
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADAFISHER: ADAPTIVE SECOND ORDER OPTIMIZA-
TION VIA FISHER INFORMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

First-order optimization methods are currently the mainstream in training deep
neural networks (DNNs). Optimizers like Adam incorporate limited curvature
information by employing the diagonal matrix preconditioning of the stochastic
gradient during the training. Despite their widespread, second-order optimiza-
tion algorithms exhibit superior convergence properties compared to their first-
order counterparts e.g. Adam and SGD. However, their practicality in training
DNNs are still limited due to increased per-iteration computations and suboptimal
accuracy compared to the first order methods. We present AdaFisher–an adap-
tive second-order optimizer that leverages a block-diagonal approximation to the
Fisher information matrix for adaptive gradient preconditioning. AdaFisher aims
to bridge the gap between enhanced convergence capabilities and computational
efficiency in second-order optimization framework for training DNNs. Despite the
slow pace of second-order optimizers, we showcase that AdaFisher can be reliably
adopted for image classification, language modelling and stand out for its stability
and robustness in hyperparameter tuning. We demonstrate that AdaFisher outper-
forms the SOTA optimizers in terms of both accuracy and convergence speed.

1 INTRODUCTION

Deep Neural network (DNN) optimization often struggles with the challenge of generalizing across
varied architectures and complex data distributions. Current methods such as Adam optimizer
(Kingma & Ba, 2017) and its variants (AdamP (Heo et al., 2020), AdaInject (Dubey et al., 2022),
AdaBelief (Zhuang et al., 2020) and YOGI Zaheer et al. (2018)) require extensive hyperparameter
tuning and often fail to generalize efficiently. In response, DNN training typically minimizes an
empirical loss function L(θ), updating parameters θ using the expression θt+1 = θt−αG−1

t ∇L(θt)
at time step t, where Gt represents curvature information, i.e. Hessian or Fisher Information Ma-
trix (FIM) (Amari & Nagaoka, 2000). The Hessian matrix interfaces with the deterministic Newton
method (Martens, 2020), whereas the FIM harmonizes with the Natural Gradient Descent (NGD)
approach (Amari & Nagaoka, 2000) as a statistical method. These curvature information crucially
optimize the gradient’s preconditioning by accurately rescaling and orienting it. This adjustment
significantly accelerates convergence by ensuring more direct progress towards minima, thus en-
hancing training efficiency and reducing the number of required iterations.

While first-order methods such as SGD (Kiefer & Wolfowitz, 1952) simplify Gt by treating it as
the identity matrix, second-order methods employ curvature matrices to enhance the optimization
process. Although these matrices accelerate convergence by effectively navigating saddle points and
swiftly moving towards minima (Foret et al., 2021), they require higher computational resources. In
fact, when the number of learnable parameters increases, the curse of dimensionality associated with
curvature matrix Gt makes the entire process completely intractable for routine deep learning train-
ing tasks. Noteworthy approaches, such as Adagrad (Duchi et al., 2011), Adadelta (Zeiler, 2012),
RMSProp (Hinton et al.), and Adam family utilize a simple diagonal approximation of the empirical
FIM, which often results in convergence to suboptimal local minima and poor generalization (Wilson
et al., 2018; Luo et al., 2019). Advanced methods like AdaHessian (Yao et al., 2021) and Shampoo
(Gupta et al., 2018) improve on this by integrating structured matrices such as the diagonal Hessian
or tensor-based preconditioners to enhance optimization. However, these second-order approaches
including K-FAC (Martens & Grosse, 2020; Eschenhagen et al., 2024) still face challenges of high

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

computational demands, lack generalization and the need for extensive hyperparameter tuning when
applied to large models (Ma et al., 2019).

Figure 1: Visualization of optimization
paths for various optimizers on a loss
surface, comparing their convergence effi-
ciency.

To address these challenges, we present AdaFisher, an
adaptive second-order optimizer, as an innovative solu-
tion to address the generalization challenges raised in
training DNNs. Substituting the second moment of Adam
by a novel diagonal block-Kronecker approximation of
the FIM, it strikes a balance between simplicity and gen-
eralization by introducing one additional hyperparame-
ter compared to Adam but fewer than K-FAC, AdaHes-
sian or Shampoo. This feature, combined with compa-
rable memory and time requirements than the first-order
methods, enhances AdaFisher’s practicality for achieving
effective generalization in DNN optimization. As illus-
trated in Figure 1, AdaFisher not only converges more
rapidly but also reaches a superior local minimum by ef-
fectively navigating through saddle points compared to
its counterparts. Further details regarding the visualiza-
tion can be found in Appendix C. Our main contributions are as follows: [C1] We empirically
showcase the diagonal dominance of Kronecker factors’ energy and provide fresh insights of FIM in
optimization; [C2] We introduce a diagonal block-Kronecker approximation of the FIM applicable
to various layers, including normalization layers, enhancing model adaptability; [C3] We demon-
strate AdaFisher’s robustness and stability across diverse settings, proving its effectiveness; [C4]
We showcase AdaFisher’s superior performance against traditional optimizers empirically in image
classification and language modeling; [C5] We develop a new technique that visualizes trajectories
across different optimizers for better understanding of model behavior in the loss landscape. Addi-
tionally, we introduce an explainable FIM measure from AdaFisher, enabling comparative analysis
of optimizer behavior.

2 BACKGROUND

We consider a supervised learning framework with a dataset D containing N i.i.d samples, D :=
{xn, yn}Nn=1 where xn ∈ Rd and yn ∈ RC . Let fθ : Rd → RC be a L-layer neural net-
work parametrized by θ where θi = concat(Wi, bi) ∈ RPi , and Pi = P out

i × (P in
i + 1). Let

L : RC × RC → R be the loss function defined by negative log likelihood, i.e. L(y, fθ(x)) :=
− log pθ(y|x) where pθ(y|x) is the likelihood of the neural network fθ. The network computes
its output hL = fθ(x) according to: ai = θih̄i−1, hi = ϕi(ai), ∀ i ∈ {1, . . . , L} | h0 = xn

where h̄i = [1, hT
i]

T ∈ RP in
i +1 terminated by z := hL ∈ RP out

L . For a given input tar-
get pair (x, y), the gradient of the loss L(y, fθ(x)) concerning the weights are computed by
the backpropagation algorithm (Lecun, 2001). For convenience, we adopt the special symbol
si = ∇ai

L for the pre-activation derivative. Starting from ∇hL
L = ∂zL(y, z = hL), we per-

form: si := ∇ai
L = ∇hi

L ⊙ ϕ′
i(ai), ∇θiL = sih̄

T
i−1, ∇h̄i−1

L = θTi si | ∀i ∈ {L, . . . , 1},
where ⊙ denotes the element-wise product. Finally, the gradient ∇θL is retrieved by: ∇θL =
[vec(∇θ1L)T , vec(∇θ2L)T , . . . , vec(∇θLL)T]T . Optimization of a DNN can be recast as a prob-
lem of finding the parameter set θ that maximizes the likelihood, or equivalently, minimizes the
negative log-likelihood of the observed data. This Maximum Likelihood Estimation approach can
be expressed as an unconstrained optimization problem: minθ J(θ) =

∑N
n=1 L(yn, fθ(xn)), where

J(θ) denotes the objective function, corresponding to the negative log-likelihood of the data. The
FIM, utilized in lieu of the Hessian for Newton’s method (Holmgren, 1996), approximates the cur-
vature of the log-likelihood function (Amari, 1998). It is defined as

F =

N∑
n=1

Ey∼p(y|fθ(xn))

[
∇θ log pθ(y|xn)∇θ log pθ(y|xn)

T
]
= E

[
∇θL(∇θL)T

]
, (1)

where F measures the expected information that an observable y conveys about the parameter θ.
For brevity, we write E instead of Ey∼p(y|fθ(xn)). The K-FAC approach further simplifies FIM cal-
culation using a block-diagonal approximation in DNNs, known as Empirical FIM (EFIM), denoted
F̂ . In Eq. (1), F is construed as a block matrix with dimensions L × L, where each (i, j)th block

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Fi,j is articulated by Fi,j = E[vec(∇θiL)vec(∇θjL)T]. By harnessing the vectorization identity
vec(uvT) = v ⊗ u, we express vec(∇θiL) as h̄i−1 ⊗ si (Petersen & Pedersen, 2008), where ∇θiL
is defined as sih̄T

i−1. By segmenting the FIM into discrete layer-specific blocks, we can effectuate a
systematic factorization of each block

F̂i,j = E[vec(∇θiL)vec(∇θjL)T] = E[h̄i−1h̄
T
j−1 ⊗ sis

T
j] ≈ E[h̄T

i−1h̄j−1]⊗ E[sTi sj],

Figure 2: Illustration of EFIM
computation using K-FAC for a
given layer i.

where i, j span the layer indices from 1 to L. Here, E[h̄T
i−1h̄j−1]

and E[sTi sj] are empirically approximated using batch statis-
tics, simplifying the computation for large-scale DNNs (Tang
et al., 2021). Notably, h̄i−1 ∈ RM×(P in

i +1) and si ∈
RM×P out

i , where M is the size of a batch, rendering F̂i,j ∈
R(P in

i +1)P out
i ×(P in

i +1)P out
i . Initially, K-FAC estimates the expec-

tation of the Kronecker product under the presumption that ac-
tivations and pre-activation derivatives are mutually independent,
succinctly represented as the Kronecker product of the individ-
ual expectations: F̂i,j = Hi−1,j−1 ⊗ Si,j , where Hi−1,j−1 =

E[h̄T
i−1h̄j−1] and Si,j = E[sTi sj], denoting the Kronecker factors. The assumption for the block-

diagonal structure posits that weight derivatives across distinct layers are uncorrelated, expressed
as: F ≈ F̂ = diag(F̂1,1, . . . , F̂L,L) = diag(F̂1, . . . , F̂L). Figure 2 shows EFIM computation via
K-FAC.

3 METHODOLOGY

Our methodology consists of four primary components: (i) Analyzing the Kronecker factors’ struc-
ture in Section 3.1 and showcase their diagonal dominance; (ii) Introducing a novel approximation
of the FIM that retains only the diagonals of the Kronecker factors, detailed in Section 3.2; (iii)
Enhancing the Adam optimizer by incorporating our diagonal FIM approximation as an alternative
to the conventional second moment, described in Section 3.3; (iv) Providing a theoretical proof of
AdaFisher’s convergence under both convex and non-convex conditions in Section 3.4.

3.1 DIAGONAL CONCENTRATION OF KRONECKER FACTORS

Figure 3: Gersgorin disks and eigenvalue perturbations in the 37th
Convolutional Layer of a ResNet-18 at steps 5200 (middle of train-
ing) and 9800 (end of training). Left: Gersgorin circles; Right:
Eigenvalue spectrum with/without noise.

Inspired by Gersgorin’s Circle Theo-
rem (Horn & Johnson, 2012), we em-
pirically conclude the diagonal con-
centration property of the Kronecker
factors from the eigenvalue distribu-
tion and its perturbation under Gaus-
sian noise. For demonstration, we
focus on the eigenvalue spectrum of
weight matrices from the 37th layer
of ResNet-18 (He et al., 2015), after
training for 50 epochs on CIFAR-10
(Krizhevsky et al., 2009). As Figure 3
illustrates, the eigenvalues (denoted
as red crosses) predominantly cluster
within the Gersgorin discs, which are
centered along the matrix’s diagonal elements (denoted as black circles), signifying substantial diag-
onal dominance. This phenomenon is quantitatively supported by the Gersgorin’s Circle Theorem,
which posits that every eigenvalue λ of a complex square matrix A lies within at least one of the
Gersgorin discs D(aii, Ri), where Ri =

∑
j ̸=i |aij | represents the radius computed as the sum of

the absolute values of the off-diagonal entries of the ith row. Next, we introduce Gaussian noise
N (0, σ2), σ = 10−3 to the off-diagonal elements. The perturbed matrix M̂ is then expressed
as: M̂ = A + E , where E = [eij] and eij ∼ N (0, σ2) for i ̸= j. This allows us to scrutinize
the noise-induced perturbation on eigenvalues, which are pivotal for comprehending the dynamics
and stability of the system. This demonstrates that the introduction of noise to the off-diagonal
elements induces only minimal perturbations in the eigenvalues, particularly those surpassing the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Kaiser criterion, which remain virtually unchanged (Braeken & Van Assen, 2017). This negligible
shift corroborates the robustness of the matrix’s diagonal dominance. An extensive discussion of
this analysis is available in Appendix A.1.

3.2 EFFICIENT COMPUTATION OF THE FIM

In the realm of optimization, NGD offers a geometrically nuanced adaptation of the classical steepest
descent approach, transitioning the focus from parameter space to the model’s distribution space
underpinned by the adoption of a Riemannian metric, Amari & Nagaoka (2000). The formulation
of NGD is articulated as

△θt = F−1
t ∇J(θt), (2)

where Ft denotes the FIM at time t distinguished from Fi, the FIM at layer i. One of the distinguish-
ing features of NGD within this framework is its reparameterization invariance, a direct consequence
of leveraging the model’s distribution properties rather than its parameters. Nevertheless, the direct
computation of the FIM poses significant challenges due to its computational demands.

For the efficient approximation of the FIM, we present the following: (1) a methodology for calculat-
ing the Kronecker factors for normalization layers, and (2) diagonal approximation of the Kronecker
factors. Beyond conventional layers such as convolutional and linear layers that are well established
(Grosse & Martens, 2016; Martens & Grosse, 2020), the Kronecker factors for BatchNorm (Ioffe &
Szegedy, 2015) and LayerNorm (Ba et al., 2016) normalization can be derived with Proposition 3.1.

Proposition 3.1. Consider a neural network layer indexed by i, and a mini-batch B ⊂ D of size
M (|B| = M). The empirical statistics of the Kronecker factors for the normalization layers can be
characterized by

Hi−1 =

(∑
B
∑

T h̄i−1

)T (∑
B
∑

T h̄i−1

)
(M |T |)2

, Si =
(
∑

B
∑

T si) (
∑

B
∑

T si)
T

M

Here, T represents the spatial size dimension for Batch Norm layer or for LayerNorm layer, it
signifies the product of the number of heads and the per-head dimension.

