
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Reformulating Strict Monotonic Probabilities with
a Generative Cost Model

Anonymous authors
Paper under double-blind review

Abstract

In numerous machine learning contexts, the relationship between input variables
and predicted outputs is not only statistically significant but also strictly monotonic.
Conventional approaches to ensuring monotonicity focus primarily on construc-
tion or regularization methods. This paper establishes that the problem of strict
monotonic probability can be interpreted as a comparison between an observable
revenue variable and a latent cost variable. This insight allows us to reformu-
late the original monotonicity challenge into modeling the latent cost variable
and estimating its distribution. To address this issue, we introduce a generative
model for the latent cost variable, called the Generative Cost Model (GCM),
and derive a corresponding loss function. We further enhance the estimation of
latent variables using variational inference, which reformulate our loss function
accordingly. Lastly, we validate our approach through experiments on an artifi-
cial gamble simulation and several public datasets, demonstrating that our method
significantly outperforms traditional techniques. The code of GCM is available in
https://github.com/iclr-2025-4464/GCM.

1 Introduction

Many machine learning problems exhibit a monotonic relationship between inputs and outputs.
Some of these relationships are statistical in nature, such as the correlation between a person’s height
and weight or the relationship between a company’s stock price and its annual income. However,
these monotonicities are often empirical and not strictly defined. In contrast, certain problems
necessitate strict monotonicity, such as the relationship between equipment availability and its age,
or the connection between auction winning rates and bidding prices. For these strict monotonic
problems, we require a model capable of predicting strict monotonic probability based on specific
input variables. We refer to these input variables as revenue variables, where higher revenue
correlates with an increased probability of a more positive response.

The most common deep learning methods for addressing the monotonicity problem can be broadly
categorized into two types (Runje & Shankaranarayana (2023)): monotonic by construction and
by regularization. The construction approach maintains strict monotonicity through customized
structures in deep neural networks, such as monotonic activation functions, positive weight matrices,
and min-max structures (Sill (1997)). In contrast, the regularization approach promotes monotonicity
by designing specific loss functions (Liu et al. (2020); Gupta et al. (2019); Sivaraman et al. (2020);
Xu et al. (2024)).

Unlike traditional approaches, we propose a novel method to tackle the monotonicity problem
using a generative framework. To estimate 𝑝(y |x, r), where y is a multivariate response that
maintains monotonicity with respect to the revenue variable r but is not necessarily monotonic
with respect to x, we employ a two-step process. (i) We simplify the multivariate problem into a
Bernoulli case 𝑝(𝑦 |x, r) via variable substitution trick, so that 𝑦 is reduced to binary values (0 or
1). (ii) We reformulate the monotonicity problem by defining a latent cost variable c, such that
𝑦 = I(c ≺ r) ∈ {0, 1}. This ensures that the monotonicity between 𝑦 and r is preserved, as we
have 𝑃𝑟 (𝑦 = 1|x, r) = 𝑃𝑟 (c ≺ r |x, r). Here, ≺ denotes the partial order in the vector space and
I represents the indicator function. Through this transformation, we can bypass the need to design
a strictly monotonic function and instead focus on developing a generative model for the latent cost

1

https://github.com/iclr-2025-4464/GCM

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

variable c. Consequently, we can use any structure to model c with the monotonicity constraints
being ignored, as the monotonicity is inherently satisfied by the definition of c.

To generate the latent cost variable, we propose a two-stage generative process: (i) Sampling from
joint prior: In the first stage, we sample three variablesx, r andz from a joint prior 𝑝𝜃 (x, r, z). Here,
x, r are observable variables, whilez is a latent variable. We assume conditional independence holds:
z ⊥⊥ r | x. This leads to the factorization of the joint distribution as 𝑝𝜃 (x, r, z) = 𝑝𝜃 (z |x)𝑝𝜃 (x, r).
(ii) Generating the cost variable: We generate the cost variable c conditioned on z using 𝑝𝜃 (c|z).
This results in the joint distribution: 𝑝𝜃 (x, r, z, c) = 𝑝𝜃 (c|z)𝑝𝜃 (z |x)𝑝𝜃 (x, r). By defining
𝑦 = I(c ≺ r), we can express the evidence as: 𝑝𝜃 (x, r, 𝑦) =

∫ ∫
𝑝𝜃 (c|z)𝑝𝜃 (z |x)𝑝𝜃 (x, r)I(c ⋎𝑦

r)𝑑z𝑑c, where ⋎𝑦 denotes ≺ if 𝑦 = 1, and ⊀ if 𝑦 = 0 (note that ⊀ is not equivalent to ⪰ in vector
space). To simplify the model, we typically restrict our estimation of evidence to the conditional
density 𝑝𝜃 (𝑦 |x, r) =

∫ ∫
𝑝𝜃 (c|z)𝑝𝜃 (z |x)I(c⋎𝑦 r)𝑑z𝑑c during the inference stage, since x and r

are usually provided and we do not need to generate the entire evidence from scratch. Given that the
latent variable z is high-dimensional, accurately calculating the evidence requires integration over
z, which can be computationally intensive. To address this, we propose two approaches to estimate
the evidence: (i) Monte Carlo sampling on z ∼ 𝑝𝜃 (z |x) to estimate 𝑝𝜃 (𝑦 |x, r). (ii) Use variational
inference to obtain a lower bound on the evidence. This allows us to optimize the log-evidence by
sampling z from the recognition model 𝑞𝜙 (z |x, r, 𝑦). Furthermore, we choose a categorical latent
variable z for a more efficient estimation of 𝑝𝜃 (𝑦 |x, r).
In the last part, we conduct two types of experiments. First, we design a card gamble simulation in
which the winning rate is monotonically increasing with respect to the amount of chips the player
bets. The advantage of this simulation lies in its ability to reveal the true distribution of the latent
cost variable c, while the models are trained without observing the value of c. We compare the
performance of binary classification tasks between conventional methods and our generative cost
model. Furthermore, we validate the predicted distribution of the latent cost variable 𝑝𝜃 (c|x)
by comparing it with the actual distribution. The results demonstrate that our method not only
achieves superior predictive accuracy, but also effectively approximates the true distribution of the
cost variable. To further assess the performance of the multivariate revenue variable r, we conduct
experiments on four public datasets: the Adult dataset (Becker & Kohavi (1996)), the COMPAS
dataset (Larson et al. (2016)), the Diabetes dataset (Teboul) and the Blog Feedback dataset (Buza
(2014)). In all four experiments, our model outperforms existing approaches. We perform several
ablation studies to examine the impact of the hyperparameters and loss functions in our model, with
detailed findings provided in the appendix.

The main contributions of our paper are summarized as follows:

• We introduce a universal technique that reformulates the problem of monotonic probability
into a modeling problem for latent cost variables, avoiding restrictions in conventional
monotonic neural networks.

• We address the modeling of the cost variable using a generative approach called the Gen-
erative Cost Model (GCM), and we present loss functions derived from log-likelihood and
variational inference.

• We evaluate our method for classification tasks using a simulated card gamble scenario
and four public datasets, demonstrating that our model consistently outperforms traditional
monotonic models.

2 Background

Partial Order between Vectors. For vectors v1 and v2 in R𝑛, we define the partial order between
v1 and v2 as: v1 ⪯ v2 if and only if v (𝑘)

1 ≤ v (𝑘)
2 , for any 1 ≤ 𝑘 ≤ 𝑛. This relationship is illustrated

in Figure 1a. Note that v1 ⪯ v2 is equivalent to v2 ⪰ v1.

The strict order is defined by: v1 ≺ v2 if and only if v1 ⪯ v2 and v1 ≠ v2. We have v1 ≺ v2 is
equivalent to v2 ≻ v1, but not equivalent to v1 ⪰̸ v2.

Partial Order between Random Variables. In this paper, we adopt the definition of first-order
stochastic dominance (Hadar & Russell (1969)): for random variables r1 and r2 defined on R𝑛,
we say that r2 first-order stochastically dominates r1 (denoted r1 ≺1 r2) if and only if 𝑃𝑟 (r1 ≻

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

r1

r2

r3

(a) Example of r’s, where r1 ≺ r2 and
r1 ≺ r3.

epi𝐹
𝐹 (𝑦 |r1)
𝐹 (𝑦 |r2)
𝐹 (𝑦 |r3)

(b) r1 ≺ r2 ⇒ epi𝐹 (𝑦 |r1) ⊂ epi𝐹 (𝑦 |r2) and r1 ≺ r3 ⇒
epi𝐹 (𝑦 |r1) ⊂ epi𝐹 (𝑦 |r3) due to the monotonicity of 𝑦 and
r.

Figure 1: The CDFs of 𝐹 (𝑦 |r) with different r’s, where 𝑦 is monotonic with respect to r.

t) < 𝑃𝑟 (r2 ≻ t) for any t ∈ R𝑛. Specifically, for one dimensional random variables, 𝑟1 ≺1 𝑟2
is equivalent to 𝐹1 (𝑡) > 𝐹2 (𝑡) (or epi𝐹1 (𝑡) ⊂ epi𝐹2 (𝑡)) for any 𝑡 ∈ R. where 𝐹𝑖 represents the
cumulative distribution function (CDF) of the random variable 𝑟𝑖 and epi𝐹𝑖 refers to the epigraph of
the CDF.

Monotonic Conditional Probability. A conditional probability 𝑝(y |r) is defined as monotonic, if
and only if y |r1 ≺1 y |r2 for any r1 ≺ r2. Or, in other words, 𝑃𝑟 (y ≻ t|r1) < 𝑃𝑟 (y ≻ t|r2) for any
vector t and any pair r1 ≺ r2. In this paper, we refer to the relationship between y and r as: y being
(conditionally) monotonic (increasing) with respect to r. All instances of monotonicity discussed
here are assumed to be monotonically increasing; for decreasing relationships, we can simply replace
the original variables with their opposites.

