and weight or the relationship between a company’s stock price and its annual income. However,
these monotonicities are often empirical and not strictly defined. In contrast, certain problems
necessitate strict monotonicity, such as the relationship between equipment availability and its age,
or the connection between auction winning rates and bidding prices. For these strict monotonic
problems, we require a model capable of predicting strict monotonic probability based on specific
input variables. We refer to these input variables as revenue variables, where higher revenue
correlates with an increased probability of a more positive response.

The most common deep learning methods for addressing the monotonicity problem can be broadly
categorized into two types (Runje & Shankaranarayana (2023)): monotonic by construction and
by regularization. The construction approach maintains strict monotonicity through customized
structures in deep neural networks, such as monotonic activation functions, positive weight matrices,
and min-max structures (Sill (1997)). In contrast, the regularization approach promotes monotonicity
by designing specific loss functions (Liu et al. (2020); Gupta et al. (2019); Sivaraman et al. (2020);
Xu et al. (2024)).

Unlike traditional approaches, we propose a novel method to tackle the monotonicity problem
using a generative framework. To estimate 𝑝(y |x, r), where y is a multivariate response that
maintains monotonicity with respect to the revenue variable r but is not necessarily monotonic
with respect to x, we employ a two-step process. (i) We simplify the multivariate problem into a
Bernoulli case 𝑝(𝑦 |x, r) via variable substitution trick, so that 𝑦 is reduced to binary values (0 or
1). (ii) We reformulate the monotonicity problem by defining a latent cost variable c, such that
𝑦 = I(c ≺ r) ∈ {0, 1}. This ensures that the monotonicity between 𝑦 and r is preserved, as we
have 𝑃𝑟 (𝑦 = 1|x, r) = 𝑃𝑟 (c ≺ r |x, r). Here, ≺ denotes the partial order in the vector space and
I represents the indicator function. Through this transformation, we can bypass the need to design
a strictly monotonic function and instead focus on developing a generative model for the latent cost
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variable c. Consequently, we can use any structure to model c with the monotonicity constraints
being ignored, as the monotonicity is inherently satisfied by the definition of c.

To generate the latent cost variable, we propose a two-stage generative process: (i) Sampling from
joint prior: In the first stage, we sample three variablesx, r andz from a joint prior 𝑝𝜃 (x, r, z). Here,
x, r are observable variables, whilez is a latent variable. We assume conditional independence holds:
z ⊥⊥ r | x. This leads to the factorization of the joint distribution as 𝑝𝜃 (x, r, z) = 𝑝𝜃 (z |x)𝑝𝜃 (x, r).
(ii) Generating the cost variable: We generate the cost variable c conditioned on z using 𝑝𝜃 (c|z).
This results in the joint distribution: 𝑝𝜃 (x, r, z, c) = 𝑝𝜃 (c|z)𝑝𝜃 (z |x)𝑝𝜃 (x, r). By defining
𝑦 = I(c ≺ r), we can express the evidence as: 𝑝𝜃 (x, r, 𝑦) =

∫ ∫
𝑝𝜃 (c|z)𝑝𝜃 (z |x)𝑝𝜃 (x, r)I(c ⋎𝑦

r)𝑑z𝑑c, where ⋎𝑦 denotes ≺ if 𝑦 = 1, and ⊀ if 𝑦 = 0 (note that ⊀ is not equivalent to ⪰ in vector
space). To simplify the model, we typically restrict our estimation of evidence to the conditional
density 𝑝𝜃 (𝑦 |x, r) =

∫ ∫
𝑝𝜃 (c|z)𝑝𝜃 (z |x)I(c⋎𝑦 r)𝑑z𝑑c during the inference stage, since x and r

are usually provided and we do not need to generate the entire evidence from scratch. Given that the
latent variable z is high-dimensional, accurately calculating the evidence requires integration over
z, which can be computationally intensive. To address this, we propose two approaches to estimate
the evidence: (i) Monte Carlo sampling on z ∼ 𝑝𝜃 (z |x) to estimate 𝑝𝜃 (𝑦 |x, r). (ii) Use variational
inference to obtain a lower bound on the evidence. This allows us to optimize the log-evidence by
sampling z from the recognition model 𝑞𝜙 (z |x, r, 𝑦). Furthermore, we choose a categorical latent
variable z for a more efficient estimation of 𝑝𝜃 (𝑦 |x, r).
In the last part, we conduct two types of experiments. First, we design a card gamble simulation in
which the winning rate is monotonically increasing with respect to the amount of chips the player
bets. The advantage of this simulation lies in its ability to reveal the true distribution of the latent
cost variable c, while the models are trained without observing the value of c. We compare the
performance of binary classification tasks between conventional methods and our generative cost
model. Furthermore, we validate the predicted distribution of the latent cost variable 𝑝𝜃 (c|x)
by comparing it with the actual distribution. The results demonstrate that our method not only
achieves superior predictive accuracy, but also effectively approximates the true distribution of the
cost variable. To further assess the performance of the multivariate revenue variable r, we conduct
experiments on four public datasets: the Adult dataset (Becker & Kohavi (1996)), the COMPAS
dataset (Larson et al. (2016)), the Diabetes dataset (Teboul) and the Blog Feedback dataset (Buza
(2014)). In all four experiments, our model outperforms existing approaches. We perform several
ablation studies to examine the impact of the hyperparameters and loss functions in our model, with
detailed findings provided in the appendix.

The main contributions of our paper are summarized as follows:

• We introduce a universal technique that reformulates the problem of monotonic probability
into a modeling problem for latent cost variables, avoiding restrictions in conventional
monotonic neural networks.

• We address the modeling of the cost variable using a generative approach called the Gen-
erative Cost Model (GCM), and we present loss functions derived from log-likelihood and
variational inference.

• We evaluate our method for classification tasks using a simulated card gamble scenario
and four public datasets, demonstrating that our model consistently outperforms traditional
monotonic models.

2 Background

Partial Order between Vectors. For vectors v1 and v2 in R𝑛, we define the partial order between
v1 and v2 as: v1 ⪯ v2 if and only if v (𝑘 )

1 ≤ v (𝑘 )
2 , for any 1 ≤ 𝑘 ≤ 𝑛. This relationship is illustrated

in Figure 1a. Note that v1 ⪯ v2 is equivalent to v2 ⪰ v1.

The strict order is defined by: v1 ≺ v2 if and only if v1 ⪯ v2 and v1 ≠ v2. We have v1 ≺ v2 is
equivalent to v2 ≻ v1, but not equivalent to v1 ⪰̸ v2.

Partial Order between Random Variables. In this paper, we adopt the definition of first-order
stochastic dominance (Hadar & Russell (1969)): for random variables r1 and r2 defined on R𝑛,
we say that r2 first-order stochastically dominates r1 (denoted r1 ≺1 r2) if and only if 𝑃𝑟 (r1 ≻
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r1

r2

r3

(a) Example of r’s, where r1 ≺ r2 and
r1 ≺ r3.

epi𝐹
𝐹 (𝑦 |r1)
𝐹 (𝑦 |r2)
𝐹 (𝑦 |r3)

(b) r1 ≺ r2 ⇒ epi𝐹 (𝑦 |r1) ⊂ epi𝐹 (𝑦 |r2) and r1 ≺ r3 ⇒
epi𝐹 (𝑦 |r1) ⊂ epi𝐹 (𝑦 |r3) due to the monotonicity of 𝑦 and
r.

Figure 1: The CDFs of 𝐹 (𝑦 |r) with different r’s, where 𝑦 is monotonic with respect to r.

t) < 𝑃𝑟 (r2 ≻ t) for any t ∈ R𝑛. Specifically, for one dimensional random variables, 𝑟1 ≺1 𝑟2
is equivalent to 𝐹1 (𝑡) > 𝐹2 (𝑡) (or epi𝐹1 (𝑡) ⊂ epi𝐹2 (𝑡)) for any 𝑡 ∈ R. where 𝐹𝑖 represents the
cumulative distribution function (CDF) of the random variable 𝑟𝑖 and epi𝐹𝑖 refers to the epigraph of
the CDF.

Monotonic Conditional Probability. A conditional probability 𝑝(y |r) is defined as monotonic, if
and only if y |r1 ≺1 y |r2 for any r1 ≺ r2. Or, in other words, 𝑃𝑟 (y ≻ t|r1) < 𝑃𝑟 (y ≻ t|r2) for any
vector t and any pair r1 ≺ r2. In this paper, we refer to the relationship between y and r as: y being
(conditionally) monotonic (increasing) with respect to r. All instances of monotonicity discussed
here are assumed to be monotonically increasing; for decreasing relationships, we can simply replace
the original variables with their opposites.

