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Abstract

Independent component analysis (ICA) is a blind
source separation method for linear disentangle-
ment of independent latent sources from observed
data. We investigate the special setting of noisy
linear ICA, referred to as ShIndICA, where the ob-
servations are split among different views, each re-
ceiving a mixture of shared and individual sources.
We prove that the corresponding linear structure is
identifiable and the sources distribution can be re-
covered. To computationally estimate the sources,
we optimize a constrained form of the joint log-
likelihood of the observed data among all views.
Furthermore, we propose a model selection proce-
dure for recovering the number of shared sources.
Finally, we empirically demonstrate the advantages
of our model over baselines. We apply ShIndICA
in a challenging real-life task, using three tran-
scriptome datasets provided by three different labs
(three different views). The recovered sources were
used for a downstream graph inference task, facili-
tating the discovery of a plausible representation
of the data’s underlying graph structure.

1 INTRODUCTION

Independent Component Analysis (ICA) is a method used
to solve Blind Source Separation (BSS) problems [Comon,
1994]. The aim is to separate independent latent sources
from mixed observed signals, thus revealing essential struc-
tures in various types of data. Historically, linear ICA has
proven to be a successful approach in recovering spatially
independent sources, such as regions of brain activity from
magnetoencephalography (MEG) data [Vigário et al., 1997],
or functional MRI (fMRI) data [McKeown and Sejnowski,
1998]. The utility of ICA extends beyond neuroscience, with
applications in omics data analysis, for example, [Zheng

et al., 2008, Zhou and Altman, 2018, Nazarov et al., 2019,
Dubois et al., 2019, Tan et al., 2020, Rusan et al., 2020, Cary
et al., 2020, Aynaud et al., 2020, Urzúa-Traslaviña et al.,
2021]. In these works, the interpretation of the latent sources
hinges on the assumption that each experimental outcome
is a linear mixture of different cell types, disease states, or
other independent biological processes. For example, the
gene expression data from a tumor biopsy might include
signals from cancer cells, immune cells, and other cell types
within the tumor microenvironment. Each of these cell types
has distinct gene expression profiles that get mixed together
in the observed data [Avila Cobos et al., 2018].

The rapid advancement of technology in the biomedical
domain has provided a unique opportunity to find valuable
insights from large-scale data integration studies. Many of
these applications can be transformed into multiview BSS
problems. A significant body of research has been devoted to
developing multiview ICA methods focused on unraveling
group-level (shared) brain activity patterns in multi-subject
fMRI and EEG datasets [Salman et al., 2019, Huster et al.,
2015, Congedo et al., 2010, Durieux and Wilderjans, 2019,
Congedo et al., 2010, Calhoun et al., 2001]. However, these
methods cannot be applied directly to problems where one
is interested in retrieving both shared and view-specific
signals. A scenario highlighting this limitation is when one
is interested in investigating the individual-specific brain
functions (view-specific) and shared phenotypes patterns in
individuals’ brain activity in a natural stimuli experiment
[Dubois and Adolphs, 2016, Bartolomeo et al., 2017].

Another application, where the estimation of both shared
and view-specific sources is essential, is omics data inte-
gration (e.g. see [Smilde et al., 2017, Li et al., 2018]). For
instance, we often have datasets from different sources (such
as gene expression, proteomics, etc.) collected under various
conditions and perhaps from different cohorts of individuals.
The shared signals across these datasets represent stable pat-
terns, such as consistently expressed genes across different
types of cells or universally present metabolic pathways.
These shared patterns can help us understand the fundamen-
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Figure 1: A graphical representation of Equation 1 where
xd is the observed variable, s0 denotes the shared sources,
sd the view-specific ones and εd is the Gaussian noise.

tal biological processes common to all cells. On the other
hand, view-specific signals reflect unique patterns under par-
ticular conditions or within specific cohorts. For instance,
some genes may be expressed only under certain stress con-
ditions, or particular biological patterns may be unique to
a specific cohort of individuals with a disease. These view-
specific patterns can provide insights into the specific factors
that differentiate one condition or cohort from another.

Summary. To address these and similar scientific applica-
tions, we formalize the described multi-view BSS problem
as a linear noisy generative model for a multi-view data
regime, assuming that the mixing matrix and a number of
individual sources are view-specific. We call the resulting
model, ShIndICA. By requiring that the sources are non-
Gaussian and mutually independent and that the linear mix-
ing matrices have full column rank, we provide identifiabil-
ity guarantees for the mixing matrices and latent sources
in distribution. We maximize the joint log-likelihood of the
observed views to estimate the mixing matrices. Further-
more, we provide a model selection criterion for selecting
the correct number of shared sources. Finally, we apply
ShIndICA to a data integration problem of two large tran-
scriptome datasets. We show empirically that our method
works well when the estimated components are used for a
graph inference task.

