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ABSTRACT

We reformulate unsupervised dimension reduction problem (UDR) in the lan-
guage of tempered distributions, i.e. as a problem of approximating an empirical
probability density function pemp(x) by another tempered distribution q(x) whose
support is in a k-dimensional subspace. Thus, our problem is reduced to the min-
imization of the distance between q and pemp, D(q, pemp), over a pertinent set of
generalized functions.
This infinite-dimensional formulation allows to establish a connection with an-
other classical problem of data science — the sufficient dimension reduction prob-
lem (SDR). Thus, an algorithm for the first problem induces an algorithm for the
second and vice versa. In order to reduce an optimization problem over distribu-
tions to an optimization problem over ordinary functions we introduce a nonneg-
ative penalty function R(f) that “forces” the support of f to be k-dimensional.
Then we present an algorithm for minimization of I(f) + λR(f), based on the
idea of two-step iterative computation, briefly described as a) an adaptation to real
data and to fake data sampled around a k-dimensional subspace found at a pre-
vious iteration, b) calculation of a new k-dimensional subspace. We demonstrate
the method on 4 examples (3 UDR and 1 SDR) using synthetic data and standard
datasets.

1 INTRODUCTION

Linear dimension reduction (LDR) is a family of problems in data science that includes principal
component analysis, factor analysis, linear multidimensional scaling, Fisher’s linear discriminant
analysis, canonical correlations analysis, sufficient dimensionality reduction (SDR), maximum au-
tocorrelation factors, slow feature analysis and more. In unsupervised dimension reduction (UDR)
we are given a finite number of points in Rn (sampled according to some unknown distribution)
and the goal is to find a “low-dimensional” affine (or linear) subspace that approximates “the sup-
port” of the distribution. The study field currently achieved a saturation level at which unifying
frameworks for the problem become of special interest Cunningham & Ghahramani (2015). An
approach that we present in that paper is based on the theory of generalized functions, or tempered
distributions Soboleff (1936); Schwartz (1949). An important generalized function that cannot be
represented as an ordinary function is the Dirac delta function, denoted δ, and δn denotes its n-
dimensional version.

Any dataset {xi}Ni=1 ⊆ Rn naturally corresponds to the distribution pemp(x) = 1
N

∑N
i=1 δ

n(x−xi)
which, with some abuse of terminology, can be called the empirical probability density function.
Based on that, UDR can be understood as a task whose goal is to approximate pemp(x) by q(x),
where q(x) is a distribution whose density is supported in a k-dimensional affine subspace A ⊆ Rn.
Note that a function whose density is supported in some low-dimensional subset of Rn is not an
ordinary function. Exact definitions of such distributions can be found in Section 3. To formulate
an optimization task we additionally need a loss D(pemp, q) that measures the distance between the
ground truth pemp and a distribution q, that we search for. Thus, in our approach, the UDR problem
is defined as:

I (q) = D (pemp, q)→ min
q

(1)

under the condition that q(x) has a k-dimensional support.
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The SDR problem is tightly connected with the UDR problem. In SDR, given supervised data,
the goal is to find the so called effective subspace, defined by its basis vectors {w1, · · · ,wk} ⊆
Rn, such that the regression function can be searched in the form g(wT

1 x, · · · ,wT
k x). In Wang

et al. (2010) it was shown how a method originally developed for SDR can be turned into an UDR
method, i.e. applied to unsupervised data, by simply setting an output to be equal to an input.
The key observation of our analysis, stated in Theorem 2, is that a class of functions of the form
g(wT

1 x, · · · ,wT
k x) can be characterized as functions whose Fourier transform is supported in the

corresponding effective subspace. In Section 4 we give 3 examples of UDR problems that we cast
as 1 and in the fourth example we formulate SDR as an optimization task with the search space dual
to that of UDR. Thus, all 4 examples can be studied within the same optimization framework.

