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ABSTRACT

Universal panoptic segmentation models have achieved state-of-the-art quality by
using transformers for predicting masks. However, in mobile applications, trans-
former models are not computation-friendly due to the quadratic complexity with
respect to the input length. In this work, we present MaskConver, a unified panop-
tic and semantic segmentation model with pure convolutions, which is optimized
for mobile devices. We propose a novel lightweight mask embedding decoder
to predict mask embeddings. These mask embeddings are used to predict a set
of binary masks for both things and stuff classes. MaskConver achieves 37.2%
panoptic quality score on COCO validation set, which is 6.4% better than Panop-
tic DeepLab with the same MobileNet backbone. After mobile-specific optimiza-
tions, MaskConver runs at 30 FPS and delivers 29.7% panoptic quality score on a
Pixel 6, making it a real-time model, which is 10× faster than Panoptic DeepLab
with similar panoptic quality.

1 INTRODUCTION

Panoptic segmentation aims to unify instance and semantic segmentation in the same framework.
Existing works propose to merge instance and semantic segmentation outputs using post-processing
layers (Kirillov et al., 2019b;a; Xiong et al., 2019; Liu et al., 2019). These architectures however rely
on many customized components like non-maximum suppression (NMS), and things-stuff merging
heuristics to produce panoptic outputs. Recent works (Wang et al., 2021; Cheng et al., 2021; Yu
et al., 2022; Cheng et al., 2022) unify both segmentation tasks by producing binary masks and class
scores for both instance and semantic classes. Such universal architectures result in a simpler post-
processing logic and makes the loss closely correlated to the panoptic quality (PQ) metric. They
have achieved significantly higher PQ numbers compared to traditional architectures.

Among these unified panoptic segmentation models, transformers played a critical role due to their
ability to learn instance-level embeddings via a transformer decoder. DETR (Carion et al., 2020)
was first introduced for object detection by learning n object embeddings, each of which predicts
an object class and a bounding box. The object’s embeddings are learned through a transformer
decoder that is trained using bipartite object matching to assign each object in the ground-truth to
one of the n embeddings. Following DETR, MaX-DeepLab (Wang et al., 2021) is the first to use a
transformer decoder to learn mask embeddings to predict a set of binary masks. The binary masks
are then merged using a simple post-processing layer (Weber et al., 2021) to filter out duplicates,
similar to non-max suppression. Other architectures (Cheng et al., 2021; Yu et al., 2022; Cheng
et al., 2022) also follow a similar paradigm. The commonality between all these methods is they use
transformer blocks to learn a set of binary masks and hence the panoptic mask.

Despite the ability to learn powerful feature representations, transformers are challenging to be de-
ployed in mobile devices. First, they are memory and computation intensive (Han et al., 2022),
and contain mobile-inefficient operations like reshape and transpose that requires expensive mem-
ory access. Second, it is harder to quantize transformers while maintaining the quality compared
to convolutions, due to the complexity of attention and layer norm. (Liu et al., 2021). As a result,
most mobile friendly vision transformers are hybrid architectures of convolutions and transform-
ers (Mehta & Rastegari, 2022; Graham et al., 2021).
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In this work, we propose a novel pure convolutional architecture for panoptic segmentation, named
MaskConver. It produces segmentation masks for things and stuff classes in a unified way. Specifi-
cally, we first predict a center point heatmap (center head) following CenterNet (Zhou et al., 2019).
We then feed the center point features (for both things and stuff) and the image features to a mask
head. The mask head produces a segmentation mask for each input feature. Importantly, we high-
light two key technical components: First, we propose to decompose stuff masks into connected
regions (i.e., islands) and use the region centers to represent the stuff class. Second, we observe it
is important to integrate class information when decoding the mask for each center. We propose
a class embedding module that augments the center features with class information. Lastly, we
compare design choices for mobile use cases. We use a single output layer to avoid having two
stages with the NMS layer in between. We also adopt the multi-hardware MobileNet (MobileNet-
MH) (Chu et al., 2021) architecture as the backbone since it is more mobile friendly compared to
MobileNetV3 (Howard et al., 2019).