Contributions. We summarize our contributions:

1. We propose a new multi-view generative BSS model
with shared and individual sources called ShIndICA.

2. We provide theoretical guarantees for the identifiability
of the recovered linear structure and the source and
noise distributions, as well as their dimensions.

3. We derive the closed-form joint likelihood of
ShIndICA, which is used for estimating the mixing
matrices.

4. By leveraging the generative model assumptions, we
propose a selection criterion for inferring the correct
number of shared sources.

2 PROBLEM FORMALIZATION

Consider the following D-view multivariate linear BSS
model where for d ∈ {1, . . . , D} with a graphical repre-
sentation in Figure 1:

xd = Ad(s̃d + εd) = Ad0s0 +Ad1sd +Adεd,

(1)
and it holds that

1. xd ∈ Rkd is a random vector,

2. s̃d = (s>0 , s
>
d )> are latent non-Gaussian sources with

E[s̃d] = 0 and Var[s̃d] = Ikd , and s0 ∈ Rc and sd ∈
Rkd−c the shared and individual sources,

3. Ad ∈ Rkd×kd is an invertible mixing matrix, Ad0 and
Ad1 are the columns corresponding to the shared and
individual sources,

4. εd ∼ N (0, σ2Ikd) is Gaussian noise,

5. all latent random variables are mutually independent.

We name the proposed generative model ShIndICA. This
model builds upon the MultiViewICA model by Richard
et al. [2020], which assumes the presence of shared sources
exclusively. The Gaussian noise in Equation 1 mirrors a
device measurement error with variance σ2AdA

>
d , akin to

[Richard et al., 2020, 2021]. We choose this configuration as
it yields a closed-form joint data likelihood (see Section 4),
which is not available for alternative representations. As-
sumption 5 maintains that noise does not interact with the
true signal, a concept typical for measurement error models.
Moreover, when D = 1, ShIndICA reverts to a standard
linear ICA model, solved by Comon [1994], Bell and Se-
jnowski [1995], Hyvärinen and Oja [2000] for independent
non-Gaussian latent sources z := s̃1 + ε1.

3 IDENTIFIABILITY RESULTS

Due to the absence of labels in unsupervised learning, the
algorithm’s reliability cannot be directly confirmed outside
of simulations. Therefore, we rely on theoretical guarantees
to trust the algorithm’s estimation of quantities of interest.
In the case of BSS problems, it is necessary for sources and
mixing matrices to be uniquely determined (or identifiable)
by the data, particularly when dealing with large samples.

Identifiability results for noiseless single-view ICA are
proved by Comon [1994]. It turns out that if at most one
of the latent sources is normal and the mixing matrix is
invertible, then both the mixing matrix and sources can be
recovered almost surely up to permutation, sign, and scaling.
However, this result does not hold in the general additive
noise setting. Davies [2004] shows that if the mixing matrix
has a full column rank, then the structure is identifiable, but
not the latent sources.



By employing the multi-view (D ≥ 2) noisy setting de-
fined in Equation 1, we extend the results by Kagan et al.
[1973], Comon [1994], Davies [2004], Richard et al. [2020].
Compared to previous work, we provide identifiability guar-
antees not only for the mixture matrices up to sign and
permutation, but also for the sources and noise distributions
(up to the same sign and permutation), and the latent (both
shared and individual) sources dimensions1. Moreover, our
identifiability statement holds for a more general case than
Equation 1 where the noise distribution can be view-specific
and the mixing matrices can be non-square. This is stated
in the following Theorem 3.1, proved in Section 1 of the
Supplementary Material:

Theorem 3.1 Let x1, . . . , xD forD ≥ 2 be random vectors
with the following two representations:

A
(1)
d

([s(1)0

s
(1)
d

]
+ ε

(1)
d

)
= xd = A

(2)
d

([s(2)0

s
(2)
d

]
+ ε

(2)
d

)
,

where d ∈ {1, . . . , D}, with the following properties for
i = 1, 2

1. A(i)
d ∈ Rpd×k

(i)
d is a (non-random) matrix with full

column rank, i.e. rank(A
(i)
d ) = k

(i)
d ,

2. ε(i)d ∈ Rk
(i)
d and ε

(i)
d ∼ N (0, σ

(i)2
d I

k
(i)
d

) is a k
(i)
d -

variate normal random variable,

3. s̃(i)d = (s
(i)>
0 , s

(i)>
d )> with s(i)0 ∈ Rc(i) and s(i)d ∈

Rk
(i)
d −c

(i)

is a random vector such that:

(a) the components of s̃(i)d are mutually independent
and each of them is a.s. a non-constant random
variable,

(b) s̃(i)d is non-normal with 0 mean and unit variance.