For the proof of this proposition and the extended computation of other type of layers are given
in Appendix A.2 and Section A.3. Note that in the context of online and stochastic optimization,
the Kronecker factors for a given layer i can be estimated using an Exponentially Moving Average
(EMA) scheme across batches, defined by

Hi−1 = γHi−2 + (1− γ)Ĥi−1, Si = γSi−1 + (1− γ)Ŝi, (3)

where 0 < γ < 1 is the exponential decay factor, and Ĥi−1, Ŝi represent the current estimates of
the Kronecker factors derived from the latest mini-batch of data. This EMA scheme is commonly
used in methods involving diagonal or block-diagonal approximations to the curvature matrix (e.g.
LeCun et al. (2012); Park et al. (2000); Schaul et al. (2013). Such schemes have the desirable
property that they allow the curvature estimation to depend on much more data than what can be
reasonably processed in a single mini-batch.

Investigation from Section 3.1 suggest that the FIM’s critical information predominantly resides
along its diagonal. Building upon these insights, we propose a novel approximation for the FIM that
conceptualizes the Kronecker factors as diagonal matrices, denoted as F̃Di

for layer i.

Proposition 3.2. Assume that Hi−1 and Si can be closely approximated by diagonal matrices, de-
noted by HDi−1 and SDi respectively at layer i, such that HDi−1 = Diag(Hi−1), SDi = Diag(Si)
where Diag denote the diagonal of a matrix. Then the Empirical FIM can be defined by

F̃Di
≜ H′

Di−1
⊗ S ′

Di
+ λ, (4)

where H′
Di−1

and S ′
Di

denote the Min-Max normalization of HDi−1
and SDi

(Patro & Sahu, 2015)
and λ is a regularization parameter.

This approximation strikes a balance between computational time and space complexity, and the
accuracy of performance, as discussed in Section 4. We set the regularization parameter λ = 0.001,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

which acts as a damping factor following Tikhonov regularization principles, enhancing computa-
tional stability and conditioning of the FIM. For foundational details on λ, refer to Martens & Grosse
(2015) and for methodology, see Appendix A.2. The closed-form solution for the augmented gra-
dient △θt is derived from the diagonal approximation of the FIM, given by △θt = F̃−1

Dt
∇J(θt).

Detailed derivation in Appendix A.2, this represents the AdaFisher optimizer’s update rule, focus-
ing on the diagonal elements to reduce computational overhead while maintaining a reasonable FIM
approximation. This strategic simplification enhances the efficiency of the optimization process,
crucial for training deep neural networks where computational resources are limited.

Table 1: Summary of the first, second moments, regret bound and Applicability used in Adam Kingma &
Ba (2017), AdaHessian Yao et al. (2021), K-FAC Martens & Grosse (2020), Shampoo Gupta et al. (2018),
and AdaFisher for updating model parameters θt+1 = θt − ηmt/

√
vt. Here β1 and β2 are first and second

moment hyperparameters. Lt and Rt refer to the preconditioning method used by Shampoo Gupta et al. (2018),
gt = vec(Gt), and T denotes the total number of steps. Note that Trans. denotes Transformers

Optimizer mt vt Regret Bound Applicability
CNNs Trans.

Adam (1−β1)
∑t

i=1 βt−i
1 gi

1−βt
1

(
(1−β2)

∑t
i=1 βt−i

2 gigi
1−βt

2

)1/2

O(log T
√
T) ✓ ✓

AdaHessian (1−β1)
∑t

i=1 βt−i
1 gi

1−βt
1

(
(1−β2)

∑t
i=1 βt−i

2 D
(s)
i D

(s)
i

1−βt
2

)1/2

O(log T
√
T) ✓ ✓

K-FAC F̂−1gt 1 O(
√
T) ✓ ×

Shampoo L
−1/4
t GtR

−1/4
t 1 O(

√
T) ✓ ×

AdaFisher (1−β1)
∑t

i=1 βt−i
1 gi

1−βt
1

F̃Dt O(log T
√
T) ✓ ✓

3.3 AUGMENTING FIM INTO ADAM

Figure 4: Comparison of FIM
Diagonal Histograms during
ResNet18 Training on CIFAR10:
The figure displays the FIM
diagonal elements for the first
convolutional layer with Adam
and AdaFisher over 1,000
training iterations.

Adam, which combines the methodologies of RMSProp and mo-
mentum (Sutskever et al., 2013), updates parameters following
θt+1 = θt − αt

mt

vt
. Here, αt represents the learning rate, while mt

and vt denote the first and second moment estimates, respectively.
Although Adam is widely used, its approximation of the second
moment using simple diagonal elements of second order statistics
through squared gradients (Kunstner et al., 2019) can mirror sta-
bility challenges observed in simpler methods like SGD (Ruder,
2016). To overcome these limitations, we introduce AdaFisher,
which utilizes a more refined diagonal block-Kronecker approxi-
mation of the FIM, derived using the K-FAC framework. This en-
hancement significantly improves curvature understanding and op-
timization dynamics. AdaFisher distinguishes itself from Adam by
incorporating a higher fidelity approximation of the FIM, enhanc-
ing both optimization efficiency and model robustness in complex
scenarios. As demonstrated in Figure 4, AdaFisher’s FIM values
exhibit narrow variations and lower mean values during training,
suggesting a convergence towards flatter local minima. In contrast,
Adam shows broader variations, indicating less efficient conver-
gence. For more details regarding the convergence behavior refer
to Appendix B.1. Moreover, AdaFisher omits the square root and
the traditional EMA applied over the second moment, since the FIM
naturally incorporates an EMA of its Kronecker factors (detailed in
Eq. (3)). The exclusion of the square root aligns with the theoret-
ical definition of second order methods, as using a square root de-
viates from the second-order Taylor expansion approximation that
these methods aim to follow. A comparative summary of differ-
ent moment estimates, mt and vt, along with their regret bounds
and applicability across various optimizers, is presented in Table 1.
Building on the principles of AdamW (Loshchilov & Hutter, 2019),
which modifies Adam by integrating weight decay directly into the
weight update step to counteract suboptimal decay behaviors and boost optimization performance,
we introduce AdaFisherW. This variant adapts the AdamW framework to further enhance the opti-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

mizer by leveraging curvature information from AdaFisher. Finally, AdaFisher is compatible with
multi-GPU environments, with a distributed version detailed in Appendix A.4. The implementation
for both AdaFisher1 variants are delineated in the pseudo-code presented in Algorithm 1.

3.4 CONVERGENCE ANALYSIS

In this section, we provide a theoretical analysis of AdaFisher’s convergence in both convex opti-
mization and non-convex stochastic optimization. We first present a standard convergence behaviour
of Eq. (2) for a simple strongly convex and strictly smooth function f(J).
Proposition 3.3 (Convergence in convex optimization). For FIM defined in Eq. (4), the updating
scheme △θt = F̃−1

t ∇J(θt) converges. Further, if ∇J is Lipschitz, the convergence rate is bounded.

For non-convex case, we adopt the similar derivations of Chen et al. (2019), since AdaFisher belongs
to the family of generalized Adam-type methods.
Proposition 3.4 (Convergence in non-convex stochastic optimization). Under the assumptions:
(i) J is lower bounded and differentiable; ||∇J(θ) − ∇J(θ′)||2 ≤ L||θ − θ′||2, ||F̃Dt ||∞ <
L, ∀t, θ, θ′, (ii) Both the true and stochastic gradient are bounded, i.e. ||∇J(θt)||2 ≤ λ and
||gt||2 ≤ λ, ∀t for some λ > 0, (iii) Unbiased and independent noise in gt, i.e. gt = ∇J(θt) + ζt,

E[ζt] = 0, and ζi ⊥ ζj , ∀i ̸= j. Assume ηt = η√
t
, βt ≤ β ≤ 1 is non-increasing,

F̃Dt−1
[j]

ηt−1
≤ F̃Dt [j]

ηt
,

∀t ∈ [T], j ∈ [d], we then have

min
t∈[T]

E[||∇J(θt)||22] ≤
L√
T
(C1η

2λ2(1 + log T) + C2dη + C3dη
2 + C4) (5)

where C1, C2, C3 are constants independent of d and T , C4 is a constant independent of T , the
expectation is taken w.r.t all the randomness corresponding to {gt}.

Proposition 3.4 implies the convergence rate for AdaFisher in the non-convex case is at
O(log T/

√
T), which is similar to Adam-type optimizer. While DNNs often include nonsmooth

components like ReLU and max pooling, which create nondifferentiable points in the loss land-
scape, optimizers like AdaFisher handle these cases effectively as shown by our results in Section 4.

Algorithm 1 AdaFisher optimization algorithm. Good default settings for the tested machine learning prob-
lems are α = 0.001 (learning rate), λ = 0.001 (Tikhonov damping parameter), γ = 0.92 (Exponentially
decaying factor). [Default parameters are: β = 0.9 (Exponentially decaying factor of Adam), κ (weight decay)
(Kingma & Ba (2017), Loshchilov & Hutter (2019))].

Require: Step size α; Exponential decay rate for Kronecker factors γ ∈ [0, 1); Tikhonov damping parameter
λ; Exponential decay rate for first moments β in [0, 1); Initial parameters θ
Initialize 1st moment variable m = 0; FIM F̃Di = I; time step t = 0

1: while stopping criterion not met do
2: Sample a minibatch of M examples from the training set {(x(i), y(i))}mi=1

3: ComputeHDi−1 , SDi for i ∈ {1, . . . , L} using Section A.3 (notice that: HD0 = x)
4: Compute EMAs ofHDi−1 and SDi using Eq.(3)

5: Compute F̃Di for i ∈ {1, . . . , L} using Eq. (4)

6: ht ← 1
M

∑
i∇θtL(f(x(i); θt), y

(i)) (Compute gradient)

7: mt+1 ← βmt+(1−β)ht

1−βt (Update and correct biased first moment)

8: Case AdaFisher: ∆θt = −αF̃−1
Dt

mt; Case AdaFisherW: ∆θt = −α
(
F̃−1
Dt

mt + κθt
)

9: θt+1 ← θt +∆θt (Apply update)
10: t← t+ 1
11: end while

4 RESULTS

To evaluate AdaFisher, we conduct experiments on six benchmark datasets across Image Classifi-
cation for CV and Language Modelling for NLP that are commonly used to evaluate optimization

1PyTorch implementation is available in the supplementary materials.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

algorithms: CIFAR-10, CIFAR100 (Krizhevsky et al., 2009), TinyImageNet (Le & Yang, 2015),
and ImageNet (Deng et al., 2009) for image classification; Wikitext-2 (Merity et al., 2016) and Penn
Treebank (PTB) (Marcus et al., 1993) for language modelling. The six baseline methods we com-
pare with are SGD, Adam/AdamW, K-FAC, AdaHessian, and Shampoo. For CIFAR experiments,
we report the average over 5 runs. We also perform a transfer learning task using the ImageNetV1
weights Paszke et al. (2019). Detailed descriptions of the experimental setups (including hyper-
parameters, datasets, and data augmentation), results, and analyses are provided in Appendix D.

Table 2: Performance metrics (mean, std) of different networks and optimizers on CIFAR10 and CIFAR100
using batch size 256 with a 200-epoch AdaFisher training cutoff.

CIFAR10 CIFAR100
Network SGD Adam AdaHessian K-FAC Shampoo AdaFisher SGD Adam AdaHessian K-FAC Shampoo AdaFisher

ResNet18 95.640.194.850.1 95.440.1 95.170.294.080.296.250.2 76.560.2 75.740.1 71.790.2 76.030.376.780.277.280.2

ResNet50 95.710.194.450.2 95.540.1 95.660.194.590.196.340.2 78.010.1 74.650.5 75.810.3 77.400.478.070.479.770.4

ResNet101 95.980.294.570.1 95.290.6 96.010.194.630.196.390.1 78.890.2 75.560.3 73.380.2 77.010.478.830.280.650.4

DenseNet12196.090.194.860.1 96.110.1 96.120.195.660.196.720.1 80.130.4 75.870.4 74.800.9 79.790.280.240.381.360.3

MobileNetV394.430.293.320.1 92.863.1 94.340.193.810.295.280.1 73.890.3 70.620.3 56.584.5 73.750.370.850.377.560.1

Tiny Swin 82.340.287.370.6 84.150.2 64.790.563.910.488.740.4 54.890.4 60.210.4 56.860.5 34.450.430.391.266.050.5

FocalNet 82.030.286.230.1 64.180.2 38.940.837.960.787.900.1 47.7603 52.710.5 32.330.3 9.980.6 9.180.1 53.690.3

CCT-2/3×2 78.760.383.890.4 − 33.082.335.160.484.940.3 54.050.4 59.780.5 − 7.170.2 8.600.1 62.910.5
∗Note that Adam and AdaFisher were used for all CNN architectures, while AdamW and AdaFisherW were applied for all ViT experiments.

4.1 IMAGE CLASSIFICATION

We commence our analysis by assessing the convergence and generalization capabilities of vari-
ous models on image classification tasks. Specifically, we deploy ResNet architectures (ResNetX
where X ∈ {18, 50, 101}), MobileNetV3 (Howard et al., 2019), Tiny Swin (Liu et al., 2021), Focal-
Net (Yang et al., 2022) and CCT-2/3×2 (Hassani et al., 2021) on CIFAR10 and CIFAR100, while
utilizing standard ResNet50 for TinyImageNet and ImageNet. The performance outcomes for CI-
FAR datasets are detailed in Table 2. Our empirical evaluation of AdaFisher optimizer across these
models and datasets illustrates its efficiency in optimizing in image classification, surpassing con-
temporary SOTA optimizers, including SGD, Adam, AdamW, AdaHessian, Shampoo, and K-FAC.
We employ the Wall-Clock-Time (WCT) method with a cutoff of 200 epochs for AdaFisher’s train-
ing, except for ImageNet, where we use a 90-epoch WCT for Adam, which surprisingly matched
AdaFisher’s training duration. Results confirm AdaFisher’s superior classification accuracy on both
CNNs and VITs. Please note that the results for Tiny ImageNet are described in Appendix D.2.4.

Table 3: Validation of ImageNet-1K / ResNet50 by
different optimizers reported on Top-1 and Top-5 accu-
racy.

Optimizers Batch size Top-1 Top-5

Adam 256 67.78 88.37
K-FAC 256 70.96 89.44

Shampoo 256 72.82 91.42
AdaFisher 256 76.95 93.39

AdaFisher 512 77.01 93.45
AdaFisher 1024 77.09 93.56

SGD Goyal et al. (2017) 256 76.40 -
AdamW Chen et al. (2024) 1024 76.34 -

LAMB You et al. (2019) 16K 76.66 93.22
SGD You et al. (2019) 16K 75.20 -

LARS Huo et al. (2021) 16K 75.1 -

Figure 5: Training loss and validation error of ResNet-
50 on ImageNet. AdaFisher consistently achieves lower
test error as compared to its counterparts.