We evaluate our MaskConver model on the COCO panoptic dataset, and compare our results to
Panoptic DeepLab (Cheng et al., 2020) when using the same backbone. MaskConver achieves
37.2% on COCO validation set, which is 6.4% better than Panoptic DeepLab. We also show that
MaskConver runs at 21, and 30 FPS on Pixel 6 CPU and GPU respectively, while achieving 29.7%
PQ on COCO validation set. On V100 GPU, this is 10.7× faster than Panoptic DeepLab on model-
only latency under similar performance, and to the best of our knowledge the first real-time panoptic
segmentation model running on mobile devices.

2 RELATED WORK

Since panoptic segmentation is proposed in Kirillov et al. (2019b), there has been a great amount of
efforts in this area. They start from modifying existing networks, by adding a semantic branch (Kir-
illov et al., 2019a) or an instance branch (Cheng et al., 2020) to an existing state-of-the-art model
for instance and semantic segmentation tasks. These methods quickly set up a baseline, however,
hand-crafted post-processing layers are used to predict the final panoptic outputs. Following these
works, researchers start to think about architectures that can solve the task in a more unified way.
MaX-DeepLab (Wang et al., 2021) is the first to learn mask embeddings for both things and stuff
classes. These mask embeddings predict a set of binary masks, and a post-processing layer (Weber
et al., 2021) is used to predict the final panoptic outputs. MaskFormer (Cheng et al., 2021) proposes
similar paradigm, and shows how to use the same model for both semantic and panoptic segmen-
tation by only modifying the post-processing logic. Mask2Former (Cheng et al., 2022) proposes
masked-attention to significantly outperform MaskFormer architecture on smaller objects by mask-
ing unrelated parts of the image. KMaX-DeepLab (Yu et al., 2022) improves MaX-DeepLab by
using cross attention layers that mimics k-means algorithm, which leads to fewer parameters and
higher PQ numbers. MaskConver also learns N mask embeddings for both things and stuff classes
but only uses fully convolutional layers, and thus is more friendly for mobile devices.

Panoptic FCN (Li et al., 2021) is the first attempt to have fully convolutional architecture that pre-
dicts things and stuff classes in a unified way, through the convolutional kernel generator to predict
things and stuff kernels. These kernels are used to predict N binary masks. Although Panopic FCN
unifies things and stuff classes towards the post-processing, the kernel generator still treats things
and stuff differently. MaskConver proposes to fully unify the architecture by only relying on things
and stuff centers. It creates a lightweight class embedding module that can break the ties when
multiple centers co-exist in the same location. Unlike Panoptic FCN, MaskConver relies on a single
output layer to learn centers, which is more suitable for mobile use cases.

Panoptic segmentation for mobile devices has not been well studied since most architectures focus
more on pushing the panoptic quality instead of optimizing the architecture for mobile devices.
Panoptic DeepLab (Cheng et al., 2020) reports quality and latency numbers on V100 GPU when
using MobileNetV3 backbone on an image size of 640 × 640. Hou et al. (2020), and proposes a
single-shot panoptic segmentation model that runs in real-time on V100 GPU. In this work, we
tailor MaskConver architecture for mobile devices (Pixel 6) through a set of architecture design
choices, and measure the latency of the architecture.

For on-device scenarios, various lightweight model backbones have been proposed, such as Mo-
bileNet (Howard et al., 2017; Sandler et al., 2018; Howard et al., 2019), EfficientNet (Tan & Le,
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Figure 1: Illustration of MaskConver architecture. The input image goes through a backbone and
a deconvolutional-based pixel-decoder, and produces a downsampled feature map (left). The feature
map is then fed into a Center Head that produces detections for both things centers and stuff islands
(Sec. 3.2) centers (middle top). We extract embedding of each center from a Center Embedding
Head, and fuse this embedding feature with an external class embedding (Sec. 3.3) feature (middle
center). The resulting features of each center are finally dot-producted with a dense Mask Head
to produce the foreground segmentation mask of each center (middle bottom). Our framework is
unified for thing and stuff classes, and only uses convolutional layers.

2019), and ShuffleNet (Zhang et al., 2018), etc. They are designed for low computational power de-
vices, like mobile CPU and GPU. A multi-hardware MobileNet (MobileNet-MH) (Chu et al., 2021)
is proposed as a discovered by neural architecture search and optimized for multiple hardware. It
achieves state-of-the-art latency and accuracy trade-off on a variety of mobile devices, and has been
adopted as the backbone for the semantic segmentation task (Wang & Howard, 2021). MaskConver
uses MobileNet-MH since it delivers similar accuracy as MobileNetV3 (Howard et al., 2019), while
being more compatible with different mobile devices.