4. ε(i)d is independent from s
(i)
0 and s(i)d : ε(i)d |= s

(i)
0 and

ε
(i)
d |= s

(i)
d .

Then, the number of shared sources is identifiable, i.e.
c(1) = c(2) =: c and for all d = 1, . . . , D we get that
k
(1)
d = k

(2)
d =: kd, and there exists a sign matrix Γd and a

permutation matrix Pd ∈ Rkd×kd such that:

A
(2)
d = A

(1)
d PdΓd,

and furthermore, the source and noise distributions are
identifiable, i.e.[

s
(2)
0

s
(2)
d

]
∼ Γ−1d P−1d

[
s
(1)
0

s
(1)
d

]
, σ

(2)
d = σ

(1)
d .

1Note that the identifiability of the source distributions is a
weaker notion of identifiability than the almost sure one (i.e. re-
covering the exact sources) in the noiseless case [Comon, 1994].

Note that the requirement D ≥ 2 is essential for the iden-
tifiability of the non-Gaussian latent source and noise dis-
tributions. Conversely, in a single-view scenario, Kagan
et al. [1973] demonstrates that identifying any arbitrary non-
Gaussian source distribution is unfeasible unless we intro-
duce an additional constraint mandating the latent sources
to have non-normal components (refer to Theorem A.2).2.

Furthermore, to identify the linear structure, it is neces-
sary to assume the non-normality of the latent sources—a
standard presumption in ICA literature [Comon, 1994], as
previously mentioned. In a multi-view shared ICA scenario,
Richard et al. [2021] posits that the sources can be Gaussian
if we impose additional conditions regarding the diversity of
noise distributions. However, this is not relevant in our case
as we do not incorporate these assumptions in our model.

4 JOINT DATA LOG-LIKELIHOOD

Here, we derive the joint log-likelihood of the observed
views which we use for estimating the mixing matrices. Fol-
lowing the standard ICA approaches [Bell and Sejnowski,
1995, Hyvärinen and Oja, 2000], instead of optimizing di-
rectly for the mixing matricesAd, we estimate their inverses
Wd = A−1d , called unmixing matrices.

Let zd := Wdxd = s̃d + εd, and zd,0 := s0 + εd0 ∈ Rc
and zd,1 := sd + εd1 ∈ Rkd−c, i.e. zd = (z>d,0, z

>
d,1)> are

the estimated noisy sources of the d-th view. Furthermore,
let pZd,1

be the probability distribution of zd,1 and |Wd| =
|detWd|. Then we can derive the data log-likelihood of
Equation 1 for N observed samples per view (proved in
Section 2 of the Supplementary Material), given by

L(W1, . . . ,WD) =

N∑
i=1

(
log f(z̄i0) +

D∑
d=1

log pZd,1
(zid,1)

)
(2)

− 1

2σ2

D∑
d=1

(
trace(Zd,0Z

>
d,0)− 1

D

D∑
l=1

trace(Zd,0Z
>
l,0)
)

+N

D∑
d=1

log |Wd|+ C

where Zd,0 ∈ Rc×N for d = 1, . . . , D is the data matrix
that stores N observations of zd,0.

The first term in Equation 2 refers to data log-likelihood
of the estimated shared sources z̄i0 =

∑D
d=1 z

i
d,0/D with

density f(z̄0) =
∫

exp
(
− D‖s0 − z̄0‖2

2σ2

)
pS0

(s0)ds0;
the second term is the data log-likelihood of the view-
specific sources. The second line in the above equation

2A random variable x is said to have non-normal components
if for every representation x ∼ v + w with v |= w, then v and w
are non-normal.



can be further simplified by assuming that the data matrices
X1 ∈ Rk1×N , . . . , XD ∈ RkD×N are whitened.

Joint data log-likelihood after whitening. Whitening is
a data pre-processing procedure that consists of linearly
transforming the random variables’ realizations xd such
that the resulting variable x̃d = Kdxd has uncorrelated
components, i.e. unit variance, E[x̃dx̃

>
d ] = Ikd , where Kd

is the whitening matrix. This step transforms the mixing
matrix to an orthogonal one Ãd.

After whitening, the joint data log-likelihood has the form

L(W̃1, . . . , W̃D) ∝
N∑
i=1

(
log fσ(˜̄zi0) +

D∑
d=1

log pZ̃d,1
(z̃id,1)

)
(3)

+
1 + σ2

2Dσ2

D∑
d=1

D∑
l=1

trace(Z̃d,0Z̃
>
l,0),

where analogously to Equation 2 we abbreviate:
z̃d = (z̃>d,0, z̃

>
d,1)> = W̃dx̃d and ˜̄zi0 =

∑D
d=1 z̃

i
d,0/D.