For example, if y ∼ N(y;µ,𝚺), where the mean µ is also a random variable, then we have that y
is monotonic with respect to µ. Similarly, if 𝑦 ∼ B𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝛽), then 𝑦 is monotonic with respect to
𝛽. In these cases, µ and 𝛽 are referred to as monotonic parameters of y.

The relationship between r and 𝑝(𝑦 |r) is illustrated in Figure 1, where 𝑦 is one-dimensional and
monotonic with respect to r. In Figure 1a, we plot three random variables r1, r2 and r3, with r1 ≺ r2
and r1 ≺ r3, while r2 and r3 are not comparable. Let 𝐹 (𝑦 |r𝑖) denote the CDF of 𝑦 conditioned on
r = r𝑖 . The corresponding conditional CDFs are plotted in Figure 1b, where 𝐹 (𝑦 |r1) is positioned at
the top with the smallest epigraph, while 𝐹 (𝑦 |r2) intersects 𝐹 (𝑦 |r3) indicating the incomparability
between r2 and r3.

3 Related Work

Monotonic Modeling. In many machine learning tasks, we have the prior knowledge that the output
should be monotonic with respect to certain input variables. A straightforward idea is to identify a
monotonic function and optimize its parameters to approximate the desired monotonic output. The
Min-Max architecture (Sill (1997)) is a pioneering work in monotonic neural networks, utilizing
a piecewise linear model to approximate monotonic target functions. Its monotonicity is ensured
through (i) positive weighting matrices, (ii) monotonic activation functions, and (iii) a Min-Max
structure.

Along the direction of monotonic by construction, Nolte et al. (2022) introduced the Lipschitz
monotonic network, which enhances robustness through weight constraint. Igel (2023) proposed
the smoothed min-max monotonic network, which replaces the traditional min-max structure with a
smoothed log-sum-exp function, preventing the network from becoming silent. Additionally, Runje
& Shankaranarayana (2023) developed the constrained monotonic neural network, which improves
the approximation of non-convex functions by modifying activation functions.

Another popular direction for improving monotonicity involves the use of regularization techniques.
This includes monotonicity hints proposed by Sill & Abu-Mostafa (1996) , which utilize hint samples
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to guide model learning. The certified monotonic neural networks proposed by Liu et al. (2020)
certify monotonicity by verifying the lower bound of the partial derivative of monotonic features.
Furthermore, Gupta et al. (2019) proposed a penalization method for negative gradients, while
counter example guided methods were introduced by Sivaraman et al. (2020).

In addition, the lattice networks (Garcia & Gupta (2009)) can solve the monotonic problem by
either construction or regularization approach; extensive works have been conducted in this area by
Milani Fard et al. (2016), You et al. (2017), Gupta et al. (2019) and Yanagisawa et al. (2022), etc.

Monotonicity also plays an important role in many areas of machine learning. Ben-David (1995);
Lee et al. (2003); van de Kamp et al. (2009); Chen & Guestrin (2016) bring monotonicity into
tree models; Rashid et al. (2020) propose the QMIX method using monotonic value functions in
multi-agent reinforcement learning; Lam et al. (2023) propose a multi-class loss function using
monotonicity of gradients of convex functions; Haldar et al. (2020) and Xu et al. (2024) bring
monotonicity into online business, etc.

Variational Inference and Generative models. Variational Inference (VI) (Peterson (1987); Parisi
& Shankar (1988); Saul & Jordan (1995)) is a powerful technique for working with generative
models, and recent years have seen significant advancements based on this approach (Kingma
(2013); Rezende et al. (2014); Ozair & Bengio (2014); Sohl-Dickstein et al. (2015); Ho et al. (2020);
Song et al. (2020)). VI transforms the complex task of Bayesian inference into a computationally
manageable optimization problem by approximating the latent variables within a specified family
of distributions. This is achieved by optimizing the evidence lower bound (ELB) rather than the
original evidence.

Recent studies have highlighted the rapid growth of conditional generative models. In the realm of
text-to-image generation, notable works include Ramesh et al. (2021), Ramesh et al. (2022), Saharia
et al. (2022), and Rombach et al. (2022). For text-to-video generation, key contributions come
from Esser et al. (2023) and Brooks et al. (2024). Unlike variational autoencoders (VAEs) (Kingma
(2013)), which initiate generation from a latent variable, these conditional generative models begin
with a pair comprising a condition (such as text, image, or video) and a latent variable. This is
typically expressed through the decomposition: 𝑝(𝑥, 𝑧) = 𝑝(𝑥)𝑝(𝑧 |𝑥), where 𝑥 is the condition and 𝑧

is the latent variable. Consequently, these models primarily focus on conditional probability 𝑝(𝑧 |𝑥).
In this paper, we adopt this paradigm to construct our cost generation model.

Moreover, the normalizing flow is an important subject of generative models, it not only transforms
a simple distribution to a complicated distribution, but also requires these transformations to be
invertible, which is sufficient when the transformations are continuous and monotonic. There have
been studies that involve monotonicity in normalizing flows: Ziegler & Rush (2019); Ho et al. (2019);
Wehenkel & Louppe (2019); Müller et al. (2019); Jaini et al. (2019); Dinh et al. (2019); Ahn et al.
(2022).

4 The Cost Variable Method

4.1 Problem Formulation

Consider a binary classification problem of (x, r, 𝑦), wherex ∈ R𝑛 represents the ordinary variables,
r ∈ R𝑚 is the revenue variable, and 𝑦 ∈ {0, 1} is the binary output variable that exhibits monotonicity
with respect to r. We assume that 𝑦 follows a Bernoulli distribution, with its mean parameter
generated by a deep neural network 𝐺 : R𝑛 × R𝑚 → (0, 1):

𝑦 |{x, r} ∼ B𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑦;𝐺 (x, r)). (1)

As defined in Section 2, the function 𝐺 has to be monotonic with respect to r. We refer to r as the
revenue variable associated with 𝑦. The rationale is that, when 𝑦 is viewed as a decision variable,
a profit-maximizing decision will favor higher values of r, thus ensuring the monotonicity of 𝑦 with
respect to r.

For a general monotonic problem of (x, r, y) with continuous multivariate output y ∈ R𝑘 , the model
takes the following form:

y |{x, r} ∼ F (y;G(x, r)), (2)

4
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r1
r2

r3

𝑃𝑟 (c ≺ r1)

(a) In the density contour plot of the cost variable
c, the shaded area represents the event where c ≺
r. This indicates that the probability of a randomly
selected c falling within this shaded region is given
by 𝑃𝑟 (c ≺ r) = 𝑃𝑟 (𝑦 = 1|r). Therefore, for any
r1 ≺ r2, we can get 𝑃𝑟 (c ≺ r1) < 𝑃𝑟 (c ≺ r2).

𝑦

r

x

z c

I(c ≺ r) =

𝑝
𝜃 (z |x)

𝑝𝜃 (c|z)

𝑞 𝜙
(z
|x,
r,
𝑦)

(b) The graph illustrates the probability graphical
model for a monotonic probability 𝑝(𝑦 |x, r). In this
model, the grey nodes represent observable variables
x, 𝑦 and r, while the white nodes denote latent vari-
ables. Solid arrows indicate the generative model 𝑝𝜃 ,
whereas the dashed arrow represents the recognition
model 𝑞𝜙 .

Figure 2: Definition (Figure 2a) and modeling (Figure 2b) of the latent cost variable.

where F denotes the chosen probability family for y. The function G produces a monotonic
parameter for F and is monotonic with respect to r. Consequently, y maintains monotonicity
with respect to r. For example, if F is a Gaussian distribution N(y;µ(x, r), diag(σ(x)2)) and
G = µ(x, r) predicts its mean parameter, then G must be a monotonic function of r to ensure that
y is monotonic with respect to r.

To reduce the general monotonic probability problem to the binary scenario, we introduce an assistant
random variable t that occupies the same event space as y. We define the new response variable as
𝑦∗ = I(y ≻ −t) ∈ {0, 1}, and the new revenue variable as r∗ = [r, t]. For any r∗1 ≺ r∗2, we have:

𝑃𝑟 (𝑦∗ = 1|r∗1) = 𝑃𝑟 (y ≻ −t1 |r1) ≤ 𝑃𝑟 (y ≻ −t2 |r1) ≤ 𝑃𝑟 (y ≻ −t2 |r2) = 𝑃𝑟 (𝑦∗ = 1|r∗2). (3)
The equality condition of this inequality is r1 = r2 and t1 = t2, which contradicts r∗1 ≺ r∗2. Thus, 𝑦∗
is strictly monotonic with respect to r∗. Consequently, the triplet (y,x, r) is reduced to the binary
problem of (𝑦∗,x, r∗):

𝑦∗ |{x, r∗} ∼ B𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑦∗;𝐺 (x, r∗)), ∇r∗𝐺 (x, r∗) ≻ 0. (4)
Lemma 1. If 𝑦∗ is monotonic with respect to r∗, then y is monotonic with respect to r.