ImageNet Training. Training on ImageNet
typically requires multiple GPUs and large
batch sizes. Our study showcases that
AdaFisher achieves superior validation accu-
racy on a single GPU than its counterparts in
scenarios marked by the light blue region. This
performance outstrips traditional approaches
like SGD, LAMB (You et al., 2019), and LARS
(You et al., 2017), which typically utilize batch
sizes of 16K. While AdaFisher attains SOTA
results on a single GPU, it further excels when
scaled up in a distributed setting with larger
batch sizes. The results, benchmarked using
256 batch size and a WCT of 90 Adam training
epochs, are detailed in Table 3 and illustrated in
Figure 5. Distributed AdaFisher curves are il-
lustrated in Figure 15. The light blue highlights
in the table represent our experiments with a
batch size of 256 on a single GPU. The light
green indicates results from a distributed ver-
sion of AdaFisher employing larger batch sizes,
whereas the orange reflects results from SOTA
methods using a higher batch size of 16K, SGD
with a batch size of 256 and AdamW with batch
size of 1024. Overall, AdaFisher demonstrates
robust generalization capabilities, in contrast to
K-FAC, which tends to overfit.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.2 TRANSFER LEARNING

Owing to global warming concerns, more sustainable practices are essential in training DNNs. Em-
ploying pretrained models from ImageNet-1k by PyTorch for transfer learning on datasets like CI-
FAR10 and CIFAR100 reduces the carbon footprint and leverages prior computations, promoting
eco-friendly AI methodologies. We applied these pretrained weights across various CNN architec-
tures, to train on these datasets. The results, presented in Table 4, highlight the significant advantages
of using AdaFisher, consistently achieving top accuracy across both datasets. More details can be
found in Appendix D.2.3.
Table 4: Performance comparison of different networks and optimizers on CIFAR10 and CIFAR100 using
ImageNet-1K pretrained weights. Evaluation is based on wall clock time of 50 training epochs with AdaFisher.

CIFAR10 CIFAR100
Network SGD Adam AdaHessian K-FAC Shampoo AdaFisher SGD Adam AdaHessian K-FAC Shampoo AdaFisher

ResNet50 96.500.296.450.2 96.350.3 96.450.196.030.497.130.2 82.120.182.010.4 80.640.9 80.550.481.700.2 82.230.2

ResNet101 97.070.296.700.1 96.650.2 96.840.196.630.197.220.1 84.010.182.430.2 81.360.8 82.260.382.650.2 84.470.2

DenseNet12194.800.194.770.1 93.080.1 94.410.294.760.195.030.1 75.980.275.650.3 71.060.9 76.100.376.080.2 76.920.3

MobileNetV391.760.390.920.3 86.452.5 91.720.291.390.392.780.2 71.860.466.110.8 59.692.3 69.850.468.870.372.380.4

4.3 LANGUAGE MODEL
Table 5: Language Modelling
performance (PPL) on Wikitext-
2 and PTB test dataset (lower is
better).

Optimizer Test PPL

WikiText-2 PTB

AdamW 175.06 44.70
AdaHessian 407.69 59.43
Shampoo 1727.75 −

AdaFisherW 152.72 41.15

We employ the WikiText-2 dataset, which encompasses approxi-
mately 100 million tokens derived from over 2 million words ex-
tracted from a curated set of ‘Good’ and ‘Featured’ articles on
Wikipedia. Additionally, we utilize the PTB dataset, renowned for
its extensive collection of English words with part-of-speech tags,
which has been widely used in natural language processing tasks
for training and benchmarking language models. Our experiments
utilize a scaled-down version of GPT-1 (Radford et al., 2019), fea-
turing four self-attention layers with masking capabilities with a
total of 28,351,488 learnable parameters. More details about hy-
perparameters and model can be found in Appendix D.3. The perplexity (PPL) on the test set,
corresponding to the best-performing model during validation, is documented in Table 5. Similar
to approaches in image classification, we apply the WCT method with 50 epochs training time of
AdaFisher as the cutoff period. Notice that Shampoo did not achieve convergence despite using op-
timal hyperparameters, and the K-FAC was unable to train with ASDL library (Osawa et al., 2023).

Figure 6: Performance comparison of AdaFisher and other optimizers using the ResNet50 network on the
CIFAR100 dataset. (A) Test accuracy by batch size. (B) Accuracy vs. learning rates. (C) Accuracy related to
epoch time across batch sizes. (D) Epoch time for different optimizers with batch size of 256.

4.4 STABILITY ANALYSIS

In this section, we assess AdaFisher’s stability under varying learning rates and batch sizes using
ResNet50 on CIFAR100 and compare its performance to other optimizers. Improved stability indi-
cates a reduced need for hyperparameter tuning while maintaining high performance. To ensure a
fair comparison, all methods were evaluated using a consistent experimental setup, with parameters
tailored to each optimizer’s strengths. However, we exclude AdaHessian results for a batch size of
1024 due to its significant computational cost.

Batch Size Analysis. We examine the impact of batch size on AdaFisher’s performance, as shown
in Panels (A) and (C) of Figure 6. AdaFisher maintains high test accuracy across various batch

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

sizes, excelling particularly at smaller sizes despite some sensitivity to larger ones. Panel (C) high-
lights AdaFisher’s efficiency, achieving high accuracy with shorter epoch times compared to Adam,
detailed further in Panel (D) where AdaFisher shows competitive epoch durations against other op-
timizers. These results, discussed in Appendix D.2.7, underscore AdaFisher’s effective performance
across batch size variations without adjusting other hyperparameters.

Learning Rate Stability. This analysis evaluates the impact of learning rate variations on
AdaFisher’s performance, as depicted in Panel (B) of Figure 6. AdaFisher demonstrates superior
stability, particularly at lower learning rates, maintaining consistent performance across a broad
spectrum. This stability alleviates the need for meticulous learning rate adjustments, thereby stream-
lining model training in various computational environments. Additionally, AdaFisher’s stability
across various learning rates can be attributed to its effective approximation of the curvature matrix.

Ablation Studies. We further conduct extensive ablation studies on additional components of
AdaFisher, including the convergence efficiency, our novel approximation of the FIM, the signif-
icance of EMA for Kronecker factors, the impact of the square root, the stability across learning rate
schedulers and the updated computation of the FIM for normalization layers. These analyses are
thoroughly detailed in Appendix B.

5 RELATED WORK

Tractable Approximation of the FIM. Efficient approximations of the FIM for neural network
optimization have evolved significantly, beginning with block-diagonal strategies exemplified by
TONGA (Roux et al., 2007) and extending to the Kronecker-factored approaches like K-FAC. Fur-
ther innovations have emerged, such as SK-FAC (Tang et al., 2021), EVA (Zhang et al., 2023), which
accelerates the computation of the FIM, and Eschenhagen et al. (2023), who propose a generalized
framework for FIM computation that enhances preconditioning methods like Shampoo. More re-
cently, Liu et al. (2023), Huang et al. (2024) and Duvvuri et al. (2024) have introduced tractable
solutions for computing the FIM. AdaFisher distinguishes itself by integrating enhanced FIM com-
putations with novel diagonal Kronecker factors, enriching the Adam optimization framework. This
integration, outlined in Proposition 3.2 and detailed in Appendix A.3, advances the fusion of second-
order optimization principles with first-order methods. This builds upon innovations like AdaHes-
sian, which incorporates Hessian diagonals into the Adam framework.

Adaptive First-Order Methods. Building upon the diagonal approximation heritage of the FIM,
AdaFisher extends traditional diagonally-scaled first-order methods such as AdaGrad (Duchi et al.,
2011), AdamP, AdaInject, AdaBelief, and Adam. These methods have inspired advancements like
AMSGrad (Reddi et al., 2019), AdaBound (Luo et al., 2019), RAdam (Liu et al., 2019), and en-
hanced AdaBelief, FOOF (Benzing, 2021) and INNAprop (Bolte et al., 2024), improving both the-
oretical rigor and practical effectiveness. A recent study by Jiang et al. (2024a) illustrates that
first-order adaptive methods can bias training trajectories and effectively navigate through saddle
points. In response, Mishchenko & Stich (2023) propose an empirical solution involving the addi-
tion of noise to mitigate these biases. Leplat et al. (2022) introduces a novel method accelerating
convergence via Gauss-Seidel type discretization. AdaFisher differentiates itself by eliminating the
conventional square root in the second moment calculation, with benefits underscored by Lin et al.
(2024a) and Malladi et al. (2022) in CNN architectures, and Zhang et al. (2024) demonstrates the
critical role of Adam family optimizers in Transformer models. Its unique preconditioning, based
on the Fisher Information, is elaborated in Algorithm 1.

6 CONCLUSION, LIMITATIONS AND FUTURE RESEARCH

In this work, we introduced AdaFisher, an adaptive optimizer that leverages a novel diagonal block-
Kronecker approximation of the FIM to improve gradient rescaling and descent directions. Incorpo-
rated within the Adam framework, AdaFisher speeds up training, reduces hyperparameter sensitivity,
and delivers higher accuracy and stability across image classification and language modeling tasks.
Empirical and theoretical analyses demonstrate its superiority over current optimizers, with efficient
space and time usage facilitating its application across diverse tasks. Notably, AdaFisher excels
in SOTA comparisons on ImageNet under both single and multi-GPU setups. Although optimized
for statistical tasks, AdaFisher is less suited for tasks involving non-exponential loss families due
to its reliance on statistical data for FIM computation. Future work will expand testing to other

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

models and areas, such as generative modeling (diffusion models) and graph neural networks, and
developing CUDA kernels for Kronecker factors could greatly improve AdaFisher’s scalability and
performance.

REFERENCES

iris, 2018. URL https://dx.doi.org/10.21227/rz7n-kj20.

Shun-ichi Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251–
276, Feb 1998. ISSN 0899-7667. doi: 10.1162/089976698300017746.

Shun-ichi Amari and Hiroshi Nagaoka. Methods of information geometry. 2000. URL https:
//api.semanticscholar.org/CorpusID:116976027.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

Frederik Benzing. Kronecker-factored second-order optimizers perform first-order descent on neu-
rons. 2021.

Jérôme Bolte, Ryan Boustany, Edouard Pauwels, and Andrei Purica. A second-order-like optimizer
with adaptive gradient scaling for deep learning. arXiv preprint arXiv:2410.05871, 2024.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Johan Braeken and Marcel ALM Van Assen. An empirical kaiser criterion. Psychological methods,
22(3):450, 2017.

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and
Sungrae Park. Swad: Domain generalization by seeking flat minima. Advances in Neural Infor-
mation Processing Systems, 34:22405–22418, 2021.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
Advances in neural information processing systems, 36, 2024.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-type
algorithms for non-convex optimization. In International Conference on Learning Representa-
tions, 2019. URL https://openreview.net/forum?id=H1x-x309tm.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of
the web]. IEEE Signal Processing Magazine, 29(6):141–142, 2012. doi: 10.1109/MSP.2012.
2211477.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Shiv Ram Dubey, SH Shabbeer Basha, Satish Kumar Singh, and Bidyut Baran Chaudhuri. Adain-
ject: Injection based adaptive gradient descent optimizers for convolutional neural networks.
IEEE Transactions on Artificial Intelligence, 2022.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011. URL
http://jmlr.org/papers/v12/duchi11a.html.

Sai Surya Duvvuri, Fnu Devvrit, Rohan Anil, Cho-Jui Hsieh, and Inderjit S Dhillon. Combining axes
preconditioners through kronecker approximation for deep learning. In The Twelfth International
Conference on Learning Representations, 2024.

Muhammad ElNokrashy, Badr AlKhamissi, and Mona Diab. Depth-wise attention (dwatt): A layer
fusion method for data-efficient classification. arXiv preprint arXiv:2209.15168, 2022.

10

https://dx.doi.org/10.21227/rz7n-kj20
https://api.semanticscholar.org/CorpusID:116976027
https://api.semanticscholar.org/CorpusID:116976027
https://openreview.net/forum?id=H1x-x309tm
http://jmlr.org/papers/v12/duchi11a.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Runa Eschenhagen, Alexander Immer, Richard E Turner, Frank Schneider, and Philipp Hen-
nig. Kronecker-factored approximate curvature for modern neural network architectures. arXiv
preprint arXiv:2311.00636, 2023.

Runa Eschenhagen, Alexander Immer, Richard Turner, Frank Schneider, and Philipp Hennig.
Kronecker-factored approximate curvature for modern neural network architectures. Advances
in Neural Information Processing Systems, 36, 2024.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization, 2021.

Karl Pearson F.R.S. Liii. on lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572,
1901. doi: 10.1080/14786440109462720.

Thomas George. NNGeometry: Easy and Fast Fisher Information Matrices and Neural Tangent Ker-
nels in PyTorch, February 2021. URL https://doi.org/10.5281/zenodo.4532597.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for convolution
layers, 2016.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization, 2018.

Ali Hassani, Steven Walton, Nikhil Shah, Abulikemu Abuduweili, Jiachen Li, and Humphrey Shi.
Escaping the big data paradigm with compact transformers. 2021. URL https://arxiv.
org/abs/2104.05704.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Byeongho Heo, Sanghyuk Chun, Seong Joon Oh, Dongyoon Han, Sangdoo Yun, Gyuwan Kim,
Youngjung Uh, and Jung-Woo Ha. Adamp: Slowing down the slowdown for momentum optimiz-
ers on scale-invariant weights. arXiv preprint arXiv:2006.08217, 2020.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent.

Richard A. Holmgren. Newton’s Method, pp. 127–151. Springer New York, New York, NY, 1996.
ISBN 978-1-4419-8732-7. doi: 10.1007/978-1-4419-8732-7 12. URL https://doi.org/
10.1007/978-1-4419-8732-7_12.

Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 2 edition,
2012.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig Adam. Searching
for mobilenetv3, 2019.

Keke Huang, Ruize Gao, Bogdan Cautis, and Xiaokui Xiao. Scalable continuous-time diffusion
framework for network inference and influence estimation, 2024.

Zhouyuan Huo, Bin Gu, and Heng Huang. Large batch optimization for deep learning using new
complete layer-wise adaptive rate scaling. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pp. 7883–7890, 2021.

11

https://doi.org/10.5281/zenodo.4532597
https://arxiv.org/abs/2104.05704
https://arxiv.org/abs/2104.05704
https://doi.org/10.1007/978-1-4419-8732-7_12
https://doi.org/10.1007/978-1-4419-8732-7_12

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift, 2015.