Note that after whitening trace(Z̃d,0Z̃
>
d,1) = c and

|W̃d| = 1 and thus vanish from Equation 3 (see Section 2
of the Supplementary Material for detailed derivations).

Understanding the loss. In our work, we use Equation 3
for parameter estimation. The first line illustrates the log-
likelihoods of the sources, while the second line functions
as a regularization term, essential for uncovering the shared
information among views. This regularization term maxi-
mizes the alignment between the estimated noisy shared
signals across each pair of views.

Optimization. Both the density of shared and individual
sources, denoted by fσ(·) and pZ̃d,1

, are unknown and, thus,
approximated by a prior nonlinear function g(s). For in-
stance, we use g(s) = − log cosh(s) in our experiments.
Importantly, we do not directly optimize for the noise vari-
ance σ2; instead, we establish it as a Lagrange multiplier
through the relationship λ = 1+σ2

σ2
3.

5 MODEL SELECTION

The selection of the number of shared sources c can be
accomplished in an unsupervised manner, leveraging the
assumptions of the data generation model. To be precise,
we consider k < kd for all d = 1, . . . , D as a potential
candidate for the unknown shared number of sources c. Re-
call that zd = Wdxd where (z>d,0, z

>
d,1)> are the estimated

3Finally, after training we compute the mixing matrices Âd by
setting Âd = K−1

d W̃d. Thus, we recover the true ones Ad up to
scaling with (1 + σ2)

1
2 , sign and column permutation.

sources for the d-th view, and zd,0 ∈ Rk. To signify the
dependency of zd,0 on k, we write it as z(k)d,0 . We introduce a
goodness-of-fit measure called the Normalized Reconstruc-
tion Error (NRE), designed to evaluate the quality of z(k)d,0

for varying values of k, defined as:

NRE(k) :=

D∑
d=1

‖ẑ(k)d ‖2

k
,

where we make use of the variable
ẑ
(k)
d = z

(k)
d,0 − z̄

(k)
0 = z

(k)
d,0 −

1
D

∑D
l=1 z

(k)
l,0 . Now, if we

assume k∗ to be the correct guess (i.e. k∗ = c) and that the
true unmixing matrices Wd’s have been estimated, the z(k

∗)
d,0

for d = 1, . . . , D become well-aligned. Consequently, ẑ(k
∗)

d

follows a normal distribution with a mean E[ẑ
(k∗)
d ] = 0 and

variance Var(ẑ
(k∗)
d ) = D−1

D σ2Ik∗ for each d = 1, . . . , D.

We can then relate this to the log-likelihood of ẑ(k
∗)

d :

NRE(k∗) :=

D∑
d=1

‖ẑ(k
∗)

d ‖2

k∗
+∝ −

D∑
d=1

log p(ẑ
(k∗)
d )

k∗

=

D∑
d=1

D‖ẑ(k
∗)

d ‖2

2(D − 1)σ2k∗
−��k∗ log(2πσ2)

2��k∗
.

The two quantities differ by translation and multiplica-
tion with constants (indicated with

+∝). Thus, NRE(k∗)
approaches (D − 1)σ2 in the large sample size limit,
i.e. NRE(k∗) ≈ D · D−1D

σ2·k∗
k∗ . Overestimation of shared

sources by choosing k > c breaches the generative model as-
sumptions, indicating that the estimated z(k)d,0 are misaligned,

leading to a ẑ(k)d with NRE(k) > (D − 1)σ2 ≈ NRE(k∗).
For k < c, our method outputs well-aligned ẑ(k)d leading
to NRE(k) ≈ NRE(k∗). Hence, we can apply an elbow or
the following method to select the optimal parameter.

Calculating NRE. We repeat the procedure for various k

1. We divide the data (applicable to each view) into two
separate sets, with sizes N0 and N1, which do not
necessarily have the same sample sizes.

2. We then estimate the unmixing matrices for a fixed k
on the training set and estimate the shared sources on
the test data.

3. We calculate the mean NRE(k) on the recovered test
shared sources (not on the training set due to potential
overfitting).

We choose the maximum of all k′s that minimize the NRE:

k∗ = max{arg min
k

NRE(k)},

where

NRE(k) =
1

N1

∑
i≤N1

NRE(k)i =
1

N1

∑
i≤N1

∑
d

‖ẑ(k)id ‖2

k



is the average NRE score over all observed test samples.
This score serves as a measure of the model’s goodness of
fit and indicates how well the true shared sources can be
reconstructed from the unseen data. Even with k << c, we
can still achieve high-quality shared sources due to model
fitting, as we will demonstrate empirically. Consequently,
we prefer to select the highest possible k that yields the
minimum average shared source reconstruction error.