The structure of the paper is as follows: in Section 3 we formally define the search space in
Problem 1, denoted Gk, and an image of Gk under the Fourier transform, denoted Fk. In-
stead of searching directly in a set of generalized functions, Gk, in Section 5 we describe how
we substitute an ordinary function for a distribution in the optimization task at the expence of
adding a new penalty term to its objective, λR(f). Using a gaussian kernel M(x,y), Theorem 4
characterizes generalized g ∈ Gk as such g for which the matrix of properly defined integrals
Mg = Re

[∫∫
Rn×Rn xiyjg(x)∗M(x,y)g(y)dxdy

]
i,j=1,n

is of rank k. We defineR(f) as a squared

Frobenius distance from
√
Mf to the closest matrix of rank k. In Section 6 we suggest a method

for solving minφ I(φ) + λR(φ) which we call the alternating scheme. Section 7 is dedicated to
experiments with the alternating scheme on synthetic data and standard datasets.

2 PRELIMINARIES AND NOTATIONS

Throughout this paper we use standard terminology and notation from functional analysis. For
exact definitions one can address the textbook on the theory of distributions Friedlander & Joshi
(1998). The Schwartz space of functions and its dual space are denoted by S(Rn) and S ′(Rn)
correspondingly. For a tempered distribution T ∈ S ′(Rn) and φ ∈ S(Rn), 〈T, φ〉 denotes T (φ).
The Fourier and inverse Fourier transforms are denoted byF ,F−1 : S ′(Rn)→ S ′(Rn). For brevity,
we denote F [f ] by f̂ . If all required conditions are satisfied, an integrable f : Rn → C (or, a Borel
measure µ on Rn) is used as the tempered distribution Tf (or, Tµ) where 〈Tf , φ〉 =

∫
Rn f(x)φ(x)dx

(or, 〈Tµ, φ〉 =
∫
Rn φ(x)dµ). For Ω ⊆ S ′(Rn), Ω

∗
denotes the sequential closure of Ω with respect to

weak topology of S ′(Rn). By L2(Rn) we denote the L2-space with the inner product: 〈u, v〉L2
=∫

u(x)∗v(x)dx. For φ ∈ S(Rn), ψ ∈ S ′(Rn), their convolution and multiplication are denoted
by φ ∗ ψ and φψ correspondingly. For g1 ∈ S ′(Rk) and g2 ∈ S ′(Rn−k), g1 ⊗ g2 ∈ S ′(Rn)
denotes their tensor product. For a square matrixA, Tr(A) denotes its trace and for arbitrary matrix,

||A||F
def
=
√

Tr(ATA). Identity matrix of size n is denoted by In.

3 BASIC FUNCTION CLASSES

An example of a generalized function, whose density is concentrated in a k-dimensional subspace,

is any distribution that can be represented as g ⊗ δn−k
def
= g ⊗ δ ⊗ · · · ⊗ δ︸ ︷︷ ︸

n− k times

where g ∈ S ′(Rk).

If g = Tf , where f : Rk → R is an ordinary function, then g ⊗ δn−k can be understood as a
generalized function whose density is concentrated in a subspace {x ∈ Rn|xi = 0, i > k} and
equals f(x1:k). It can be shown that the distribution acts on φ ∈ S(Rn) in the following way:

〈Tf ⊗ δn−k, φ〉 =

∫
Rk
f(x1:k)φ(x1:k,0n−k)dx1:k

Now to generalize the latter definition to any k-dimensional subspace we have to introduce a change
of variables in tempered distributions.

Let g ∈ S ′(Rn) and U ∈ Rn×n be an orthogonal matrix, i.e. UTU = In. Then, gU ∈ S ′(Rn) is
defined by the rule: 〈gU , φ〉 = 〈g, ψ〉 where ψ(x) = φ(UTx). If g = Tf , the latter definition gives
gU = Tf ′ where f ′(x) = f(Ux). Now, we define classes of tempered distributions:

G′k = {(f ⊗ δn−k)U |f ∈ S ′(Rk), U ∈ Rn×n, UTU = In} (2)
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Gk =
{

(Tf ⊗ δn−k)U |f ∈ S(Rk), U ∈ Rn×n, UTU = In
}

(3)

Fk = {Tr|r(x) = f(Ux), f ∈ S(Rk), U ∈ Rk×n, rank(U) = k} (4)

The first two classes are related as:
Theorem 1. G′k = Gk

∗
.

The last two classes are isomorphic under the Fourier transform.
Theorem 2. F [Gk] = Fk and F−1[Fk] = Gk.

