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Abstract
Active learning is a well-studied approach to learn-
ing formal specifications, such as automata. In
this work, we extend active specification learn-
ing by proposing a novel framework that strate-
gically requests a combination of membership
labels and pair-wise preferences, a popular alter-
native to membership labels. The combination
of pair-wise preferences and membership labels
allows for a more flexible approach to active speci-
fication learning, which previously relied on mem-
bership labels only. We instantiate our framework
in two different domains, demonstrating the gen-
erality of our approach. Our results suggest that
learning from both modalities allows us to ro-
bustly and conveniently identify specifications via
membership and preferences.

1. Introduction
An emerging body of work advocates for the use of formal
specifications to model objectives of autonomous agents.
Formal specifications provide a number of benefits relative
to Markovian rewards: they can specify non-Markovian
historical dependencies, they are composable, and they can
be easily transferred and understood across environments.
Such specifications are popular in planning, verification,
and robotics (Webster et al., 2020; Yifru & Baheri, 2023).

A popular approach to learning formal specifications is ac-
tive learning, querying a non-human membership oracle to
label a generated trajectory as either positive (belongs in the
set of desired behaviors) or negative (Bastani et al., 2018;
Bongard & Lipson, 2005; Angluin, 1987). We aim to extend
these approaches to cases where we learn from non-expert
human teachers.While asking only membership queries suf-
fices for completeness in active specification learning, we
expect existing approaches to be challenging for human
oracles, who are relatively bad at answering membership
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queries (Palan et al., 2019; Burton et al., 2021; Phelps et al.,
2015).

To address this challenge, we identify preference querying
as a promising alternative to membership querying, where
the human is asked to rank two trajectories. Preferences
are relatively inexpensive to obtain, are generally preferred
by human teachers, and are known to be less susceptible to
mislabeling than membership query responses (Palan et al.,
2019; Burton et al., 2021; Phelps et al., 2015). Moreso, the
combination of the two signals is promising: Preference
queries are comparatively more accurate but less informa-
tive than membership queries (Palan et al., 2019).

In this work, we contribute a general framework that al-
lows for active learning from a combination of preferences
and labeled examples. The framework works as follows:
First, from the known facts, it generates candidate speci-
fications consistent with previously observed membership
and preference constraints. The next step is to rule out hy-
potheses from this candidate set that are consistent with the
known information, but incorrect. This step is realized by
actively asking either a preference query or a membership
query chosen to gain information that will rule out incor-
rect candidate hypotheses. From this point, we iteratively
generate new candidate hypotheses that are consistent with
the newly updated facts, and continue asking queries until
the correct specification is found, if one exists. To robustify
the algorithm against a (limited) number of wrong answers,
the algorithm can identify and ignore inconsistent sets of
answers.

Our experiments show that our automated query selection
process can avoid a substantial number of membership
queries by asking additional preference queries. This trade-
off between queries can be easily configured by setting the
relative cost of answering each type of query to the teacher.

Contributions We present the formalism of membership-
preserving preferences that allows for specification learning
from oracles that can answer comparison and membership
queries. To show the feasibility and efficacy of our for-
malism, we propose a concept class agnostic algorithm for
querying oracles and run empirical evaluations on two dif-
ferent domains. Finally, we provide a novel SAT-based
encoding for identifying DFAs from labeled examples and
pair-wise preferences.
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2. Learning with Membership Respecting
Preferences

We begin by developing the machinery to specify which
behaviors within a set are desirable, both in a relative and
satisficing sense. For a given universe, U , containing atoms
x ∈ U , a formal specification, or concept φ ⊆ U , contains
a set of atoms. We denote by φ(x) the indicator, [x ∈ φ]
and refer to a collection of concepts, Φ, as a concept class1.
W.l.o.g., we assume that the universe coincides with the
union of the concepts in a concept class, U =

⋃
Φ.

Example 1. Concept classes and their universes can be finite
or infinite. For example, when representing formal task
specifications, one takes as the (infinite) universe, Σ∗, i.e.,
all words from a finite alphabet Σ. Similarly, languages
represented by classes of automata, e.g., DFAs, are (infinite)
concept classes.
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Figure 1.

Next, we formalize the notion of pair-
wise preferences on atoms via pre-
orders, ⪯, on universes, i.e., tran-
sitive and reflexive relations on U .
Namely, we call a preorder on a uni-
verse a preference order and interpret
x ⪯ y as “y may be preferred over x”. We write x ≺ y
if x ⪯ y and not y ⪯ x, interpreted as “y is preferred
over x”. Two atoms have equal preference, x ≡ y, if
(x ⪯ y) ∧ (y ⪯ x). Finally, two atoms are incomparable,
x || y, if ¬(x ⪯ y ∨ y ⪯ x).
Example 2. An example preference order over the universe
{a, b, c, d, e, f}, is shown in Fig 1. It is represented using a
directed acyclic graph, H = (V,E) called a Hasse diagram.
The nodes of H represent equivalence classes, i.e., for all
v ∈ V , x, y ∈ v =⇒ x ≡ y, and the edges of H represent
strict preferences, i.e., (x, y) ∈ E =⇒ x ≺ y. The full
preference order is the transitive reduction of H .
Example 3. Costs and rewards offer a common way to define
preference orders. For example, let x ∈ U denote the set
of paths through a maze and assign a cost, c(x) ∈ R, to
each path based on its length. A natural preference order
is then given by comparing costs: c(x) ≤ c(y) implies
y ⪯ x. This order is total (no atoms are incomparable) and
illustrates that two distinct atoms can have equal preference,
i.e., c(x) = c(y) implies x ≡ y, but not x = y.