Center point-based representation is first proposed in CenterNet (Zhou et al., 2019) for 2D object
detection. Researchers have applied the center-point detection to various vision tasks, including
tracking (Zhou et al., 2020), instance segmentation (Wang et al., 2020), and action recognition (Li
et al., 2020), etc. Most of such extensions use a center point to model instances, while it is yet
unclear how the center-point representation can help modeling stuff. To the best of our knowledge,
our idea of decomposing stuff into non-overlapping islands is the first one to apply center point-
based representations in panoptic segmentation.

3 MASKCONVER

The MaskConver framework is illustrated in Fig. 1. It consist of a backbone, per-pixel decoder, a
mask decoder, and a mask head. While the architecture is similar to MaskFormer (Cheng et al.,
2021), we use a fully convolutional mask decoder that proposes object centers, instead of using a
transformer-based mask decoder that uses learned queries (Cheng et al., 2021). Such difference is
one of the key factors making our MaskConver more mobile friendly. We introduce our convolu-
tional mask decoder in details below.

3.1 CONVOLUTIONAL MASK DECODER

The convolutional mask decoder aims at producing N mask embeddings for an instance, and rep-
resenting the center and class of the instance, where the instance is either thing or stuff. The input
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(a) Sample image. (b) Tree mask.

(c) Global stuff center. (d) Island centers.

Figure 2: Illustration of different center representation for stuff class. We show (a) the orig-
inal RGB image; (b) the mask for stuff class “tree”; (c) a naive center-based representation that
takes the global center-of-mass point; (d) our novel island center representation. Our island center
representation aligns better with the actual stuff locations.

to the convolutional mask decoder is the output from the per-pixel decoder, and the outputs are N
mask embeddings and corresponding N classification scores.

Our convolutional decoder models both thing classes and stuff classes as their center points by
a center head, following CenterNet. Unlike CenterNet that uses bounding box centers to represent
objects, we resort to masks to construct the things centers. The center head uses DeepLabV3+ (Chen
et al., 2018) decoder style to upsample the feature maps from the last stage of the backbone, and
then fuses it with lower level feature maps through either concatenation or summation. For things,
we construct the bounding boxes from the panoptic instance mask. For each instance mask, we
generate an axis-aligned bounding box tightly enclosing the object. The center of the bounding box
represents the center of each instance. For stuff, we have explored different ways to model its centers
and we will discuss that in Section 3.2. We use the standard heatmap focal loss (Lin et al., 2017;
Zhou et al., 2019; Law & Deng, 2018) to train the center heatmap for both thing and stuff classes.

Besides the center heatmap head, we create a center embedding head from the per-pixel decoder. The
center embedding head learns to generate anH×W×CE feature map, where at each spatial location
there is a CE-dimension embedding. We also use DeepLabV3+ decoder to upsample the feature
maps. We extract embeddings from the embedding head at corresponding center peak locations,
i.e., the center embedding for a center i, j is obtained by retrieving the vector at location i, j from
the center embedding head. The convolutional decoder obtains class embedding for each center as
explained in Section 3.3. The center and class embeddings are then fused with an element-wise
multiplication. Lastly, a multi-layer perceptron (MLP) is used to predict the final mask embedding
for each center.

Following MaskFormer, we use the mask embeddings and output of the mask head to predict a
binary mask for each mask embedding. Similar to the center embedding head, the mask head gen-
erates an H × W × CE feature map and uses DeepLabV3+ decoder to upsample it. The binary
masks are obtained by dot-product between center embeddings and mask head outputs, followed by
sigmoid activation.

3.2 STUFF CENTERS

Modeling stuff centers is very challenging since it requires defining the stuff class as an instance or
instances with one or multiple centers. We consider three different techniques to define stuff centers.

1. Fix the stuff centers to be the center of the image. This does not work well since all stuff
centers collide in the center of the image, resulting in poor discriminative ability of stuff
embeddings.

2. Treat the stuff mask as a single instance, and compute the center of the stuff class from the
enclosing bounding box, similar to our solution to thing classes. This option works fairly
well, however, we find some inconsistencies between train centers and predicted centers,
when the stuff class is split into multiple regions in the image.