For any collection f1, · · · , fl ∈ S ′(Rn), spanR{fi}l1 denotes {
∑l
i=1 λifi|λi ∈ R} ⊆ S ′(Rn),

which is a linear space over R. The set G′k has the following simple characterization:
Theorem 3. For any T ∈ S ′(Rn), T ∈ G′k if and only if dim spanR{x1T, x2T, · · · , xnT} ≤ k.

Informally, the theorem holds because any linear dependency α1x1T + · · · + αnxnT = 0 over R
implies that if α1x1 + · · ·+αnxn 6= 0, then T = 0. This is equivalent to a statement that the support
of T is concentrated on a subspace α1x1+· · ·+αnxn = 0. If dim spanR{x1T, x2T, · · · , xnT} ≤ k,
then one can find n− k such dependencies, which means that the support of T is k-dimensional.

Let B(Rn) denote the Borel sigma-algebra on Rn and P denote a set of all Borel probability mea-
sures on Rn. Let us now define

Pk = {µ ∈ P|∃v1, · · · ,vk ∈ Rn,∀A ∈ B(Rn) : µ(A) = µ(A ∩ span(v1, · · · ,vk))} (5)

i.e. Pk is a set of probability measures with all probability concentrated in some subspace
span(v1, · · · ,vk) whose dimension is not greater than k. It is easy to see that Tµ ∈ G′k for any
µ ∈ Pk.

4 EXAMPLES OF LDR FORMULATIONS

UDR: Maximum mean discrepancy (MMD) Let k(x) = 1√
(2πh2)n

e−
|x|2

2h2 be the radial gaussian

kernel on Rn. The kernel k(x) defines the so-called kernel embedding of probability measures
φ Muandet et al. (2017):

µ ∈ P → φ(µ) = k ∗ µ = Ey∼µk(x− y) =

∫
k(x− y)dµ(y)

The Maximum Mean Discrepancy (MMD) distance Gretton et al. (2012) is defined as the distance
induced by metrics on L2(Rn), i.e. for two probability measures µ, ν ∈ P:

dMMD(µ, ν) = ||φ(µ)− φ(ν)||L2(Rn)

Let x1, · · · ,xN ∈ Rn be the dataset of points. This dataset defines the empirical probabilistic
measure µdata that corresponds to the tempered distribution Tµdata

= 1
N

∑N
i=1 δ

n(x − xi). We
shall study a method concurrent to PCA that is based on solving the following problem:

I(ν) = dMMD(µdata, ν) = ||φ(µdata)− φ(ν)||L2(Rn) → min
ν∈Pk

(6)

i.e. we shall attempt to approximate the empirical probabilistic measure µdata with another proba-
bilistic measure ν which is supported in some k-dimensional subspace of Rn.

UDR: Distance based on higher moments (HM) It is well-known that maximum mean discrep-
ancy measures the similarity between characteristic functions of two probability distributions in the
O
(

1
h

)
-neighbourhood of the origin. Another approach to measure the similarity of two distributions

is based on the difference between moments:

dHM(µ, ν)2 =

4∑
s=1

λs
ns

∑
1≤i1,··· ,is≤n

(mi1···is − ni1···is)2

where mi1···is = EX∼µ [X[i1] · · ·X[is]] and ni1···is = EX∼ν [X[i1] · · ·X[is]] are corresponding
moments. The positive parameters λ1, λ2, λ3, λ4 are chosen to fix the relative importance of the
mean, the co-variance, the co-skewness and the co-kurtosis.
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Thus, we will be interested in the following optimization task (analogous to 6):

dHM(µdata, ν)→ min
ν∈Pk

(7)

UDR: Wasserstein distance (WD) Another important distance between probability measures that
has the origins in the transport theory is the Wasserstein distance Villani (2008).

Let (Rn, || · ||) be a Banach space. Between any two Borel probability measures µ, ν on Rn with∫
||x||dµ <∞ and

∫
||x||dν <∞ the Wasserstein distance is:

W (µ, ν) = inf
π∈Π(µ,ν)

∫
||x− y||dπ

where Π(µ, ν) is a set of all couplings of µ and ν. The Wasserstein distance defines another version
of LDR problem:

W (µdata, ν)→ min
ν∈Pk

(8)

In the appendix B one can find proofs that in the case of L1 norm ||x|| =
∑
i |xi|, the task 8

corresponds to the well-studied robust PCA problem Candès et al. (2011). If, instead of the L1-
norm, we use the L2-norm, this leads to another well-studied task, which is known as the outlier
pursuit problem Xu et al. (2010).