2.1. Learning with Preferences

We now turn our attention to identifying an unknown con-
cept, φ∗. Namely, we shall assume access to a membership
oracle, M : U → {∈, /∈}, to evaluate if x ∈ φ∗, as well
as a comparison oracle, C : U2 → {≺, ∥,≻,≡}, to provide
preferences between atoms, e.g., [C(x, y) =≺] iff [x ≺ y].
Invocations of these oracles are queries.

1For simplicity, we conflate a concept with its representation.

Problem Statement: Let φ be an unknown specifi-
cation in concept class Φinit. Given membership and
comparison oracles M and C, infer φ.

Remark 2.1. For finite concept classes it suffices to consider
only the membership oracle M, ignoring query and time
complexity. In particular, one may pair-wise consider all
concepts and pose a membership query from the symmetric
difference of the concepts to uniquely identify the concept.
However, for many domains (Burton et al., 2021), obtaining
accurate labels to realize the membership oracles is expen-
sive. The key question in this work is how to exploit the
availability of the comparison oracle C.

To leverage the comparison oracle, we relate preferences to
membership in φ∗. We therefore focus on preference orders
that respect membership: atoms outside of the concept,
x ̸∈ φ∗, cannot be preferred to atoms in the concept, y ∈ φ∗.

Definition 2.2. A preference order is a membership-
respecting preference (MemReP) w.r.t. φ if

x ⪯ y =⇒ φ(x) ≤ φ(y). (1)

Example 4. All preference orders are membership respect-
ing w.r.t. concepts ⊤ def

= U and ⊥ def
= ∅. Similarly, any

oracle that yields C(x, y) = ∥ for all x, y ∈ U is vacuously
membership-respecting.
Example 5. Cost based preferences, like in our path ex-
ample, together with thresholded cost concepts, i.e., φδ

def
=

{x ∈ U : c(x) ≤ δ}, for some cost map c : U → R and
threshold δ ∈ R, are membership respecting.
Example 6. We continue with Ex. 2. This order is
membership-preserving for φ1 = {a, b}, but not for φ2 =
{d, e}. Graphically, φ2 is not membership-preserving as
there is an edge from φ̄2 to φ2.

Example 6 illustrates that the MemReP assumption is some-
times strong enough to distinguish concepts without any
membership queries. Namely, if there exists a pair of atoms,
x ∈ φ1 \ φ2 and y ∈ φ2 \ φ1, such that C(x, y) ̸= ||, then
C(x, y) is guaranteed to distinguish φ1 and φ2 under the
MemReP assumption.

Definition 2.3. Let X = (XM, XC) be a tuple of sets of
membership and comparison labeled examples respectively,
e.g.,

XM = {(x1,∈), . . . , (xj , /∈)}
XC = {(xk, yk, ∥), . . . , (xn, yn,≺)}.

A concept φ is consistent with X if (i) φ agrees with all
membership assignments in XM, e.g., (x,∈) ∈ XM =⇒
x ∈ φ; and (ii) All preferences in XC are membership
respecting under φ, e.g., (x, y,≺ φ(x) ≤ φ(y). Given a
concept class Φ, we denote by ΦX the set of all concepts in
Φ consistent with X .
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2.2. Abstract Algorithm

We now return to the problem of identifying an unknown
concept given access to a membership oracle and a mem-
bership respecting comparison oracle. In Alg. 1, we outline
the general process for learning concepts from finite con-
cept classes given such oracles. The learner begins with a
concept class, asks a membership or comparison query, and
then removes concepts that are inconsistent with the query
result until a unique concept remains.

Algorithm 1 Generic algorithm for concept identification.

1: Assign Φ as the initial concept class Φinit.
2: Initialize the set of labeled examples X as (∅, ∅).
3: while |Φ| > 1 do
4: Ask either a membership or a comparison query

given X and ΦX .
5: Add the result to X .

output ΦX {ΦX = ∅ or ΦX = {ϕ∗}.}

Proposition 2.4. Suppose for every iteration, the probability
of asking a distinguishing membership query, i.e., asking
M(x) for x in the symmetric difference of two concepts
in ΦX , is bounded from below. Then, Alg 1 almost surely
terminates.

Remark 2.5. To treat infinite concept classes, we appeal
to Occam’s Razor, and seek to find the “simplest” concept
that is consistent with the data. Formally, we assume that
the finite concept class is the (countably infinite) union of
finite concept classes, Φ =

⋃∞
i=1 Φi, where i, is taken as a

complexity measure, e.g, number of states of an automaton.
We extend the above process by seeking to find the smallest
i such that the above process returns a singleton. Finally,
as is standard in this setting, we will additionally assume
access to an equivalence oracle to provide completeness
guarantees. In practice, such equivalence queries are often
impractical, and are approximated via conformance testing
and sampling.