3. Split stuff into islands and compute the island centers from the enclosing bounding box
for each island. Before computing the stuff islands, we merge small islands by using max
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Figure 3: tSNE (Van der Maaten & Hinton, 2008) plot of learned class embeddings split by
things and stuff. Orange crosses are thing classes and green dots are stuff classes. Color trans-
parencies encode class IDs in the dataset which are grouped by super-classes (Lin et al., 2014). Our
learned class embedding separates things and stuff classes automatically.

pooling on the stuff mask. We compute the islands by finding connected components, and
select the largest k islands, where k is a hyper-parameter. In our experiments, we use k = 3.

The second technique works better to some extent. However, there is inconsistency between
groundtruth labels, and what the model is trying to predict. Fig. 2a shows an example image,
where the tree class is split into disjoint regions. Even though it is trained with the second tech-
nique (Fig. 2c), the model still predicts two centers. With the third technique, the groundtruth labels
(Fig. 2d) are better aligned with the model predictions. We will show in the experiments that using
stuff islands provides decent performance gains especially for stuff PQ metric.

3.3 CLASS EMBEDDINGS

The problem with center embeddings is that instance centers may collide and leads to exactly the
same embedding vector being pooled from the center embedding head. To fix this issue, we propose
to use class embeddings, which is a lookup embedding layer ofN ×CE embeddings. For each class
c, we learn a CE-dimensional vector. To learn a unique embedding vector per location per class,
we multiply the class embedding and center embedding using element-wise multiplication. We find
that class embedding is crucial to the quality of the predicted masks.

Fig. 3 shows the learned class embeddings for things and stuff. There are two well-separated clus-
ters: one for things and another for stuff. Our interpretation is that many collisions happen between
things and stuff classes, as a result the center embeddings will be projected to different spaces con-
ditioned on the type of the center (i.e., thing or stuff). We will also show in experiments that class
embedding layer provides a decent performance improvements.

3.4 OPTIMIZATIONS FOR MOBILE

To tailor MaskConver for mobile use cases, we simplify the architecture by having only a single
feature map scale. It is crucial the backbone can localize objects accurately using a single output
scale. Hence, segmentation backbones work better for MaskConver than detection or classification
backbones. The backbone and the per-pixel decoder aim at accurately predicting object centers, and
learning localized mask embeddings.

We use the multi-hardware MobileNet (MobileNet-MH) Chu et al. (2021) as the backbone since it
delivers similar accuracy as MobileNetV3 Large, while being more mobile friendly. We adopt the
Atrous Spatial Pyramid Pooling (ASPP) decoder (Chen et al., 2017) and separable convolutions in
the decoder. For all the three heads (center, center embedding, and mask heads), we use DeepLabv3+
decoder with separable convolutions for feature fusion to merge outputs from the backbone and
decoder, followed by two convolutional blocks. Each block contains a 3 × 3 separable convolution
and a 1× 1 convolution. We set the hidden size of both decoder and heads to 256.
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For efficiency, we avoid any reshape or transpose operations, and replace sigmoid by hard-sigmoid
since sigmoid is costly on mobile devices. The model is converted to TFLite models and bench-
marked on mobile devices to obtain the latency. We also apply weight-only post-training quantiza-
tion to further speed up the model by 2×.

3.5 TRAINING AND EVALUATION

During training, the center head is trained using targets computed from target assignments, and the
center embeddings are pooled using the groundtruth centers. We have tried pooling the best N
centers from center head predictions, but it does not improve the accuracy. Then, we retrieve the
class embeddings using the class assignments of the groundtruth centers to produceN binary masks.
Binary cross entropy loss and dice loss are used to optimize the binary masks. We combine the losses
by weighted sum: Losstotal = λcentersLosscenters +λBCELossBCE +λdiceLossdice. Across all
experiments, we fix the weighting factors, which are λcenters = 1, λBCE = 5, and λdice = 5.

Inference is done differently since the groundtruth centers and classes are not available. To predict
N centers, we use a simple NMS layer by applying a max pooling layer to the center head output
to predict N local maxima and filter out adjacent pixels. The resulting locations and correspond-
ing class labels from these N local maxima are subsequently used to obtain the center and class
embeddings, as well as to produce N binary masks. We then follow the post-processing logic of
MaskFormer to finally generate panoptic and semantic segmentation outputs. Empirically, we set
the pool size to 3 for the max pooling layer.