The proof of Lemma 1 is provided in Appendix A. This lemma establishes the equivalence between
the problems of (𝑦∗,x, r∗) and (y,x, r). From Equation 4, we derive 𝑃𝑟 (y ≻ −t|x, r∗) = 𝑃𝑟 (𝑦∗ =
1|x, r∗) = 𝐺 (x, [r, t]), leading to the density function of y:

𝑝(y |x, r) = −𝜕𝑘𝐺 (x, [r,−t])
𝜕t(1) · · · 𝜕t(𝑘 )

�����
t=y

. (5)

Which completes the transformation from a general monotonic probability problem to a binary
monotonic problem. We give an example of calculating the max likelihood estimate of y as well as
deriving the loss function in Appendix E.

4.2 Monotonicity via the Cost Variable

We now focus on the binary problem. The traditional approach, as defined in Equation 1, involves
identifying a strictly (or weak) monotonic function 𝐺 (x, r) with respect to r. In this paper, instead
of searching for a suitable function 𝐺, we introduce a random variable c to model 𝑦 defined by:

𝑦 = I(c ≺ r). (6)

5
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Given that {c|c ≺ r1} ⊂ {c|c ≺ r2}, for any r1 ≺ r2, it follows that 𝑃𝑟 (𝑦 = 1|r = r1) < 𝑃𝑟 (𝑦 =

1|r = r2), which implies that 𝑦 is strictly monotonic with respect to r. Then we can define:

𝐺 (x, r) = E[𝑦 |x, r] = 𝑃𝑟 (c ≺ r |x, r) =
∫
c≺r

𝑝(c|x)𝑑c, (7)

demonstrating that 𝑦 ∼ B𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝐺 (x, r)). Thus, 𝐺 (x, r) serves as the monotonic function
proposed in Equation 1 . Notably, we do not need to derive the exact form of 𝐺, as long as we can
estimate the conditional density 𝑝(c|x).
Unlike conventional methods that require 𝐺 to be a strictly monotonic function, there are no con-
straints on 𝑝(c|x). We can take any form of 𝑝(c|x), and the monotonicity of 𝑝(𝑦 |r) holds strictly
due to the definition of 𝑦 in Equation 6. We call c the cost variable. As illustrated in Figure 2a,
the probability of 𝑦 is equivalent to the probability that the revenue r domains the cost c, that is,
𝑃𝑟 (𝑦 = 1) = 𝑃𝑟 (c ≺ r). Thus, the original task of finding a monotonic function 𝐺 reduces to
determining the distribution of c. However, since c is a latent variable, we must infer c based on the
observable variables x, r and 𝑦, which is a challenge that still needs to be addressed.

4.3 Generative Cost Model

As we focusing on modeling the cost variable c, the distribution of c can be complicated, making it
challenging to select an appropriate distribution family. To bypass the need for choosing a suitable
distribution family, we adopt a generative approach that can automatically approximate complicated
distributions. In this paper, we construct a simple generative model for c through the following
process:

𝜆𝑧 = DNN𝑧 (x; 𝜃1), 𝑝𝜃1 (z |x) = P𝑧 (z;𝜆𝑧),
𝜆𝑐 = DNN𝑐 (z; 𝜃2), 𝑝𝜃2 (c|z) = P𝑐 (c;𝜆𝑐), (8)

𝑦 = I(c ⪯ r).

The generative model consists of two independent stages: 𝑝𝜃1 (z |x) and 𝑝𝜃2 (c|z), where 𝜃 = [𝜃1, 𝜃2]
is the generative parameter that need to be learned. In the first stage, we generate the latent variable
z via 𝑝𝜃1 (z |x). Subsequently, the latent cost variable c is generated by 𝑝𝜃2 (c|z) , which is set to be
elementwise independent, that gives us the decomposition

𝑝𝜃2 (𝑦 |z, r) = 𝑝𝜃2 (c ⋎𝑦 r |z, r) = 1 − 𝑦 − (−1)𝑦
∏
𝑖

∫ r (𝑖)

−∞
𝑝𝜃2 (c(𝑖) |z)𝑑c(𝑖) . (9)

As illustrated in Figure 2b, we assume the conditional independencies: z ⊥⊥ r | x andx ⊥⊥ 𝑦 | {z, r}
hold (we discuss another assumption in Appendix F where we abandon z ⊥⊥ r | x). Thus the
probability of 𝑦 conditioned on x can be formulated as:

𝑝𝜃 (𝑦 |x, r) =
∫

𝑝𝜃1 (z |x, r)𝑝𝜃2 (𝑦 |z,x, r)𝑑z =

∫
𝑝𝜃1 (z |x)𝑝𝜃2 (𝑦 |z, r)𝑑z = Ez∼𝑝𝜃1

𝑝𝜃2 (𝑦 |z, r).
(10)

To find the optimal parameter 𝜃 = [𝜃1, 𝜃2], we maximize the log-likelihood (𝐿𝐿) of the observation
𝑦, which is 𝐿𝐿 = log 𝑝𝜃 (𝑦 |x, r) = logEz∼𝑝𝜃1 (z |𝑥 ) 𝑝𝜃2 (𝑦 |z, r). We approximate RHS via a Monte
Carlo sampling: Ez∼𝑝𝜃1 (z |𝑥 ) 𝑝𝜃2 (𝑦 |z, r) ≈ 1

𝑘

∑𝑘
𝑗=1 𝑝𝜃2 (𝑦 |z 𝑗 , r), where z 𝑗 ∼ 𝑝𝜃1 (z |x). Since we

need to optimize both parameters 𝜃1 and 𝜃2 via gradient descent methods, it is essential that the
sampling result 𝑧 𝑗 is differentiable with respect to 𝜃1. This is feasible for a Gaussian 𝑝𝜃1 (z |x)
using the reparameterization trick (Kingma (2013)). However, for other assumptions of 𝑝𝜃1 (z |x),
applying the reparameterization trick can be challenging. To address this issue, we introduce the
importance sampling technique: first, we sample z ∼ 𝜋, where 𝜋 is a distribution irrelevant to x,
usually we take 𝜋 as the prior of z, i.e. 𝜋(z) = 𝑝𝜃 (z). Then by importance sampling technique, we
have:

𝑝𝜃 (𝑦 |x, r) = Ez∼𝑝𝜃 (z)
𝑝𝜃1 (z |𝑥)
𝑝𝜃 (z)

𝑝𝜃2 (𝑦 |z, r) ≈
1
𝑘

𝑘∑︁
𝑗=1

𝑝𝜃1 (z 𝑗 |𝑥)
𝑝𝜃 (z 𝑗 )

𝑝𝜃2 (𝑦 |z 𝑗 , r). (11)

The RHS includes the term 𝑝𝜃1 (z 𝑗 |𝑥), which is differentiable with respect to 𝜃1. Therefore, we
can now optimize 𝜃 = [𝜃1, 𝜃2] through gradient descent methods for various form of 𝑝𝜃1 (z 𝑗 |𝑥).
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However, when 𝑝𝜃1 (z 𝑗 |𝑥) significantly different from 𝑝𝜃 (z), this estimator suffers a high variance
issue. To tackle this issue, we make the following efforts: i) enlarging the size of 𝑘; ii) reducing the
range of z to a finite set, for example, letting z to be a categorical variable; iii) following the 𝛽-VAE
(Higgins et al. (2017)), we add an regularization term 𝛽𝐷𝐾𝐿 (𝑝𝜃1 (z |x)∥𝑝𝜃 (z)) to the loss function,
keeping 𝑝𝜃1 (z 𝑗 |𝑥) close to 𝑝𝜃 (z). We put the ablation study on 𝛽 in Appendix C.