Sufficient dimension reduction (SDR) Given a labeled dataset {(xi, yi)}Ni=1 where xi ∈ Rn, yi ∈
C (C is a finite set of classes for a classification, or R for a regression problem), the suffi-
cient dimension reduction problem can be informally described as a problem of finding vectors
w1, · · · ,wk ∈ Rn such that p(y|wT

1 x, · · · ,wT
k x) ≈ p(y|x) (possibly, under some additional as-

sumptions on the form of p(y|x)).

We formulate the SDR problem as an optimization task:

inf
f∈Fk

J(f) (9)

The object f : Rn → R is a smooth real-valued function. We assume that f is a candidate for the
regression function and J(f) is a cost function that values how strongly f fits in this role. In practice
for the regression case and for the binary classification case with 0-1 outputs we use the following
cost functions correspondingly:

J(f) =
1

N

N∑
i=1

Eε∼N(0,υ2In)|yi − f(xi + ε)|2

J(f) =
1

N

N∑
i=1

Eε∼N(0,υ2In)H

(
yi,

ef(xi+ε)

1 + ef(xi+ε)

)
where H(y, p) = −y log p− (1− y) log(1− p) and υ > 0 is a parameter.

By requiring f ∈ Fk, we assume that the regression function f satisfies (for k fixed in advance):

f(x) = g(wT
1 x, · · · ,wT

k x)

where w1, · · · ,wk ∈ Rn. Thus, given an input x, an output of f depends on the projection of
x onto span(w1, · · · ,wk). The set span(w1, · · · ,wk) is called the effective subspace. Note that
the way we defined the SDR’s objective J(f) for the regression and the classification cases is not
unique. There are definitions that has the same form 9, but deal with the conditional distribution
p(y|x) as an argument, instead of the regression function.

5 REDUCTION OF THE OPTIMIZATION PROBLEM TO ORDINARY FUNCTIONS

The central problem that our paper addresses is how to minimize an objective function over G′k (or
Pk)? In this section we describe an approach based on penalty functions and kernels.

Let us assume for simplicity that M is the gaussian kernel, i.e. M(x,y) = Gnσ(x − y) where

Gnσ(x) = 1√
2πσ2n

e−
|x|2

2σ2 . Besides the gaussian kernel our theory also captures many other kernels,
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including cases of the Abel Kernel 1
σn e
− |x−y|

σ and the Fourier tranform of the Abel Kernel, the
Poisson kernel: cnσ

(σ2+|x−y|2)
n+1
2

.

For f, g ∈ S(Rn) let us denote:

〈f |M |g〉 def=

∫∫
Rn×Rn

f(x)∗M(x,y)g(y)dxdy ≤ max
x,y

M(x,y)||f ||L1 ||g||L1 <∞

For general f, g ∈ S ′(Rn) the expression 〈f |M |g〉 is defined if ∃fε, gε ∈ S(Rn) such that Tfε =

f ∗ Gnε , Tgε = g ∗ Gnε and 〈fε|M |gε〉
ε→0→ A. Then, 〈f |M |g〉 def= A. For example, 〈δn|M |δn〉 =

M(0, 0).

Theorem 3 concludes, from f ∈ Gk, that dim spanR{x1f, x2f, · · · , xnf} ≤ k. Using the kernel
M , one can build the Gram matrix from the collection of distributions, [〈xif |M |xjf〉]1≤i,j≤n. For
any f ∈ S ′(Rn) let us denote a real part of the Gram matrix [Re 〈xif |M |xjf〉]1≤i,j≤n by Mf (if it
is defined).

Theorem 4. If f ∈ Gk, then 〈xif |M |xjf〉 is defined and rankMf ≤ k.

Definition 1. LetA ∈ Rn×n be a positive semidefinite matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn
(with counting multiplicities). Then, the Ky Fan k–anti-norm of A is ||A||k =

∑k
i=1 λn+1−k.