Kaiqi Jiang, Dhruv Malik, and Yuanzhi Li. How does adaptive optimization impact local neural
network geometry? Advances in Neural Information Processing Systems, 36, 2024a.

Zixuan Jiang, Jiaqi Gu, Hanqing Zhu, and David Pan. Pre-rmsnorm and pre-crmsnorm transformers:
equivalent and efficient pre-ln transformers. Advances in Neural Information Processing Systems,
36, 2024b.

Jack Kiefer and Jacob Wolfowitz. Stochastic estimation of the maximum of a regression function.
The Annals of Mathematical Statistics, pp. 462–466, 1952.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical fisher approxima-
tion for natural gradient descent. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_
files/paper/2019/file/46a558d97954d0692411c861cf78ef79-Paper.pdf.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Yann Lecun. A theoretical framework for back-propagation. 08 2001.

Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus Robert Müller. Efficient backprop, pp.
9–48. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics). Springer Verlag, 2012. ISBN 9783642352881. doi:
10.1007/978-3-642-35289-8 3. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.

Valentin Leplat, Daniil Merkulov, Aleksandr Katrutsa, Daniel Bershatsky, Olga Tsymboi, and Ivan
Oseledets. Nag-gs: Semi-implicit, accelerated and robust stochastic optimizer. arXiv preprint
arXiv:2209.14937, 2022.

Wu Lin, Felix Dangel, Runa Eschenhagen, Juhan Bae, Richard E Turner, and Alireza Makhzani.
Can we remove the square-root in adaptive gradient methods? a second-order perspective. arXiv
preprint arXiv:2402.03496, 2024a.

Wu Lin, Felix Dangel, Runa Eschenhagen, Juhan Bae, Richard E. Turner, and Alireza Makhzani.
Can we remove the square-root in adaptive gradient methods? a second-order perspective, 2024b.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate, 2019.

Linjian Ma, Gabe Montague, Jiayu Ye, Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W.
Mahoney. Inefficiency of k-fac for large batch size training, 2019.

12

https://proceedings.neurips.cc/paper_files/paper/2019/file/46a558d97954d0692411c861cf78ef79-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/46a558d97954d0692411c861cf78ef79-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sadhika Malladi, Kaifeng Lyu, Abhishek Panigrahi, and Sanjeev Arora. On the sdes and scaling
rules for adaptive gradient algorithms. Advances in Neural Information Processing Systems, 35:
7697–7711, 2022.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330, 1993. URL
https://aclanthology.org/J93-2004.

James Martens. New insights and perspectives on the natural gradient method. Journal of Machine
Learning Research, 21(146):1–76, 2020.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approxi-
mate curvature. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research,
pp. 2408–2417, Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.
press/v37/martens15.html.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature, 2020.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Konstantin Mishchenko and Sebastian U Stich. Noise injection irons out local minima and saddle
points. In OPT 2023: Optimization for Machine Learning, 2023.

Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing.
Prentice-hall Englewood Cliffs, second edition, 1999.

Kazuki Osawa, Satoki Ishikawa, Rio Yokota, Shigang Li, and Torsten Hoefler. Asdl: A unified
interface for gradient preconditioning in pytorch, 2023.

H Park, S.-I Amari, and K Fukumizu. Adaptive natural gradient learning algorithms for var-
ious stochastic models. Neural Networks, 13(7):755–764, 2000. ISSN 0893-6080. doi:
https://doi.org/10.1016/S0893-6080(00)00051-4. URL https://www.sciencedirect.
com/science/article/pii/S0893608000000514.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

SGOPAL Patro and Kishore Kumar Sahu. Normalization: A preprocessing stage. arXiv preprint
arXiv:1503.06462, 2015.

K. B. Petersen and M. S. Pedersen. The matrix cookbook, October 2008. URL http://www2.
imm.dtu.dk/pubdb/p.php?3274. Version 20081110.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237, 2019.

Nicolas Roux, Pierre-Antoine Manzagol, and Yoshua Bengio. Topmoumoute online natural gradient
algorithm. Advances in neural information processing systems, 20, 2007.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

13

https://aclanthology.org/J93-2004
https://proceedings.mlr.press/v37/martens15.html
https://proceedings.mlr.press/v37/martens15.html
https://www.sciencedirect.com/science/article/pii/S0893608000000514
https://www.sciencedirect.com/science/article/pii/S0893608000000514
http://www2.imm.dtu.dk/pubdb/p.php?3274
http://www2.imm.dtu.dk/pubdb/p.php?3274

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ernest Ryu and Stephen Boyd. A primer on monotone operator methods survey. Applied and
computational mathematics, 15:3–43, 01 2016.

Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates, 2013.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost,
2018.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In Sanjoy Dasgupta and David McAllester (eds.), Pro-
ceedings of the 30th International Conference on Machine Learning, volume 28 of Proceedings
of Machine Learning Research, pp. 1139–1147, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.
URL https://proceedings.mlr.press/v28/sutskever13.html.

Ryo Takahashi, Takashi Matsubara, and Kuniaki Uehara. Data augmentation using random image
cropping and patching for deep cnns. IEEE Transactions on Circuits and Systems for Video Tech-
nology, 30(9):2917–2931, September 2020. ISSN 1558-2205. doi: 10.1109/tcsvt.2019.2935128.
URL http://dx.doi.org/10.1109/TCSVT.2019.2935128.

Zedong Tang, Fenlong Jiang, Maoguo Gong, Hao Li, Yue Wu, Fan Yu, Zidong Wang, and Min
Wang. Skfac: Training neural networks with faster kronecker-factored approximate curvature.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
13479–13487, 2021.

Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training
procedure in timm. arXiv preprint arXiv:2110.00476, 2021.

Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin Recht. The
marginal value of adaptive gradient methods in machine learning, 2018.

Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, and Jianfeng Gao. Focal modulation networks,
2022.

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.
Adahessian: An adaptive second order optimizer for machine learning. In proceedings of the
AAAI conference on artificial intelligence, volume 35, pp. 10665–10673, 2021.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks, 2017.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive meth-
ods for nonconvex optimization. Advances in neural information processing systems, 31, 2018.

Matthew D. Zeiler. Adadelta: An adaptive learning rate method, 2012.

Lin Zhang, Shaohuai Shi, and Bo Li. Eva: A general vectorized approximation framework for
second-order optimization. arXiv preprint arXiv:2308.02123, 2023.

Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why trans-
formers need adam: A hessian perspective. arXiv preprint arXiv:2402.16788, 2024.

Zhilu Zhang and Mert R. Sabuncu. Generalized cross entropy loss for training deep neural networks
with noisy labels, 2018.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in ob-
served gradients. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems, volume 33, pp. 18795–18806. Curran
Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/d9d4f495e875a2e075a1a4a6e1b9770f-Paper.pdf.

14

https://proceedings.mlr.press/v28/sutskever13.html
http://dx.doi.org/10.1109/TCSVT.2019.2935128
https://proceedings.neurips.cc/paper_files/paper/2020/file/d9d4f495e875a2e075a1a4a6e1b9770f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d9d4f495e875a2e075a1a4a6e1b9770f-Paper.pdf

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

CONTENTS

A Theory 16

A.1 Kronecker Factors: A Structural Examination (Continue) 16

A.2 Proofs . 19

A.3 Computation of Kronecker Factors . 23

A.4 Distributed AdaFisher . 23

B Ablation Studies 24

B.1 Evaluating Stability Across Learning Rate Schedulers, and Assessing Convergence
Efficiency . 25

B.2 Component Analysis: Evaluating the Significance of AdaFisher’s Elements 26

C Visualization 27

D Experiments 28

D.1 Hardware . 28

D.2 Image Classification . 28

D.2.1 Hyperparameter Tuning . 29

D.2.2 Dataset Details . 30

D.2.3 Transfer Learning . 30

D.2.4 Results . 31

D.2.5 Comparison with Other Relevant Methods 37

D.2.6 Comparison with Consistent Epoch Counts 37

D.2.7 Comparison of Training Speed and Memory Utilization 38

D.3 Language Modelling . 40

D.3.1 Dataset Details . 40

D.3.2 Network Details . 40

D.3.3 Hyperparameters . 40

D.3.4 Results . 40

E Impact Statement 40

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A THEORY

A.1 KRONECKER FACTORS: A STRUCTURAL EXAMINATION (CONTINUE)

In the realm of matrix theory, Gersgorin’s Circle Theorem offers a principle for localizing the eigen-
values of a complex square matrix, asserting that each eigenvalue is situated within at least one
Gersgorin disk. These disks are defined by the matrix’s diagonal elements and the sum of the abso-
lute values of the respective off-diagonal row entries. Formally, the theorem is stated as follows:
Theorem A.1 (Gersgorin Circle Theorem). Let A be a complex square matrix with eigenvalues λ.
For each λ, there exists an index i such that:

|λ−Aii| ≤
n∑

j=1
j ̸=i

|Aij |,

where the summation excludes the diagonal entry Aii.

For a detailed proof of Theorem A.1, the reader is referred to the seminal work by Horn and
Johnson Horn & Johnson (2012). Extending the application of Gersgorin’s Circle Theorem to
the study of Kronecker factors within deep neural networks, we analyze these factors from both
convolutional (37th) and linear (41st) layers of a ResNet-18 network, post-training on CIFAR10
dataset. As elucidated in Section 3.1, leveraging Theorem A.1 demonstrates that the eigenvalues
of the Kronecker factors from the convolutional layer are predominantly concentrated along the
diagonal. This observation is analogously applicable to the linear layer. Figure 3 showcases the
Gersgorin disks for the 41st (linear) layer, with the eigenvalues (red crosses) significantly clustered
within these disks (centered at the black circles), underscoring a pronounced diagonal dominance.
Moreover, upon introducing Gaussian noise to the off-diagonal elements following this shceme:
M̂ = A+ E , where E = [eij] and eij ∼ N (0, σ2) for i ̸= j, the perturbation analysis elucidates
that such stochastic variations engender only marginal displacements in the eigenvalues. Notably,
those eigenvalues fulfilling the Kaiser criterion are minimally affected, substantiating the resilience
of the diagonal dominance against noise-induced perturbations. Our next analysis focus centers on

Figure 7: Gersgorin disks and eigenvalue perturbation analysis for matrices H and S at training steps 5200
(middle of training) and 9800 (end of training) in a ResNet-18 Network’s Linear Layer (41st Layer). The
left panel depicts the Gersgorin’s circles in the complex plane, while the right panel illustrates the magnitude
spectrum of eigenvalues with and without the influence of Gaussian noise.

elucidating the behaviors of matrices through consecutive steps in the frequency domain, thereby
highlighting the intricate patterns and transformations emergent from the training process. By de-
ploying a Fast Fourier Transform (FFT) on H and S, along with their noise-infused variants Ĥ
and Ŝ, we aim to dissect the spectral nuances of these factors. The deliberate addition of noise

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

to the off-diagonal serves as a probe to validate our hypothesis that the pivotal information of the
Kronecker factors is predominantly concentrated along their diagonals. The minimal impact of such
noise perturbations observed empirically underscores this diagonal dominance. Our analysis aims to
juxtapose the frequency domain representations of both the uncontaminated and the noise-affected
matrices at assorted iterative phases, thereby illuminating the inherent stability and tenacity of the
Kronecker structures amidst stochastic disturbances.
Let A be a two-dimensional m× n matrix. The FFT of A, denoted as F(A), is computed as:

F(A)kl =

m−1∑
p=0

n−1∑
q=0

Apq · e−2πi(pk
m + ql

n), (6)

where F(A)kl is the value of the FFT at the k-th row and l-th column of the transformed matrix, Apq

is the value of the original matrix at the p-th row and q-th column, and i is the imaginary unit (Op-
penheim et al., 1999). Figure 8 demonstrates the Fourier spectral analysis of the Kronecker factors

Figure 8: Comparative Visualization of FFT Outputs for Kronecker Factors in a ResNet-18 Network’s Convo-
lutional and Linear Layers. (A) FFT results for Kronecker factors H and Ĥ from the 37th convolutional layer
under noise-free conditions (top) and with Gaussian noise (bottom) at iterations 5200 (middle of training) and
9800 (end of training). (B) Analogous FFT results for Kronecker factors S and Ŝ from the 41st linear layer,
also contrasted between noise-free (top) and noisy conditions (bottom) at the same iterations.

H and S over two distinct iterative stages of training—5200 and 9800 for a convolutional and linear

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

layers (37th and 41st of a ResNet-18 network respectively). Each Kronecker factor is analyzed via
FFT in both a pristine, noise-free condition and a Gaussian noise-affected state, with the associated
Signal-to-Noise Ratios (SNRs) detailed in Eq. (7). In the noise-free FFT spectra, a pronounced di-
agonal energy concentration is manifest in the H and S factors of the convolutional layer, indicative
of significant informational preservation along the diagonal. In contrast, the linear layer exhibits a
less pronounced but still discernible diagonal energy distribution, suggesting a more diffuse yet still
noteworthy diagonal information structure. With the addition of noise, the matrices Ĥ and Ŝ still
display a notable diagonal pattern, indicating minimal SNR deterioration. This observation supports
the proposition that the kronecker factors primarily encode their information along the diagonal, and
the introduction of noise into the off-diagonal elements has a limited impact. The SNR between a
matrix M and M̂ is computed using the formula:

SNR = 10 · log10

(∑N
i=1 |Mii|2∑N
j>i |M̂ij |2

)
, (7)

where Mii denotes the diagonal elements of M, and M̂ij represents the upper triangular elements
of M̂ excluding the diagonal (Oppenheim et al., 1999). The observed reduction in SNR from step
5200 to step 9800 for the Kronecker factor S in the convolutional layer, under noisy conditions,
could suggest an incremental integration of noise effects across iterations. Conversely, for the re-
maining factors, an increase in SNR throughout the training process is detected, which may indicate
an enhancement in signal clarity. Nevertheless, the integrity of the diagonal concentration of energy
remains predominantly intact, demonstrating the underlying robustness of the network’s feature
extraction capability against noise perturbations. Ultimately, the spectral analyses validate the hy-
pothesis that the Kronecker factors’ informational content is predominantly diagonal and resistant to
the effects of off-diagonal Gaussian noise. This durability is sustained through successive iterations,
maintaining the primary spectral characteristics of the Kronecker factors. Figure 9 offers a visual

Figure 9: Visualization of Kronecker FactorsH and S for convolutional (A) and linear (B) layers at different
iteration steps within a ResNet-18 network. For the convolutional layer (37th layer), the first two plots in
(A) represent factor H at steps 5200 (middle of training) and 9800 (end of training), elucidating the matrix’s
structure at these stages. The subsequent two plots display factor S, highlighting changes in granularity and
contrast with iteration progression. Similarly, in (B) for the linear layer (41st position), we observe the structural
evolution of factor H and S over the same iterations, with variations in pattern density and clarity. These
visualizations collectively underscore the dynamic nature of the Kronecker factors’ architecture as training
advances.

exposition of the Kronecker Product Factors H and S at progressive iteration junctures—specifically
steps 5200 and 9800 for a convolutional and linear layers (37th and 41st of a ResNet-18 network
respectively). The initial duo of plots in each (A) and (B), delineate the Kronecker factor H at the
aforementioned steps, elucidating the matrix’s structure at two distinct evolutionary stages. The next
duo plots in (A) and (B) represents the Kronecker factor S at different steps of training. This visual
examination, in conjunction with the preceding spectral analyses, articulates an integrated story of

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

the developmental trajectory of the Kronecker factors. The enduring diagonal salience observed
in both H and S underscores the notion that the informational energy of the Kronecker factors is
predominantly concentrated along the diagonal. This persistent feature accentuates the structural
stability and the focused nature of information encoding within the network’s layers.