6 RELATED WORK

The existing body of work on linear multi-view BSS, in-
spired by the ICA literature, considers mostly shared re-
sponse model applications (i.e., no individual sources), some
of them adopting a maximum likelihood approach [Guo and
Pagnoni, 2008, Richard et al., 2020, 2021] to model the
noisy views of the proposed models. Other methods, such
as independent vector analysis (IVA), relax the assumption
about the shared sources by assuming that they have the
same first or higher order moments across view [Lee et al.,
2008, Anderson et al., 2011, Vía et al., 2011, Anderson et al.,
2014, Engberg et al., 2016]. Many of these approaches, such
as Group ICA [Calhoun et al., 2001], shared response ICA
(SR-ICA) [Zhang et al., 2016], MultiViewICA [Richard
et al., 2020], and ShICA[Richard et al., 2021] incorporate a
dimensionality reduction step for every view (CCA [Varo-
quaux et al., 2009, Richard et al., 2021] or PCA) to extract
the mutual signal between the multiple objects before apply-
ing an ICA procedure on the reduced data. However, there
are no guarantees that the pre-processing procedure will en-
tirely remove the influence of the object-specific sources on
the transformed data. In the ICA literature, there exist three
methods for extracting shared and individual sources from
data. Maneshi et al. [2016] proposes a heuristic way of using
FastICA for the given task without discussing the identifia-
bility of the results; [Long et al., 2020] suggests applying
ICA on each view separately followed by statistical analysis
to separate the individual from the shared sources; [Lukic
et al., 2002] exploits temporal correlations rather than the
non-Gaussianity of the sources and thus is not applicable in
the context we are considering.

A common tool for analyzing multi-view data is canonical
correlation analysis (CCA), initially proposed by Hotelling
[1936]. It finds two datasets’ projections that maximize the
correlation between the projected variables. Gaussian-CCA
[Bach and Jordan, 2005], its kernelized version [Bach and
Jordan, 2002] and deep learning [Andrew et al., 2013] for-
mulations of the classical CCA problem aim to recover
shared latent sources of variations from the multiple views.
There are extensions of CCA that model the observed vari-
ables as a linear combination of group-specific and dataset-
specific latent variables: estimated with Bayesian inference
methods [Klami et al., 2013] or exponential families with
MCMC inference [Virtanen, 2010]. However, most of them

assume that the latent sources are Gaussian or non-linearly
related to the observed data [Salzmann et al., 2010, Kang
and Choi, 2011, Wang et al., 2016] and thus lack identifia-
bility results.

Existing non-linear multiview versions such as [Tian et al.,
2020, Federici et al., 2020] cannot recover both shared and
individual signals across multiple measurements and do not
assure the identifiability of the proposed generative mod-
els. There are identifiable deep non-linear versions of ICA
(e.g. [Hyvärinen et al., 2019]) which can be employed for
this task. However, their assumptions for achieving iden-
tifiability are often hard to satisfy in real-life applications,
especially in biomedical domains with low-data regimes.

7 EXPERIMENTS

Model Implementation and Training. We used the
python library pytorch [Paszke et al., 2017] to imple-
ment our method. We model each view with a separate
unmixing matrix. To impose orthogonality constraints on
the unmixing matrices, we made use of the geotorch li-
brary, which is an extension of pytorch [Lezcano-Casado,
2019]. The gradient-based method applied for training is
L-BFGS. Before running any of the ICA-based methods we
whiten every single view by performing PCA to speed up
computation. We estimate the mixing matrix up to scale
(due to the whitening) and permutation (see Sections 3
and 4). To ensure that the algorithm consistently outputs
the shared sources in the same order across all views, we
initialized the unmixing matrices using Canonical Correla-
tion Analysis (CCA). We made this decision based on the
property of CCA weights to constitute orthogonal matri-
ces and the fact that they facilitate pairing and ordering of
the transformed components across all views. For all con-
ducted experiments, we fixed the parameter λ = 1 where
λ := 1+σ2

σ2 . The code for our method is publicly available
at https://github.com/tpandeva/shindica/.

Baselines Implementation. We benchmark our
ShIndICA against the standard single-view ICA method,
Infomax [Ablin et al., 2018]. To adapt Infomax to the
multi-view context, we apply it independently to each view.
To match the shared components across different views,
we use the Hungarian algorithm [Kuhn and Yaw, 1955] on
their cross-correlation. For settings that involve a shared
response model, we draw comparisons between ShIndICA
and related methods such as MultiViewICA Richard et al.
[2020], ShICA, ShICA-ML Richard et al. [2021], and
GroupICA, as proposed by Richard et al. [2020]. GroupICA
incorporates a two-step preprocessing procedure that
initially whitens the data in the single views, followed by a
dimensionality reduction step on the joint views.

https://github.com/tpandeva/shindica/


Figure 2: We generate data with 50 individual and 50 shared sources (annotated by a dashed line) for D = 2, 5, 10, 20
and noise standard deviation σ = 0.1, 0.5, 1. We train the model with varying k (x-axis), and compute the average Amari
distance (left plot) and the MCC (right plot) of the estimated shared sources and the ground truth ones. While the Amari
distance suggests that we get the best mixing matrix estimates when we "guessed" the right number of sources, the shared
sources MCC plot shows that we can estimate the true shared sources with high quality if D is large enough also for
overestimated c.