In order to realize this algorithm in practice, we require
three ingredients. First, we must develop methods that
can synthesize a consistent concept over both membership
query and preference query results for a specific concept
class. This operation enables symbolically interacting with
ΦX in Alg. 1. We provide synthesis methods for the concept
classes used in our experiments in the appendix. Second is
an intelligent means to select a query for M or C, which
we expand on in the sequel. Last is a means to non-trivial
possibility of labeling mistakes, which we provide in the
appendix.

3. Asking the right queries
In the sequel, we discuss a (concept class agnostic) strategy
to select queries for an efficient version of Alg. 1.

3.1. Cost model

Before we optimize our algorithm, we must set the measure
that we aim to optimize. In any active learning algorithm,
the selection of the queries is central to its performance.
In particular, we seek to balance minimizing the number
of queries asked and computational costs. To this end, we
model the costs of preference and membership queries to be
time invariant and constant, based on a weighted sum:

cost(queries) ≜ a ·#mem + b ·#pref, (2)

where #mem and #pref refer to the number of membership
and preference queries and a, b ∈ R∞. For example, a = b
treats membership and comparisons interchangeably and
a = ∞, b = 1 lexicographically prefers comparisons over
membership queries2.

3.2. Contextual Bandit Formulation

Because the results of the queries are a priori unknown,
naı̈vely optimizing a given cost model is often infeasible.
Furthermore, as the next example illustrates, adversarial
teachers can induce arbitrary regret.
Example 7. Recall the lexicographic example, a = ∞, b =
1. If all preferences yield incomparable, then one would
regret making any comparison queries. On the other hand,
if one ignores comparisons, but the underlying preference
lattice is total as in Ex. 5, then one may ask many more mem-
bership queries than is required. In particular, if the (total)
preference order were known, then the learner could binary
search (using M) for the unique point where membership
changes.

Further, we highlight that, even if a model for query
responses is known, optimally planning a sequence of
queries is often computationally intractable. There are
M =

(|U|
2

)
+ U queries to ask in a single step, and thus

roughly 3M
t

possible combinations when asking up to t
queries. Thus, even assuming U is finite, but non-trivially
small, e.g., strings of length at most 10, the search space
quickly becomes intractable.

Thus, we propose a two stage formulation to optimize the
query selection based on adversarial contextual multi-armed
bandits (CMABs) (Auer et al., 2002), specifically, multi-
armed bandits with expert advice. In this formulation, the
classic multi-armed bandit framework is extended by in-
troducing experts that consider the arms and context in
the problem, and provide recommendations in the form of
probability distributions over the arms that our algorithm
can then make use of in its policy. In order to instantiate
our CMAB algorithm with experts, we make the following
choices: (i) We use a heuristic to select candidate compari-

2Our algorithm can handle arbitrary cost models over #mem
and #pref and is not dependent on the specific structure of equation
2.



Learning Formal Specifications from Membership and Preference Queries

Algorithm 2 CMAB round for selecting a query.

1: Select comparison and membership queries via Alg. 3.
2: Estimate the loss (3) for different query outcomes.
3: Provide average and worst-case expert advice distribu-

tions on the arms (queries), E1, E2, see Sec. 3.3.
4: Sample which expert, E ∼ {E1, E2}, to listen to based

on the historical performance of the expert.
5: Sample the arm (query) based on E’s arm distribution.
6: Compute the actual loss and update expert distributions.

Algorithm 3 Query selection heuristic.

1: Select a set of up to α unrefuted concepts, Ψ ⊆ Φ.
2: Let X be a set of atoms such that (i) |X| ∈ [α, β] and

(ii) X distinguishes concepts in Ψ, i.e.

∀φ1, φ2 ∈ Ψ . ∃x ∈ X . x ∈ φ1∆φ2.

3: Find x ∈ X that minimizes the (worst-case) number of
concepts in Ψ that are consistent after M(x).

4: Find y, z ∈ X that minimize the (worst-case) number
of concepts in Ψ that are consistent after C(y, z).

5: Return candidate queries ⟨M(x), C(y, z)⟩.

son and membership queries, the arms in our formulation.
The heuristic is a (Monte Carlo) estimate of the concept
class size’s reduction for each query’s possible outcome.
(ii) We define a (bounded) proxy cost per arm weighing the
query cost against the (estimated) reduction in the concept
class:

lossc
def
=

c

max(a, b)
· |Φ

′|
|Φ|

∈ [0, 1], (3)

where c is the cost of selected arm’s query type (thus either a
or b). Finally, (iii) we encode two heuristic query strategies
as experts assigning probabilities to each arm, described in
Section 3.3. The resulting CMAB game proceeds in rounds
described in Alg. 2, each round corresponds to an iteration
in Alg. 1.

To avoid considering all atoms in U , we propose the concept
class agnostic heuristic in Alg. 3 to select candidate mem-
bership and comparison queries. For our implementation,
we use α = 2, and take at most two atoms per concept, i.e.,
β = 2α.