A.2 PROOFS

Proposition A.1. Consider a neural network layer indexed by i, and a mini-batch B ⊂ D of size
M (|B| = M). The empirical statistics of the Kronecker factors for the normalization layers can be
characterized as follows:

Hi−1 =

(∑
B
∑

T h̄i−1

)T (∑
B
∑

T h̄i−1

)
(M |T |)2

, Si =
(
∑

B
∑

T si) (
∑

B
∑

T si)
T

M
(8)

Here, T represents the spatial size dimension for Batch Norm layer and for LayerNorm layer, it
signifies the product of the number of heads and the per-head dimension.

Proof. The justification of our approach will be split into two parts: the first for the Batch Normal-
ization layer and the second for the Layer Normalization.

Part 1: Batch Normalization

Batch Normalization is a solution to the problem of internal covariance shifting for normalizing the
layer inputs. For each activation h̄i−1 they introduce a pair of parameters νi and βi which scale and
shift the normalized value:

yi = νih̄i−1 + βi (9)

The FIM for Batch Normalization captures the sensitivity of the output with respect to the parameters
νi and βi. We introduce rescaling and shifting operations into the FIM formulation to adapt for
BatchNorm parameters, enabling efficient FIM approximation. For the multiplication operation in
BatchNorm (scaling factor), we adjust the FIM calculation using Eq. (8) incorporating the batch size
and spatial dimension. This normalization ensures FIM accounts for the BatchNorm scaling factors.
Similarly, for the addition operation involving bias terms, we seamlessly integrate biases into the
FIM formulation, capturing their impact on gradient computation. The shape of the Kronecker
factors are defined as:

Hi−1 ∈ R2×2, Si ∈ Rci×ci

where ci refers to the channel dimension of layer i.

Part 2: Layer Normalization

Layer Normalization normalizes the inputs across the features instead of the batch dimension and
the same equation, Eq. (9), is also used for Layer Normalization. Similar to Batch Normalization we
introduce rescaling and shifting operations into the FIM formulation but adapted to the normalization
across features rather than the batch. In fact, T refers here to the product of the number of heads and
the per-head dimension rather than the spatial size dimension.The shape of the Kronecker factors
for LayerNorm are:

Hi−1 ∈ R2×2, Si ∈ R|T |×|T |

Proposition A.2. Let Hi−1 and Si represent the Kronecker factors for a given layer index i within
a neural network, where these factors exhibit semi-diagonal characteristics indicating energy con-
centration predominantly along the diagonal, as elaborated in Section 3.1. Define gi as the gra-
dient obtained through backpropagation at layer i. Assume that Hi−1 and Si can be closely ap-
proximated by diagonal matrices, denoted by HDi−1 and SDi respectively at layer i, such that
HDi−1

= Diag(Hi−1), SDi
= Diag(Si) where Diag(M) denote the diagonal approximation of a

matrix M, which retains only the main diagonal. Therefore we define the Empirical FIM as:

F̃Di
≜ H′

Di−1
⊗ S ′

Di
+ λ, (10)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where M′ denotes the Min-Max normalization technique Patro & Sahu (2015) for M = HDi−1

or SDi
. The regularization parameter λ set to 0.001, serves as damping factors, in alignment with

the principles of Tikhonov regularization, to enhance computational stability and improve the con-
ditioning of the matrix. The foundational aspects of the K-FAC optimization approach are detailed
in Martens & Grosse (2015). For a comprehensive account of the methodology and construction
details, please consult Appendix A.2. Then, the closed-form solution for the augmented gradient ĝi,
derived from the diagonal approximation of the FIM, is given by: ĝi = F̃−1

Di
gi.

Proof. The justification of our approach comprises two principal components: the rationale for
adopting a diagonal approximation of the Kronecker factors, and the methodology for normalization
and regularization of these factors.

Part 1: Diagonalization of Kronecker Factors

The assumption of independent neuronal activity within layers is foundational to our approach. This
assumption posits that the covariance matrices H and S, encapsulating the second-order statistics
of activations and sensitivities, respectively, are diagonal. This diagonal nature arises because in-
dependence among random variables implies a covariance of zero for any pair of distinct variables,
thereby nullifying all off-diagonal elements of these covariance matrices.

Consider matrices A and B, each being diagonal with elements aii and bjj , respectively. The Kro-
necker product A⊗B, by definition, generates elements aiibjj at the corresponding (i, j) positions.
For diagonal A and B, this product maintains non-zero values exclusively at diagonal positions
where i = j, resulting in:

A⊗B = diag(a11b11, . . . , annbmm), (11)
yielding a purely diagonal matrix. Moreover, we have empirically demonstrated that the energy of
the Kronecker factors is concentrated along the diagonal, as detailed in Sections 3.1 and A.1. These
arguments supports our initial premise.

Part 2: Normalization and Regularization

Normalization plays a pivotal role in machine learning algorithms, particularly in ensuring numeri-
cal stability and improving convergence properties of optimization algorithms. When dealing with
matrices such as HDi and SDi , which exhibit a diagonal structure, normalization not only aids in
adjusting the scale of matrix values but also addresses the issue of varying scales among different
features. The adoption of Min-Max normalization for the diagonal elements Ai is especially advan-
tageous as it standardizes the data to a fixed interval, commonly [0, 1], which is crucial for many
gradient-based optimization methods. The transformed matrix Ãi is mathematically defined as:

Ãi =
Ai −min(Ai)

max(Ai)−min(Ai)
, (12)

where Ai represents the diagonal elements from either HDi or SDi . This approach ensures that
all elements are scaled uniformly, preserving their relative magnitudes and distances. The numer-
ator, Ai − min(Ai), shifts the values so that the minimum element is zero. The denominator,
max(Ai) − min(Ai), scales the range of values to fit between zero and one. Compared to other
normalization methods, such as z-score normalization (Patro & Sahu, 2015), Min-Max normaliza-
tion offers the distinct benefit of bounding the values, which prevents problems associated with
unbounded ranges that can adversely affect learning processes, particularly in networks sensitive
to input magnitude. Moreover, Min-Max normalization is advantageous in scenarios where the pa-
rameters are influenced by activation functions like sigmoid or tanh, which are sensitive to input
scale and function optimally within a defined range of [0, 1] or [−1, 1]. Thus, normalization, specif-
ically using the Min-Max method, is crucial for maintaining computational stability in algorithms
by ensuring that all input features contribute equally to the analysis without any undue influence
from outliers or disproportionately large feature values. This uniformity facilitates faster conver-
gence during training and mitigates the risk of encountering vanishing or exploding gradient issues
in neural networks.

Together, these components substantiate the proposition, demonstrating that our methodological
innovations not only adhere to theoretical expectations but also offer practical advantages in com-
putational stability and efficiency.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Proposition A.3. For the FIM defined in Eq. (10), the updating scheme △θt = F̃−1
t ∇J(θt) con-

verges. Moreover, if ∇J is Lipschitz, i.e., ||∇J(θ)−∇J(θ′)||2 ≤ L||θ − θ′|| for any θ and θ′, then
for the k-step iteration with a fixed step size δ ≤ 1/L, then

J(θ(k))− J(θ∗) ≤ ||θ(0) − θ∗||22
2δk

,

where J(θ∗) is the optimal value.

Proof. For convenience, we denote gt := ∇J(θt). We follow the same proof as in Yao et al. (2021).
Assume that J(θ) is a strongly convex and strictly smooth function in Rd, such that there exist
positive constants α and β so that αI ≤ ∇2J(θ) ≤ βI for all w. We can show that the update
formulation △θt = F̃−1

t gt converges by showing that with the proper learning rate:

△θt := J(θt+1)− J(θt) ≤ − α

2β2
||gt||2

Note that when k = 0 or 1, the convergence rate is the same as gradient descent or Newton method,
respectively. Our proof is similar to Boyd & Vandenberghe (2004) for Newton method. We denote
λ(θt) = (gTt F̃

−1
t gt)

1/2. Since J(θ) is strongly convex, we have

J(θt − η△θt) ≤ J(θt)− ηgTt △θt +
η2β||△θt||2

2

≤ J(θt)− ηλ(θt)
2 +

β

2α
η2λ(θt)

2.

The second inequality come from the fact that

λ(θt)
2 = △θTt F̃t△θt ≥ α||△θt||2.

Therefore, the step size η̂ = α/β will make f decrease as follows,

J(θt − η̂△θt)− J(θt) ≤ −1

2
η̂λ(θt)

2.

Since αI ⪯ F̃t ⪯ βI , we have

λ(θt)
2 = gTt F̃

−1
t gt ≥

1

β
||gt||2.

Therefore,

J(θt − η̂△θt)− J(θt) ≤ − 1

2β
η̂||gt||2 = − α

2β2
||gt||2 (13)

Since FDt is positive definite, hence Eq. (13) holds true. For the bound on convergence rate, we
refer to Ryu & Boyd (2016) for the details of the complete proof.

Proposition A.4 (Convergence in nonconvex stochastic optimization). Under the assumptions:
(i) f is lower bounded and differentiable; ||∇J(θ) − ∇J(θ′)||2 ≤ L||θ − θ′||2, ||F̃Dt

||∞ <
L, ∀t, θ, θ′.
(ii) Both the true and stochastic gradient are bounded, i.e. ||∇J(θt)||2 ≤ λ and ||gt||2 ≤ λ, ∀t for
some λ > 0.
(iii) Unbiased and independent noise in gt, i.e. gt = ∇J(θt) + ζt, E[ζt] = 0, and ζi ⊥ ζj , ∀i ̸= j.

Assume ηt =
η√
t
, βt ≤ β ≤ 1 is non-increasing,

F̃Dt−1
[j]

ηt−1
≤ F̃Dt [j]

ηt
, ∀t ∈ [T], j ∈ [d], we then have

min
t∈[T]

E[||∇J(θt)||22] ≤
L√
T
(C1η

2λ2(1 + log T) + C2dη + C3dη
2 + C4) (14)

where C1, C2, C3 are constants independent of d and T , C4 is a constant independent of T , the
expectation is taken w.r.t all the randomness corresponding to {gt}.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Proof. Follow Chen et al. (2019), as AdaFisher is an Adam-type method with the condition
||ηtmt/F̃Dt

||2 ≤ G for some G (which can be obtained by ηt < η, ||gt||2 ≤ λ and ||F̃Dt
||2 ≥ 1),

we have

E

[
T∑

t=1

ηt⟨∇J(θt),∇J(θt)/F̃Dt
⟩

]
≤E

[
C1

T∑
t=1

∥∥∥∥ηtgtF̃Dt

∥∥∥∥2
2

+ C2

T∑
t=1

∥∥∥∥∥ ηt

F̃Dt

− ηt−1

F̃Dt−1

∥∥∥∥∥
1

+ C3

T∑
t=1

∥∥∥∥∥ ηt

F̃Dt

− ηt−1

F̃Dt−1

∥∥∥∥∥
2

2

]
+ C4. (15)

We first bound non-constant terms in RHS of Eq. (15). For the term with C1, since ||F̃Dt
||2 ≥ 1,

we have

E

[
T∑

t=1

∥∥∥∥ηtgtF̃Dt

∥∥∥∥2
2

]
≤ E

[
T∑

t=1

||ηtgt||22

]

= E

[
T∑

t=1

∥∥∥∥ η√
t
gt

∥∥∥∥2
2

]

≤ η2λ2
T∑

t=1

1

t
≤ η2λ2(1 + log T).

For the term with C2, we have

E

[
T∑

t=1

∥∥∥∥∥ ηt

F̃Dt

− ηt−1

F̃Dt−1

∥∥∥∥∥
1

]
= E

[
d∑

j=1

T∑
t=2

(
ηt−1

F̃Dt−1 [j]
− ηt

F̃Dt [j]

)]

= E

[
d∑

j=1

η1

F̃D1
[j]

− ηT

F̃DT
[j]

]

≤ E

[
d∑

j=1

η1

F̃D1
[j]

]
≤ dη

where the first equality is due to
F̃Dt−1

[j]

ηt−1
≤ F̃Dt [j]

ηt
, ∀t ∈ [T], j ∈ [d].

For the term with C3, we have

E

[
T∑

t=1

∥∥∥∥∥ ηt

F̃Dt

− ηt−1

F̃Dt−1

∥∥∥∥∥
2

2

]
= E

[
T∑

t=1

d∑
j=1

(
ηt

F̃Dt [j]
− ηt−1

F̃Dt−1 [j]

)2]

= E

[
T∑

t=1

d∑
j=1

∣∣∣∣∣ ηt

F̃Dt
[j]

− ηt−1

F̃Dt−1
[j]

∣∣∣∣∣ ·
∣∣∣∣∣ ηt

F̃Dt
[j]

− ηt−1

F̃Dt−1
[j]

∣∣∣∣∣
]

≤ E

[
T∑

t=1

d∑
j=1

∣∣∣∣∣ ηt

F̃Dt [j]
− ηt−1

F̃Dt−1 [j]

∣∣∣∣∣ ·
∣∣∣∣∣ η√

tF̃Dt [j]
− η

√
t− 1F̃Dt−1 [j]

∣∣∣∣∣
]

≤ E

[
η

T∑
t=1

d∑
j=1

∣∣∣∣∣ ηt

F̃Dt
[j]

− ηt−1

F̃Dt−1
[j]

∣∣∣∣∣
]

= ηE

[
T∑

t=1

∥∥∥∥∥ ηt

F̃Dt

− ηt−1

F̃Dt−1

∥∥∥∥∥
1

]
≤ dη2

Hence

E

[
C1

T∑
t=1

∥∥∥∥ηtgtF̃Dt

∥∥∥∥2
2

+ C2

T∑
t=1

∥∥∥∥∥ ηt

F̃Dt

− ηt−1

F̃Dt−1

∥∥∥∥∥
1

+ C3

T∑
t=1

∥∥∥∥∥ ηt

F̃Dt

− ηt−1

F̃Dt−1

∥∥∥∥∥
2

2

]
+ C4

≤ C1η
2λ2(1 + log T) + C2dη + C3dη

2 + C4 (16)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Now we lower bound the LHS of Eq. (14). With the assumption ||F̃Dt
||∞ ≤ L, we have

(ηt/F̃Dt)j ≥
η

L
√
t
.