For example, if y ∼ N(y;µ,𝚺), where the mean µ is also a random variable, then we have that y
is monotonic with respect to µ. Similarly, if 𝑦 ∼ B𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝛽), then 𝑦 is monotonic with respect to
𝛽. In these cases, µ and 𝛽 are referred to as monotonic parameters of y.

The relationship between r and 𝑝(𝑦 |r) is illustrated in Figure 1, where 𝑦 is one-dimensional and
monotonic with respect to r. In Figure 1a, we plot three random variables r1, r2 and r3, with r1 ≺ r2
and r1 ≺ r3, while r2 and r3 are not comparable. Let 𝐹 (𝑦 |r𝑖) denote the CDF of 𝑦 conditioned on
r = r𝑖 . The corresponding conditional CDFs are plotted in Figure 1b, where 𝐹 (𝑦 |r1) is positioned at
the top with the smallest epigraph, while 𝐹 (𝑦 |r2) intersects 𝐹 (𝑦 |r3) indicating the incomparability
between r2 and r3.

3 Related Work

Monotonic Modeling. In many machine learning tasks, we have the prior knowledge that the output
should be monotonic with respect to certain input variables. A straightforward idea is to identify a
monotonic function and optimize its parameters to approximate the desired monotonic output. The
Min-Max architecture (Sill (1997)) is a pioneering work in monotonic neural networks, utilizing
a piecewise linear model to approximate monotonic target functions. Its monotonicity is ensured
through (i) positive weighting matrices, (ii) monotonic activation functions, and (iii) a Min-Max
structure.

Along the direction of monotonic by construction, Nolte et al. (2022) introduced the Lipschitz
monotonic network, which enhances robustness through weight constraint. Igel (2023) proposed
the smoothed min-max monotonic network, which replaces the traditional min-max structure with a
smoothed log-sum-exp function, preventing the network from becoming silent. Additionally, Runje
& Shankaranarayana (2023) developed the constrained monotonic neural network, which improves
the approximation of non-convex functions by modifying activation functions.

Another popular direction for improving monotonicity involves the use of regularization techniques.
This includes monotonicity hints proposed by Sill & Abu-Mostafa (1996) , which utilize hint samples

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

to guide model learning. The certified monotonic neural networks proposed by Liu et al. (2020)
certify monotonicity by verifying the lower bound of the partial derivative of monotonic features.
Furthermore, Gupta et al. (2019) proposed a penalization method for negative gradients, while
counter example guided methods were introduced by Sivaraman et al. (2020).

In addition, the lattice networks (Garcia & Gupta (2009)) can solve the monotonic problem by
either construction or regularization approach; extensive works have been conducted in this area by
Milani Fard et al. (2016), You et al. (2017), Gupta et al. (2019) and Yanagisawa et al. (2022), etc.

Monotonicity also plays an important role in many areas of machine learning. Ben-David (1995);
Lee et al. (2003); van de Kamp et al. (2009); Chen & Guestrin (2016) bring monotonicity into
tree models; Rashid et al. (2020) propose the QMIX method using monotonic value functions in
multi-agent reinforcement learning; Lam et al. (2023) propose a multi-class loss function using
monotonicity of gradients of convex functions; Haldar et al. (2020) and Xu et al. (2024) bring
monotonicity into online business, etc.

Variational Inference and Generative models. Variational Inference (VI) (Peterson (1987); Parisi
& Shankar (1988); Saul & Jordan (1995)) is a powerful technique for working with generative
models, and recent years have seen significant advancements based on this approach (Kingma
(2013); Rezende et al. (2014); Ozair & Bengio (2014); Sohl-Dickstein et al. (2015); Ho et al. (2020);
Song et al. (2020)). VI transforms the complex task of Bayesian inference into a computationally
manageable optimization problem by approximating the latent variables within a specified family
of distributions. This is achieved by optimizing the evidence lower bound (ELB) rather than the
original evidence.

Recent studies have highlighted the rapid growth of conditional generative models. In the realm of
text-to-image generation, notable works include Ramesh et al. (2021), Ramesh et al. (2022), Saharia
et al. (2022), and Rombach et al. (2022). For text-to-video generation, key contributions come
from Esser et al. (2023) and Brooks et al. (2024). Unlike variational autoencoders (VAEs) (Kingma
(2013)), which initiate generation from a latent variable, these conditional generative models begin
with a pair comprising a condition (such as text, image, or video) and a latent variable. This is
typically expressed through the decomposition: 𝑝(𝑥, 𝑧) = 𝑝(𝑥)𝑝(𝑧 |𝑥), where 𝑥 is the condition and 𝑧

is the latent variable. Consequently, these models primarily focus on conditional probability 𝑝(𝑧 |𝑥).
In this paper, we adopt this paradigm to construct our cost generation model.

Moreover, the normalizing flow is an important subject of generative models, it not only transforms
a simple distribution to a complicated distribution, but also requires these transformations to be
invertible, which is sufficient when the transformations are continuous and monotonic. There have
been studies that involve monotonicity in normalizing flows: Ziegler & Rush (2019); Ho et al. (2019);
Wehenkel & Louppe (2019); Müller et al. (2019); Jaini et al. (2019); Dinh et al. (2019); Ahn et al.
(2022).

4 The Cost Variable Method

4.1 Problem Formulation

Consider a binary classification problem of (x, r, 𝑦), wherex ∈ R𝑛 represents the ordinary variables,
r ∈ R𝑚 is the revenue variable, and 𝑦 ∈ {0, 1} is the binary output variable that exhibits monotonicity
with respect to r. We assume that 𝑦 follows a Bernoulli distribution, with its mean parameter
generated by a deep neural network 𝐺 : R𝑛 × R𝑚 → (0, 1):

𝑦 |{x, r} ∼ B𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑦;𝐺 (x, r)). (1)

As defined in Section 2, the function 𝐺 has to be monotonic with respect to r. We refer to r as the
revenue variable associated with 𝑦. The rationale is that, when 𝑦 is viewed as a decision variable,
a profit-maximizing decision will favor higher values of r, thus ensuring the monotonicity of 𝑦 with
respect to r.

For a general monotonic problem of (x, r, y) with continuous multivariate output y ∈ R𝑘 , the model
takes the following form:

y |{x, r} ∼ F (y;G(x, r)), (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

r1
r2

r3

𝑃𝑟 (c ≺ r1)

(a) In the density contour plot of the cost variable
c, the shaded area represents the event where c ≺
r. This indicates that the probability of a randomly
selected c falling within this shaded region is given
by 𝑃𝑟 (c ≺ r) = 𝑃𝑟 (𝑦 = 1|r). Therefore, for any
r1 ≺ r2, we can get 𝑃𝑟 (c ≺ r1) < 𝑃𝑟 (c ≺ r2).

𝑦

r

x

z c

I(c ≺ r) =

𝑝
𝜃 (z |x)

𝑝𝜃 (c|z)

𝑞 𝜙
(z
|x,
r,
𝑦)

(b) The graph illustrates the probability graphical
model for a monotonic probability 𝑝(𝑦 |x, r). In this
model, the grey nodes represent observable variables
x, 𝑦 and r, while the white nodes denote latent vari-
ables. Solid arrows indicate the generative model 𝑝𝜃 ,
whereas the dashed arrow represents the recognition
model 𝑞𝜙 .

Figure 2: Definition (Figure 2a) and modeling (Figure 2b) of the latent cost variable.

where F denotes the chosen probability family for y. The function G produces a monotonic
parameter for F and is monotonic with respect to r. Consequently, y maintains monotonicity
with respect to r. For example, if F is a Gaussian distribution N(y;µ(x, r), diag(σ(x)2)) and
G = µ(x, r) predicts its mean parameter, then G must be a monotonic function of r to ensure that
y is monotonic with respect to r.

To reduce the general monotonic probability problem to the binary scenario, we introduce an assistant
random variable t that occupies the same event space as y. We define the new response variable as
𝑦∗ = I(y ≻ −t) ∈ {0, 1}, and the new revenue variable as r∗ = [r, t]. For any r∗1 ≺ r∗2, we have:

𝑃𝑟 (𝑦∗ = 1|r∗1) = 𝑃𝑟 (y ≻ −t1 |r1) ≤ 𝑃𝑟 (y ≻ −t2 |r1) ≤ 𝑃𝑟 (y ≻ −t2 |r2) = 𝑃𝑟 (𝑦∗ = 1|r∗2). (3)
The equality condition of this inequality is r1 = r2 and t1 = t2, which contradicts r∗1 ≺ r∗2. Thus, 𝑦∗
is strictly monotonic with respect to r∗. Consequently, the triplet (y,x, r) is reduced to the binary
problem of (𝑦∗,x, r∗):

𝑦∗ |{x, r∗} ∼ B𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑦∗;𝐺 (x, r∗)), ∇r∗𝐺 (x, r∗) ≻ 0. (4)
Lemma 1. If 𝑦∗ is monotonic with respect to r∗, then y is monotonic with respect to r.

The proof of Lemma 1 is provided in Appendix A. This lemma establishes the equivalence between
the problems of (𝑦∗,x, r∗) and (y,x, r). From Equation 4, we derive 𝑃𝑟 (y ≻ −t|x, r∗) = 𝑃𝑟 (𝑦∗ =
1|x, r∗) = 𝐺 (x, [r, t]), leading to the density function of y:

𝑝(y |x, r) = −𝜕𝑘𝐺 (x, [r,−t])
𝜕t(1) · · · 𝜕t(𝑘)

�����
t=y

. (5)

Which completes the transformation from a general monotonic probability problem to a binary
monotonic problem. We give an example of calculating the max likelihood estimate of y as well as
deriving the loss function in Appendix E.