4 EXPERIMENTS

4.1 MOBILE MODELS

4.1.1 PANOPTIC SEGMENTATION

Training Setup We use SGD optimizer with momentum of 0.9, and a cosine learning rate schedule
with initial learning rate of 0.04 and a warm-up step of 2000. The model is trained for 270 epochs
with batch size of 64. We apply a weight decay of 1e−5 to all of the convolutional layers. We use
scale augmentation of [0.1, 1.9], random horizontal flipping and AutoAugment (Cubuk et al., 2019)
for data augmentation. All experiments start from a model checkpoint pretrained on ImageNet and
the COCO segmentation task.

Comparison to State-of-the-Arts We compare MaskConver to Panoptic DeepLab using Mo-
bileNetV3 Large and MobileNet-MH backbones. As shown in Table 1, MaskConver achieves
7.02% improvement over the original Panoptic DeepLab using MobileNetV3 Large, and 6.4% im-
provement over the variant using MobileNet-MH. At the same time, MaskConver reduces latency
by 38.9% with image size of 640 × 640 and by a notable 91.6% with image size of 256 × 256 on
Pixel 6 CPU. This makes MaskConver a real-time model on mobile devices and 10× faster than
Panoptic DeepLab, while achieving comparable quality. Note that post-processing (Weber et al.,
2021) of the Panoptic DeepLab model is not supported on mobile devices so it is excluded from
latency measurement for fair comparison.

Inference Speed vs. Model Quality We mainly study two important factors regarding the trade-
off between quality and latency of MaskConver: input size of the model, and the number of propos-
als. In particular, we study the effect on latency and quality of the model by reducing input image
size, and varying number of proposals in post-processing. Since the number of proposals is a key
factor affecting post-processing due to argmax and resizing operations, such study helps us evaluate
the cost of post-processing.

Table 2 shows the effect of reducing input image size on the inference speed (latency) and model
quality. All numbers include post-processing. First, we notice 7.5% PQ drop and 31% latency
reduction on V100 GPU, when decreasing the input image size from 640 × 640 to 256 × 256 but
upsampling it to a fixed size of 640×640 during post-processing. When such upsampling is removed
to produce the final output of the same size as input, we observe 58% latency reduction. On mobile
devices, we achieve more significant latency reduction, which is 87% on Pixel 6 CPU, and 81% on
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Table 1: Comparison of MaskConver to existing mobile models on COCO panoptic segmen-
tation validation set. First row: The original Panoptic DeepLab. Numbers quoted from the pa-
per (Cheng et al., 2020); Second row: our retrained Panoptic DeepLab with the same backbone;
Third row: MaskConver under the same setting with Panoptic DeepLab; Forth row: MaskConver
with a smaller input size. Latency is measured on Pixel 6 CPU without post-processing. MaskCon-
ver outperforms Panoptic DeepLab by 6.4% PQ under the same setting while running faster.

Architecture Backbone Image Size Params FLOPs PQ Latency

Panoptic DeepLab MobileNetV3L 641 - 12.24B 30.0 359.6 ms
Panoptic DeepLab MobileNet-MH 641 3.89M 13.93B 30.8 400.1 ms
MaskConver (ours) MobileNet-MH 640 3.99M 9.53B 37.2 244.5 ms
MaskConver (ours) MobileNet-MH 256 3.99M 1.54B 29.7 33.49 ms

Table 2: Inference speed (latency) and model quality under different input sizes. We report
PQ on different devices (V100 GPU, Pixel 6 CPU, and Pixel 6 GPU) on COCO validation set with
MobileNet-MH backbone. The runtime includes all post-processing. IS means post-processing is
set to output images of the same size as the input. With input size 256 × 256, MaskConver runs in
real-time on Pixel 6 GPU with 29.7 PQ.

Latency/Output SizeBackbone Input Params FLOPs PQ V100/ 640 V100/ IS P6 CPU/IS P6 GPU/IS

MobileNet-MH 256 3.99M 1.54B 29.7 17.12 ms 10.48 ms 46.9 ms 33.2 ms
MobileNet-MH 384 3.99M 3.37B 33.8 18.14 ms 14.62 ms 117.1 ms 66.8 ms
MobileNet-MH 640 3.99M 9.58B 37.2 24.93 ms 24.93 ms 347.9 ms 172.1 ms

Pixel 6 GPU, when we keep the same size for input and output. By using a 256 × 256 input image
size, we are able to run MaskConver nearly in real-time on Pixel 6 CPU, and real-time on Pixel 6
GPU. This is more than 10× faster than Panoptic DeepLab with comparable quality. Moreover, we
expect an even lower latency by more aggressive quantization for the cases where computational
power is highly constrained.