Let R(f) = ||Mf ||n−k. Theorem 4 tells us that that for f ∈ Gk, R(f) = 0. For ordinary f ,
the Eckart-Young-Mirsky theorem gives us R(f) = minA∈Rn×n,rankA≤k ||

√
Mf − A||2F . Thus,

by penalizing the value of R(f), we enforce Mf to be close to some matrix of rank k. For I :
G′k ∪ S(Rn)→ R+, it is natural to reduce the optimization task over tempered distributions

I(f)→ min
f∈G′k

(10)

to an optimization task over ordinary functions with a penalty term R:

I(f) + λ||Mf ||n−k = I(f) + λR(f)→ inf
f∈S(Rn)

(11)

Details on the conditions, under which this reduction holds, can be found in the appendix D. Let us
now concentrate on the task 11 and describe the alternating scheme for its solution.

6 THE ALTERNATING SCHEME

We will concentrate on problem 11. It is known Hiai (2013) that the Ky Fan anti-norm is a concave
function, i.e. R(φ) = ||Mφ||n−k depends on Mφ in a concave way. It can be shown that the
dependence of R(φ) on φ is both non-convex and non-concave, i.e. we deal with a non-convex
optimization task.

The kernel M(x,y) : Rn × Rn → C induces a linear operator from L2(Rn) to L2(Rn):
O(M)[f ] =

∫
RnM(x,y)f(y)dy. For any operator O between spaces H1 and H2, we denote

its range as R[O] = {O(x)|x ∈ H1}. Let B(H1, H2) denote a set of bounded linear oper-
ators between Hilbert spaces H1 and H2. For O ∈ B(H1, H2) the rank of O is defined as
dimR(O). Let Lr2(Rn) be the Hilbert space (over R) of real-valued functions from L2(Rn) and
L∗2(Rn) = Lr2(Rn)× Lr2(Rn). The space L∗2(Rn) is equivalent to L2(Rn) treated as a linear space
over R. Below we do not distinguish [φ1, φ2] ∈ L∗2(Rn) and φ1 + iφ2 ∈ L2(Rn). It is easy to see
that any O ∈ B(L∗2(Rn),Rn) can be given by formula:

O[φ]i = Re 〈Oi, φ〉L2(Rn), Oi ∈ L2(Rn), i = 1, n

i.e. O ∈ B(L∗2(Rn),Rn) can be identified with a vector of functions O = [Oi]i=1,n , Oi ∈ L2(Rn)

and the Hilbert–Schmidt norm on B(L∗2(Rn),Rn) (i.e.
√

TrO†O) is:

||O||∗ =

√√√√ n∑
i=1

||Oi||2L2(Rn) (12)
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Recall that for the kernel M , O(M) is positive and self-adjoint. Since O(M) is also bounded, then
the square root

√
O(M) can be correctly defined Rudin (1991). For any complex-valued function f

let us introduce a linear operator Sf : L∗2(Rn)→ Rn by the following rule:

Sf [φ]i = Re 〈xif(x),
√
O(M)[φ]〉L2(Rn) i.e. (Sf )i =

√
O(M)[xif(x)], i = 1, n

Theorem 5. If TrMf <∞, then Sf ∈ B(L∗2(Rn),Rn) and SfS
†
f = Mf . Moreover,

R(f) = min
S∈B(L∗2(Rn),Rn),rankS≤k

||Sf − S||2∗

and the minimum is attained at S = PfSf where Pf =
∑k
i=1 uiu

†
i and {ui}k1 are unit eigenvectors

of Mf corresponding to the k largest eigenvalues (counting multiplicities).

Given the new representation R(f) = min
S∈B(L∗2(Rn),Rn),rankS≤k

||Sf − S||2∗ it is natural to view the

Task 11 as a minimization of I(φ) + λ||Sφ − S||2∗ over two objects: φ and S ∈ B(L∗2(Rn),Rn) :
rankS ≤ k. The simplest approach to minimize a function over two arguments is to optimize
alternatingly, i.e. first over φ, and then over S : rankS ≤ k, and so on. Theorem 5 gives that the
minimization over S is equivalent to the truncation of SVD(Sφ) at the k-th term. This idea, that we
dub the alternating scheme, is described in Algorithm 1.