4.2 Monotonicity via the Cost Variable

We now focus on the binary problem. The traditional approach, as defined in Equation 1, involves
identifying a strictly (or weak) monotonic function 𝐺 (x, r) with respect to r. In this paper, instead
of searching for a suitable function 𝐺, we introduce a random variable c to model 𝑦 defined by:

𝑦 = I(c ≺ r). (6)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Given that {c|c ≺ r1} ⊂ {c|c ≺ r2}, for any r1 ≺ r2, it follows that 𝑃𝑟 (𝑦 = 1|r = r1) < 𝑃𝑟 (𝑦 =

1|r = r2), which implies that 𝑦 is strictly monotonic with respect to r. Then we can define:

𝐺 (x, r) = E[𝑦 |x, r] = 𝑃𝑟 (c ≺ r |x, r) =
∫
c≺r

𝑝(c|x)𝑑c, (7)

demonstrating that 𝑦 ∼ B𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝐺 (x, r)). Thus, 𝐺 (x, r) serves as the monotonic function
proposed in Equation 1 . Notably, we do not need to derive the exact form of 𝐺, as long as we can
estimate the conditional density 𝑝(c|x).
Unlike conventional methods that require 𝐺 to be a strictly monotonic function, there are no con-
straints on 𝑝(c|x). We can take any form of 𝑝(c|x), and the monotonicity of 𝑝(𝑦 |r) holds strictly
due to the definition of 𝑦 in Equation 6. We call c the cost variable. As illustrated in Figure 2a,
the probability of 𝑦 is equivalent to the probability that the revenue r domains the cost c, that is,
𝑃𝑟 (𝑦 = 1) = 𝑃𝑟 (c ≺ r). Thus, the original task of finding a monotonic function 𝐺 reduces to
determining the distribution of c. However, since c is a latent variable, we must infer c based on the
observable variables x, r and 𝑦, which is a challenge that still needs to be addressed.

4.3 Generative Cost Model

As we focusing on modeling the cost variable c, the distribution of c can be complicated, making it
challenging to select an appropriate distribution family. To bypass the need for choosing a suitable
distribution family, we adopt a generative approach that can automatically approximate complicated
distributions. In this paper, we construct a simple generative model for c through the following
process:

𝜆𝑧 = DNN𝑧 (x; 𝜃1), 𝑝𝜃1 (z |x) = P𝑧 (z;𝜆𝑧),
𝜆𝑐 = DNN𝑐 (z; 𝜃2), 𝑝𝜃2 (c|z) = P𝑐 (c;𝜆𝑐), (8)

𝑦 = I(c ⪯ r).

The generative model consists of two independent stages: 𝑝𝜃1 (z |x) and 𝑝𝜃2 (c|z), where 𝜃 = [𝜃1, 𝜃2]
is the generative parameter that need to be learned. In the first stage, we generate the latent variable
z via 𝑝𝜃1 (z |x). Subsequently, the latent cost variable c is generated by 𝑝𝜃2 (c|z) , which is set to be
elementwise independent, that gives us the decomposition

𝑝𝜃2 (𝑦 |z, r) = 𝑝𝜃2 (c ⋎𝑦 r |z, r) = 1 − 𝑦 − (−1)𝑦
∏
𝑖

∫ r (𝑖)

−∞
𝑝𝜃2 (c(𝑖) |z)𝑑c(𝑖) . (9)

As illustrated in Figure 2b, we assume the conditional independencies: z ⊥⊥ r | x andx ⊥⊥ 𝑦 | {z, r}
hold (we discuss another assumption in Appendix F where we abandon z ⊥⊥ r | x). Thus the
probability of 𝑦 conditioned on x can be formulated as:

𝑝𝜃 (𝑦 |x, r) =
∫

𝑝𝜃1 (z |x, r)𝑝𝜃2 (𝑦 |z,x, r)𝑑z =

∫
𝑝𝜃1 (z |x)𝑝𝜃2 (𝑦 |z, r)𝑑z = Ez∼𝑝𝜃1

𝑝𝜃2 (𝑦 |z, r).
(10)

To find the optimal parameter 𝜃 = [𝜃1, 𝜃2], we maximize the log-likelihood (𝐿𝐿) of the observation
𝑦, which is 𝐿𝐿 = log 𝑝𝜃 (𝑦 |x, r) = logEz∼𝑝𝜃1 (z |𝑥) 𝑝𝜃2 (𝑦 |z, r). We approximate RHS via a Monte
Carlo sampling: Ez∼𝑝𝜃1 (z |𝑥) 𝑝𝜃2 (𝑦 |z, r) ≈ 1

𝑘

∑𝑘
𝑗=1 𝑝𝜃2 (𝑦 |z 𝑗 , r), where z 𝑗 ∼ 𝑝𝜃1 (z |x). Since we

need to optimize both parameters 𝜃1 and 𝜃2 via gradient descent methods, it is essential that the
sampling result 𝑧 𝑗 is differentiable with respect to 𝜃1. This is feasible for a Gaussian 𝑝𝜃1 (z |x)
using the reparameterization trick (Kingma (2013)). However, for other assumptions of 𝑝𝜃1 (z |x),
applying the reparameterization trick can be challenging. To address this issue, we introduce the
importance sampling technique: first, we sample z ∼ 𝜋, where 𝜋 is a distribution irrelevant to x,
usually we take 𝜋 as the prior of z, i.e. 𝜋(z) = 𝑝𝜃 (z). Then by importance sampling technique, we
have:

𝑝𝜃 (𝑦 |x, r) = Ez∼𝑝𝜃 (z)
𝑝𝜃1 (z |𝑥)
𝑝𝜃 (z)

𝑝𝜃2 (𝑦 |z, r) ≈
1
𝑘

𝑘∑︁
𝑗=1

𝑝𝜃1 (z 𝑗 |𝑥)
𝑝𝜃 (z 𝑗)

𝑝𝜃2 (𝑦 |z 𝑗 , r). (11)

The RHS includes the term 𝑝𝜃1 (z 𝑗 |𝑥), which is differentiable with respect to 𝜃1. Therefore, we
can now optimize 𝜃 = [𝜃1, 𝜃2] through gradient descent methods for various form of 𝑝𝜃1 (z 𝑗 |𝑥).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

However, when 𝑝𝜃1 (z 𝑗 |𝑥) significantly different from 𝑝𝜃 (z), this estimator suffers a high variance
issue. To tackle this issue, we make the following efforts: i) enlarging the size of 𝑘; ii) reducing the
range of z to a finite set, for example, letting z to be a categorical variable; iii) following the 𝛽-VAE
(Higgins et al. (2017)), we add an regularization term 𝛽𝐷𝐾𝐿 (𝑝𝜃1 (z |x)∥𝑝𝜃 (z)) to the loss function,
keeping 𝑝𝜃1 (z 𝑗 |𝑥) close to 𝑝𝜃 (z). We put the ablation study on 𝛽 in Appendix C.

Specially, when 𝑝𝜃1 (z |𝑥) is a 𝑘-categorical variable, i.e. z ∈ {e1, · · · , e𝑘}, and we sample all
possible values of z all together, we have the precise estimators:

log 𝑝𝜃 (𝑦 |x, r) = log
𝑘∑︁
𝑗=1

𝑝𝜃1 (z = e 𝑗 |x)𝑝𝜃2 (𝑦 |z = e 𝑗 , r),

𝐷𝐾𝐿 (𝑝𝜃1 (z |x)∥𝑝𝜃 (z)) =
𝑘∑︁
𝑗=1

𝑝𝜃1 (z = e 𝑗 |x) log[𝑘 · 𝑝𝜃1 (z = e 𝑗 |x)] .
(12)

This is a simplified form that avoids uncertainty in traditional Monte Carlo sampling. The complexity
of this estimator is linearly growing with respect to the categorical number 𝑘 , we do an ablation
study on 𝑘 in Appendix C. The details of modeling with categorical latent variable z are provided in
Appendix B. The final GCM loss function is:

L𝐺𝐶𝑀 (𝜃;x, r, 𝑦, 𝛽) = − log 𝑝𝜃 (𝑦 |x, r) + 𝛽𝐷𝐾𝐿
(
𝑝𝜃1 (z |x)∥𝑝𝜃 (z)

)
. (13)

4.4 Generative Cost Model with Variational Inference

A significant challenge arises from the difficulty in learning the distribution of z conditioned on
x, particularly since the observable variables r and 𝑦 are not utilized in predicting z. To improve
the modeling of z, we introduce the recognition model 𝑞𝜙 (z |x, r, 𝑦) to approximate the intractable
posterior 𝑝𝜃 (z |x, r, 𝑦). By applying variational inference on 𝑞𝜙 , we have the evidence lower bound
formulated as:

𝐸𝐿𝐵 = Ez∼𝑞𝜙 log 𝑝𝜃 (𝑦 |z, r) − 𝐷𝐾𝐿
(
𝑞𝜙 (z |x, r, 𝑦)∥𝑝𝜃 (z |x)

)
≤ log 𝑝𝜃 (𝑦 |x, r). (14)

The derivation of 𝐸𝐿𝐵 is available in Appendix D. Here, since the variables x and r are always
given in the process of generating c, the evidence 𝑝𝜃 (x, r, 𝑦) = 𝑝𝜃 (𝑦 |x, r)𝑝(x, r) can be reduced
to 𝑝𝜃 (𝑦 |x, r) as the RHS of Equation 14. We keep our assumption of z as a categorical variable,
and we can simplify 𝐸𝐿𝐵 by:

Ez∼𝑞𝜙 log 𝑝𝜃 (𝑦 |z, r) =
𝑘∑︁
𝑗=1

𝑞𝜙 (z = e 𝑗 |x, r, 𝑦) log 𝑝𝜃2 (𝑦 |z = e 𝑗 , r),

𝐷𝐾𝐿
(
𝑞𝜙 (z |x, r, 𝑦)∥𝑝𝜃 (z |x)

)
=

𝑘∑︁
𝑗=1

𝑞𝜙 (z = e 𝑗 |x, r, 𝑦) log
𝑞𝜙 (z = e 𝑗 |x, r, 𝑦)
𝑝𝜃1 (z = e 𝑗 |x)

.