We have extensively studied MaskConver with mobile backbones on COCO panoptic dataset, and
our results show that MaskConver has a significant improvement over existing mobile baselines and
achieves real-time speed on mobile devices. To the best of our knowledge, this is the first time
a panoptic segmentation model is optimized to run real-time on mobile devices with competitive
panoptic quality.

In Table 3, we show the effect on model latency and quality as we vary the number of output
proposals. Reducing the number of proposals effectively reduces model latency while preserving
reasonable panoptic quality. For example, we can reduce the number of proposals from 100 to 15 to
achieve nearly 2× speed-up, while only introducing 0.7% PQ drop. This study verifies that we can
optimize the number of proposals to gain significant latency improvements without sacrificing the
quality.

4.1.2 SEMANTIC SEGMENTATION

We also evaluate MaskConver for semantic segmentation task on the Cityscapes and Pascal VOC
datasets to verify modeling stuff centers indeed works well for semantic classes.

Training Setup We use the SGD optimizer with 0.9 momentum and the same model checkpoint
used for panoptic segmentation. We adjust the weight decay to 1e−4 to all convolutional layers,
and apply the same set of data augmentations. For scale augmentation, we use [0.1, 1.9] on the
Cityscapes dataset and a narrower range [0.5, 2.0] on the Pascal VOC dataset. On Cityscapes dataset,
we use cosine learning rate schedule with initial learning rate of 0.1 and warm-up step of 925, and
train for 2150 epochs with a batch size of 64. On Pascal VOC dataset, we use a polynomial learning
rate schedule with initial learning rate of 0.007 and warm-up step of 660, and train for 100 epochs
with a batch size of 32.
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Table 3: Inference speed (latency) versus model quality trade-offs under different number
of proposals. We report PQ with MobileNet-MH backbone on COCO validation set. MaskConver
retains high PQ with as few as 20 proposals.

Proposals FLOPs PQ Latency/Output Size
V100/640 V100/256 P6 CPU/256 P6 GPU/256

100 1.57B 29.9 22.37 ms 11.53 ms 66.8 ms 46.9 ms
50 1.55B 29.7 17.12 ms 10.48 ms 46.9 ms 33.2 ms
20 1.54B 29.6 12.78 ms 9.41 ms 40.7 ms 31.2 ms
15 1.53B 29.2 11.73 ms 8.9 ms 39.9 ms 29.3 ms
10 1.53B 27.1 10.96 ms 8.61 ms 36.6 ms 27.9 ms

Table 4: Comparison of MaskConver to DeepLabV3 models on the CityScapes and Pascal
VOC validation sets. We report semantic segmentation performance in mean IOU. Under the same
setting, MaskConver outperform DeepLabV3+ by 2.7% points on the Cityscapes dataset and 1.1%
points on the VOC dataset.

Architecture Backbone Image Size Params FLOPs mean IOU

CityScapes
DeepLabV3+ MobileNet-MH 1024x2048 2.2M 23B 72.77
MaskConver MobileNet-MH 1024x2048 2.3M 25B 75.54

Pascal VOC
DeepLabV3 MobileNetV2 513 4.52M 5.69B 75.7

DeepLabV3+ MobileNet-MH 513 2.84M 3.64B 75.29
MaskConver MobileNet-MH 512 3.48M 4.28B 76.4

Comparison to State-of-the-Arts We compare MaskConver to DeepLabV3 and DeepLabV3+
architectures. All models are using the same mobile backbone. Although we are using the same
architecture as DeepLabV3, MaksConver is clearly better than DeepLabV3+ as shown in Table 4.
Specifically, MaskConver improves over DeepLabV3+ by 2.7% on the Cityscapes dataset and 1.1%
on the Pascal VOC dataset in terms of mean IoU, and only slightly increases number of parame-
ters and FLOPs. These results show that our center-based segmentation masks are more effective
compared to standard per-class segmentation models.