Algorithm 1 The alternating scheme for 11
P0 ←− 0, Sφ0

←− 0
for t = 1, · · · , T do
φt ←− arg min

φ
I(φ) + λ||Sφ − Pt−1Sφt−1

||2∗ (minimizing over φ)

Calculate Mφt and find {vi}n1 s.t. Mφtvi = λivi, λ1 ≥ · · · ≥ λn
Pt ←−

∑k
i=1 viv

T
i (Truncated SVD(Sφt) is PtSφt )

Output: v1, · · · ,vk

The alternating scheme 1 allows for a reformulation in the dual space. By this we mean that in
Scheme 1 we substitute φ̂t for the original φt. If the primal Scheme 1 deals with operators Sφ, Sφt−1

,

the dual version deals with vectors of functions
√
Ĝσ

∂φ̂
∂x ,

√
Ĝσ

∂φ̂t−1

∂x . Details of the dual algorithm
can be found in the appendix F.

7 EXPERIMENTS

The alternating scheme 1 is a general optimization method which needs to be specified for every
optimization task. We designed numerical specifications of the alternating scheme 1 for all 4 opti-
mization tasks: 6, 7, 8 and 9 and made experiments with all of them. Details of the algorithms, i.e.
numerical methods to minimize over φ and calculate Mφt , can be found in the appendix (G, H, I
and J). Note that for Wasserstein distance minimization 8 we exploit the alternating scheme in the
initial form (i.e. 1), and for MMD 6, HM 7 and SDR 9 we use the dual version of the scheme.

Behaviour of MMD for small h. We studied the difference in the behaviour of PCA and a solution
of 6 obtained by the alternating scheme 1 (MMD), for the case when h is small compared to the
standard deviation of features. Experiments show that they are sharply different when data points
are sampled along a low-dimensional manifold M, which is bent globally, goes through the origin
O and has a large curvature at O. Because PCA is a global method and points do not lie on an affine
subspace, interpreting principal directions is not straightforward.

We select a smooth function f : Rn−1 → R, such that f(0) = 0 and generate points in the
following way: points x1,x2, · · · ,xN ∼ [−10, 10]n−1 are sampled uniformly, after calculation of
yi = f(xi) we add some noise: zi = (xi, yi) + εi, εi ∼ N (0, 0.01In). Both PCA and MMD are
applied to the dataset (first 3 pictures on Figure 1a). As we see, MMD, unlike PCA, tries to catch
ideal alignments of points rather that searching for a global alignment of points (which can be non-
existent). This property of MMD makes it a promising tool for the calculation of the tangent space
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(a) Visualization of outputs of the PCA and MMD methods. MMD (green line) tends to select a subcollection
of points that sharply aligns along the main direction, whereas the first principal component (red line) could be
a result of averaging over different directions in the data.
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(b) Left plot: ||Pt − P ||F : n δ = 0.05, λ = 20.0, case I, n δ = 0.05, λ = 20.0, case II, n δ = 0.05, λ =
100.0, case I, n δ = 0.05, λ = 100.0, case II, n δ = 0.1, λ = 100.0, case I, n δ = 0.1, λ = 100.0, case II.
Right plot: ||P ∗ − P ||F as a function of lnσ:n MMD, n HM, n WD.

to a data manifold at a given point. Fourth picture shows that when we have 2 equally important
directions in data such that the first principal direction of PCA is between them (red line), and we
set k = 1, then MMD (green line) always chooses one of those directions.

Experiments with outlier detection (MMD, HM, Wasserstein distance). Following the experi-
ment setup of Xu et al. (2010), we choose parameters N = n = 400, δ = 0.05(0.1), k = 10 and
generate random matrices A ∈ RN(1−δ)×k, B ∈ Rn×k whose entries are iid as N (0, 1). Then,
to the columns of the matrix BAT ∈ Rn×N(1−δ) (whose rank is ≤ k) are concatenated with the
columns of the matrix C ∈ Rn×Nδ: X = concat(BAT , C) ∈ Rn×N . The entries in C are either
iid as N (0, 1) (case I) or Nδ copies of the same vector whose entries are iid as N (0, 1) (case II).
Let X = [x1, · · · ,xN ], i.e. columns of X are the data points. Thus, N(1 − δ) columns of BAT
lie in a k-dimensional subspace of Rn and Nδ columns of C are outliers, and solutions of tasks 6, 7
or 8 for this dataset are expected to be supported in a column space of BAT .