(15)

Direct optimization of 𝐸𝐿𝐵 is problematic. Unlike classic VI, which has a KL term formed
as 𝐷𝐾𝐿 (𝑞(𝑧 |𝑥)∥𝑝(𝑧)) with a fixed prior 𝑝(𝑧) that makes the optimization of 𝑞(𝑧 |𝑥) stable, both
𝑞𝜙 (z |x, r, 𝑦) and 𝑝𝜃 (z |x) in our KL term need to be learned, which could bring uncertainty in the
optimization of 𝑞𝜙 . Fortunately, we can learn 𝑝𝜃 (z |x) by optimizing L𝐺𝐶𝑀 , so we combine 𝐸𝐿𝐵

and L𝐺𝐶𝑀 as the objective of the variational version of GCM (GCM-VI):

L𝐺𝐶𝑀−𝑉𝐼 (𝜃, 𝜙;x, r, 𝑦, 𝛽) = L𝐺𝐶𝑀 (𝜃;x, r, 𝑦, 𝛽) − 𝛼𝐸𝐿𝐵. (16)

In this loss function, we stop the gradient of 𝑝𝜃 (z |x) in 𝐸𝐿𝐵 and train 𝑝𝜃 (z |x) via L𝐺𝐶𝑀−𝑉𝐼 .
Ablation studies for values of 𝛼 and for whether to combine L𝐺𝐶𝑀 and 𝐸𝐿𝐵 are available in the
Appendix C.

5 Experiment

5.1 A Gamble Simulation

We design a card gamble and the rules are listed as follows:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

• There are 𝑛 cards, each labeled with a number from 1 to 𝑛. The cards are shuffled and then
the backsides are also labeled with numbers from 1 to 𝑛.

• In each round, the dealer shuffles the cards and then the player picks 𝑙 cards from the top of
the deck. The player sees the front sides of the selected cards and places a bet of 𝑟 chips,
where 𝑟 < 𝑛.

• The dealer rolls a dice to select one card from the 𝑙 selected cards. If the backside number
of this card is less than 𝑟 , the player wins and receives 𝑛 chips as a prize, producing a net
profit of 𝑛 − 𝑟 , otherwise the player loses, resulting in a profit of −𝑟.

• In the whole game, a player can only see the front side, but not the backside of all cards.

In our gambling model, the rules state that the more chips a player bets, the higher the likelihood of
winning, but correspondingly the prize of winning shrinks. We denote the winning event as 𝑦 = 1
and the losing as 𝑦 = 0. The selected cards of the player are represented as x = [x1, · · · ,x𝑙], where
each x𝑖 corresponds to an embedding of the 𝑖 th card. Consequently, the probability 𝑝(𝑦 |x, 𝑟) is
strictly monotonic with respect to the bet 𝑟. We train our generative cost model on a simulated
dataset and evaluate the performance of our model 𝑝𝜃 (𝑦 |x, 𝑟) using the same strategy. To assess
the prize-winning capability of the models, we determine the optimal bet of model 𝑝𝜃 is: 𝑟∗ =

argmax𝑟 {𝑝𝜃 (𝑦 |x, 𝑟)𝑛 − 𝑟.} The real profit generated by the choice 𝑟∗ is I(𝑟∗ > 𝑐)𝑛 − 𝑟∗ . To
maximize the total profit, a model has to learn the probability 𝑝𝜃 (𝑦 |x, 𝑟) accurately for every
combinations of x and 𝑟 .

The cost variable 𝑐 corresponds to a random choice of the unobservable values on the backsides
of the picked cards x1, · · · ,x𝑙 , and we note these backside values as 𝑏1, · · · , 𝑏𝑙 . As a result, the
model should infer the probabilities of the backside value of each x𝑖 . This inference is particularly
challenging, as the models can only deduce these probabilities from training samples consisting
of (x, 𝑟, 𝑦). In particular, the optimal solution for the generative cost model is to learn a precise
mapping from x to 𝑝(𝑐 |x), which is given by:

𝑝(𝑐 |x) = I(𝑐 ∈ {𝑏1, · · · , 𝑏𝑙})
𝑙

(17)

We compare several classic methods to our generative model, all of which share the same baseline
architecture: a two-layer perceptron network. This structure includes layer normalization (Ba
(2016)), residual connection (He et al. (2016)) and leaky-ReLU activation (Xu (2015)). During the
training phase, we employ the classic stochastic gradient descent method (Robbins & Monro (1951);
Kiefer & Wolfowitz (1952) and Rumelhart et al. (1986)) to optimize network parameters. The model
is trained on simulated data derived from the card game we designed, with hyperparameters set to
𝑛 = 10, 000 and 𝑙 = 4. We assume that 𝑟 is generated independently of x. We train our model with
mini-batches of size 100 in 50,000 rounds, resulting in a total of 5,000,000 training examples, while
the methods are tested on 100,000 examples.

The methods we compare include: (i) the baseline MLP network (MLP); (ii) Min-Max network (MM)
(Sill (1997)); (iii) smoothed Min-Max network (SMM) (Igel (2023)); (iv) constrained monotonic
network (CMNN); (v) lattice network (Lattice) (Milani Fard et al. (2016)); (vi) monotonicity hint
model (Hint) (Sill & Abu-Mostafa (1996)); (vii) pointwise loss method (PWL) (Gupta et al. (2019)).
Note that the MLP method does not require monotonicity, it does not face the difficulties in strict
monotonic structure designing as other methods. Here we regard it as a benchmark of a free-style
model but not a baseline of the monotonic modeling family. Moreover, the Hint and PWL methods
are weak monotonic methods which encourage but not assure monotonicity.

We evaluate these methods using the following metrics: (i) the area under the precision-recall curve
(AUC) between 𝑝𝜃 (𝑦 |x, 𝑟) and 𝑦; (ii) the Kullback-Leibler (KL) divergence between 𝑝𝜃 (𝑦 |x, 𝑟) and
the true 𝑝(𝑦 |x, 𝑟); (iii) Kendall’s 𝜏 coefficient, calculated between multiple pairs of 𝑝𝜃 (𝑦 |x, 𝑟) and
𝑟 with fixed x, for validating models’ monotonicity; (iv) the prize money earned by each model.

In our experiments, we evaluate the two proposed methods: the Generative Cost Model (GCM)
and its variational inference counterpart (GCM-VI). For the GCM, we utilize a categorical latent
variable z and estimate the likelihood using the detection trick outlined in Equation 11. In the case of
GCM-VI, we extend the GCM framework by incorporating a recognition network 𝑞𝜙 (z |x, r, 𝑦) that
runs in parallel with the generative model 𝑝𝜃 (z |x). Both 𝑞𝜙 (z |x, r, 𝑦) and 𝑝𝜃 (z |x) are categorical
distributions, which simplifies the calculation of their KL divergence. This leads to the formulation

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Experimental results (with a 95% confidence interval) for the simulated card game.

Method AUC↑ KL Div.↓ Kendall’s 𝜏↑ Prize Profit↑
MLP 0.8803 ±0.0006 0.0630 ±0.0012 0.8989 ±0.0042 1053.7 ±24.9
MM 0.8844 ±0.0012 0.0578 ±0.0033 1 ±0 1251.5 ±68.1
SMM 0.8824 ±0.0031 0.0629 ±0.0072 1 ±0 1104.6 ±130.6
CMNN 0.8823 ±0.0013 0.0624 ±0.0029 1 ±0 1025.1 ±35.0
Lattice 0.8772 ±0.0002 0.0743 ±0.0003 1 ±0 884.0 ±3.2
Hint 0.8850 ±0.0013 0.0585 ±0.0028 0.9499 ±0.0027 1164.1 ±71.0
PWL 0.8879 ±0.0013 0.0526 ±0.0036 1 ±0 1355.9 ±91.4
GCM 0.8917 ±0.0005 0.0395 ±0.0019 1 ±0 1699.2 ±48.1
GCM VI 0.8920 ±0.0007 0.0391 ±0.0014 1 ±0 1709.9 ±46.8

of the evidence lower bound, as presented in Equation 14. Detailed descriptions of the GCM and
GCM-VI models can be found in the Appendix B. The experimental results comparing our models
with other methods are summarized in Table 1.

As shown in Table 1, our experiments demonstrate that the Generative Cost Model (GCM) achieves
superior performance compared to all other monotonic methods. Notably, the performance on
Kendall’s 𝜏 coefficient meets our expectations, as these models ensure strict monotonicity; the only
exceptions are the MLP model and the Hint model, which fail to predict monotonic results since their
architecture do not assure strict monotonicity.