Thus

E

[
T∑

t=1

ηt⟨∇J(θt),∇J(θt)/F̃Dt
⟩

]
≥ E

[
T∑

t=1

η

L
√
t
||∇J(θt)||22

]
≥

√
T

L
min
t∈[T]

E[||∇J(θt)||22] (17)

Combining Eq. (16) and (17) gives the desired result.

A.3 COMPUTATION OF KRONECKER FACTORS

The Kronecker factors H and S, which are integral to the AdaFisher optimizer, are computed fol-
lowing methodologies similar to those described in Grosse & Martens (2016). This section revisits
the key equations used for this computation. For a given layer i in a neural network, consider a
mini-batch B ⊂ D, where |B| = M . The empirical Kronecker factors are computed as follows:

• For fully connected layers, the Kronecker factors are:

HDi−1
= diag

(
h
T

i−1hi−1

M

)
, SDi

= diag
(
sTi si
M

)
;

• For convolutional layers, the computation accounts for the spatial positions within the
layer, denoted as T :

HDi−1
= diag

(
Jhi−1KT Jhi−1K

M |T |

)
, SDi

= diag
(

sTi si
M |T |

)
;

The algorithm employs the expansion operation denoted by J·K (Grosse & Martens, 2016).
This operation essentially takes the patches surrounding spatial locations, stretches them
into vectors, and compiles these vectors into a matrix

• For Normalization layers (BatchNorm & LayerNorm) please refer to Proposition. 3.1
• For all other type of layers the Kronecker factors are:

HDi−1 = Idi−1 , SDi = Idi ;

where di denotes the dimension of the ith layer and I is the identity matrix.

Table 6: AdaFisher training time per epoch (s) across various numbers of GPUs on ResNet-50 ImageNet.

GPU amount Batch Size AdaFisher training time per epoch (s)

1 256 2882
2 512 1438
3 768 963
4 1024 720

A.4 DISTRIBUTED ADAFISHER

The efficacy of AdaFisher hinges on its innovative approximation of the FIM, denoted as F̃ , which
leverages Kronecker factors for computation. In a distributed setting, it is crucial to aggregate these
Kronecker factors across multiple GPUs before updating the model parameters. Consider a training
environment consisting of N GPUs. For any given layer i, the Kronecker factors are computed and
aggregated across all GPUs as

(HDi−1)
SUM =

1

N

N∑
n=1

(HDi−1)
n, (SDi)

SUM =
1

N

N∑
n=1

(SDi)
n (18)

The theoretical justification for this aggregation lies in the linearity of expectation and the unbiased-
ness of the local Kronecker factor estimates. Specifically, if each (HDi−1)

n and (SDi)
n are unbiased

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

estimators of their respective true factors HDi−1
and SDi

, then the averaged factors (HDi−1
)SUM and

(SDi
)SUM remain unbiased estimators of HDi−1

and SDi
. Consequently, the aggregated EFIM for

layer i can be calculated as

F̃ SUM
Di

= (H′
Di−1

)SUM ⊗ (S ′
Di

)SUM + λ

where λ is a regularization parameter added to ensure numerical stability. This methodology ensures
that each GPU contributes to a comprehensive update of the model, enhancing both convergence and
performance in large-scale distributed training environments. We assessed the distributed version of
AdaFisher on ImageNet, utilizing batch sizes of 512 and 1024 (refer to Table 3 and Figure 15 for
details). Our findings indicate that AdaFisher scales nearly linearly with the number of GPUs,
as evidenced in Table 6. There remains scope for additional low-level optimizations within the
implementation to further enhance performance.

B ABLATION STUDIES

Building on the ablative studies detailed in Section 4.4, this section extends our stability analysis to
explore the impact of various learning rate schedulers and convergence efficiency, as discussed in
Section B.1. Additionally, we conduct an in-depth examination of the key components of AdaFisher.
This includes analyzing the effects of the EMA, the use of square root transformations, our novel
approximation of the FIM, and the critical role of computing the FIM for normalization layers, all
of which are detailed in Section B.2. We have consolidated the key findings of each ablation study
in Table 7.

Table 7: Summary of Ablation Studies for AdaFisher Optimizer.
Ablation
Study

Component Studied Key Findings

Learning
rate sched-
ulers

Impact of Cosine
Annealing, StepLR,
and no scheduler on
AdaFisher

AdaFisher maintains stable and efficient performance
across various schedulers, demonstrating its robustness
and adaptability in diverse training environments. For
further details please refer to Section B.1.

Convergence
Efficiencys

Performance and
alignment of FIM
with Hessian

AdaFisher shows marked performance improvements to-
wards the end of training, with FIM alignment to the Hes-
sian enhancing rapid convergence and stable generaliza-
tion across training and testing phases. For further details
please refer to Section B.1.

Square
Root Uti-
lization

Effect of omitting
square root in update
rules

Eliminating the square root enhances AdaFisher’s perfor-
mance and stability, outperforming both its own version
with the square root and Adam without the square root,
while also improving computational efficiency. For fur-
ther details please refer to Section B.2.

EMA of
Kronecker
Factors

Utilization of EMA
for curvature estima-
tion

Using EMA on Kronecker factors enhances AdaFisher’s
curvature estimation, leveraging data from multiple mini-
batches for continuous updates, demonstrating significant
benefits in methods with diagonal or block-diagonal cur-
vature approximations. For further details please refer to
Section B.2.

Importance
of Fisher
Compu-
tation for
Normaliza-
tion Layers

Impact of EFIM in
normalization layers

Incorporating Fisher computation in normalization lay-
ers significantly improves AdaFisher’s generalization and
stability by enhancing parameter sensitivity and gradient
variability insights, crucial for optimizing training dy-
namics and model convergence. For further details please
refer to Section B.2.

New
Approxi-
mation of
the FIM

Diagonal approxima-
tion of the FIM

Our novel method focuses on the diagonal elements of
the FIM, enhancing computation efficiency without los-
ing critical information. Validation shows our approxi-
mation closely aligns with the true Fisher, confirming its
efficacy. For further details please refer to Section B.2.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 10: Performance comparison of AdaFisher using the ResNet50 on the CIFAR10 with batch size of 256
with different learning rate schedulers.

Figure 11: Comparison of FIM Diagonal Histograms during ResNet18 Training on CIFAR10 with Adam and
AdaFisher over 1,000 training iterations. Panel (A) displays the FIM diagonal elements for the first convo-
lutional layer; Panel (B) illustrates the FIM diagonal elements for the middle convolutional layer; Panel (C)
shows the FIM diagonal elements for the last Linear layer.

B.1 EVALUATING STABILITY ACROSS LEARNING RATE SCHEDULERS, AND ASSESSING
CONVERGENCE EFFICIENCY

Learning rate schedulers. This analysis evaluates the impact of different learning rate schedulers–
Cosine Annealing, StepLR, and no scheduler—on the performance of AdaFisher, as depicted in
Figure 10. AdaFisher exhibits remarkable robustness across these scheduling strategies. Notably, its
performance remains stable and efficient whether it is paired with the gradual adjustments of Cosine
Annealing, the abrupt changes of StepLR, or even in the absence of any scheduler. This underscores
AdaFisher’s adaptability and effectiveness in diverse training environments.

Convergence Efficiency. As training progresses, AdaFisher optimizer demonstrates a significant
enhancement in performance compared to its counterparts, especially evident towards the end of
the training period (see Appendix D.2.4). This rapid convergence is attributed to AdaFisher’s ap-
proach by incorporating the FIM. Early and mid-training, the FIM serves as an approximation to
the Hessian matrix, equivalent to the Generalized Gauss Newton Matrix (Eschenhagen et al., 2024).
However, as the model approaches a local minimum, the FIM increasingly aligns precisely with the
Hessian (Martens, 2020). This precise alignment accelerates convergence, markedly improving the
optimizer’s efficiency in the final phases of training. Additionally, AdaFisher’s tendency to con-

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

verge to flat local minima leads to more stable generalization when transitioning from training to
testing distributions (Cha et al., 2021), contrasting sharply with other optimizers. To support these
points, we analyze the training distribution of our diagonal block-Kronecker FIM during the train-
ing of ResNet18 on CIFAR10. Specifically, we examine the FIM distribution for the first (Panel A),
middle (Panel B) convolutional layers and the last linear layer (Panel C), as shown in Figure 11. It
is evident that for each layer, the FIM distribution with AdaFisher narrows to smaller values with
fewer variations compared to that with Adam. This pattern demonstrates AdaFisher’s convergence
toward flatter local minima, as the Fisher Information, approximation of the Hessian, containing
crucial curvature information.

B.2 COMPONENT ANALYSIS: EVALUATING THE SIGNIFICANCE OF ADAFISHER’S
ELEMENTS

AdaFisher incorporates several key components, including a novel approximation of the FIM, the
EMA of the Kronecker factors, the omission of the square root in the update rule, and a new EFIM
formula for normalization layers. In this part, we elucidate each component and its significance
within the AdaFisher optimizer.

Square Root Utilization. Recent studies, such as (Lin et al., 2024b), have reevaluated the necessity
of the square root operation in the Adam family’s update rules. These studies suggest that elim-
inating the square root does not affect convergence and may even narrow the generalization gap
compared to SGD in CNN models. Our analysis, shown in panel (A) of Figure 12, investigates this
aspect by comparing the performance of AdaFisher and Adam, both with and without the square root
operation. The findings reveal that removing the square root not only boosts the performance and
stability of both optimizers but also significantly enhances computational efficiency. Specifically,
AdaFisher without the square root not only outperforms the version with the square root but also
surpasses Adam without the square root. However, Adam without the square root typically requires
an additional scaling factor proportional to the batch size, denoted as f ∝ batch size, to function
correctly. Without this factor, Adam without the square root fails to learn effectively, making direct
comparisons with AdaFisher invalid.

EMA of Kronecker Factors. As elucidated in Section 3.2, employing an EMA over the Kronecker
factors facilitates a more sophisticated curvature estimation. This technique leverages data across
multiple mini-batches, enabling continuous updates to the Fisher information rather than relying
solely on the data from a single batch. Panel (B) of Figure 12 underscores, using ResNet-50 on
CIFAR10 over 200 epochs, the benefits of using EMA on Kronecker factors, a strategy particularly
advantageous in methods that utilize diagonal or block-diagonal approximations of the curvature
matrix.

Importance of Fisher Computation for Normalization Layers. The integration of the EFIM in
normalization layers, as detailed in Proposition 3.1, significantly enhances the generalization pro-
cess. Panel (C) of Figure 12 illustrates the impact of incorporating Fisher computation in these
layers during the training of AdaFisher with ResNet-50 on CIFAR10 over 200 epochs. In contrast,
the identity matrix is employed when Fisher computation is omitted. The superior performance of
AdaFisher when incorporating Fisher computation can be attributed to the critical role normaliza-
tion layers play in adjusting the input distribution for each mini-batch. This adjustment substantially
enhances the neural network’s learning stability (Jiang et al., 2024b). By quantifying the infor-
mation each output y carries about the parameters θ under the model distribution p(y | x; θ), the
computation of the FIM in these layers provides valuable insights into parameter sensitivity and
gradient variability. This insight is crucial for optimizing training dynamics and enhancing model
convergence—areas that are often inadequately addressed by existing optimizers.

New Approximation of the FIM. In Proposition 3.2, we introduce a new methodology for approx-
imating the FIM that diverges from the K-FAC optimizer. Unlike K-FAC, which utilizes the full
Kronecker product, our approach focuses solely on the diagonal elements of the FIM, where, as
demonstrated in Section 3.1, the energy of the Kronecker factors is predominantly concentrated.
This method enables a more efficient computation of the FIM without sacrificing critical infor-
mation. To validate our approach, we compare the true FIM diagonal with our approximation in
convolutional and dense layers using a toy model composed of 2 convolutional layers and 2 linear
layers on a subset of the MNIST dataset (Deng, 2012) over 50 epochs. Specifically, we calculate the
true Fisher using the NNgeometry Python package (George, 2021), which facilitates the computa-

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

tion of the FIM, Gauss-Newton Matrix, or Neural Tangent Kernels applied to neural networks. We
estimate p(y | x) through Monte-Carlo sampling. During each epoch, we collected both the em-
pirical and true Fisher information and calculated the Mean Absolute Error (MAE) between these
two measures. Panel (D) of Figure 12 showcases the close approximation of AdaFisher’s empirical
diagonal to the true Fisher, thus validating the efficacy of our approximation method.

Figure 12: AdaFisher Component Analysis. (A) Comparison of MAE between the true FIM FD and our
approximation F̃D across convolutional and dense layers. (B) Performance comparison of AdaFisher with and
without the EMA of Kronecker factors. (C) Assessment of AdaFisher’s performance with and without the
computation of EFIM for Batch Normalization (BN) layers.