3.3. Worst and average case advice

We propose to give advice towards either of the two queries
based on combining two perspectives. In particular, we
propose to use the following two experts with the following
advice arm distributions: (1) Pessimistic: Weighs each arm
by its worst-case loss. Ignores the incomparable answer for
preference queries. (2) Historical: Weighs each arm by its
expected loss, computed by averaging the previous losses
incurred by pulling that particular arm.

To construct the advice distribution, we take the softmax of
the weights of the comparison and membership queries. The
expert selection distribution is then updated using the stan-
dard exp4 contextual bandit algorithm (Auer et al., 2002)
which guarantees that we will switch between our pes-
simistic and historical arm strategy in a manner such that,
with respect to loss (3), the algorithm would not have done
much better sticking to advice from a single expert.

Let us share the following intuitions for our choice of ex-
perts. The pessimistic expert helps to ensure some notion
of progress. However, as an incomparable answer for the
comparisons never yields any progress, we exclude this case
from the expert. On the other hand, we have seen in Ex. 7
that the utility of a comparison query depends heavily on
the oracle’s underlying preference order. To capture this
observation, the historical expert learns whenever almost
all comparisons yield incomparable and will promote using
membership in these cases. Likewise, this expert will dis-
cover when there is a total preference order and all atoms are
comparable, and perhaps even equivalent. Finally, observe
the following proposition about the proposed algorithm:

Proposition 3.1. Assume the unknown concept, φ∗, is in
Φ. Running Alg 1 using Algs 3,2 for queries (almost surely)
identifies φ∗ after finite queries.

A proof sketch for Prop. 3.1 is provided in the appendix.

4. Experiments
In this section, we instantiate Alg. 1 on two families of
concept classes, demonstrating the flexibility and efficacy
of the proposed formalism and heuristics.

4.1. Deterministic Finite Automata

To begin, we apply the algorithm and operations outlined
in Sec. 3 to the space of DFA identification, relying on the
performance of modern Boolean satisfiability (SAT) solvers.

Bl Br
RY

Y

R
R

Figure 2.

A Deterministic Finite Automaton,
DFA, is a 5-tuple, (Q,Σ, δ, q0, F ), con-
sisting of a finite set Q of states, a fi-
nite alphabet Σ, a transition function,
δ : Q× Σ → Q, an initial state q0, and
the accepting states F ⊆ Q. The func-
tion δ∗ : Σ∗ → Q denotes the lifting of
δ to sequences of symbols (strings), via repeated application.
Finally, the language of DFA D = {w ∈ Σ∗ | δ∗(w) ∈ F}
is set of strings that reach an accepting state, q ∈ F .

Learning Task Specifications for Robots We study the
problem of conveying a task to an agent (robot) moving
about an environment. For example, consider the task spec-
ification that says “avoid red (lava) tiles and do reach a
yellow (recharge) tile (RY)” and “between visiting blue (wa-
ter) tiles and yellow tiles, the agent must be visit a brown
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Figure 3. Trade-off between query types for DFAs. The bars show
the contribution of membership (red), preference (blue), and equiv-
alence (green) queries.

(dryer) tile. (BBY)” from (Vazquez-Chanlatte et al., 2018).
This task specification is described by the DFA shown in
Fig 2. We assume that the robot is pre-programmed to uni-
versally assume that a task will contain the RY constraint
and seeks to interactively learn the domain-specific BBY
constraint (in the form of a DFA) from a user.

First, observe that because DFAs are closed under conjunc-
tion, a new DFA can be easily derived that will not violate
the a priori specified RY task. Further, depending on the
system dynamics, the user may prefer some traces to others,
and is able to provide these pair-wise comparisons. Thus,
we pose this task learning process as an active learning prob-
lem, where the user can provide (i) pair wise preferences
and (ii) membership query responses (labels) that specify
whether an example is good or bad. We want to leverage
that query mechanism to potentially accelerate or robustify
the learning of the DFA.

The oracle uses a randomly generated membership respect-
ing preference order, where approximately 1/10 of the com-
parisons yield incomparable. To refute equivalence queries,
we sample a random string from the symmetric difference
of the true DFA and the current hypothesis. Finally, we fix
the comparison cost to 1 and vary the membership cost to
study the trade off in queries the algorithm makes.

The results of the experiment are shown in Fig 3. We ob-
serve that, as expected, as the membership cost increases (i)
the total number of queries increases (ii) the total number
of membership queries decreases. Specifically, removing
1 membership query adds an average of 2.03 preference
queries each time the cost doubles. Additionally, the use of
preference queries allows the use of membership queries to
be well below the baseline rate of setting the costs such that
only membership queries are used; that is, setting the cost
of a preference to ∞.

Finally, we compare with the discriminate tree variant of
L* (Kearns & Vazirani, 1994; Angluin, 1987), a classic algo-
rithm for learning DFAs from membership and equivalence
queries. We use the AALpy library (Muškardin et al., 2022)
implementation of L*, and find that the implementation re-
quires 11 membership queries and 2 equivalence queries
(the same number as Fig 4) that cannot be answered by the
RY task prior knowledge. While our algorithm requires
more overall queries, we observe that the number of mem-
bership queries can be fewer than 11 as at membership cost
4, all without concept class specific tailoring. Furthermore,
we remark that these two algorithms could be used in con-
cert by adapting the membership query selection to use L*
provided queries.