5.2 Validate on Generation of Cost Variable

Figure 3: The predicted distribution of 𝑝𝜃 (𝑐 |x) (histogram in blue) is compared to the actual
distribution of 𝑐 (represented by the red lines). In each row, we fix the variablex and its corresponding
cost variable c. As the training steps progress from left to right, the predicted distribution increasingly
converges to the real distribution.

Since our model focuses on modeling the distribution of the latent cost variable 𝑐, we can leverage
the actual distribution of 𝑐 formulated in Equation 17. During the training process, we record the
prediction of 𝑝𝜃 (𝑐 |x) using an importance sampling method similar to Equation 11. As shown in
Figure 3, the predicted density of 𝑐 is increasingly aligned with the actual distribution as training
progresses. This observation confirms that our generative cost model effectively learns the latent
cost variable.

5.3 Experiments for Multidimensional Revenue on Public Datasets

To further evaluate the GCM model for multidimensional revenue variable, we use four public
datasets: the Adult dataset (Becker & Kohavi (1996)), the COMPAS (Correctional Offender Man-
agement Profiling for Alternative Sanctions) dataset (Larson et al. (2016)), the Diabetes dataset

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(Teboul) and the Blog Feedback dataset (Buza (2014)). The property of each dataset is shown in
Table 2 .

Table 2: Details of the datasets.

dataset samples ordinary
features

monotonic
features target

Adult 48,842 33 4 classification
COMPAS 7,214 9 4 classification
Diabetes 253,680 105 4 classification
Blog Feedback 52,397 272 8 regression

The model we test are the same as we presented in Section 5.1, while the evaluation metrics are
switched to loss, RMSE, AUC and ACC. And, as we stated in Section 5.1, we regard the MLP
model as a benchmark of a freestyle model but not a baseline of the monotonic modeling family.
For all four datasets, the training and testing sets are split in a 4:1 ratio. We follow the data
preprocessing procedures outlined by Liu et al. (2020) for the COMPAS dataset. For the Blog
Feedback dataset, we perform a logarithm transformation for numerical features and target value.
In all experiments, we employ categorical distributions as the family of latent z in the GCM and
GCM-VI, the hyperparameter settings of GCM and GCM-VI are listed in the Appendix G. The
testing results are demonstrated in Table 3 and the full results are available in Appendix G. All
experiments are repeated five times with different random seeds, the final results are reported with a
95% confidence interval.

Table 3: Experimental results on the multiple datasets.

Method Adult COMPAS Diabetes Blog Feedback
AUC↑ AUC↑ AUC↑ RMSE↓

MLP ∗ 0.7818 ±0.0037 0.7385 ±0.0026 0.8241 ±0.0015 0.1048 ±0.0008
MM 0.7788 ±0.0047 0.7387 ±0.0040 0.8210 ±0.0065 0.1124 ±0.0023
SMM 0.7798 ±0.0059 0.7385 ±0.0022 0.8227 ±0.0011 0.1149 ±0.0025
CMNN 0.7761 ±0.0073 0.7374 ±0.0015 0.8204 ±0.0011 0.1123 ±0.0022
Lattice 0.7841 ±0.0016 0.7388 ±0.0032 0.8142 ±0.0002 0.2465 ±0.0025
Hint ♯ 0.7804 ±0.0043 0.7398 ±0.0045 0.8244 ±0.0018 0.1046 ±0.0003
PWL ♯ 0.7814 ±0.0032 0.7409 ±0.0037 0.8223 ±0.0017 0.1067 ±0.0008
GCM 0.7840 ±0.0014 0.7449 ±0.0017 0.8251 ±0.0011 0.0994 ±0.0015
GCM VI 0.7863 ±0.0029 0.7448 ±0.0025 0.8256 ±0.0007 0.0990 ±0.0010
∗: No monotonicity requirements.
♯: Weak monotonicity via regularization.

Our GCM and GCM-VI models achieve the top two performances in all metrics in all datasets after
10, 000 training steps. Notably, GCM-VI achieves the best performance on all datasets except the
COMPAS dataset, proving the effectiveness of introducing variational bound into our generative
objective. The detailed results are available in the Appendix G.3. And a time complexity analysis is
available in the Appendix H.

6 Conclusion

This paper presents an innovative generative method for monotonic modeling by reformulating
the monotonicity problem through the incorporation of a latent cost variable. We have developed
a robust generation process for this cost variable that accurately approximates the latent costs.
Our experimental results demonstrate that the proposed Generative Cost Model (GCM) effectively
addresses the monotonicity challenge, significantly outperforming traditional approaches across
various datasets.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

References
Byeongkeun Ahn, Chiyoon Kim, Youngjoon Hong, and Hyunwoo J Kim. Invertible monotone

operators for normalizing flows. Advances in Neural Information Processing Systems, 35:16836–
16848, 2022.

Jimmy Lei Ba. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

Arie Ben-David. Monotonicity maintenance in information-theoretic machine learning algorithms.
Machine Learning, 19:29–43, 1995.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators. 2024. URL https://openai.com/research/video-generation-
models-as-world-simulators.

Krisztian Buza. BlogFeedback. UCI Machine Learning Repository, 2014. DOI:
https://doi.org/10.24432/C58S3F.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Laurent Dinh, Jascha Sohl-Dickstein, Hugo Larochelle, and Razvan Pascanu. A rad approach to
deep mixture models. arXiv preprint arXiv:1903.07714, 2019.

Patrick Esser, Johnathan Chiu, Parmida Atighehchian, Jonathan Granskog, and Anastasis Germani-
dis. Structure and content-guided video synthesis with diffusion models. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 7346–7356, 2023.

Eric Garcia and Maya Gupta. Lattice regression. Advances in Neural Information Processing
Systems, 22, 2009.

Akhil Gupta, Naman Shukla, Lavanya Marla, Arinbjörn Kolbeinsson, and Kartik Yellepeddi. How
to incorporate monotonicity in deep networks while preserving flexibility? arXiv preprint
arXiv:1909.10662, 2019.

Josef Hadar and William R Russell. Rules for ordering uncertain prospects. The American economic
review, 59(1):25–34, 1969.

Malay Haldar, Prashant Ramanathan, Tyler Sax, Mustafa Abdool, Lanbo Zhang, Aamir Mansawala,
Shulin Yang, Bradley Turnbull, and Junshuo Liao. Improving deep learning for airbnb search.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 2822–2830, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Irina Higgins, Loic Matthey, Arka Pal, Christopher P Burgess, Xavier Glorot, Matthew M Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. ICLR (Poster), 3, 2017.

Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++: Improving flow-
based generative models with variational dequantization and architecture design. In International
conference on machine learning, pp. 2722–2730. PMLR, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Christian Igel. Smooth min-max monotonic networks. arXiv preprint arXiv:2306.01147, 2023.

11

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Priyank Jaini, Kira A Selby, and Yaoliang Yu. Sum-of-squares polynomial flow. In International
Conference on Machine Learning, pp. 3009–3018. PMLR, 2019.

Jack Kiefer and Jacob Wolfowitz. Stochastic estimation of the maximum of a regression function.
The Annals of Mathematical Statistics, pp. 462–466, 1952.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Kevin H Lam, Christian Walder, Spiridon Penev, and Richard Nock. Legendretron: uprising proper
multiclass loss learning. In International Conference on Machine Learning, pp. 18454–18470.
PMLR, 2023.

Jeff Larson, Surya Mattu, Lauren Kirchner, and Julia Angwin. How we analyzed the compas recidi-
vism algorithm, 2016. URL https://www.propublica.org/article/how-we-analyzed-the-compas-
recidivism-algorithm.

John WT Lee, Daniel S Yeung, and Xizhao Wang. Monotonic decision tree for ordinal classification.
In SMC’03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and
Cybernetics. Conference Theme-System Security and Assurance (Cat. No. 03CH37483), volume 3,
pp. 2623–2628. IEEE, 2003.

Xingchao Liu, Xing Han, Na Zhang, and Qiang Liu. Certified monotonic neural networks. Advances
in Neural Information Processing Systems, 33:15427–15438, 2020.

Mahdi Milani Fard, Kevin Canini, Andrew Cotter, Jan Pfeifer, and Maya Gupta. Fast and flexible
monotonic functions with ensembles of lattices. Advances in neural information processing
systems, 29, 2016.

Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. Neural
importance sampling. ACM Transactions on Graphics (ToG), 38(5):1–19, 2019.

Niklas Nolte, Ouail Kitouni, and Mike Williams. Expressive monotonic neural networks. In The
Eleventh International Conference on Learning Representations, 2022.

Sherjil Ozair and Yoshua Bengio. Deep directed generative autoencoders. arXiv preprint
arXiv:1410.0630, 2014.

Giorgio Parisi and Ramamurti Shankar. Statistical field theory. 1988.

Carsten Peterson. A mean field theory learning algorithm for neural network. Complex systems, 1:
995–1019, 1987.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine
learning, pp. 8821–8831. Pmlr, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. Journal of Machine Learning Research, 21(178):1–51, 2020.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In International conference on machine learning,
pp. 1278–1286. PMLR, 2014.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

12

https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

Davor Runje and Sharath M Shankaranarayana. Constrained monotonic neural networks. In Inter-
national Conference on Machine Learning, pp. 29338–29353. PMLR, 2023.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural information
processing systems, 35:36479–36494, 2022.

Lawrence Saul and Michael Jordan. Exploiting tractable substructures in intractable networks.
Advances in neural information processing systems, 8, 1995.

Joseph Sill. Monotonic networks. Advances in neural information processing systems, 10, 1997.

Joseph Sill and Yaser Abu-Mostafa. Monotonicity hints. Advances in neural information processing
systems, 9, 1996.

Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein, and Guy Van den Broeck.
Counterexample-guided learning of monotonic neural networks. Advances in Neural Informa-
tion Processing Systems, 33:11936–11948, 2020.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Alex Teboul. Diabetes health indicators dataset. URL https://www.kaggle.com/datasets/alexteboul/
diabetes-health-indicators-dataset.

Rémon van de Kamp, Ad Feelders, and Nicola Barile. Isotonic classification trees. In Advances
in Intelligent Data Analysis VIII: 8th International Symposium on Intelligent Data Analysis, IDA
2009, Lyon, France, August 31-September 2, 2009. Proceedings 8, pp. 405–416. Springer, 2009.

Antoine Wehenkel and Gilles Louppe. Unconstrained monotonic neural networks. Advances in
neural information processing systems, 32, 2019.

Bing Xu. Empirical evaluation of rectified activations in convolutional network. arXiv preprint
arXiv:1505.00853, 2015.

Xiaoxiao Xu, Hao Wu, Wenhui Yu, Lantao Hu, Peng Jiang, and Kun Gai. Enhancing interpretability
and effectiveness in recommendation with numerical features via learning to contrast the counter-
factual samples. In Companion Proceedings of the ACM on Web Conference 2024, pp. 453–460,
2024.

Hiroki Yanagisawa, Kohei Miyaguchi, and Takayuki Katsuki. Hierarchical lattice layer for partially
monotone neural networks. Advances in Neural Information Processing Systems, 35:11092–11103,
2022.

Seungil You, David Ding, Kevin Canini, Jan Pfeifer, and Maya Gupta. Deep lattice networks and
partial monotonic functions. Advances in neural information processing systems, 30, 2017.

Zachary Ziegler and Alexander Rush. Latent normalizing flows for discrete sequences. In Interna-
tional Conference on Machine Learning, pp. 7673–7682. PMLR, 2019.

13

https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset
https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A Proof of Lemma 1

Proof. For any r1 ≺ r2, we have r∗1 = [r1, t] ≺ [r2, t] = r∗2.

Since 𝑦∗ is monotonic with respect to r∗, we have 𝑃𝑟 (𝑦∗ = 1|x, r∗1) < 𝑃𝑟 (𝑦∗ = 1|x, r∗2) for any t.

Therefore, by the definition of 𝑦∗, we have 𝑃𝑟 (y ≻ −t|x, r1, t) < 𝑃𝑟 (y ≻ −t|x, r2, t) for any t.

Thus, y |{x, r1} ≺1 y |{x, r2}, i.e. y is monotonic with respect to r. □

B Details of GCM and GCM-VI in the Experiments

The generative model with categorical latent variable z is designed by:
𝑤 (1) , · · · , 𝑤 (𝑘) ,d = DNN𝑧 (x; 𝜃1),
z ∼ C𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 (𝑤 (1) , · · · , 𝑤 (𝑘)),
h = Az + d,

µ𝑐,σ𝑐 = DNN𝑐 (h; 𝜃2),
c ∼ N(µ𝑐,σ2

𝑐),
𝑦 = I(c ⪯ r).

(18)

The second line produces a one-hot vector z1, thus, z is not differentiated with respect to 𝜃1. But
through Equation 11, we can skip the sampling of z and modify the generative model into:

z̃ (𝑗) = e(𝑗) , 𝑗 = 1, · · · , 𝑘
h̃(𝑗) = Az̃ (𝑗) + d,

µ̃
(𝑗)
𝑐 , σ̃

(𝑗)
𝑐 = DNN𝑐 (h̃(𝑗) ; 𝜃2),

c̃(𝑗) ∼ N(µ̃(𝑗)
𝑐 , σ̃

(𝑗)2
𝑐),

𝑦̃ = I(c̃(𝑗) ⪯ r),

(19)

where e(𝑗) is a one-hot vector having 𝑗-th element equals 1, and 𝑝(z = e(𝑗) |x) = 𝑤 (𝑗) . Then we
can estimate the probability of 𝑦 by importance sampling:

𝑝𝜃 (𝑦 |x, r) =
𝑘∑︁
𝑗=1

𝑝(z = e(𝑗) |x)𝑝(𝑦 |z = e(𝑗) , r) =
𝑘∑︁
𝑗=1

𝑤 (𝑗)
(
1 − 𝑦 − (−1)𝑦Φ((r − µ̃

(𝑗)
𝑐)/σ̃ (𝑗)

𝑐)
)
,

(20)
since 𝑤 (𝑗) is differentiable with respect to 𝜃1 and (µ̃(𝑗)

𝑐 , σ̃
(𝑗)
𝑐) is differentiable with respect to 𝜃2, we

can optimize 𝜃 = [𝜃1, 𝜃2] through a gradient-based optimization.

GCM-VI shares the whole structure of GCM, but has an additional recognition structure:
𝑤̂ (1) , · · · , 𝑤̂ (𝑘) = DNN𝑞 (x, r, 𝑦; 𝜃3),
ẑ ∼ C𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 (𝑤 (1) , · · · , 𝑤 (𝑘)),
ĥ = Aẑ + d,

(21)

where d shares the same vector in Equation 19. The KL divergence between generation and
recognition models is given by:

𝐷𝐾𝐿
(
𝑞𝜙 (z |x, r, 𝑦)∥𝑝𝜃 (z |x)

)
=

𝑘∑︁
𝑗=1

𝑤̂ (𝑗)
(
log 𝑤̂ (𝑗) − log𝑤 (𝑗)

)
. (22)

In our experiment, we stop the gradient of log𝑤 (𝑗) when computing the KL divergence. So the
evidence lower bound becomes:

𝐸𝐿𝐵 =

𝑘∑︁
𝑗=1

𝑤̂ (𝑗) log
(
1 − 𝑦 − (−1)𝑦Φ((r − µ̃

(𝑗)
𝑐)/σ̃ (𝑗)

𝑐)
)
−

𝑘∑︁
𝑗=1

𝑤̂ (𝑗)
(
log 𝑤̂ (𝑗) − SG(log𝑤 (𝑗))

)
.

(23)
And now we can train GCM-VI based on minimizing −𝐿𝐿 − 𝛼𝐸𝐿𝐵.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C Ablation Studies

We perform ablation studies for the GCM and GCM-VI models based on the Adult dataset, evaluating
three main hyperparameters: 𝛼, 𝛽 and the latent dimension.

C.1 The Weight for ELB

The final loss function of GCM-VI is a combination of the log-likelihood (𝐿𝐿) and the evidence lower
bound (𝐸𝐿𝐵), and the weighting of these terms may influence the training process. To investigate
this, we conducted an ablation study on the weight hyperparameter 𝛼 of the 𝐸𝐿𝐵, varying its value
from 0.0 to 2.0, the results presented in Table 4.

Table 4: Experimental results on the Adult dataset with multiple 𝛼 settings.

𝛼 Log Loss RMSE AUC ACC
0.0 0.2392 ±0.0015 0.2605 ±0.0004 0.7826 ±0.0031 0.8817 ±0.0018
0.2 0.2378 ±0.0006 0.2602 ±0.0003 0.7861 ±0.0009 0.8821 ±0.0012
0.4 0.2375 ±0.0013 0.2600 ±0.0003 0.7870 ±0.0030 0.8825 ±0.0010
0.6 0.2377 ±0.0011 0.2602 ±0.0001 0.7863 ±0.0035 0.8822 ±0.0005
0.8 0.2372 ±0.0008 0.2601 ±0.0001 0.7874 ±0.0020 0.8822 ±0.0008
1.0 0.2369 ±0.0005 0.2600 ±0.0002 0.7880 ±0.0008 0.8826 ±0.0008
1.2 0.2370 ±0.0009 0.2601 ±0.0005 0.7878 ±0.0033 0.8825 ±0.0014
1.4 0.2368 ±0.0007 0.2600 ±0.0003 0.7883 ±0.0022 0.8826 ±0.0006
1.6 0.2368 ±0.0011 0.2599 ±0.0004 0.7878 ±0.0036 0.8825 ±0.0013
1.8 0.2366 ±0.0011 0.2599 ±0.0004 0.7891 ±0.0043 0.8833 ±0.0020
2.0 0.2365 ±0.0006 0.2599 ±0.0003 0.7890 ±0.0019 0.8830 ±0.0012

The table shows that as𝛼 increases from 0.0 to 2.0, performance improves consistently, demonstrating
the positive impact of incorporating variational inference into our training objective.

C.2 The Weight for KL Divergence

We evaluate the hyperparameter 𝛽 in Equation 16 over a range of 0.0 to 2.0, and the details are in
Table 5.

Table 5: Experimental results on the Adult dataset with multiple 𝛽 settings.

𝛽 Log Loss RMSE AUC ACC
0.0 0.2385 ±0.0017 0.2603 ±0.0005 0.7840 ±0.0043 0.8820 ±0.0014
0.2 0.2377 ±0.0009 0.2601 ±0.0003 0.7860 ±0.0030 0.8820 ±0.0014
0.4 0.2379 ±0.0012 0.2602 ±0.0003 0.7855 ±0.0028 0.8824 ±0.0008
0.6 0.2383 ±0.0009 0.2602 ±0.0001 0.7848 ±0.0018 0.8822 ±0.0007
0.8 0.2382 ±0.0011 0.2603 ±0.0003 0.7846 ±0.0031 0.8822 ±0.0007
1.0 0.2383 ±0.0015 0.2602 ±0.0003 0.7843 ±0.0044 0.8822 ±0.0014
1.2 0.2376 ±0.0006 0.2601 ±0.0002 0.7866 ±0.0019 0.8824 ±0.0014
1.4 0.2382 ±0.0008 0.2603 ±0.0002 0.7849 ±0.0028 0.8821 ±0.0009
1.6 0.2378 ±0.0007 0.2602 ±0.0002 0.7860 ±0.0019 0.8823 ±0.0010
1.8 0.2385 ±0.0012 0.2604 ±0.0004 0.7839 ±0.0033 0.8821 ±0.0014
2.0 0.2378 ±0.0014 0.2602 ±0.0003 0.7860 ±0.0036 0.8819 ±0.0010

It shows that taking 𝛽 > 0 improves average performance and reduces uncertainty.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C.3 The Dimension of Categorical Latent Variable

In this paper, we use a 𝑘-categorical latent variable z. The choice of 𝑘 can influence the test results,
so we examine 𝑘 varying from 8 to 96. The details of our findings are presented in Table 6.