Figure 3: ShIndICA’s (this paper) performance is com-
pared with ShICA, Infomax, GroupICA, MultiViewICA,
and ShICA-ML. Datasets from two views, each with 100
sources and 1000 samples, are used. The known number of
shared sources varies from 10 to 100 (x-axis). The Amari
distance (y-axis) measures accuracy with lower values in-
dicating better performance. ShIndICA consistently outper-
forms the other methods.

7.1 SYNTHETIC EXPERIMENTS

Data Simulation. We simulated the data using the
Laplace distribution exp(− 1

2 |x|). The mixing matrices are
sampled with entries following a normal distribution with
a mean of 1 and a standard deviation of 0.1. The realiza-
tions of the observed views are obtained according to the
proposed model. In the different scenarios described below,
we vary the noise distribution. We conducted each exper-
iment 50 times and based on that we provided error bars
in all figures where applicable. Additional experiments are
provided in Section 4 of the Supplementary Material.

Motivational Example: Noiseless Views. This example
illustrates the advantage of our method compared to the

other multi-view ICA methods for modeling view-specific
and individual sources. In Figure 3, we consider a noiseless
view setting, where we fixed the dimension to be 100 and
we vary the number of shared sources c from 10 to 100
in a two-view setting. We fit a model for every c which is
considered to be known. The quality of the mixing matrix
estimation is measured with the Amari distance [Amari et al.,
1995], which cancels if the estimated matrix differs from
the ground truth one up to scale and permutation. We can
see that as soon as the ratio of shared sources to individual
sources gets around 1:1 we can recover the mixing matrices
with very high accuracy (the Amari distance is almost 0),
compared to the baseline methods which cannot perform
well in this setting. Moreover, even in the case when all
sources are shared, i.e. the baselines’ model assumption is
satisfied, our method performs as well as MultiViewICA
which is a state-of-the-art model designed for this task. More
experiments on the noisy views are provided in Section 4 of
the Supplementary Material.

Shared Sources Estimation. This experiment illustrates
ShIndICA’s performance when the number of sources is un-
known beforehand and user-defined. We generate a dataset
comprising 50 shared and 50 individual sources from
D = 2, 5, 10, 20 views with noise standard deviations of
σ = 0.1, 0.5, 1. The number of shared sources given for
training is varied from 10 to 100 and a model is trained
on each dataset for every choice of this hyperparameter.
The results are summarized in Figure 2, where the x-axis
indicates the number of shared sources given for the train-
ing. The line colors and styles denote the number of views
and noise distribution used for the data generation. We first
evaluate ShIndICA’s overall performance using the Amari
distance between the estimated and actual mixing matrices.
The left plot of Figure 2 shows the Amari distance reaching
its lowest when the correct value of c is guessed. Next, we
evaluate the quality of the recovered shared sources (the av-
erage shared sources across all views, z̄0) by calculating the



Figure 4: We generate data with 100 sources, of which 50 are shared (dashed line) for different views D = 2, 5, 10, 20 and
noise variances σ = 0.1, 0.5, 1. We compute the NRE on the test and train data for different candidates of c = 10, . . . , 100.
If we "overestimate" the number of shared sources we see that the NRE score increases.

Figure 5: The data is generated according to a model where
no individual sources are present and the noise per view is
uniformly sampled from the interval [1, 2]. The number of
views is set to 10, and the sample size is 1000. We vary the
number of sources from 10 to 50 (y-axis). ShIndICA and
MultiviewICA have the best Amari distance compared to
the other methods.

mean cross-correlation (MCC) between the estimates and
the actual sources. This involves aligning the ground truth
components with the estimated ones using the Hungarian
algorithm and computing the mean correlations between
these matched pairs. The right plot in Figure 2 implies that
even with high noise variance, high-quality estimates of
the shared sources (high MCC scores) are attainable given
sufficient views. This holds even when c is overestimated.