Specially, when 𝑝𝜃1 (z |𝑥) is a 𝑘-categorical variable, i.e. z ∈ {e1, · · · , e𝑘}, and we sample all
possible values of z all together, we have the precise estimators:

log 𝑝𝜃 (𝑦 |x, r) = log
𝑘∑︁
𝑗=1

𝑝𝜃1 (z = e 𝑗 |x)𝑝𝜃2 (𝑦 |z = e 𝑗 , r),

𝐷𝐾𝐿 (𝑝𝜃1 (z |x)∥𝑝𝜃 (z)) =
𝑘∑︁
𝑗=1

𝑝𝜃1 (z = e 𝑗 |x) log[𝑘 · 𝑝𝜃1 (z = e 𝑗 |x)] .
(12)

This is a simplified form that avoids uncertainty in traditional Monte Carlo sampling. The complexity
of this estimator is linearly growing with respect to the categorical number 𝑘 , we do an ablation
study on 𝑘 in Appendix C. The details of modeling with categorical latent variable z are provided in
Appendix B. The final GCM loss function is:

L𝐺𝐶𝑀 (𝜃;x, r, 𝑦, 𝛽) = − log 𝑝𝜃 (𝑦 |x, r) + 𝛽𝐷𝐾𝐿
(
𝑝𝜃1 (z |x)∥𝑝𝜃 (z)

)
. (13)

4.4 Generative Cost Model with Variational Inference

A significant challenge arises from the difficulty in learning the distribution of z conditioned on
x, particularly since the observable variables r and 𝑦 are not utilized in predicting z. To improve
the modeling of z, we introduce the recognition model 𝑞𝜙 (z |x, r, 𝑦) to approximate the intractable
posterior 𝑝𝜃 (z |x, r, 𝑦). By applying variational inference on 𝑞𝜙 , we have the evidence lower bound
formulated as:

𝐸𝐿𝐵 = Ez∼𝑞𝜙 log 𝑝𝜃 (𝑦 |z, r) − 𝐷𝐾𝐿
(
𝑞𝜙 (z |x, r, 𝑦)∥𝑝𝜃 (z |x)

)
≤ log 𝑝𝜃 (𝑦 |x, r). (14)

The derivation of 𝐸𝐿𝐵 is available in Appendix D. Here, since the variables x and r are always
given in the process of generating c, the evidence 𝑝𝜃 (x, r, 𝑦) = 𝑝𝜃 (𝑦 |x, r)𝑝(x, r) can be reduced
to 𝑝𝜃 (𝑦 |x, r) as the RHS of Equation 14. We keep our assumption of z as a categorical variable,
and we can simplify 𝐸𝐿𝐵 by:

Ez∼𝑞𝜙 log 𝑝𝜃 (𝑦 |z, r) =
𝑘∑︁
𝑗=1

𝑞𝜙 (z = e 𝑗 |x, r, 𝑦) log 𝑝𝜃2 (𝑦 |z = e 𝑗 , r),

𝐷𝐾𝐿
(
𝑞𝜙 (z |x, r, 𝑦)∥𝑝𝜃 (z |x)

)
=

𝑘∑︁
𝑗=1

𝑞𝜙 (z = e 𝑗 |x, r, 𝑦) log
𝑞𝜙 (z = e 𝑗 |x, r, 𝑦)
𝑝𝜃1 (z = e 𝑗 |x)

.

(15)

Direct optimization of 𝐸𝐿𝐵 is problematic. Unlike classic VI, which has a KL term formed
as 𝐷𝐾𝐿 (𝑞(𝑧 |𝑥)∥𝑝(𝑧)) with a fixed prior 𝑝(𝑧) that makes the optimization of 𝑞(𝑧 |𝑥) stable, both
𝑞𝜙 (z |x, r, 𝑦) and 𝑝𝜃 (z |x) in our KL term need to be learned, which could bring uncertainty in the
optimization of 𝑞𝜙 . Fortunately, we can learn 𝑝𝜃 (z |x) by optimizing L𝐺𝐶𝑀 , so we combine 𝐸𝐿𝐵

and L𝐺𝐶𝑀 as the objective of the variational version of GCM (GCM-VI):

L𝐺𝐶𝑀−𝑉𝐼 (𝜃, 𝜙;x, r, 𝑦, 𝛽) = L𝐺𝐶𝑀 (𝜃;x, r, 𝑦, 𝛽) − 𝛼𝐸𝐿𝐵. (16)

In this loss function, we stop the gradient of 𝑝𝜃 (z |x) in 𝐸𝐿𝐵 and train 𝑝𝜃 (z |x) via L𝐺𝐶𝑀−𝑉𝐼 .
Ablation studies for values of 𝛼 and for whether to combine L𝐺𝐶𝑀 and 𝐸𝐿𝐵 are available in the
Appendix C.

5 Experiment

5.1 A Gamble Simulation

We design a card gamble and the rules are listed as follows:
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• There are 𝑛 cards, each labeled with a number from 1 to 𝑛. The cards are shuffled and then
the backsides are also labeled with numbers from 1 to 𝑛.

• In each round, the dealer shuffles the cards and then the player picks 𝑙 cards from the top of
the deck. The player sees the front sides of the selected cards and places a bet of 𝑟 chips,
where 𝑟 < 𝑛.

• The dealer rolls a dice to select one card from the 𝑙 selected cards. If the backside number
of this card is less than 𝑟 , the player wins and receives 𝑛 chips as a prize, producing a net
profit of 𝑛 − 𝑟 , otherwise the player loses, resulting in a profit of −𝑟.

• In the whole game, a player can only see the front side, but not the backside of all cards.

In our gambling model, the rules state that the more chips a player bets, the higher the likelihood of
winning, but correspondingly the prize of winning shrinks. We denote the winning event as 𝑦 = 1
and the losing as 𝑦 = 0. The selected cards of the player are represented as x = [x1, · · · ,x𝑙], where
each x𝑖 corresponds to an embedding of the 𝑖 th card. Consequently, the probability 𝑝(𝑦 |x, 𝑟) is
strictly monotonic with respect to the bet 𝑟. We train our generative cost model on a simulated
dataset and evaluate the performance of our model 𝑝𝜃 (𝑦 |x, 𝑟) using the same strategy. To assess
the prize-winning capability of the models, we determine the optimal bet of model 𝑝𝜃 is: 𝑟∗ =

argmax𝑟 {𝑝𝜃 (𝑦 |x, 𝑟)𝑛 − 𝑟.} The real profit generated by the choice 𝑟∗ is I(𝑟∗ > 𝑐)𝑛 − 𝑟∗ . To
maximize the total profit, a model has to learn the probability 𝑝𝜃 (𝑦 |x, 𝑟) accurately for every
combinations of x and 𝑟 .

The cost variable 𝑐 corresponds to a random choice of the unobservable values on the backsides
of the picked cards x1, · · · ,x𝑙 , and we note these backside values as 𝑏1, · · · , 𝑏𝑙 . As a result, the
model should infer the probabilities of the backside value of each x𝑖 . This inference is particularly
challenging, as the models can only deduce these probabilities from training samples consisting
of (x, 𝑟, 𝑦). In particular, the optimal solution for the generative cost model is to learn a precise
mapping from x to 𝑝(𝑐 |x), which is given by:

𝑝(𝑐 |x) = I(𝑐 ∈ {𝑏1, · · · , 𝑏𝑙})
𝑙

(17)

We compare several classic methods to our generative model, all of which share the same baseline
architecture: a two-layer perceptron network. This structure includes layer normalization (Ba
(2016)), residual connection (He et al. (2016)) and leaky-ReLU activation (Xu (2015)). During the
training phase, we employ the classic stochastic gradient descent method (Robbins & Monro (1951);
Kiefer & Wolfowitz (1952) and Rumelhart et al. (1986)) to optimize network parameters. The model
is trained on simulated data derived from the card game we designed, with hyperparameters set to
𝑛 = 10, 000 and 𝑙 = 4. We assume that 𝑟 is generated independently of x. We train our model with
mini-batches of size 100 in 50,000 rounds, resulting in a total of 5,000,000 training examples, while
the methods are tested on 100,000 examples.

The methods we compare include: (i) the baseline MLP network (MLP); (ii) Min-Max network (MM)
(Sill (1997)); (iii) smoothed Min-Max network (SMM) (Igel (2023)); (iv) constrained monotonic
network (CMNN); (v) lattice network (Lattice) (Milani Fard et al. (2016)); (vi) monotonicity hint
model (Hint) (Sill & Abu-Mostafa (1996)); (vii) pointwise loss method (PWL) (Gupta et al. (2019)).
Note that the MLP method does not require monotonicity, it does not face the difficulties in strict
monotonic structure designing as other methods. Here we regard it as a benchmark of a free-style
model but not a baseline of the monotonic modeling family. Moreover, the Hint and PWL methods
are weak monotonic methods which encourage but not assure monotonicity.