After every iteration (step t of the alternating scheme 1) we calculate the Frobenius distance between
the projection operator Pt of 1 and the projection operator P to the column space of BAT , i.e.
||Pt − P ||F . For the task 8, the dependence of ||Pt − P ||F on t for different values of parameters
δ and λ is shown in Figure 1b. For tasks 6, 7 the behaviour of the alternating scheme is similar, 7
iterations are enough to approach the optimal subspace.

Besides the speed of convergence we were also interested in how ||P ∗ − P ||F , where P ∗ =
limt→∞ Pt is the final projection operator (e.g. P20 in practice), depends on the parameter σ
of the kernel M = Gσ . It is natural to expect the quality of the solution P ∗ to degrade as
σ → +∞ (this corresponds to M(x,y) → 0), and, less trivially, as σ → 0 (this corresponds to
M(x,y)→ δn(x− y)).

Experiments with the sufficient dimension reduction. We made experiments on the standard
datasets, Heart, Breast Cancer, Ionosphere, Diabetes, Boston house prices and Wine quality. First
we applied Sliced Inverse Regression algorithm (SIR) Li (1991) to the training set and calculated the
effective subspace for k = 2, 3. All points were projected onto that space and we obtained two- or
three-dimensional representations of input points. In the last step we applied 10 nearest neighbours
algorithm (KNN) to predict outputs (based on reduced inputs) on the test set (for the regression case,
the 10-KNN regression was used). The same scheme was repeated with PCA, Kernel Dimensionality
Reduction (KDR) algorithm Fukumizu et al. (2004) and the alternating scheme 1 adapted for SDR.

7

https://archive.ics.uci.edu/ml/datasets/heart+disease
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Ionosphere
https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
https://archive.ics.uci.edu/ml/machine-learning-databases/wine/
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We experimented with the dual version of algorithm 1, setting (after the data was standardized) the
kernel’s parameter σ = 0.81 and λ = 10.0. Details of its numerical implementation can be found
in the appendix J. In the table 1 one can see the obtained test set accuracy on the classification tasks
and R2 on the regression tasks. As we see from the table 1, after reducing the dimension of an input
to k = 2, 3, we are still able to obtain good accuracy of prediction on a test set.

Dataset
Method PCA SIR KDR AS 1

Dimension k 2 3 2 3 2 3 2 3
Heart (acc) 79.80 79.46 82.49 81.82 86.33 88.77 81.48 83.50
Breast (acc) 93.46 93.65 97.30 96.73 93.13 95.95 97.88 97.69

Ionosphere (acc) 80.29 86.57 89.14 89.43 83.43 86.29 88.29 90.57
Diabetes (R2) 25.34 28.72 43.47 43.61 41.82 44.30 43.07 44.48
Boston (R2) 56.42 67.12 76.03 74.29 77.88 79.97 73.21 77.88
Wine (R2) 93.91 94.12 98.68 99.24 98.30 96.02 97.10 96.93

Table 1: The cross-validated accuracies/R2 of KNN on 2 or 3-dimensional input representations.

The code is available on github to facilitate the reproducibility of our results.

8 RELATED WORK

We present an optimization framework in which the search space is G′k, or Pk. Another unifying
framework for LDR tasks is suggested by Cunningham & Ghahramani (2015) in which the basic
search space is the Stiefel manifold S(n, k). The main disadvantage of using G′k, instead of the
Stiefel manifold, is that its infinite number of dimensions requires a special procedure to turn an op-
timization into a finite-dimensional task. Both an optimization over G′k and over S(n, k) is typically
hard: for a final point, at best one can guarantee that it is a local extremum. Promising aspects of
G′k are: a) G′k allows to formulate naturally a new class of objectives on it, b) local extrema on G′k
substantially differ from local extrema on S(n, k), because a local search over G′k uses more degrees
of freedom.