Model Selection. The preceding experiment indicates the
critical role of hyper-parameter c in ShIndICA’s training and
performance. The NRE score, as introduced in Section 5,
aids in selecting the correct number of sources by serving as
a goodness-of-fit measure. The same data generation mod-
els as before are considered. Each model is trained with
various shared sources k. Figure 4 summarizes the results:
the x-axis refers to the hyper-parameter k used for train-
ing, and the y-axis denotes the corresponding NRE score

on both the training and test data (each with a sample size
N = 1000), distinguished by the line style. Notably, in all
scenarios, the NRE remains low if the number of sources is
underestimated and it rises upon overestimating c, particu-
larly when the noise variance is low (left plot). Furthermore,
due to overfitting, the NRE score on the training data is
increasing with increasing k. Therefore, the NRE on the
test data is more suitable for model selection than the NRE
on the training data. In contrast, the NRE score on the test
data remains stable and attains its minimum at the correct
number of sources.

Robustness to Model Misspecification in a Shared Re-
sponse Model Application. Here we want to investigate
the robustness of our model when the noise has a view-
specific variance. To provide a fair comparison to the base-
line methods, we apply our method to a shared response
setting, i.e. no individual sources are available. For this ex-
periment the view-specific variances are uniformly sampled
from [1, 2], the number of views is 10 and the number of
sources varies from 10 to 50. Figure 5 shows that ShIndICA
and MultiViewICA show consistently the best model per-
formances (lowest Amari distance between estimates and
ground truth matrices) compared to the other methods.

7.2 DATA FUSION OF TRANSCRIPTOME DATA

Background and Data Generation Assumption. Tran-
scriptome datasets are relevant to the field of genomics.
After preprocessing they have the form of random data
matrices, where each row corresponds to a gene and each
column refers to an experiment. Based on these datasets,
scientists try to infer gene-gene interactions in the genome.
Combining as many datasets as possible enables getting
better gene regulatory predictions. This is a challenging task
due to the batch effects (non-biological noise) in the data.

Consider the cocktail party problem, a classical application
of Independent Component Analysis (ICA). Imagine a room
filled with speakers and several microphones placed strate-
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Figure 6: ICA for Data Fusion. We are given two views X1

and X2 that share information in terms of gene activity. The
common information here is the activation of the orange and
blue networks. There are view-specific signals: the green
(X1) and the purple (X2) networks. The goal of the data
integration task is to extract the shared signal S0 and the
view-specific sources S1 and S2.

gically to record everyone. Each microphone picks up a
different combination of all voices. The objective of ICA,
in this context, is to isolate the original speakers’ speeches
from the mixed microphone signals. Analogously, we can
interpret a transcriptome dataset as the microphones in this
scenario. Each microphone represents an experimental con-
dition, and similar to how individuals act independently at
a party, we posit that the regulators in the cell operate in-
dependently. Therefore, each column of the transcriptome
data represents a mixed measure of transcriptional regulator
effects. This hypothesis has found support in several stud-
ies, such as [Sastry et al., 2019, 2021a, Fraunhoffer et al.,
2022]. Upon applying ICA, we aspire to recover the sources
symbolizing these independent regulatory pathways.

To formalize, let X ∈ Rn×p denote a transcriptome data
matrix with n samples (or experimental outcomes) and p
genes. We assume that the transcriptome matrix follows a
linear latent model, meaning there exist matrices A ∈ Rn×k
and S ∈ Rk×p such that X = AS. The k components are
representations of gene expression levels. If a group of genes
appears over or under-expressed in a specific component,
they are typically assumed to share a functional property in
the genome. Furthermore, if these components operate inde-
pendently, it implies that they correspond to distinct genetic
pathways. In other words, sets of genes that demonstrate
overexpression or underexpression in these components are
assumed to act independently from each other under the
observed experimental conditions.

ICA for Data Fusion. We combine noisy transcriptome
datasets by considering that the different datasets (or views)

Figure 7: The NRE score computed on test data for the tran-
scriptome data for various k. This procedure was repeated
50 times and the error bars represent the estimated 95%
confidence interval.

share information but also have view-specific ones. The
shared information can be the activity of regulatory path-
ways invariant across conditions, such as housekeeping
genes. In the example shown in Figure 6, we have two noisy
datasets X1 and X2, presumably provided by different labs.
The shared information is the orange and blue networks. Af-
ter successfully combining the two views, we would like to
retrieve these shared sources denoted by S0 and the dataset-
specific ones S1 and S2 efficiently. These are colored green
and purple in our diagram.

Datasets. In this example, we consider the bacterium
Bacillus subtilis, the best studied Gram-positive bacteria
which can be found in the soil and human intestines. Our
goal is to combine three publicly available datasets (views)
provided by different labs [Nicolas et al., 2012, Arrieta-
Ortiz et al., 2015, Sastry et al., 2021b]. Each of the datasets
contains gene expression levels of about 4000 genes mea-
sured across more than 250 experimental outcomes. For a
detailed description of the datasets refer to Section 3 of the
Supplementary Material.