We evaluate these methods using the following metrics: (i) the area under the precision-recall curve
(AUC) between 𝑝𝜃 (𝑦 |x, 𝑟) and 𝑦; (ii) the Kullback-Leibler (KL) divergence between 𝑝𝜃 (𝑦 |x, 𝑟) and
the true 𝑝(𝑦 |x, 𝑟); (iii) Kendall’s 𝜏 coefficient, calculated between multiple pairs of 𝑝𝜃 (𝑦 |x, 𝑟) and
𝑟 with fixed x, for validating models’ monotonicity; (iv) the prize money earned by each model.

In our experiments, we evaluate the two proposed methods: the Generative Cost Model (GCM)
and its variational inference counterpart (GCM-VI). For the GCM, we utilize a categorical latent
variable z and estimate the likelihood using the detection trick outlined in Equation 11. In the case of
GCM-VI, we extend the GCM framework by incorporating a recognition network 𝑞𝜙 (z |x, r, 𝑦) that
runs in parallel with the generative model 𝑝𝜃 (z |x). Both 𝑞𝜙 (z |x, r, 𝑦) and 𝑝𝜃 (z |x) are categorical
distributions, which simplifies the calculation of their KL divergence. This leads to the formulation
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Table 1: Experimental results (with a 95% confidence interval) for the simulated card game.

Method AUC↑ KL Div.↓ Kendall’s 𝜏↑ Prize Profit↑
MLP 0.8803 ±0.0006 0.0630 ±0.0012 0.8989 ±0.0042 1053.7 ±24.9
MM 0.8844 ±0.0012 0.0578 ±0.0033 1 ±0 1251.5 ±68.1
SMM 0.8824 ±0.0031 0.0629 ±0.0072 1 ±0 1104.6 ±130.6
CMNN 0.8823 ±0.0013 0.0624 ±0.0029 1 ±0 1025.1 ±35.0
Lattice 0.8772 ±0.0002 0.0743 ±0.0003 1 ±0 884.0 ±3.2
Hint 0.8850 ±0.0013 0.0585 ±0.0028 0.9499 ±0.0027 1164.1 ±71.0
PWL 0.8879 ±0.0013 0.0526 ±0.0036 1 ±0 1355.9 ±91.4
GCM 0.8917 ±0.0005 0.0395 ±0.0019 1 ±0 1699.2 ±48.1
GCM VI 0.8920 ±0.0007 0.0391 ±0.0014 1 ±0 1709.9 ±46.8

of the evidence lower bound, as presented in Equation 14. Detailed descriptions of the GCM and
GCM-VI models can be found in the Appendix B. The experimental results comparing our models
with other methods are summarized in Table 1.

As shown in Table 1, our experiments demonstrate that the Generative Cost Model (GCM) achieves
superior performance compared to all other monotonic methods. Notably, the performance on
Kendall’s 𝜏 coefficient meets our expectations, as these models ensure strict monotonicity; the only
exceptions are the MLP model and the Hint model, which fail to predict monotonic results since their
architecture do not assure strict monotonicity.

5.2 Validate on Generation of Cost Variable

Figure 3: The predicted distribution of 𝑝𝜃 (𝑐 |x) (histogram in blue) is compared to the actual
distribution of 𝑐 (represented by the red lines). In each row, we fix the variablex and its corresponding
cost variable c. As the training steps progress from left to right, the predicted distribution increasingly
converges to the real distribution.

Since our model focuses on modeling the distribution of the latent cost variable 𝑐, we can leverage
the actual distribution of 𝑐 formulated in Equation 17. During the training process, we record the
prediction of 𝑝𝜃 (𝑐 |x) using an importance sampling method similar to Equation 11. As shown in
Figure 3, the predicted density of 𝑐 is increasingly aligned with the actual distribution as training
progresses. This observation confirms that our generative cost model effectively learns the latent
cost variable.

5.3 Experiments for Multidimensional Revenue on Public Datasets

To further evaluate the GCM model for multidimensional revenue variable, we use four public
datasets: the Adult dataset (Becker & Kohavi (1996)), the COMPAS (Correctional Offender Man-
agement Profiling for Alternative Sanctions) dataset (Larson et al. (2016)), the Diabetes dataset

9
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(Teboul) and the Blog Feedback dataset (Buza (2014)). The property of each dataset is shown in
Table 2 .

Table 2: Details of the datasets.

dataset samples ordinary
features

monotonic
features target

Adult 48,842 33 4 classification
COMPAS 7,214 9 4 classification
Diabetes 253,680 105 4 classification
Blog Feedback 52,397 272 8 regression

The model we test are the same as we presented in Section 5.1, while the evaluation metrics are
switched to loss, RMSE, AUC and ACC. And, as we stated in Section 5.1, we regard the MLP
model as a benchmark of a freestyle model but not a baseline of the monotonic modeling family.
For all four datasets, the training and testing sets are split in a 4:1 ratio. We follow the data
preprocessing procedures outlined by Liu et al. (2020) for the COMPAS dataset. For the Blog
Feedback dataset, we perform a logarithm transformation for numerical features and target value.
In all experiments, we employ categorical distributions as the family of latent z in the GCM and
GCM-VI, the hyperparameter settings of GCM and GCM-VI are listed in the Appendix G. The
testing results are demonstrated in Table 3 and the full results are available in Appendix G. All
experiments are repeated five times with different random seeds, the final results are reported with a
95% confidence interval.

Table 3: Experimental results on the multiple datasets.

Method Adult COMPAS Diabetes Blog Feedback
AUC↑ AUC↑ AUC↑ RMSE↓

MLP ∗ 0.7818 ±0.0037 0.7385 ±0.0026 0.8241 ±0.0015 0.1048 ±0.0008
MM 0.7788 ±0.0047 0.7387 ±0.0040 0.8210 ±0.0065 0.1124 ±0.0023
SMM 0.7798 ±0.0059 0.7385 ±0.0022 0.8227 ±0.0011 0.1149 ±0.0025
CMNN 0.7761 ±0.0073 0.7374 ±0.0015 0.8204 ±0.0011 0.1123 ±0.0022
Lattice 0.7841 ±0.0016 0.7388 ±0.0032 0.8142 ±0.0002 0.2465 ±0.0025
Hint ♯ 0.7804 ±0.0043 0.7398 ±0.0045 0.8244 ±0.0018 0.1046 ±0.0003
PWL ♯ 0.7814 ±0.0032 0.7409 ±0.0037 0.8223 ±0.0017 0.1067 ±0.0008
GCM 0.7840 ±0.0014 0.7449 ±0.0017 0.8251 ±0.0011 0.0994 ±0.0015
GCM VI 0.7863 ±0.0029 0.7448 ±0.0025 0.8256 ±0.0007 0.0990 ±0.0010
∗: No monotonicity requirements.
♯: Weak monotonicity via regularization.

Our GCM and GCM-VI models achieve the top two performances in all metrics in all datasets after
10, 000 training steps. Notably, GCM-VI achieves the best performance on all datasets except the
COMPAS dataset, proving the effectiveness of introducing variational bound into our generative
objective. The detailed results are available in the Appendix G.3. And a time complexity analysis is
available in the Appendix H.

6 Conclusion

This paper presents an innovative generative method for monotonic modeling by reformulating
the monotonicity problem through the incorporation of a latent cost variable. We have developed
a robust generation process for this cost variable that accurately approximates the latent costs.
Our experimental results demonstrate that the proposed Generative Cost Model (GCM) effectively
addresses the monotonicity challenge, significantly outperforming traditional approaches across
various datasets.
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A Proof of Lemma 1

Proof. For any r1 ≺ r2, we have r∗1 = [r1, t] ≺ [r2, t] = r∗2.

Since 𝑦∗ is monotonic with respect to r∗, we have 𝑃𝑟 (𝑦∗ = 1|x, r∗1) < 𝑃𝑟 (𝑦∗ = 1|x, r∗2) for any t.

Therefore, by the definition of 𝑦∗, we have 𝑃𝑟 (y ≻ −t|x, r1, t) < 𝑃𝑟 (y ≻ −t|x, r2, t) for any t.

Thus, y |{x, r1} ≺1 y |{x, r2}, i.e. y is monotonic with respect to r. □

B Details of GCM and GCM-VI in the Experiments

The generative model with categorical latent variable z is designed by:
𝑤 (1) , · · · , 𝑤 (𝑘 ) ,d = DNN𝑧 (x; 𝜃1),
z ∼ C𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 (𝑤 (1) , · · · , 𝑤 (𝑘 ) ),
h = Az + d,

µ𝑐,σ𝑐 = DNN𝑐 (h; 𝜃2),
c ∼ N(µ𝑐,σ2

𝑐),
𝑦 = I(c ⪯ r).