Additional Experiments In order to further study the per-
formance of our algorithm in learning DFAs, we performed
the following studies: First, we applied our algorithm to
learning the Tomita Language DFAs, a standard benchmark
in DFA learning, to evaluate performance across a diver-
sity of DFAs. Next, we evaluated our algorithm on classes
of DFAs that vary in size to evaluate how our algorithm
scales as the target DFA increases in complexity. Finally,
we implemented and evaluated a method in our algorithm
that can identify and tolerate incorrect responses from our
oracle. The full details and results of these experiments are
available in the appendix.

4.2. Monotone Predicate Families

Next, we study monotone predicate families. A monotone
predicate family is a concept class with an (arbitrary but
fixed) partial order ⊏ defined over the concepts such that
φ ⊏ φ′ implies φ ⊆ φ′. Increasing a concept thus mono-
tonically increases the set of atoms included by the concept.
We motivate studying monotone predicates using a series of
motivating examples.

Example 8. We consider the on-boarding process of a hy-
pothetical car that queries the user to learn what (safe) dis-
tances to other objects they deem comfortable. In the scope
of this paper: (a) The resulting behavior should never vio-
late any pre-defined safety constraints. (b) The on-boarding
experience should be brief, i.e., the system should try to
minimize the number of queries. (c) Communication should
be unambiguous and concrete to cover edge cases.

The be above example can be cast as a 2-dimensional mono-
tone predicate family, where one dimension corresponds to
maximum time, τ ∈ [0, T ], the user is willing to wait to
reach the destination and the other dimension corresponds
to the minimum distance, d ∈ [0, D], to another car the user
is comfortable with. The corresponding partial order has
(τ, d) ⊏ (τ ′, d′) if τ < τ ′ and d > d′.

We seek to understand the trade-off between membership
and comparisons incurred by our algorithm given different
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Figure 4. Trade-off between query types for monotone predicate
functions. The bars show the contribution of membership (red),
preference (blue), and equivalence (green) queries.

membership and comparison costs. We instantiated our al-
gorithm with a size-indexed concept class, where each Φi

corresponds to a uniform 2d grid of parameters with i points
per axis. Equivalence queries provide a labeled bi-partition
separating the concept. Like with our DFA experiment, the
preference order was randomly generated such that approxi-
mately 1/10 on atoms are incomparable and approximately
1/3 of atoms whose preference is not forced by the MemReP
condition are strictly ordered. Furthermore, as a baseline,
we compare against an learner that only uses equivalence
and membership queries by setting the comparison query
cost sufficiently high.

Fig. 4 shows the averaged results on 100 randomly generated
concepts with the comparison cost fixed to 1 and the mem-
bership cost changing on the horizontal-axis. The vertical
axis corresponds to the average of number of queries across
all preference orders. First, the average number of equiva-
lence queries was the same for each instance on the same
concept, including the shown membership only base-line.
Furthermore, as desired, increasing the cost of the member-
ship queries results in the average number of membership
queries decreasing, at the expense of additional comparison
queries: as the relative cost doubles, removing 1 member-
ship query adds on average 2.4 membership queries. This
is expected given that comparisons provide less information
about the concept’s label than a membership query.

We also observe that initially, introducing preferences oc-
casionally increases the number of membership queries.
This effect is due to: (i) the greedy nature of our algorithm,
meaning that “good” membership queries are ignored as
they correlate with “good” preference queries, and (ii) our
hyperparameters - namely the temperature of the softmax
in the expert advice - was tuned with the assumption that
membership would cost significantly more than preferences.

5. Related Work
This work is related to (i) Learning reward from preferences
and (ii) Grammatical inference and concept learning.

Active learning of rewards using preferences. Inverse
reinforcement learning (IRL) (Ng & Russell, 2000; Abbeel
& Ng, 2004) often relies on high-quality demonstrations
to learn a reward function. More recently, works have pro-
posed approaching IRL from an active learning perspective,
asking a teacher for information-rich feedback on learner-
generated examples, such as corrected examples or labels
on sections of generated examples (Hadfield-Menell et al.,
2016; Brown et al., 2018). Preference-based reward learn-
ing has emerged from these active approaches as a popular
method due to the accuracy and relative inexpensiveness
of preference queries (Holladay et al., 2016; Wilson et al.,
2012). To overcome the limited information content gained
from relative comparisons, various techniques have been
devised to actively select preference queries that maximize
the amount of information gained (Sadigh et al., 2017; Biyik
& Sadigh, 2018; Xu et al., 2017; Basu et al., 2019; Xu et al.,
2020), typically by removing maximal volume from the
hypothesis space.