C VISUALIZATION

The convergence rate of an optimizer is crucial, serving as an indicator of its robustness against sad-
dle points and its ability to generalize effectively. In this section, we introduce a novel methodology
for visualizing the convergence behavior of optimizers through a statistical model, as depicted in
Figure 1. Initially, our process employs Principal Component Analysis (PCA) for dimensionality
reduction, reducing the dataset dimensions from D ∈ Rm×n to D̂ ∈ Rm×2, following the protocol
established in F.R.S. (1901). We then apply this reduced dataset to a toy model composed of an L-
layer multi-layer perceptron (MLP). Notably, we focus on the first weight matrix W e

1 of this MLP,
which resides in R2, where e denotes the epoch number. For consistency and to ensure comparabil-
ity, all layers’ weights are initialized identically across different optimizers. Following the training

Figure 13: Pipeline for visualization of optimization paths for various algorithms on a loss surface, comparing
their convergence efficiency.

phase with various optimizers where we denote a set of optimizer results O, we analyze both the

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

collection of first-layer weights, W , and the evolution of the loss function, L defined as:

W =


(W 1

1)
⊤

(W 2
1)

⊤

...
(WE

1)⊤

 , L = [L1
1,L2

1, . . . ,LE
1]

⊤

where (W e
1)

⊤ represents the weight vector at the e-th epoch, and Le
1 represents the loss at the e-th

epoch, extracted from the optimization results O. We construct a grid (X,Y) spanning the range of
weight parameters, discretized into 200 linearly spaced points along each axis:

X,Y = meshgrid (min(W:,1),max(W:,1),min(W:,2),max(W:,2), 200)

Finally, we interpolate the loss values L over the grid using cubic interpolation to obtain a smooth
loss surface Z:

Z = griddata(W,L, (X,Y),method =′ cubic′)

These elements are integral to the visualization process, which elucidates the optimizer’s trajectory
through the parameter space across training epochs. It is important to note that while we focus on
the first layer’s weight matrix for clarity, the methodology can be adapted to visualize the weights
of any layer within the network. Figure 13 summarizes the pipeline.

In the experiment depicted in Figure 1, we selected the IRIS dataset (rz7, 2018), owing to its
widespread recognition and compatibility with PCA application. Our model employs a 2-layer MLP
architecture. We specifically attend to the weight matrix of the first layer, denoted by W1 ∈ R2. This
particular focus is informed by the empirical observation that the parameters of the first layer tend
to exhibit a faster convergence rate compared to those of subsequent layers in the network. Such a
phenomenon can be attributed to the more direct influence of the input features on the first layer’s
weights, which often results in a more pronounced and expedited learning dynamic. Given the
classification nature of the task, we employed the Cross-Entropy loss function (Zhang & Sabuncu,
2018). The network was trained over 20 epochs using a suite of optimizers: Adam, AdaHessian, K-
FAC, Shampoo, and AdaFisher. We standardized the learning rate across all optimizers at 1× 10−3

to ensure comparability of results. Examination of Figure 1 reveals that AdaFisher’s convergence
is markedly superior to that of its counterparts, achieving rapid convergence to the local minimum
of the loss landscape concerning the first weight parameter within a few iterations. Conversely, the
alternative optimizers demonstrate convergence to less optimal local minima. Note that while the re-
sults may vary due to the stochastic nature of parameter initialization, AdaFisher typically converges
to a better local minimum compared to its counterparts.

D EXPERIMENTS

D.1 HARDWARE

In total, we had a server with 6 NVIDIA RTX 6000 Ada Generation GPUS with 48 gigabytes of
VRAM, and 128 gigabytes of RAM available for all experiments. All experiments described in this
report were conducted on a system equipped with a single NVIDIA RTX 6000 Ada Generation GPU
and 64 gigabytes of RAM, except for training AdaFisher on ImageNet with batch sizes of 512 and
1024, where four GPUs were utilized.

D.2 IMAGE CLASSIFICATION

We provide further results and detailed descriptions of our image classification experiments in this
section. We conducted five trials with random initializations for the CIFAR experiments, and one
trial each for Tiny ImageNet and ImageNet. We present the mean and standard deviation of the
results for these trials.
Note on training time. Given that various optimizers demonstrate significantly different epoch
durations, we have standardized our comparisons by restricting training to the total WCT consumed
by 200 epochs using AdaFisher for both CIFAR and Tiny ImageNet experiments. Conversely, for
ImageNet, we report the results based on 90 WCT training epochs using Adam, as, surprisingly,
AdaFisher and Adam exhibited the same duration in this experiment. The final selected number of
epochs for each optimizer is detailed in Table 8. Please note that we were unable to train AdaHessian
on ImageNet due to the significant computational resources required by this optimizer.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 8: Comparison of the final epoch counts for various optimizers across different datasets.
CIFAR10/100 & Tiny ImageNet ImageNet

Optimizers SGD Adam/AdamW AdaHessian K-FAC Shampoo AdaFisher/AdaFisherW Adam K-FAC Shampoo AdaFisher

Epochs 226 210 89 107 36 200 90 60 26 90

D.2.1 HYPERPARAMETER TUNING

Effective hyperparameter tuning is crucial for optimizing the performance of deep learning models.
In this study, we systematically explored various hyperparameters for both CNNs and ViTs across
multiple image classification tasks. The following subsections detail the tuning strategies employed
for each model architecture and dataset.

CNNs. For all image classification tasks involving CNNs, we utilized ResNet18 as the backbone
architecture and evaluated its performance on the CIFAR-10 dataset with a fixed batch size of 256
trained on 50 epochs. The hyperparameter tuning process encompassed the following components:

• Optimizer Selection and Learning Rate Tuning: Each optimizer was fine-tuned using
ResNet18 on CIFAR-10. We performed a grid search to identify the optimal learning rate
from the set {0.0001, 0.0003, 0.0005, 0.0009, . . . , 0.1, 0.3, 0.5, 0.9}.

• Learning Rate Scheduling: A cosine annealing learning rate decay strategy was em-
ployed, aligning with the number of training epochs specified for each optimizer in Table 8.
This approach follows the methodology proposed by Loshchilov & Hutter (2016) and was
determined to be optimal for our experimental setup.

• Weight Decay: We applied a uniform weight decay of 5 × 10−4 across all optimizers
for CIFAR-10 and Tiny ImageNet. An exception was made for MobileNetV3, where the
weight decay was set to 1 × 10−5. For experiments on ImageNet, the weight decay was
established at 1× 10−4.

• Damping Parameter Tuning:
– AdaFisher, K-FAC, and Shampoo:

* K-FAC and AdaFisher: The damping parameter was searched within
{0.0001, 0.0003, 0.0005, 0.0009, 0.001, 0.003, 0.005, 0.009, 0.01, 0.03, 0.05, 0.09}.
This range was chosen based on prior research (Martens & Grosse, 2015) and our
own experiments, which indicated optimal damping values around 1× 10−3.

* Shampoo: The damping parameter was tuned within {1 × 10−6, 3 × 10−6, 5 ×
10−6, 9× 10−6, 1× 10−5, 3× 10−5, 5× 10−5, 9× 10−5, 1× 10−4, 3× 10−4, 5×
10−4, 9× 10−4}, as optimal values typically reside around 1× 10−5.

– AdaHessian: The Hessian power was tuned within the range {0.1, 0.2, . . . , 0.9, 1.0}.
– SGD: The momentum of SGD was tuned within the range {0.1, 0.2, . . . , 0.9, 1.0}.
– AdaFisher Decay Factors: The decay factor γ for AdaFisher was tuned within
{0.1, 0.2, . . . , 0.9, 0.91, . . . , 0.99}. The optimal value is: γ = 0.92.

• Implementation Details: For the Shampoo and K-FAC optimizers, we utilized the ASDL
library as implemented in PyTorch provided by Osawa et al. (2023).

ViTs. For ViT-based image classification tasks, we employed the Tiny Swin Transformer on the
CIFAR-10 dataset with a batch size of 256. The hyperparameter tuning strategy for ViTs included
the following elements:

• Weight Decay: Weight decay values were set as indicated in the respective original publi-
cations for each model:

– Tiny Swin: 1× 10−2

– FocalNet: 5× 10−2

– CCT-2/3×2: 6× 10−2

• Learning Rate Tuning: For SGD, AdaFisher, AdaHessian, K-FAC, and
Shampoo optimizers, we conducted a grid search over the learning rates

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

{0.3, 0.15, 0.1, 0.05, 0.03, 0.015, 0.01, 0.005, 0.003, 0.0015, 0.001}, as these optimiz-
ers typically operate with higher learning rates compared to Adam-based optimizers. For
AdamW, the learning rates were adopted from the original publications:

– Tiny Swin and FocalNet: 1× 10−4

– CCT-2/3×2: 5.5× 10−5

• Damping Parameter Tunning: We performed the same grid search over the damping
parameter for K-FAC, Shampoo and AdaFisher, the Hessian power for AdaHessian, the
momentum for SGD, and the decay factors for AdaFisher as explained in the CNNs part.

This meticulous hyperparameter tuning process ensures that each optimizer is optimally configured
for the respective model architectures and datasets, thereby facilitating a fair and comprehensive
comparison of their performance across different image classification tasks. The final learning rates
for all optimizers and models are detailed in Table 9.

Table 9: Final selected learning rates for each optimizer, tuned using ResNet18 (for CNN) and Tiny Swin (for
ViT) on CIFAR10 using a batch size of 256. We selected based on final validation top-1 accuracy.

Architecture SGD Adam AdamW AdaHessian K-FAC Shampoo AdaFisher AdaFisherW

CNNs 0.1 0.001 - 0.15 0.3 0.3 0.001 -
ViTs 0.01 - 0.0001/0.000055 0.01 0.003 0.003 - 0.001

D.2.2 DATASET DETAILS

CIFAR. The training/test sets for Cifar10/100 dataset contain 50k/10k images, respectively. We
consider a batch size of 256. For CIFAR-related experiments, we perform 32 × 32 random-resize
cropping, random horizontal flipping and cutout (DeVries & Taylor, 2017) as data augmentations.
Please refer to Takahashi et al. (2020) for more details.
Tiny ImageNet. The training/test sets for TinyImageNet Le & Yang (2015) contains 100k/10k
images. We perform 64 × 64 random-resize cropping and random horizontal flipping. The batch
size is set to be 256.
ImageNet. The training/test sets for ImageNet Russakovsky et al. (2015) contains 1,281,167/150k
images. We consider a batch size of 256, as we performed experiments on a single GPU instance
without any GPU parallelism. We follow He et al. (2016) and perform random resized cropping to
224 × 244 and random horizontal flipping on the train set and 256 × 256 resizing with 224 × 224
center cropping on the test set.

Table 10: Final selected learning rates for each optimizer with ImageNet-1k pretrained weights, tuned using
ResNet50 on CIFAR10 using a batch size of 256. We tuned by completing a full WCT epoch training cycle,
and selected based on final validation top-1 accuracy.

SGD Adam AdaHessian K-FAC Shampoo AdaFisher

0.01 0.0001 0.15 0.3 0.03 0.001

Table 11: Final selected epoch counts for various optimizers across transfer learning task.
SGD Adam/AdamW AdaHessian K-FAC Shampoo AdaFisher/AdaFisherW

58 55 22 27 18 50

D.2.3 TRANSFER LEARNING

Weights are initialized to the values provided by the publicly available checkpoints by PyTorch,
except the first convolutional for the ResNet architecture and last dense layers for all networks,
which change size to accomodate the new kernel size and number of classes respectively, that
are randomly initialized. We train all models with weight decay 1e−4 as suggested in Wight-
man et al. (2021), expect for MobileNetV3 where weight decay is set to be 1e−5. More-
over, we did a grid search for each optimizer for selecting the best learning rate of the range
{0.3, 0.15, 0.1, 0.03, 0.015, 0.01, . . . , 1e − 5} where we tabulate the selected learning rate for each
optimizer in Table 10. We use a batch size of 256 and cosine learning rate decay. We use the same
augmentation policy (without Cutout) as in the previous experiments. The results were obtained

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

using the WCT technique over 50 training epochs of AdaFisher, with the final epoch count detailed
in Table 11. All other parameters remained unchanged.

Table 12: Performance of various networks and optimizers on TinyImegneNet using batch size 256. Reported
using wall clock time of 200 AdaFisher training epochs as the cutoff.

Network Adam AdaHessian K-FAC Shampoo AdaFisher

ResNet50 53.06 50.21 50.05 53.53 57.41
Big Swin 48.11 − 8.89 4.11 48.86

Figure 14: WCT training loss and testing error curves of several optimizers on Tiny ImageNet dataset, ResNet-
50 and Big Swin with batch size of 256. AdaFisher consistently achieves lower test error as compared to Adam,
AdaHessian, K-FAC and Shampoo. The final accuracy results are reported in Table 12.

Table 13: Performance metrics (mean, std) of different networks and optimizers on CIFAR10 and CIFAR100
using batch size 256 (a) without Cutout and (b) with Cutout. Reported using WCT of 200 AdaFisher training
epochs as the cutoff.

(a) Without Cutout

CIFAR10 CIFAR100
Network SGD Adam AdaHessian K-FAC Shampoo AdaFisher SGD Adam AdaHessian K-FAC Shampoo AdaFisher

ResNet18 94.890.193.640.1 94.050.1 94.040.294.520.195.020.1 76.420.172.710.2 73.640.2 74.790.276.530.177.100.2

ResNet50 95.070.2 93.8902 94.260.1 94.250.194.920.195.420.2 77.500.273.120.7 75.290.3 75.490.277.810.278.910.9

ResNet101 94.770.193.140.1 94.730.9 94.230.194.220.195.510.1 78.760.273.230.4 72.190.2 75.460.378.820.179.740.3

DenseNet12195.110.193.740.2 94.540.1 94.970.194.990.195.290.1 78.610.275.380.3 72.540.9 77.090.378.700.379.030.2

MobileNetV392.130.291.950.1 91.43.1 91.920.191.910.292.890.1 73.810.265.640.2 60.783.6 69.870.368.010.273.150.2

Tiny Swin 80.080.287.470.2 78.340.2 66.840.368.440.289.080.1 57.430.362.200.2 54.120.3 36.120.333.750.366.470.2

FocalNet 80.870.285.650.1 71.030.3 42.920.241.490.286.920.1 45.660.352.880.3 38.050.3 11.230.311.060.3 52.90.1

CCT-2/3×2 73.120.283.950.1 − 34.631.1 35.10.8 84.630.3 52.121.260.141.1 − 8.060.6 9.760.3 60.630.6
∗Note that Adam and AdaFisher were used for all CNN architectures, while AdamW and AdaFisherW were applied for all ViT experiments.