Model Selection. For the data fusion task, we do not have
any prior knowledge about the shared information between
the three datasets (three views). Therefore, we utilize the
model selection procedure in Section 5 to choose the num-
ber of shared sources. In this case, we randomly split the
data into train and test sets with proportions 3:1. We esti-
mated the mixing matrices on the train data for different k.
We reconstruct the test set shared sources and compute the
corresponding NRE scores. This procedure is repeated 50
times for different splits and the results are displayed in
Figure 7. The NRE score reaches its minimum for k = 4,
indicating the number of shared sources.

Data Integration for Co-Regulation Inference. Often,
the primary objective of transcriptome data fusion studies is



Figure 8: We compare the top ten models with ShIndICA
and Infomax. We order the edges from the networks accord-
ing to their strength. We count the true positives (y-axis)
and possibly (?) false positive edges (x-axis) in the first
100, 200, . . . edges. ShIndICA combined with glasso identi-
fies more true positive edges than Infomax with glasso.

to predict novel gene-gene interactions from the data, such
as co-regulation patterns. Here, we consider an application
for estimating an undirected graph where the nodes rep-
resent the genes, and the edges indicate that these genes
have a common regulator. Given the high-dimension-low-
sample-size nature of transcriptome datasets (i.e., the num-
ber of genes exceeds the number of samples), it is often
challenging to discern meaningful relationships. A tool like
the Graphical Lasso (glasso) [Friedman et al., 2007] be-
comes particularly valuable here, as it is well-suited for
uncovering the underlying graphical structure of the ob-
served data. The output of glasso is a precision matrix from
which the graphical structure can be directly determined:
each non-zero entry from the precision matrix indicates an
edge between the corresponding variables.

In this scenario, instead of feeding the "raw" data samples
directly into the glasso, we utilize the components generated
by the data integration algorithm. The rationale behind this
is that the combined data, resulting from the integration of
multiple datasets, can provide a more comprehensive and
accurate picture, which, in turn, can enhance the perfor-
mance of the glasso in identifying the true co-regulation
relationships among genes.

Use Case: Co-Regulation in Bacillus subtilis. Our anal-
ysis focuses on the comparative evaluation of ShIndICA
and the naive ICA approach (Infomax as utilized in the
previous example) within the defined downstream data inte-
gration task. We specify the number of shared sources for
ShIndICA to be 5, and for the naive Infomax approach, we
set it to 0. After performing PCA whitening on the data, the
number of sources per view is brought down to 72, 30, and
59, respectively. A comprehensive description of the exact
component selection process is provided in Section 3 of the
Supplementary Material.

After applying each method (ShIndICA or Infomax), we
fit 30 glasso models, each with varying penalization pa-
rameters, on the estimated components. Using a statistical
goodness-of-fit measure, we select the top 10 models (for a
detailed understanding, refer to Algorithm 1 in Section 3 of
the Supplementary Material). To evaluate the efficacy of our
results, we gather a ground truth network from the online
SubtiWiki database [Pedreira et al., 2021], which comprises
5,952 pairs of regulator and regulated genes. As our method
predicts pairs of co-regulated genes, we modify the ground
truth network into an undirected graph, establishing connec-
tions between genes with a shared regulator.

Figure 8 compares the ten output graphs generated by the
glasso combined with ShIndICA or Infomax. For every esti-
mated graph, we rank the edges according to their strength
and count the true positive (y-axis) and false positive (x-axis)
edges within the top 100, 200, . . . edges. ShIndICA outper-
forms Infomax, as demonstrated by all ten selected glasso
models with curves above the ones from the glasso models
combined with Infomax. In other words, when paired with
glasso, ShIndICA identifies more true positive edges than
when glasso is combined with Infomax.

8 DISCUSSION

We introduced ShIndICA, a novel noisy linear Independent
Component Analysis (ICA) approach, designed to leverage
shared information across different views to extract both
shared and view-specific sources effectively. Our method is
backed by theoretical guarantees affirming the identifiability
of the model’s linear structure, latent source, noise distribu-
tions, and the number of shared and individual sources. The
unmixing matrices are estimated through the maximization
of the joint log-likelihood of the observed views, while a
novel goodness-of-fit measure guides the selection of the
number of shared sources. Our empirical studies demon-
strate the robust performance of ShIndICA on simulated
data, even in the case of model misspecification. We in-
troduced a novel strategy for merging transcriptome data,
showing that our model can align estimated sources with bi-
ologically meaningful signals. ShIndICA not only combines
transcriptome data effectively but also boosts the effective-
ness of the chosen graphical inference models in extracting
biologically relevant insights.
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