(18)

The second line produces a one-hot vector z1, thus, z is not differentiated with respect to 𝜃1. But
through Equation 11, we can skip the sampling of z and modify the generative model into:

z̃ ( 𝑗 ) = e( 𝑗 ) , 𝑗 = 1, · · · , 𝑘
h̃( 𝑗 ) = Az̃ ( 𝑗 ) + d,

µ̃
( 𝑗 )
𝑐 , σ̃

( 𝑗 )
𝑐 = DNN𝑐 (h̃( 𝑗 ) ; 𝜃2),

c̃( 𝑗 ) ∼ N(µ̃( 𝑗 )
𝑐 , σ̃

( 𝑗 )2
𝑐 ),

𝑦̃ = I(c̃( 𝑗 ) ⪯ r),

(19)

where e( 𝑗 ) is a one-hot vector having 𝑗-th element equals 1, and 𝑝(z = e( 𝑗 ) |x) = 𝑤 ( 𝑗 ) . Then we
can estimate the probability of 𝑦 by importance sampling:

𝑝𝜃 (𝑦 |x, r) =
𝑘∑︁
𝑗=1

𝑝(z = e( 𝑗 ) |x)𝑝(𝑦 |z = e( 𝑗 ) , r) =
𝑘∑︁
𝑗=1

𝑤 ( 𝑗 )
(
1 − 𝑦 − (−1)𝑦Φ((r − µ̃

( 𝑗 )
𝑐 )/σ̃ ( 𝑗 )

𝑐 )
)
,

(20)
since 𝑤 ( 𝑗 ) is differentiable with respect to 𝜃1 and (µ̃( 𝑗 )

𝑐 , σ̃
( 𝑗 )
𝑐 ) is differentiable with respect to 𝜃2, we

can optimize 𝜃 = [𝜃1, 𝜃2] through a gradient-based optimization.

GCM-VI shares the whole structure of GCM, but has an additional recognition structure:
𝑤̂ (1) , · · · , 𝑤̂ (𝑘 ) = DNN𝑞 (x, r, 𝑦; 𝜃3),
ẑ ∼ C𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 (𝑤 (1) , · · · , 𝑤 (𝑘 ) ),
ĥ = Aẑ + d,

(21)

where d shares the same vector in Equation 19. The KL divergence between generation and
recognition models is given by:

𝐷𝐾𝐿
(
𝑞𝜙 (z |x, r, 𝑦)∥𝑝𝜃 (z |x)

)
=

𝑘∑︁
𝑗=1

𝑤̂ ( 𝑗 )
(
log 𝑤̂ ( 𝑗 ) − log𝑤 ( 𝑗 )

)
. (22)

In our experiment, we stop the gradient of log𝑤 ( 𝑗 ) when computing the KL divergence. So the
evidence lower bound becomes:

𝐸𝐿𝐵 =

𝑘∑︁
𝑗=1

𝑤̂ ( 𝑗 ) log
(
1 − 𝑦 − (−1)𝑦Φ((r − µ̃

( 𝑗 )
𝑐 )/σ̃ ( 𝑗 )

𝑐 )
)
−

𝑘∑︁
𝑗=1

𝑤̂ ( 𝑗 )
(
log 𝑤̂ ( 𝑗 ) − SG(log𝑤 ( 𝑗 ) )

)
.

(23)
And now we can train GCM-VI based on minimizing −𝐿𝐿 − 𝛼𝐸𝐿𝐵.
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C Ablation Studies

We perform ablation studies for the GCM and GCM-VI models based on the Adult dataset, evaluating
three main hyperparameters: 𝛼, 𝛽 and the latent dimension.

C.1 The Weight for ELB

The final loss function of GCM-VI is a combination of the log-likelihood (𝐿𝐿) and the evidence lower
bound (𝐸𝐿𝐵), and the weighting of these terms may influence the training process. To investigate
this, we conducted an ablation study on the weight hyperparameter 𝛼 of the 𝐸𝐿𝐵, varying its value
from 0.0 to 2.0, the results presented in Table 4.

Table 4: Experimental results on the Adult dataset with multiple 𝛼 settings.

𝛼 Log Loss RMSE AUC ACC
0.0 0.2392 ±0.0015 0.2605 ±0.0004 0.7826 ±0.0031 0.8817 ±0.0018
0.2 0.2378 ±0.0006 0.2602 ±0.0003 0.7861 ±0.0009 0.8821 ±0.0012
0.4 0.2375 ±0.0013 0.2600 ±0.0003 0.7870 ±0.0030 0.8825 ±0.0010
0.6 0.2377 ±0.0011 0.2602 ±0.0001 0.7863 ±0.0035 0.8822 ±0.0005
0.8 0.2372 ±0.0008 0.2601 ±0.0001 0.7874 ±0.0020 0.8822 ±0.0008
1.0 0.2369 ±0.0005 0.2600 ±0.0002 0.7880 ±0.0008 0.8826 ±0.0008
1.2 0.2370 ±0.0009 0.2601 ±0.0005 0.7878 ±0.0033 0.8825 ±0.0014
1.4 0.2368 ±0.0007 0.2600 ±0.0003 0.7883 ±0.0022 0.8826 ±0.0006
1.6 0.2368 ±0.0011 0.2599 ±0.0004 0.7878 ±0.0036 0.8825 ±0.0013
1.8 0.2366 ±0.0011 0.2599 ±0.0004 0.7891 ±0.0043 0.8833 ±0.0020
2.0 0.2365 ±0.0006 0.2599 ±0.0003 0.7890 ±0.0019 0.8830 ±0.0012

The table shows that as𝛼 increases from 0.0 to 2.0, performance improves consistently, demonstrating
the positive impact of incorporating variational inference into our training objective.

C.2 The Weight for KL Divergence

We evaluate the hyperparameter 𝛽 in Equation 16 over a range of 0.0 to 2.0, and the details are in
Table 5.

Table 5: Experimental results on the Adult dataset with multiple 𝛽 settings.

𝛽 Log Loss RMSE AUC ACC
0.0 0.2385 ±0.0017 0.2603 ±0.0005 0.7840 ±0.0043 0.8820 ±0.0014
0.2 0.2377 ±0.0009 0.2601 ±0.0003 0.7860 ±0.0030 0.8820 ±0.0014
0.4 0.2379 ±0.0012 0.2602 ±0.0003 0.7855 ±0.0028 0.8824 ±0.0008
0.6 0.2383 ±0.0009 0.2602 ±0.0001 0.7848 ±0.0018 0.8822 ±0.0007
0.8 0.2382 ±0.0011 0.2603 ±0.0003 0.7846 ±0.0031 0.8822 ±0.0007
1.0 0.2383 ±0.0015 0.2602 ±0.0003 0.7843 ±0.0044 0.8822 ±0.0014
1.2 0.2376 ±0.0006 0.2601 ±0.0002 0.7866 ±0.0019 0.8824 ±0.0014
1.4 0.2382 ±0.0008 0.2603 ±0.0002 0.7849 ±0.0028 0.8821 ±0.0009
1.6 0.2378 ±0.0007 0.2602 ±0.0002 0.7860 ±0.0019 0.8823 ±0.0010
1.8 0.2385 ±0.0012 0.2604 ±0.0004 0.7839 ±0.0033 0.8821 ±0.0014
2.0 0.2378 ±0.0014 0.2602 ±0.0003 0.7860 ±0.0036 0.8819 ±0.0010

It shows that taking 𝛽 > 0 improves average performance and reduces uncertainty.
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C.3 The Dimension of Categorical Latent Variable

In this paper, we use a 𝑘-categorical latent variable z. The choice of 𝑘 can influence the test results,
so we examine 𝑘 varying from 8 to 96. The details of our findings are presented in Table 6.

Table 6: Experimental results on the Adult dataset with multiple latent dimension 𝑘 settings.