Table 6: Experimental results on the Adult dataset with multiple latent dimension 𝑘 settings.

𝑘 Log Loss RMSE AUC ACC
8 0.2377 ±0.0006 0.2601 ±0.0002 0.7861 ±0.0013 0.8824 ±0.0015

16 0.2372 ±0.0005 0.2600 ±0.0002 0.7873 ±0.0014 0.8824 ±0.0012
24 0.2378 ±0.0015 0.2602 ±0.0003 0.7856 ±0.0049 0.8823 ±0.0005
32 0.2373 ±0.0015 0.2601 ±0.0005 0.7872 ±0.0041 0.8826 ±0.0009
40 0.2380 ±0.0017 0.2603 ±0.0004 0.7851 ±0.0046 0.8824 ±0.0015
48 0.2374 ±0.0014 0.2601 ±0.0004 0.7870 ±0.0046 0.8823 ±0.0013
56 0.2373 ±0.0012 0.2600 ±0.0002 0.7875 ±0.0028 0.8824 ±0.0015
64 0.2373 ±0.0007 0.2600 ±0.0001 0.7872 ±0.0030 0.8824 ±0.0008
72 0.2376 ±0.0008 0.2602 ±0.0004 0.7862 ±0.0022 0.8824 ±0.0008
80 0.2372 ±0.0007 0.2600 ±0.0002 0.7874 ±0.0020 0.8827 ±0.0008
88 0.2374 ±0.0004 0.2601 ±0.0001 0.7870 ±0.0017 0.8826 ±0.0015
96 0.2374 ±0.0008 0.2601 ±0.0004 0.7870 ±0.0029 0.8823 ±0.0013

Our results indicate that the dimension parameter remains robust when 𝑘 > 48.

C.4 Ablation on Whether Combining GCM Loss and ELB

We test the model effect trained only by 𝐸𝐿𝐵, the results are:

Table 7: Experimental results on the Adult dataset with different loss function.

Method RMSE AUC ACC
GCM 0.2604 ±0.0003 0.7840 ±0.0014 0.8818 ±0.0011

GCM VI 0.2601 ±0.0004 0.7863 ±0.0029 0.8820 ±0.0010
ELB 0.2612 ±0.0002 0.7725 ±0.0020 0.8816 ±0.0012

We can see that training on L𝐺𝐶𝑀−𝑉𝐼 = L𝐺𝐶𝑀 + 𝛼𝐸𝐿𝐵 is significantly better than training based
only on 𝐸𝐿𝐵.

D Derivation of the Evidence Lower Bound

As shown in Figure 2b, by z ⊥⊥ r | x, we have 𝑝𝜃 (z |x, r) = 𝑝𝜃 (z |x), and by x ⊥⊥ 𝑦 | {z, r}, we
have 𝑝𝜃 (𝑦 |z,x, r) = 𝑝𝜃 (𝑦 |z, r), as a result, we can get the following variational bound:

log 𝑝𝜃 (𝑦 |x, r)
=Ez∼𝑞𝜙 log 𝑝𝜃 (𝑦 |x, r)
=Ez∼𝑞𝜙 [log 𝑝𝜃 (𝑦, z |x, r) − log 𝑝𝜃 (z |x, r, 𝑦)]
=Ez∼𝑞𝜙 [log 𝑝𝜃 (𝑦 |z,x, r) + log 𝑝𝜃 (z |x, r) − log 𝑝𝜃 (z |x, r, 𝑦)]
=Ez∼𝑞𝜙 [log 𝑝𝜃 (𝑦 |z, r) + log 𝑝𝜃 (z |x) − log 𝑝𝜃 (z |x, r, 𝑦)]
=Ez∼𝑞𝜙

[
log 𝑝𝜃 (𝑦 |z, r) + log 𝑝𝜃 (z |x) − log 𝑞𝜙 (z |x, r, 𝑦)

]
+ 𝐷𝐾𝐿

(
𝑞𝜙 (z |x, r, 𝑦)∥𝑝𝜃 (z |x, r, 𝑦)

)
≥Ez∼𝑞𝜙

[
log 𝑝𝜃 (𝑦 |z, r) + log 𝑝𝜃 (z |x) − log 𝑞𝜙 (z |x, r, 𝑦)

]
=Ez∼𝑞𝜙 log 𝑝𝜃 (𝑦 |z, r) − 𝐷𝐾𝐿

(
𝑞𝜙 (z |x, r, 𝑦)∥𝑝𝜃 (z |x)

)
=𝐸𝐿𝐵.

(24)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

E Details of GCM for Continuous Regression

When y is a continuous variable, we can transform the regression problem into a binary classification
problem according to Equation 4. Here we demonstrate how to obtain the maximum likelihood
estimate for 𝑦 ∈ R.

First, we build the generative model for 𝑡 and c, such that

𝑃𝑟 (𝑦 + 𝑡 > 0) = 𝑃𝑟 (r ≻ c). (25)

We suppose 𝑦 is a Gaussian variable, i.e. 𝑦 ∼ N(𝜇, 𝜎2), where 𝜎 is a learnable variable and 𝜇 needs
to be solved according to Equation 25. Then we have

Φ

(𝜇 + 𝑡

𝜎

)
= 𝑃𝑟 (r ≻ c) ≜ 𝑝1, (26)

and we can solve 𝜇 as
𝜇 = 𝜎Φ−1 (𝑝1) − 𝑡, (27)

which is also the maximum likelihood estimation of 𝑦. The MLE loss can be formulated as:

L =
(𝑦 − 𝜇)2

2𝜎2 + log𝜎. (28)

So we can now train our model and estimate 𝑦.

F Co-generation of Cost and Revenue

𝑦

r

x

z c

I(c ⪯ r) =

𝑝
𝜃 (z |x)

𝑝𝜃 (c|z)

𝑝
𝜃
(r
|z
)

𝑞 𝜙
(z
|x,
r,
𝑦)

Figure 4: The generative graph for 𝑝(𝑦, r |x, z).

In certain cases, the assumption of conditional independence z ⊥⊥ r | x may be too restrictive.
Instead, we can adjust the cost generative model 𝑝(c|x) to a cost-revenue generative model 𝑝(c, r |x),
as illustrated in Figure 4. In this context, we establish another weaker conditional independence
relationship: x ⊥⊥ r | z. Similar to Equation 24, the ELB is given by:

log 𝑝𝜃 (𝑦, r |x)
=Ez∼𝑞𝜙 [log 𝑝𝜃 (𝑦, r, z |x) − log 𝑝𝜃 (z |x, r, 𝑦)]
=Ez∼𝑞𝜙 [log 𝑝𝜃 (𝑦, r |z,x) + log 𝑝𝜃 (z |x) − log 𝑝𝜃 (z |x, r, 𝑦)]
≥Ez∼𝑞𝜙 [log 𝑝𝜃 (𝑦 |z, r) + log 𝑝𝜃 (r |z)] − 𝐷𝐾𝐿

(
𝑞𝜙 (z |x, r, 𝑦)∥𝑝𝜃 (z |x)

)
.

(29)

Here, the generation of r follows the same procedure as generating c:

𝜆𝑟 = DNN𝑟 (z; 𝜃3), 𝑝𝜃3 (r |z) = P(r;𝜆𝑟). (30)

We perform experiments of the co-generation of cost and revenue on multiple dataset, and the results
are shown in Table 8. It shows that on the Adult and COMPAS datasets, the cogeneration version

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

of GCM-VI outperforms the original GCM-VI method. This shows an optimistic potential of the
cogeneration method for GCM.

Table 8: Experimental results on the multiple datasets.

Method Adult COMPAS Diabetes Blog Feedback
AUC↑ AUC↑ AUC↑ RMSE↓

GCM VI 0.7863 ±0.0029 0.7448 ±0.0025 0.8256 ±0.0007 0.0990 ±0.0010
GCM VI
cogeneration 0.7883 ±0.0027 0.7461 ±0.0018 0.8253 ±0.0003 0.1000 ±0.0006

G Experimental Details

G.1 Experimental Setups of GCM

For the GCM and GCM-VI experiments in the card gamble simulation and four public datasets, the
hyperparameters of the 𝛼, 𝛽 and latent dimension 𝑘 are listed in Table 9.

Table 9: Details of the GCM parameters.

dataset 𝛼 𝛽 𝑘

Card 0.5 0 32
Adult 0.5 0.3 64
COMPAS 0.5 0.3 64
Diabetes 0.5 0.3 64
Blog Feedback 0.3 1 64

G.2 Training Process Curve

We show the training process of the experiments in Figure 5 and Figure 6.

Figure 5: Loss, AUC, KL divergence and prize evaluated on the test sample versus train step (in log
scale) in the card gamble simulation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) Adult dataset. (b) COMPAS dataset.

(c) Diabetes dataset. (d) Blog Feedback dataset.