Grammatical inference and concept learning. Gram-
matical inference (De la Higuera, 2010) refers to the rich lit-
erature on learning a formal grammar (often an automaton)
from data. Examples include learning the smallest automata
consistent with a set of positive and negative strings (De la
Higuera, 2010) or learning an automaton using membership
and equivalence queries (Angluin, 1987). Within this lit-
erature, the key contributions of our work are to take into
account preferences via the concept-agnostic framework.
Finally, our algorithm can be seen as an extension of ver-
sion space learning (Sverdlik & Reynolds, 1992), where we
use preference-based learning to build on existing methods
that leverage either explicit data structures or SAT-based
DFA-identification (Ulyantsev et al., 2015; Heule & Verwer,
2010) to realize candidate elimination.

6. Conclusion and Future Work
In this paper, we present a generic framework for learning
task specifications (concepts) from actively acquired from
(noisy) preferences and labeled examples. Despite being
concept class agnostic, we demonstrated the efficacy of our
approach on two very different concept classes.

Nevertheless, interesting future work includes considering
principled approaches to deriving domain-specific optimiza-
tions of the heuristics used in our framework. Furthermore,
we hope to consider more expressive concept class families
such as symbolic automata and context-free grammars: With
symbolic automata we hope to support a mix of thresholded
rewards and DFAs.
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Appendix
A. MemRePs for DFAs

In order to realize our algorithm for DFA learning, we need
to support synthesizing a DFA consistent with labeled exam-
ples V+, V− and an observed set of preferences, V≺, i.e. the
results of previously observed membership and comparison
queries respectively.

We extend the SAT encoding presented in (Ulyantsev et al.,
2015; Heule & Verwer, 2010) for the passive identification
of DFAs from positive and negative examples to support
membership respecting preferences. The encodings oper-
ate by using the provided positive and negative examples
to form a prefix tree. The nodes indexed by positive and
negative examples are annotated with whether they accept
or reject. Two states can be merged if they are indistin-
guishable in the resulting transition system. This feature,
together with the determinism of a DFA, are captured by
transforming the problem into a k-color graph coloring prob-
lem, where k is the fixed size of the DFA that is to be identi-
fied. The resulting graph coloring problem is then encoded
as a Boolean satisfiability (SAT) query. More specifically,
for each labeled word, v, the SAT encoding includes (i) a
variable xv,i indicating if word v accesses state (color) i
and (ii) a variable zi indicating whether state (color) i is
accepting.

ENCODING

We extend the existing encoding to incorporate membership
respecting preferences. Using these variables, a membership
preserving preference, (w, v) ∈ V≺, can be encoded using
the following constraints:

∀i, j . (w ≺φ v) ∈ V≺ : (xw,j ∧ xv,i)︸ ︷︷ ︸
v & w access i & j

=⇒ (zj =⇒ zi)︸ ︷︷ ︸
zj =⇒ zi is equiv to zj≤zi

(4)
This constraint formalizes the previously mentioned logic
that non-preferred trajectories’ acceptance will lead to pre-
ferred trajectories’ acceptance, and preferred trajectories’
rejection will lead to non-preferred trajectories’ rejection. If
this were not the case, the MemReP condition would lead
to a contradiction.

B. MemRePs for Monotone Predicate Families

Recall the motivating example mentioned in section 8 that
we cast as a 2-dimensional monotone predicate family. We
provide additional insight regarding our algorithm in the
context of monotone predicate families as follows.

Geometric Perspective In order to study the generic be-
havior of our algorithm on monotone predicate families, it
helps to focus on a geometric interpretation of the concept

min distance

m
ax

traveltim
e

x

path to boundary

Θ+
x

θ

Figure 5. Mapping Ex. 8 to geometric perspective of concept class.

class. For that, we assume that we adequately parameterize
the concepts in a concept class Φ = {φθ | θ ∈ [0, 1]d}. The
parameters θ induce a natural pointwise (or product) order
< with θ < θ′ if for all i < d . θi < θ′i. It is then straight-
forward to define the order on the concepts as φθ ⊏ φθ′ if
θ < θ′. Next, observe that any atom, x ∈ U , partitions the
parameter space into two regions,

Θ+
x

def
= {θ | x ∈ φθ} Θ−

x
def
= [0, 1]

d \Θ+, (5)

called a monotone bi-partition. With this perspective, mem-
bership is entirely determined by whether or not the under-
lying concept’s parameter, θ, is in the accepting set,

x ∈ φθ ⇐⇒ θ ∈ Θ+. (6)

Example 9. For instance, scaling and reflecting the parame-
ters, θ =

(
τ
T ,

D−d
D

)
, yields a monotone parametric family.

Fig 5 illustrates. In particular, the ego (white) car wants
to go to the yellow region within some time budget, while
maintaining a minimum distance to the red parked car. This
gets mapped to a bi-partition in the normalized parameter
space.

Thresholded rewards Monotone predicate families in-
clude task specifications as thresholded rewards to weighted
sums over multi-dimensional rewards. In particular, let
f⃗(i) ∈ [0, 1]

d be a sequence feature vector for i ∈ [1, N ],
for N ∈ N. Thresholded sums of linear rewards on these
feature vectors can be cast as a d+1 dimensional monotone
predicate family. In particular, let the thresholded sums be
defined as

∑N
i=1 w · f(i) > δ for w ∈ [−1, 1]

d
, δ ∈ [−d, d].