𝑘 Log Loss RMSE AUC ACC
8 0.2377 ±0.0006 0.2601 ±0.0002 0.7861 ±0.0013 0.8824 ±0.0015

16 0.2372 ±0.0005 0.2600 ±0.0002 0.7873 ±0.0014 0.8824 ±0.0012
24 0.2378 ±0.0015 0.2602 ±0.0003 0.7856 ±0.0049 0.8823 ±0.0005
32 0.2373 ±0.0015 0.2601 ±0.0005 0.7872 ±0.0041 0.8826 ±0.0009
40 0.2380 ±0.0017 0.2603 ±0.0004 0.7851 ±0.0046 0.8824 ±0.0015
48 0.2374 ±0.0014 0.2601 ±0.0004 0.7870 ±0.0046 0.8823 ±0.0013
56 0.2373 ±0.0012 0.2600 ±0.0002 0.7875 ±0.0028 0.8824 ±0.0015
64 0.2373 ±0.0007 0.2600 ±0.0001 0.7872 ±0.0030 0.8824 ±0.0008
72 0.2376 ±0.0008 0.2602 ±0.0004 0.7862 ±0.0022 0.8824 ±0.0008
80 0.2372 ±0.0007 0.2600 ±0.0002 0.7874 ±0.0020 0.8827 ±0.0008
88 0.2374 ±0.0004 0.2601 ±0.0001 0.7870 ±0.0017 0.8826 ±0.0015
96 0.2374 ±0.0008 0.2601 ±0.0004 0.7870 ±0.0029 0.8823 ±0.0013

Our results indicate that the dimension parameter remains robust when 𝑘 > 48.

C.4 Ablation on Whether Combining GCM Loss and ELB

We test the model effect trained only by 𝐸𝐿𝐵, the results are:

Table 7: Experimental results on the Adult dataset with different loss function.

Method RMSE AUC ACC
GCM 0.2604 ±0.0003 0.7840 ±0.0014 0.8818 ±0.0011

GCM VI 0.2601 ±0.0004 0.7863 ±0.0029 0.8820 ±0.0010
ELB 0.2612 ±0.0002 0.7725 ±0.0020 0.8816 ±0.0012

We can see that training on L𝐺𝐶𝑀−𝑉𝐼 = L𝐺𝐶𝑀 + 𝛼𝐸𝐿𝐵 is significantly better than training based
only on 𝐸𝐿𝐵.

D Derivation of the Evidence Lower Bound

As shown in Figure 2b, by z ⊥⊥ r | x, we have 𝑝𝜃 (z |x, r) = 𝑝𝜃 (z |x), and by x ⊥⊥ 𝑦 | {z, r}, we
have 𝑝𝜃 (𝑦 |z,x, r) = 𝑝𝜃 (𝑦 |z, r), as a result, we can get the following variational bound:

log 𝑝𝜃 (𝑦 |x, r)
=Ez∼𝑞𝜙 log 𝑝𝜃 (𝑦 |x, r)
=Ez∼𝑞𝜙 [log 𝑝𝜃 (𝑦, z |x, r) − log 𝑝𝜃 (z |x, r, 𝑦)]
=Ez∼𝑞𝜙 [log 𝑝𝜃 (𝑦 |z,x, r) + log 𝑝𝜃 (z |x, r) − log 𝑝𝜃 (z |x, r, 𝑦)]
=Ez∼𝑞𝜙 [log 𝑝𝜃 (𝑦 |z, r) + log 𝑝𝜃 (z |x) − log 𝑝𝜃 (z |x, r, 𝑦)]
=Ez∼𝑞𝜙

[
log 𝑝𝜃 (𝑦 |z, r) + log 𝑝𝜃 (z |x) − log 𝑞𝜙 (z |x, r, 𝑦)

]
+ 𝐷𝐾𝐿

(
𝑞𝜙 (z |x, r, 𝑦)∥𝑝𝜃 (z |x, r, 𝑦)

)
≥Ez∼𝑞𝜙

[
log 𝑝𝜃 (𝑦 |z, r) + log 𝑝𝜃 (z |x) − log 𝑞𝜙 (z |x, r, 𝑦)

]
=Ez∼𝑞𝜙 log 𝑝𝜃 (𝑦 |z, r) − 𝐷𝐾𝐿

(
𝑞𝜙 (z |x, r, 𝑦)∥𝑝𝜃 (z |x)

)
=𝐸𝐿𝐵.

(24)
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E Details of GCM for Continuous Regression

When y is a continuous variable, we can transform the regression problem into a binary classification
problem according to Equation 4. Here we demonstrate how to obtain the maximum likelihood
estimate for 𝑦 ∈ R.

First, we build the generative model for 𝑡 and c, such that

𝑃𝑟 (𝑦 + 𝑡 > 0) = 𝑃𝑟 (r ≻ c). (25)

We suppose 𝑦 is a Gaussian variable, i.e. 𝑦 ∼ N(𝜇, 𝜎2), where 𝜎 is a learnable variable and 𝜇 needs
to be solved according to Equation 25. Then we have

Φ

( 𝜇 + 𝑡

𝜎

)
= 𝑃𝑟 (r ≻ c) ≜ 𝑝1, (26)

and we can solve 𝜇 as
𝜇 = 𝜎Φ−1 (𝑝1) − 𝑡, (27)

which is also the maximum likelihood estimation of 𝑦. The MLE loss can be formulated as:

L =
(𝑦 − 𝜇)2

2𝜎2 + log𝜎. (28)

So we can now train our model and estimate 𝑦.

F Co-generation of Cost and Revenue

𝑦

r

x

z c

I(c ⪯ r) =

𝑝
𝜃 (z |x)

𝑝𝜃 (c|z)

𝑝
𝜃
(r
|z
)

𝑞 𝜙
(z
|x,
r,
𝑦)

Figure 4: The generative graph for 𝑝(𝑦, r |x, z).

In certain cases, the assumption of conditional independence z ⊥⊥ r | x may be too restrictive.
Instead, we can adjust the cost generative model 𝑝(c|x) to a cost-revenue generative model 𝑝(c, r |x),
as illustrated in Figure 4. In this context, we establish another weaker conditional independence
relationship: x ⊥⊥ r | z. Similar to Equation 24, the ELB is given by:

log 𝑝𝜃 (𝑦, r |x)
=Ez∼𝑞𝜙 [log 𝑝𝜃 (𝑦, r, z |x) − log 𝑝𝜃 (z |x, r, 𝑦)]
=Ez∼𝑞𝜙 [log 𝑝𝜃 (𝑦, r |z,x) + log 𝑝𝜃 (z |x) − log 𝑝𝜃 (z |x, r, 𝑦)]
≥Ez∼𝑞𝜙 [log 𝑝𝜃 (𝑦 |z, r) + log 𝑝𝜃 (r |z)] − 𝐷𝐾𝐿

(
𝑞𝜙 (z |x, r, 𝑦)∥𝑝𝜃 (z |x)

)
.

(29)

Here, the generation of r follows the same procedure as generating c:

𝜆𝑟 = DNN𝑟 (z; 𝜃3), 𝑝𝜃3 (r |z) = P(r;𝜆𝑟 ). (30)

We perform experiments of the co-generation of cost and revenue on multiple dataset, and the results
are shown in Table 8. It shows that on the Adult and COMPAS datasets, the cogeneration version
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of GCM-VI outperforms the original GCM-VI method. This shows an optimistic potential of the
cogeneration method for GCM.

Table 8: Experimental results on the multiple datasets.

Method Adult COMPAS Diabetes Blog Feedback
AUC↑ AUC↑ AUC↑ RMSE↓

GCM VI 0.7863 ±0.0029 0.7448 ±0.0025 0.8256 ±0.0007 0.0990 ±0.0010
GCM VI
cogeneration 0.7883 ±0.0027 0.7461 ±0.0018 0.8253 ±0.0003 0.1000 ±0.0006

G Experimental Details

G.1 Experimental Setups of GCM

For the GCM and GCM-VI experiments in the card gamble simulation and four public datasets, the
hyperparameters of the 𝛼, 𝛽 and latent dimension 𝑘 are listed in Table 9.

Table 9: Details of the GCM parameters.

dataset 𝛼 𝛽 𝑘

Card 0.5 0 32
Adult 0.5 0.3 64
COMPAS 0.5 0.3 64
Diabetes 0.5 0.3 64
Blog Feedback 0.3 1 64

G.2 Training Process Curve

We show the training process of the experiments in Figure 5 and Figure 6.

Figure 5: Loss, AUC, KL divergence and prize evaluated on the test sample versus train step (in log
scale) in the card gamble simulation.
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(a) Adult dataset. (b) COMPAS dataset.

(c) Diabetes dataset. (d) Blog Feedback dataset.

Figure 6: Loss, RMSE, AUC, and ACC evaluated on the test sample versus train step (in log scale)
in multiple datasets.

G.3 Detailed Results

The details of our experiments on the four public datasets are shown in the following tables.

Table 10: Detailed result of experiments on the Adult dataset.