Figure 6: Loss, RMSE, AUC, and ACC evaluated on the test sample versus train step (in log scale)
in multiple datasets.

G.3 Detailed Results

The details of our experiments on the four public datasets are shown in the following tables.

Table 10: Detailed result of experiments on the Adult dataset.

Method Log Loss RMSE AUC ACC
MLP 0.2396 ±0.0011 0.2604 ±0.0005 0.7818 ±0.0037 0.8829 ±0.0003
MM 0.2410 ±0.0020 0.2607 ±0.0010 0.7788 ±0.0047 0.8821 ±0.0007

SMM 0.2403 ±0.0019 0.2603 ±0.0007 0.7798 ±0.0059 0.8830 ±0.0006
CMNN 0.2421 ±0.0022 0.2613 ±0.0005 0.7761 ±0.0073 0.8824 ±0.0013
Lattice 0.2674 ±0.0007 0.2679 ±0.0002 0.7841 ±0.0016 0.8836 ±0.0008
Hint 0.2402 ±0.0016 0.2607 ±0.0007 0.7804 ±0.0043 0.8825 ±0.0013
PWL 0.2396 ±0.0012 0.2604 ±0.0006 0.7814 ±0.0032 0.8826 ±0.0006
GCM 0.2387 ±0.0008 0.2604 ±0.0003 0.7840 ±0.0014 0.8818 ±0.0011

GCM VI 0.2375 ±0.0011 0.2601 ±0.0004 0.7863 ±0.0029 0.8820 ±0.0010

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 11: Detailed result of experiments on the COMPAS dataset.

Method Log Loss RMSE AUC ACC
MLP 0.6017 ±0.0034 0.4546 ±0.0016 0.7385 ±0.0026 0.6973 ±0.0030
MM 0.5991 ±0.0037 0.4533 ±0.0018 0.7387 ±0.0040 0.6952 ±0.0088

SMM 0.5993 ±0.0031 0.4535 ±0.0013 0.7385 ±0.0022 0.6947 ±0.0031
CMNN 0.6052 ±0.0030 0.4562 ±0.0012 0.7374 ±0.0015 0.6977 ±0.0021
Lattice 0.6027 ±0.0024 0.4554 ±0.0012 0.7388 ±0.0032 0.6972 ±0.0018
Hint 0.6007 ±0.0070 0.4541 ±0.0030 0.7398 ±0.0045 0.6973 ±0.0035
PWL 0.5989 ±0.0053 0.4533 ±0.0025 0.7409 ±0.0037 0.6973 ±0.0039
GCM 0.5942 ±0.0027 0.4510 ±0.0011 0.7449 ±0.0017 0.6989 ±0.0052

GCM VI 0.5944 ±0.0027 0.4511 ±0.0014 0.7448 ±0.0025 0.6998 ±0.0030

Table 12: Detailed result of experiments on the Diabetes dataset.

Method Log Loss RMSE AUC ACC
MLP 0.3136 ±0.0009 0.3117 ±0.0005 0.8241 ±0.0015 0.8426 ±0.0013
MM 0.3154 ±0.0041 0.3124 ±0.0024 0.8210 ±0.0065 0.8413 ±0.0053

SMM 0.3144 ±0.0008 0.3118 ±0.0004 0.8227 ±0.0011 0.8424 ±0.0012
CMNN 0.3159 ±0.0013 0.3128 ±0.0006 0.8204 ±0.0011 0.8406 ±0.0008
Lattice 0.3258 ±0.0002 0.3183 ±0.0002 0.8142 ±0.0002 0.8360 ±0.0003
Hint 0.3135 ±0.0013 0.3116 ±0.0008 0.8244 ±0.0018 0.8432 ±0.0015
PWL 0.3146 ±0.0012 0.3122 ±0.0008 0.8223 ±0.0017 0.8418 ±0.0014
GCM 0.3130 ±0.0007 0.3113 ±0.0003 0.8251 ±0.0011 0.8439 ±0.0012

GCM VI 0.3128 ±0.0004 0.3112 ±0.0002 0.8256 ±0.0007 0.8443 ±0.0007

Table 13: Detailed result of experiments on the Blog Feedback dataset.

Method MSE Loss RMSE
MLP 0.0110 ±0.0002 0.1048 ±0.0008
MM 0.0126 ±0.0005 0.1124 ±0.0023

SMM 0.0132 ±0.0006 0.1149 ±0.0025
CMNN 0.0126 ±0.0005 0.1123 ±0.0022
Lattice 0.0608 ±0.0012 0.2465 ±0.0025
Hint 0.0110 ±0.0001 0.1046 ±0.0003
PWL 0.0114 ±0.0002 0.1067 ±0.0008
GCM 0.0099 ±0.0003 0.0994 ±0.0015

GCM VI 0.0098 ±0.0002 0.0990 ±0.0010

H Comparison of Time Complexity

One of the key advantages of our GCM model is its efficiency during the inference stage. For each
given x, the model can easily calculate 𝑝𝜃 (𝑦 |x, r𝑖) for multiple r𝑖 values. This efficiency arises
because the GCM model predicts the latent variables z and c based solely on x, allowing it to
subsequently predict 𝑦 using c and r𝑖 . As a result, we avoid the computation of inputting each pair
of (x, r𝑖) into a deep neural network as methods. We evaluated the inference efficiency for various
numbers of r while keeping x stable, and the results are presented in Table 14 and Figure 7. As
demonstrated, the GCM becomes the fastest method when the number of r exceeds 64, validating
its inference efficiency in multi-revenue prediction scenarios. When the number of r reaches the
extreme value of 1024, GCM can save up to 72% time cost compared to the fastest baseline model.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 14: Inference time cost (ms per batch) of different models with different numbers of r on the
COMPAS dataset.

Method Inference r numbers per given x
1 2 4 8 16 32 64 128 256 512 1024

MM 1.51 2.35 3.33 4.83 9.27 17.36 31.24 58.53 112.65 306.57 308.33
CMNN 3.39 5.17 9.02 15.87 28.95 51.96 102.01 198.07 394.63 869.76 877.47
Lattice 2.69 4.19 5.67 6.98 15.02 23.97 44.32 82.95 161.87 384.68 832.70
PWL 1.02 1.67 2.47 3.73 7.86 13.89 26.01 47.86 92.95 280.70 285.48
GCM 11.66 11.55 11.98 12.89 13.88 16.85 20.14 28.89 43.88 76.23 79.63

Figure 7: Time cost with different r numbers in inference.

I Application in Quantile Regression

For quantile regression problems, we have the observable variables 𝑥 and 𝑦, and we hope to estimate
the 𝑟’th quantile of 𝑦 conditioned on 𝑥, that is, 𝑄𝑦 |𝑥 (𝑟), where 𝑟 ∈ (0, 1). It is obvious that 𝑄𝑦 |𝑥 (𝑟)
is strict monotonic with respect to 𝑟. However, this problem is different from the original monotonic
modeling, since the variable 𝑟 here is unobservable. To solve this issue, we modify the monotonic
modeling problem into the following form:

Sample 𝑟 ∼ U(0, 1)
Sample 𝑦̂ ∼ 𝑝𝜃 (𝑦 |𝑥, 𝑟)

Minimize 𝑟 (𝑦 − 𝑦̂)+ + (1 − 𝑟) (𝑦̂ − 𝑦)+.
(31)

Here, we can choose any form of 𝑝𝜃 in this modeling. We compare MLP, Min-Max network, and
GCM for the quantile regression problem. The GCM follows the same procedure as formulated in
Appendix E. We perform the experiment through a simulation with the setting:

𝑦 = 0.3 sin(2(𝑥 + 0.8)) + 0.4 sin(3(𝑥 − 1.3)) + 0.3 sin(5𝑥) + 0.4(0.8𝑥2 + 0.6)𝜖
𝑥 ∈ (−1.5, 1.5), 𝜖 ∼ U(0, 1)

(32)

As shown in Figure 8, GCM predicts the most accurate quantile values of 𝑦 for 𝑟 ranging from 0.1
to 0.9. In addition, the GCM maintains strict monotonicity between 𝑦̂ and 𝑟, but the MLP model
cannot guarantee strict monotonicity when the training step is small.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 8: Plot of 𝑦̂ | (𝑥, 𝑟) for 𝑟 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

As shown in Table 15, we test the MAE metric for these methods, proving that GCM has the best
performance under all settings of the quantile variable 𝑟 .

Table 15: MAE of the quantile regression experiment.

MAE
Method 𝑟=0.1 𝑟=0.3 𝑟=0.5 𝑟=0.7 𝑟=0.9
MLP 0.1059 0.0897 0.0774 0.0767 0.0862
MM 0.1224 0.1157 0.1185 0.1350 0.1664
GCM 0.0732 0.0685 0.0704 0.0752 0.0815

22

	Introduction
	Background
	Related Work
	The Cost Variable Method
	Problem Formulation
	Monotonicity via the Cost Variable
	Generative Cost Model
	Generative Cost Model with Variational Inference

	Experiment
	A Gamble Simulation
	Validate on Generation of Cost Variable
	Experiments for Multidimensional Revenue on Public Datasets

	Conclusion
	Proof of Lemma 1
	Details of GCM and GCM-VI in the Experiments
	Ablation Studies
	The Weight for ELB
	The Weight for KL Divergence
	The Dimension of Categorical Latent Variable
	Ablation on Whether Combining GCM Loss and ELB

	Derivation of the Evidence Lower Bound
	Details of GCM for Continuous Regression
	Co-generation of Cost and Revenue
	Experimental Details
	Experimental Setups of GCM
	Training Process Curve
	Detailed Results

	Comparison of Time Complexity
	Application in Quantile Regression