We may define θ using:

θj =

{
(1− wj)/2 if j ≤ d

(δ/d + 1)/2 if j = d+ 1
. (7)

Remark. If the C(x, y) is total, one derives a (noiseless)
variant of the learning setting considered in (Xu et al., 2020).

C. Proof sketch for Proposition 2.4

Sketch. Under exp4, a series of unproductive preference
queries, i.e., ones that do not change ΦX , will exponentially
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increase the weight of the historical expert. Similarly, the
historical expert will exponentially increase the weight of
the distinguishing membership query arm. Finally, because
the per round loss is bounded, there exist a lower bound on
asking distinguishing membership query. By Prop 2.4 the
algorithm almost surely requires finite queries.

D. Handling Error

Our concept learning algorithm can be adapted to gracefully
handle two kinds of labeling errors: (i) Preorder violations
and (ii) MemRep violations. A preorder violation occurs
when the underlying order relation is observed to not be
transitive or reflexive. This can be visualized using a Hasse
Diagram where such a violation would either correspond to
a cycle or an inconsistency in the node equivalence classes.
Similarly, a MemReP violation occurs when the Hasse di-
agram contains an edge, (x, y), where x ≺ y, but x ∈ φ∗

and y /∈ φ∗.

Both classes of violations are easy to detect and isolate. In
an explicit Hasse diagram representation, a topological pass
over the graph suffices. In the case of SAT based concept
classes, e.g., our DFA learning experiment in Section 4, we
simply analyze the UNSAT-core to determine which queries
must be dropped to find a consistent hypothesis. In either
setting, one can alert the user, allowing the violating query
responses to be dropped or corrected before resuming the
learning algorithm. Combining with a final conformance
tester which asks additional redundant queries from a test
distribution, yields a probably approximately correct con-
cept (Kearns & Vazirani, 1994).

E. Learning DFAs: Additional Details and Results

E.1. TOMITA LANGUAGES

The Tomita languages (Tomita, 1982) are a standard set of
regular languages and DFAs frequently used as a benchmark
in DFA learning and identification. The seven languages
have a number of appealing qualities: they are relatively
parsimonious, and they collectively span a number of inter-
esting properties, including distributions of accepting and
rejecting strings, existence of sink states, and relative ease of
identification with a small number of membership queries.

For the Tomita languages, we used a manually designed pref-
erence ordering to incoporate more semantic meaning into
the ordering and thereby encourage better learning from
preference queries themselves. The preference ordering
works as follows: Positively labeled atoms are still always
preferred over negatively labeled atoms, as expected. When
comparing two negatively labeled atom, the atom that took
longer to reach a sink state (i.e., a rejecting state that cannot
be transitioned out from) in the DFA was preferred, if a
sink state existed. If neither atom reached a sink state, the
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Figure 6. Trade-off between preference queries and membership
queries for tomita language #5. The bars plotted show the con-
tribution of membership (red, bottom), preference (blue, middle),
and equivalence (green, top) queries.

atom with a longer accepting prefix was preferred. When
comparing two positive atoms, we enumerate the four possi-
ble two-token extensions to the atoms and prefer the atom
that is more frequently accepted when considering all of the
extensions.

In Tables 1, 2, and 3, we show the results for the Tomita
languages experiment for our MemRePs algorithm and the
membership query-only baseline (where the cost for ask-
ing a preference query is set to ∞), averaged across 20
trials. Note that we omit the comparison between the num-
ber of equivalence queries asked by each method since these
numbers were the same for both. Overall, we notice that
the tradeoff between membership and preference queries
is apparent as the relative cost between the two increases.
However, this tradeoff is more pronounced in some lan-
guages (languages #4, 5, and 7) than other (languages #1,
2, and 6). An example language (language #5) is further
illustrated in

We also note that the number of preference queries needed
in some cases, such as in languages 4 and 7, dramatically
increase with the increased cost ratio. The high variance
for preference queries needed also indicates that the combi-
nation of the CMAB algorithm and atom selection process
leaves room for improvement and consistency.

E.2. ROBUSTNESS EXPERIMENT

As mentioned in the main text, we designed our algorithm
to be robust in noisy settings, where the response to a query
is flipped to be incorrect some proportion of the time. In
our algorithm’s implementation for DFAs, if a labeling error
occurs that causes a violation, the UNSAT-core is extracted
to see which existing assumptions caused this violation, and
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DFA 1 DFA 2 DFA 3 DFA 4 DFA 5 DFA 6 DFA 7
Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base

Cost=1 3.1 3.6 6.6 7.0 5.1 7.3 12.5 16.6 8.4 11.4 5.7 6.7 17.3 18.7
Cost=2 3.1 3.6 6.2 7.0 4.7 7.3 11.2 16.6 6.6 11.4 5.5 6.7 16.1 18.7
Cost=4 3.0 3.6 5.3 7.0 3.8 7.3 11.4 16.6 5.6 11.4 5.5 6.7 14.9 18.7
Cost=8 3.0 3.6 3.5 7.0 2.7 7.3 6.8 16.6 4.2 11.4 5.4 6.7 12.2 18.7

Table 1. Mean number of membership queries asked by our membership-and-preference selection algorithm (Ours) in comparison to the
membership-only baseline (Base) on the seven Tomita DFAs. Little to no difference is seen in the simpler DFAs, whereas the discrepancy
in query amount is more pronounced in more complicated DFAs.