Method Log Loss RMSE AUC ACC
MLP 0.2396 ±0.0011 0.2604 ±0.0005 0.7818 ±0.0037 0.8829 ±0.0003
MM 0.2410 ±0.0020 0.2607 ±0.0010 0.7788 ±0.0047 0.8821 ±0.0007

SMM 0.2403 ±0.0019 0.2603 ±0.0007 0.7798 ±0.0059 0.8830 ±0.0006
CMNN 0.2421 ±0.0022 0.2613 ±0.0005 0.7761 ±0.0073 0.8824 ±0.0013
Lattice 0.2674 ±0.0007 0.2679 ±0.0002 0.7841 ±0.0016 0.8836 ±0.0008
Hint 0.2402 ±0.0016 0.2607 ±0.0007 0.7804 ±0.0043 0.8825 ±0.0013
PWL 0.2396 ±0.0012 0.2604 ±0.0006 0.7814 ±0.0032 0.8826 ±0.0006
GCM 0.2387 ±0.0008 0.2604 ±0.0003 0.7840 ±0.0014 0.8818 ±0.0011

GCM VI 0.2375 ±0.0011 0.2601 ±0.0004 0.7863 ±0.0029 0.8820 ±0.0010
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Table 11: Detailed result of experiments on the COMPAS dataset.

Method Log Loss RMSE AUC ACC
MLP 0.6017 ±0.0034 0.4546 ±0.0016 0.7385 ±0.0026 0.6973 ±0.0030
MM 0.5991 ±0.0037 0.4533 ±0.0018 0.7387 ±0.0040 0.6952 ±0.0088

SMM 0.5993 ±0.0031 0.4535 ±0.0013 0.7385 ±0.0022 0.6947 ±0.0031
CMNN 0.6052 ±0.0030 0.4562 ±0.0012 0.7374 ±0.0015 0.6977 ±0.0021
Lattice 0.6027 ±0.0024 0.4554 ±0.0012 0.7388 ±0.0032 0.6972 ±0.0018
Hint 0.6007 ±0.0070 0.4541 ±0.0030 0.7398 ±0.0045 0.6973 ±0.0035
PWL 0.5989 ±0.0053 0.4533 ±0.0025 0.7409 ±0.0037 0.6973 ±0.0039
GCM 0.5942 ±0.0027 0.4510 ±0.0011 0.7449 ±0.0017 0.6989 ±0.0052

GCM VI 0.5944 ±0.0027 0.4511 ±0.0014 0.7448 ±0.0025 0.6998 ±0.0030

Table 12: Detailed result of experiments on the Diabetes dataset.

Method Log Loss RMSE AUC ACC
MLP 0.3136 ±0.0009 0.3117 ±0.0005 0.8241 ±0.0015 0.8426 ±0.0013
MM 0.3154 ±0.0041 0.3124 ±0.0024 0.8210 ±0.0065 0.8413 ±0.0053

SMM 0.3144 ±0.0008 0.3118 ±0.0004 0.8227 ±0.0011 0.8424 ±0.0012
CMNN 0.3159 ±0.0013 0.3128 ±0.0006 0.8204 ±0.0011 0.8406 ±0.0008
Lattice 0.3258 ±0.0002 0.3183 ±0.0002 0.8142 ±0.0002 0.8360 ±0.0003
Hint 0.3135 ±0.0013 0.3116 ±0.0008 0.8244 ±0.0018 0.8432 ±0.0015
PWL 0.3146 ±0.0012 0.3122 ±0.0008 0.8223 ±0.0017 0.8418 ±0.0014
GCM 0.3130 ±0.0007 0.3113 ±0.0003 0.8251 ±0.0011 0.8439 ±0.0012

GCM VI 0.3128 ±0.0004 0.3112 ±0.0002 0.8256 ±0.0007 0.8443 ±0.0007

Table 13: Detailed result of experiments on the Blog Feedback dataset.

Method MSE Loss RMSE
MLP 0.0110 ±0.0002 0.1048 ±0.0008
MM 0.0126 ±0.0005 0.1124 ±0.0023

SMM 0.0132 ±0.0006 0.1149 ±0.0025
CMNN 0.0126 ±0.0005 0.1123 ±0.0022
Lattice 0.0608 ±0.0012 0.2465 ±0.0025
Hint 0.0110 ±0.0001 0.1046 ±0.0003
PWL 0.0114 ±0.0002 0.1067 ±0.0008
GCM 0.0099 ±0.0003 0.0994 ±0.0015

GCM VI 0.0098 ±0.0002 0.0990 ±0.0010

H Comparison of Time Complexity

One of the key advantages of our GCM model is its efficiency during the inference stage. For each
given x, the model can easily calculate 𝑝𝜃 (𝑦 |x, r𝑖) for multiple r𝑖 values. This efficiency arises
because the GCM model predicts the latent variables z and c based solely on x, allowing it to
subsequently predict 𝑦 using c and r𝑖 . As a result, we avoid the computation of inputting each pair
of (x, r𝑖) into a deep neural network as methods. We evaluated the inference efficiency for various
numbers of r while keeping x stable, and the results are presented in Table 14 and Figure 7. As
demonstrated, the GCM becomes the fastest method when the number of r exceeds 64, validating
its inference efficiency in multi-revenue prediction scenarios. When the number of r reaches the
extreme value of 1024, GCM can save up to 72% time cost compared to the fastest baseline model.
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Table 14: Inference time cost (ms per batch) of different models with different numbers of r on the
COMPAS dataset.

Method Inference r numbers per given x
1 2 4 8 16 32 64 128 256 512 1024

MM 1.51 2.35 3.33 4.83 9.27 17.36 31.24 58.53 112.65 306.57 308.33
CMNN 3.39 5.17 9.02 15.87 28.95 51.96 102.01 198.07 394.63 869.76 877.47
Lattice 2.69 4.19 5.67 6.98 15.02 23.97 44.32 82.95 161.87 384.68 832.70
PWL 1.02 1.67 2.47 3.73 7.86 13.89 26.01 47.86 92.95 280.70 285.48
GCM 11.66 11.55 11.98 12.89 13.88 16.85 20.14 28.89 43.88 76.23 79.63

Figure 7: Time cost with different r numbers in inference.

I Application in Quantile Regression

For quantile regression problems, we have the observable variables 𝑥 and 𝑦, and we hope to estimate
the 𝑟’th quantile of 𝑦 conditioned on 𝑥, that is, 𝑄𝑦 |𝑥 (𝑟), where 𝑟 ∈ (0, 1). It is obvious that 𝑄𝑦 |𝑥 (𝑟)
is strict monotonic with respect to 𝑟. However, this problem is different from the original monotonic
modeling, since the variable 𝑟 here is unobservable. To solve this issue, we modify the monotonic
modeling problem into the following form:

Sample 𝑟 ∼ U(0, 1)
Sample 𝑦̂ ∼ 𝑝𝜃 (𝑦 |𝑥, 𝑟)

Minimize 𝑟 (𝑦 − 𝑦̂)+ + (1 − 𝑟) ( 𝑦̂ − 𝑦)+.
(31)

Here, we can choose any form of 𝑝𝜃 in this modeling. We compare MLP, Min-Max network, and
GCM for the quantile regression problem. The GCM follows the same procedure as formulated in
Appendix E. We perform the experiment through a simulation with the setting:

𝑦 = 0.3 sin(2(𝑥 + 0.8)) + 0.4 sin(3(𝑥 − 1.3)) + 0.3 sin(5𝑥) + 0.4(0.8𝑥2 + 0.6)𝜖
𝑥 ∈ (−1.5, 1.5), 𝜖 ∼ U(0, 1)

(32)

As shown in Figure 8, GCM predicts the most accurate quantile values of 𝑦 for 𝑟 ranging from 0.1
to 0.9. In addition, the GCM maintains strict monotonicity between 𝑦̂ and 𝑟, but the MLP model
cannot guarantee strict monotonicity when the training step is small.
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Figure 8: Plot of 𝑦̂ | (𝑥, 𝑟) for 𝑟 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

As shown in Table 15, we test the MAE metric for these methods, proving that GCM has the best
performance under all settings of the quantile variable 𝑟 .

Table 15: MAE of the quantile regression experiment.

MAE
Method 𝑟=0.1 𝑟=0.3 𝑟=0.5 𝑟=0.7 𝑟=0.9
MLP 0.1059 0.0897 0.0774 0.0767 0.0862
MM 0.1224 0.1157 0.1185 0.1350 0.1664
GCM 0.0732 0.0685 0.0704 0.0752 0.0815
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