(b) With Cutout

CIFAR10 CIFAR100
Network SGD Adam AdaHessian K-FAC Shampoo AdaFisher SGD Adam AdaHessian K-FAC Shampoo AdaFisher

ResNet18 95.640.194.850.1 95.440.1 95.170.294.080.296.250.2 76.560.2 75.740.1 71.790.2 76.030.376.780.277.280.2

ResNet50 95.710.194.450.2 95.540.1 95.660.194.590.196.340.2 78.010.1 74.650.5 75.810.3 77.400.478.070.479.770.4

ResNet101 95.980.294.570.1 95.290.6 96.010.194.630.196.390.1 78.890.2 75.560.3 73.380.2 77.010.478.830.280.650.4

DenseNet12196.090.194.860.1 96.110.1 96.120.195.660.196.720.1 80.130.4 75.870.4 74.800.9 79.790.280.240.381.360.3

MobileNetV394.430.293.320.1 92.863.1 94.340.193.810.295.280.1 73.890.3 70.620.3 56.584.5 73.750.370.850.377.560.1

Tiny Swin 82.340.287.370.6 84.150.2 64.790.563.910.488.740.4 54.890.4 60.210.4 56.860.5 34.450.430.391.266.050.5

FocalNet 82.030.286.230.1 64.180.2 38.940.837.960.787.900.1 47.7603 52.710.5 32.330.3 9.980.6 9.180.1 53.690.3

CCT-2/3×2 78.760.383.890.4 − 33.082.335.160.484.940.3 54.050.4 59.780.5 − 7.170.2 8.600.1 62.910.5
∗Note that Adam and AdaFisher were used for all CNN architectures, while AdamW and AdaFisherW were applied for all ViT experiments.

D.2.4 RESULTS

Table 12 displays the results for the Tiny ImageNet dataset using ResNet50 and Big Swin networks,
with visualizations provided in Figure 14. AdaFisher and AdaFisherW consistently outperform
current SOTA optimizers. Notably, Figure 14 illustrates that although AdaFisher converges slower
than K-FAC during ResNet50 training, it achieves superior generalization. This is evidenced by
lower testing errors, suggesting that AdaFisher tends to converge to a flatter local minimum, enabling
smoother transitions between training and testing datasets with minimal generalization loss. For
further explanation, please see Cha et al. (2021). Please note that due to AdaHessian’s high memory
consumption, we were unable to train it on Big Swin. Table 13 presents the performance of various
networks on CIFAR10/100 datasets using different optimizers, both with and without the cutout
augmentation technique. AdaFisher and AdaFisherW consistently outperform their counterparts in
both scenarios, demonstrating stable training and robustness to the augmentation techniques. The

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

training losses and test errors for the CIFAR experiments, both with and without cutout, are visually
represented in Figures 16, 17, 18, and 19. Figure 15 illustrates the training and validation error of
the distributed version of AdaFisher on ImageNet across various batch sizes. AdaFisher not only
outperforms its counterparts with smaller batch sizes (256), but it also continues to achieve superior
generalization as batch sizes increase. Furthermore, these results reinforce the stability analysis
concerning batch sizes presented in Section 4.4, extending it to a more challenging dataset.

Figure 15: Performance of distributed AdaFisher using ResNet50 on ImageNet with different batch sizes for
90 epochs. The final accuracy results are reported in Table 3.

Figure 16: WCT training loss, test error, for CNNs and ViTs on CIFAR10 experiments, without Cutout.
A batch size of 256 was used and all networks were tuned using ResNet18 applied on CIFAR10. The final
accuracy results are reported in Table 13 (a).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Figure 17: WCT training loss, test error, for CNNs and ViTs on CIFAR100 experiments, without Cutout.
A batch size of 256 was used and all networks were tuned using ResNet18 applied on CIFAR10. The final
accuracy results are reported in Table 13 (a).

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Figure 18: WCT training loss, test error, for CNNs and ViTs on CIFAR10 experiments, with Cutout. A batch
size of 256 was used and all networks were tuned using ResNet18 applied on CIFAR10. The final accuracy
results are reported in Table 13 (b).

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Figure 19: WCT training loss, test error, for CNNs and ViTs on CIFAR100 experiments, with Cutout. A batch
size of 256 was used and all networks were tuned using ResNet18 applied on CIFAR10. The final accuracy
results are reported in Table 13 (b).

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Figure 20: WCT training loss, test error, for CNNs on CIFAR10/100 experiments. A batch size of 256 was
used and all networks were tuned using ResNet50 applied on CIFAR10. The final accuracy results are reported
in Table 4.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

D.2.5 COMPARISON WITH OTHER RELEVANT METHODS

In this work, we compare AdaFisher with six baseline optimizers for image classification: SGD,
Adam/AdamW, AdaHessian, KFAC, and Shampoo. These baselines were selected because they
either represent the current state of the art or utilize second-order gradients, making them suitable
comparisons for evaluating second-order optimizers. However, other optimizers, such as AdaFactor
Shazeer & Stern (2018) and EVA Zhang et al. (2023), are also relevant in this context. AdaFactor
is an enhance Adam memory-efficient optimizer that approximates second-order moments using
row and column factorizations, reducing memory consumption for large-scale models. EVA is a
second-order optimizer designed to leverage the FIM with efficient matrix inversion techniques.
Therefore, we compare experimentally AdaFisher against the optimizer baselines including Eva and
AdaFactor. Regarding the hyperparameters for EVA, we used the optimal values reported in its
original paper and trained the model for 119 epochs using the WCT technique. For AdaFactor,
we fine-tuned the learning rate as described in Appendix D.2.1, identifying 0.001 as the optimal
value, and trained the model for 216 epochs. Figure 21 illustrates the performance comparison
on two distinct models: ResNet-18 with CIFAR-100 and MobileNetV3 with CIFAR10. The same
data augmentation techniques were applied across all experiments, as detailed in Appendix D.2.2.
The best test accuracies achieved are summarized in Table 14. AdaFisher demonstrates superior
performance compared to the new optimizer baselines, outperforming both EVA and AdaFactor.
Table 14: Performance comparison of AdaFisher and other optimizers using ResNet-18 (CIFAR100) and
MobileNet-V3 (CIFAR10). Reported using WCT of 200 AdaFisher training epochs as the cutoff.

Network—Optimizer SGD Adam AdaFactor AdaHessian K-FAC Eva Shampoo AdaFisher

MobileNet-V3 94.43 93.32 93.21 92.86 94.34 94.41 93.81 95.28
ResNet-18 76.56 75.74 69.45 71.79 76.03 76.69 76.78 77.28

Figure 21: WCT training loss, test error, for ResNet-18 on CIFAR100 and MobileNet-V3 on CIFAR10. A
batch size of 256 was used. The final accuracy and training time results are summarized in Table 14.

Table 15: Performance comparison of AdaFisher and other optimizers using (a) ResNet-18 and (b) MobileNet-
V3 on CIFAR100 for 200 epochs.

(a) ResNet-18

Optimizer SGD Adam AdaFactor AdaHessian K-FAC Eva Shampoo AdaFisher

Test Acc 76.52 75.71 69.78 76.86 76.96 77.08 77.35 77.28
Training Time (min) 20.03 23.33 21.67 96.67 46.46 43.18 216.67 26.58

(b) MobileNet-V3

Optimizer SGD Adam AdaFactor AdaHessian K-FAC Eva Shampoo AdaFisher

Test Acc 73.42 70.53 71.08 62.36 75.16 75.48 70.65 77.56
Training Time (min) 50.03 56.63 54.22 206.28 116.86 96.78 487.21 60.12

(c) ResNet-50

Optimizer SGD Adam AdaFactor AdaHessian K-FAC Eva Shampoo AdaFisher

Test Acc 76.12 73.03 70.78 76.18 77.66 78.01 78.89 78.91
Training Time (min) 70.13 76.67 73.32 502.28 149.36 138.58 583.11 83.02

D.2.6 COMPARISON WITH CONSISTENT EPOCH COUNTS

We evaluated AdaFisher and its counterparts, including two prominent optimizers, Eva and Adafac-
tor, over 200 epochs on ResNet-18, ResNet-50 and MobileNet-V3 using the CIFAR100 dataset.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Figure 22 illustrates the training loss and test error trends over epochs, along with the best test
error achieved as a function of training time per epoch for all optimizers across both models. Ta-
ble 15 summarizes the highest test accuracy and total training time for each method on both network
architectures. Notably, while Shampoo achieved marginally better test accuracy than AdaFisher
on ResNet-18, it required approximately eight times longer training time. Conversely, AdaFisher
outperformed all baseline optimizers, including Shampoo, in the MobileNet-V3 and ResNet-50 ex-
periments, achieving superior test accuracy while maintaining high efficiency comparable to first
order optimizers.

Figure 22: Performance comparison of AdaFisher and other well-finetuned optimizers at their best perfor-
mances using ResNet-18 and MobileNet-V3 on CIFAR-100 for 200 epochs. A batch size of 256 was used. The
final accuracy and training time results are summarized in Table 15.

D.2.7 COMPARISON OF TRAINING SPEED AND MEMORY UTILIZATION

As discussed in Section 4.4, AdaFisher emerges as a balanced trade-off between time complexity and
performance. Similarly, its memory footprint is comparable to that of Adam, showcasing efficient
VRAM utilization. We extend our stability analysis to the CIFAR10 dataset to provide a dataset-
independent evaluation of performance metrics, as depicted in Figure 23. Additionally, we analyze
the memory usage for different batch sizes using the ResNet-50 model on the CIFAR-10/100, pre-
sented in Figure 24. The analysis reveals that AdaFisher, while maintaining high accuracy levels,
uses memory comparably to Adam, especially evident in higher batch sizes. This suggests that
AdaFisher can achieve competitive performance without excessive VRAM consumption, making it
an optimal choice for scenarios with memory constraints.

Figure 23: Performance comparison of AdaFisher and other optimizers across various batch sizes, epoch times
and learning rate (with batch size of 256), evaluated using the ResNet50 on the CIFAR-10.
Epoch Times. Continuing our analysis of the time complexity for each optimizer, we present in
Figure 25 the epoch times for various network architectures and datasets. Specifically, we compare

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Figure 24: Performance comparison of AdaFisher and other optimizer regarding the memory used, assessed
using ResNet50 and CIFAR10/100 across different batch sizes. This figure highlights how AdaFisher competes
closely with Adam in terms of memory efficiency and performance.

Figure 25: Epoch times for various networks on CIFAR10 (A) and CIFAR100 (B) using Adam, AdaFisher,
K-FAC, AdaHessian and Shampoo.

the epoch times of Adam, AdaFisher, K-FAC, AdaHessian, and Shampoo optimizers on CIFAR10
and CIFAR100 datasets. As depicted in Figure 25 panel (A), AdaFisher demonstrates a comparable

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

training time to Adam across multiple network architectures on the CIFAR10 dataset. This indicates
that AdaFisher achieves efficient optimization without incurring significant additional computational
cost. Similarly, in Figure 25 panel (B), we observe that the epoch times for AdaFisher remain close to
those of Adam on the CIFAR100 dataset. While K-FAC and AdaHessian exhibit increased training
times, Shampoo shows the highest epoch times across all tested networks. This further highlights
the efficiency of AdaFisher as an optimizer, combining the advantages of advanced optimization
techniques with practical training times.

D.3 LANGUAGE MODELLING

D.3.1 DATASET DETAILS

The Wikitext-2 dataset, derived from high-quality Wikipedia articles, contains over two million
words and is structured into training, validation, and test sets. It is widely used for benchmarking
language models in natural language processing, especially assessing perplexity to evaluate pre-
dictive performance. This dataset offers a balance between computational efficiency and linguistic
complexity, making it ideal for practical language model training and evaluation.

D.3.2 NETWORK DETAILS

Network. We utilize a streamlined GPT-1 architecture which incorporates four self-attention layers,
a reduction from the original twelve. This configuration retains core modeling capabilities while
reducing complexity, encompassing a total of 28,351,488 learnable parameters.
Embeddings & Parameter Sharing. To expedite training, we employ pretrained embeddings from
OpenAI’s GPT, leveraging the benefits of parameter sharing for enhanced efficiency and faster con-
vergence.

D.3.3 HYPERPARAMETERS

The model underwent training for 50 WCT epochs using AdaFisher on the WikiText-2 and PTB
datasets, with the final epoch counts for each optimizer detailed in Table 16. For AdamW, we follow

Table 16: Final selected epoch counts for various optimizers across language modelling task
AdamW AdaHessian Shampoo AdaFisherW

55 18 12 50

the learning rate setting in ElNokrashy et al. (2022). For the other optimizers we select the learning
rate by doing a grid search of {0.3, 0.15, 0.1, 0.05, 0.03, 0.015, 0.01, . . . , 1e−5}. We tabulate the
learning rate the we use in Table 17. The batch size was configured to 32, and the weight decay
was established at 0.1. Despite optimizing the configuration of hyperparameters, Shampoo failed to
converge, and K-FAC could not be trained at all.

Table 17: Final selected learning rates for each optimizer, tuned using GPT1 on WikiText-2 and
PTB using a batch size of 32. We selected based on final validation PPL.

AdamW AdaHessian Shampoo AdaFisherW

5e−5 0.015 0.003 1e−4

D.3.4 RESULTS

Figure 26 displays the training loss and testing error curves, clearly showing that AdaFisher sur-
passes both Adam and AdaHessian in performance on the WikiText-2 and PTB datasets.

E IMPACT STATEMENT

AdaFisher represents a significant advancement in training efficiency, achieving superior accuracy
on the ImageNet dataset using only a single GPU. This optimization is particularly beneficial for
academia and students who may not have access to extensive computational resources. By enabling
effective training with fewer GPUs, AdaFisher offers an accessible yet powerful solution, reduc-
ing hardware costs and making advanced machine learning more attainable for those with limited

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Figure 26: Training Loss and Test Perplexity of Small GPT-1 Model on WikiText-2 and PTB Datasets. Ex-
periments were conducted using a batch size of 32 and optimal settings for all optimizers.

resources. This capability underscores AdaFisher’s potential as a valuable tool in democratizing
machine learning technology.

41

	Introduction
	Background
	Methodology
	Diagonal Concentration of Kronecker Factors
	Efficient Computation of the FIM
	Augmenting FIM into Adam
	Convergence Analysis

	Results
	Image Classification
	Transfer Learning
	Language Model
	Stability Analysis

	Related work
	Conclusion, Limitations and Future Research
	Theory
	Kronecker Factors: A Structural Examination (Continue)
	Proofs
	Computation of Kronecker Factors
	Distributed AdaFisher

	Ablation Studies
	Evaluating Stability Across Learning Rate Schedulers, and Assessing Convergence Efficiency
	Component Analysis: Evaluating the Significance of AdaFisher's Elements

	Visualization
	Experiments
	Hardware
	Image Classification
	Hyperparameter Tuning
	Dataset Details
	Transfer Learning
	Results
	blueComparison with Other Relevant Methodsblack
	blueComparison with Consistent Epoch Countsblack
	Comparison of Training Speed and Memory Utilization

	Language Modelling
	Dataset Details
	Network Details
	Hyperparameters
	Results

	Impact Statement