DFA 1 DFA 2 DFA 3 DFA 4 DFA 5 DFA 6 DFA 7
Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base

Cost=1 0.13 0.23 0.74 0 0.66 0.49 1.57 1.61 1.28 1.01 0.67 0.50 2.00 1.78
Cost=2 0.43 0.23 1.01 0 0.61 0.49 1.62 1.61 1.18 1.01 0.92 0.50 0.87 1.78
Cost=4 0.22 0.23 0.78 0 0.87 0.49 1.58 1.61 0.64 1.01 0.81 0.50 2.19 1.78
Cost=8 0.41 0.23 0.67 0 0.64 0.49 0.97 1.61 1.10 1.01 0.49 0.50 1.30 1.78

Table 2. Variances for number of membership queries asked by our membership-and-preference selection algorithm in comparison to the
membership-only baseline on the seven Tomita DFAs.
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Figure 7. Greater numbers of queries are required to learn the
target DFA (Tomita language #6) as the error rate increases. The
bars plotted show the contribution of membership (red, bottom),
preference (blue, middle), and equivalence (green, top) queries.

those assumptions are then dropped. We demonstrate the
effect of labeling errors in an experiment, where an example
DFA (in this case, Tomita language #6) is learned in settings
of increasing proportions of labeling errors. The results
are displayed in figure 7, where an increasing rate of error
causes more assumptions that need to be dropped by our
algorithm, resulting in more queries required to learn the
correct concept. In other words, as errors are made more
frequently and assumptions are discarded more often, it
becomes harder for the necessary set of assumptions to be
efficiently obtained by the learner.

E.3. SCALABILITY EXPERIMENTS

To understand how our algorithm scales as our target DFA
increases in complexity, we evaluate our algorithm’s scal-
ability on a simple one-symbol language that determines
whether the length of an input sequence is modulo some
positive integer k. The size of the DFA is k states with a
single accepting state. We provide the results of our algo-
rithm’s performance as k increases in Table 4. Not included
in the table is the number of equivalence queries used in
each DFA, which did not vary as a function of membership-
to-preference cost ratio. The mean number of equivalence
queries asked were 6.4, 9.1, 9.9, and 22.6 for DFA states
5, 10, 20, and 40, respectively. The equivalence queries
in this setting were highly informative, allowing the num-
ber of other query types to scale efficiently but somewhat
restricting those queries’ utility.

In addition to the previous experiment, we generalized
Tomita Language #4, which originally is defined as a 3-
state DFA that encodes the task “any string without more
than 2 consecutive ‘0’s”, to any string with more than n
consecutive ‘0’s. The size of the DFA in states is n + 2,
including the rejecting sink state. We vary n from 1 to 4 and
present our results in Table 5. We note that the number of
queries required quickly increases with the increase in num-
ber of states, which is to be expected given the super-linear
increase in search space size with number of states.
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DFA 1 DFA 2 DFA 3 DFA 4 DFA 5 DFA 6 DFA 7
Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var.

Cost=1 1.4 0.75 4.7 1.11 4.6 2.72 10.5 6.42 5.1 2.14 3.3 1.10 11.5 4.18
Cost=2 2.6 0.88 5.2 0.92 5.0 1.66 25.1 11.1 7.0 1.76 3.3 2.28 22.0 9.27
Cost=4 3.1 0.79 6.3 0.83 9.7 2.05 41.3 12.71 8.1 2.95 3.7 1.44 44.3 8.22
Cost=8 3.8 0.83 8.1 0.77 15.9 2.28 84.3 17.23 9.1 5.11 4.1 1.34 78.7 16.65

Table 3. Mean and variance for number of preference queries asked by our membership-and-preference selection algorithm on the seven
Tomita DFAs.

5 States 10 States 20 States 40 States
# Mem. # Pref. # Mem. # Pref. # Mem. # Pref. # Mem. # Pref.

Cost=1 2.2 1.2 5.7 3.6 9.4 7.4 18.7 7.8
Cost=2 2.0 1.5 4.7 5.6 8.1 8.4 17.9 9.9
Cost=4 1.4 2.6 4.6 6.6 6.2 12.2 15.4 19.5
Cost=8 1.0 2.9 3.9 10.9 3.7 17.8 11.3 31.4

Table 4. Number of Membership and Preference Queries for the scaled modulo DFA structure, averaged over ten trials.

3 States 4 States 5 States 6 States
# Mem. # Pref. # Mem. # Pref. # Mem. # Pref. # Mem. # Pref.

Cost=1 7.3 3.1 12.5 10.5 23.3 14.3 32.4 34.6
Cost=2 6.5 6.3 11.2 25.1 20.3 26.9 28.6 59.0
Cost=4 5.6 17.7 11.4 41.3 19.1 71.7 25.8 143.6
Cost=8 5.1 34.1 6.8 84.3 17.9 147.2 23.6 218.6

Table 5. Number of Membership and Preference Queries for the scaled Tomita #4 experiment, averaged over ten trials. The number of
equivalence queries remained constant over costs.