4.2 LARGE MODELS

4.2.1 PANOPTIC SEGMENTATION

Comparison to State-of-the-Arts We train large models using the same training setup as that
for mobile models and compare MaskConver to existing SoTA models of similar scale. Similar to
MaskFormer (Cheng et al., 2021), we only consider models that use single scale feature maps to
build mask embeddings. We use the SpineNet-Seg backbone (Rashwan et al., 2021) and apply 2
architecture changes following Bello et al. (2021). First, we use 3 3× 3 convolutional layers instead
of one 7 × 7 convolutional layer (He et al., 2019). Second, we add Squeeze-and-Excitation (Hu
et al., 2018) layer to the bottleneck block in the backbone. These changes, as shown in Table 5, have
significant increase in PQ numbers with minor increase in model latency. We refer to the improved
backbone by SpineNet-Seg+. Different from Panoptic FCN, we do not use multi-scale feature maps
to build mask embeddings since it would greatly slow down the model on mobile devices.

As shown in Table 5, MaskConver outperforms all convolution based models in terms of both PQ
and inference speed (latency). In particular, MaskConver obtains 2.48% better PQ compared to the
improved version of Panoptic FCN (Li et al., 2021), while also being clearly faster. MaskConver
also reaches on-par quality compared to transformer based models. For example, MaskConver with
SpineNet-Seg49+ backbone achieves 47.0% PQ on COCO validation set using 199G FLOPs, while
MaskFormer with ResNet50 backbone achieves 46.5% PQ on the same dataset using 181G Flops.
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Table 5: Comparison of MaskConver model to existing regular models on COCO panoptic
validation set. Latency numbers are computed on V100 GPU. MaskConver performs on-par with
transformer models under similar FLOPs, and outperforms all other fully-convolutional models.
Architecture Backbone Image Size Params FLOPs PQ Latency

Transformer Based
DETR ResNet50 800x1333 - - 43.4 -
MaskFormer ResNet50 800x1333 45M 181B 46.5 56.8 ms
MaX-DeepLab MaX-S - 62M 324B 48.4 -

Convolutional Based
Panoptic DeepLab Xception 641 - 109B 38.9 -
Panoptic FCN ResNet50 800x1333 - - 43.6 80.0 ms
Panoptic FCN* ResNet50 800x1333 - - 44.3 108.7 ms
MaskConver (ours) SpineNet-Seg49 640 75M 197B 45.9 73.0 ms
MaskConver (ours) SpineNet-Seg49+ 640 97M 199B 47.0 78.1 ms

From these experiments, we have demonstrated that MaskConver achieves on-par quality with
transformer-based models at similar FLOPs, and outperforms all existing convolutional based mod-
els in both PQ and inference speed.

4.3 ABLATION STUDY

Stuff Islands We first study the effect of stuff centers on the panoptic quality using SpineNet-
Seg49 backbone (Rashwan et al., 2021). In Table 6, we show the effect of using stuff islands versus
using the center of the whole stuff mask. Using stuff islands improves the stuff PQ by 1.53%, and
overall PQ by 0.43% on COCO panoptic validation set.

Table 6: Effect of using stuff centers on COCO panoptic validation dataset. Global means the
stuff mask is treated as a single instance, and the center for the stuff class is computed from a single
bounding box. Island center means that the stuff class is split into islands using connected compo-
nent analysis, and the stuff centers are computed using each island. Our island center representation
outperforms global centers especially on stuff classes, with a 1.53% PQ gain.

Stuff Centers PQ all PQ Things PQ Stuff

Global Centers 45.11 49.41 38.61
Island Centers 45.54 49.11 40.14

Class Embeddings We also study the effect of using class embedding layer on the panoptic qual-
ity. Using SpineNet-Seg49 backbone, we show that using class embedding layer improves the PQ
significantly on COCO panoptic validation set by 1.81% (see Table 7).

Table 7: Significance of class embedding layer on COCO PQ metric. It improves both things
classes and stuff classes, with an overall 1.81% PQ improvement.

Class Embedding PQ all PQ Things PQ Stuff

No 43.73 47.06 38.70
YES 45.54 49.11 40.14

5 CONCLUSIONS

In this work, we have presented MaskConver, a universal panoptic segmentation model with pure
convolutions. MaskConver relies on things and stuff centers to encode their mask embeddings, splits
stuff regions into islands, and uses the center of each island to encode the stuff class embeddings.
MaskConver also uses class embeddings to allow for unique mask embeddings even with colliding
centers. Extensive experiments have demonstrated that MaskConver achieves outstanding panoptic
segmentation quality compared to existing panoptic segmentation modls. In particular, by using
pure convolutions, MaskConver achieves real-time inference speed on mobile devices.
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