Using Ky-Fan k-antinorm as a regularizer for the matrix completion problem has been suggested
by Hu et al. (2013) and further developed in Oh et al. (2016); Liu et al. (2016); Hong et al. (2016).
Unlike this chain of works, we formulate an infinite-dimensional task. Also, our regularizerR(f) =
||Mf ||n−k is a sum of smallest n−k squared singular values of the operator Sf where Sf depends on
f linearly. The idea of alternating two basic stages, the convex optimization and SVD, is ubiquitous
in low-rank optimization, see e.g. Mazumder et al. (2010); Hastie et al. (2015).

Zhu & Zeng (2006) applied the Fourier transform for estimating the effective subspace in SDR,
implicitely using an analog of Theorem 2.

9 CONCLUSIONS

We develope a new optimization framework for LDR problems. The alternating scheme for the
optimization task demonstrates both the computational efficiency and the applicability to real-world
data. The algorithm performs quite stably when we vary most of the hyperparameters, though it
crucially depends on two parameters, the bandwidth of the “smoothing” kernelM , σ, and the penalty
parameter λ. We believe that the MMD/HM/WD methods for UDR could be used as an alternative
to PCA in study fields in which data demonstrate “heavy-tailed” and “non-gaussian” behaviour,
such as financial applications. Also, our formulation of SDR is free from any assumptions on the
distribution of input-output pairs, which makes it an alternative to other methods of the efficient
subspace estimation. More detailed report on these topics is a subject of future research.

1Since the role of the parameter σ is similar to that of the bandwidth in the kernel density estimation, we
use Silverman’s rule of thumb to set σ = N−1/(n+4).
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Proof. The inclusion G′k ⊆ Gk
∗

follows from a well-known fact that S(Rk) is dense in S ′(Rk). I.e.
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∗
.
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Since Gk ⊆ G′k, to prove G′k = Gk
∗

it is enough to show that G′k is sequentially closed.

We need a simple fact from a theory of distributions.

Lemma 1. If Ti →∗ T and φi → φ, then 〈Ti, φi〉 → 〈T, φ〉.

Proof of Lemma. Schwartz space S(Rn) is a Fréchet space, therefore the Banach-Steinhaus theo-
rem applies to S ′(Rn). Since Ti →∗ T , we have supi |〈Ti, φ〉| < ∞ for any φ ∈ S(Rn). From the
Banach-Steinhaus theorem, applied to a set {Ti}∞1 , we obtain for any ε > 0, there is a neighbour-
hood U of 0 ∈ S(Rn) such that |〈Ti, φ〉| < ε whenever φ ∈ U . Thus, |〈Ti, φi − φ〉| < ε for a large
enough i. From that we conclude that 〈Ti, φi〉 → 〈T, φ〉.

For any T ∈ S ′(Rn) and ψ ∈ S(Rn−k), let us define Tψ ∈ S ′(Rk) as 〈Tψ, φ〉 = 〈T, φ⊗ ψ〉.
Suppose that {fi}∞1 ⊆ S ′(Rk), {Ui}∞1 are such that (fi ⊗ δn−k)Ui →∗ f . We need to prove that
f ∈ G′k. Since a set of orthogonal matrices is compact, then one can always find a subsequence
{Uni} such that Uni → U . Since (fni ⊗ δn−k)Uni →

∗ f and φ(Unix) → φ(Ux) (for any fixed
φ ∈ S(Rn)), using lemma 1 we obtain:

〈fni ⊗ δn−k, φ〉 = 〈(fni ⊗ δn−k)Uni , φ(Unix)〉 → 〈f, φ(Ux)〉 = 〈fUT , φ(x)〉
Thus, we have:

fni ⊗ δn−k →∗ fUT
From the last we see that fni →∗ f

ψ
UT

whereψ is such thatψ(0) = 1. Therefore, fUT = fψ
UT
⊗δn−k

and f = (fψ
UT
⊗ δn−k)U ∈ G′k.

A.2 PROOF OF THEOREM 2

Proof. Let us prove first that if g = Tf ⊗ δn−k, then
F [g] = Tr

where r(x) = f̂(x1:k),x ∈ Rn. For that we have to prove that 〈F [g], φ〉 = 〈Tr, φ〉 for any
φ ∈ S(Rn). Indeed,

〈F [g], φ〉 = 〈g,F [φ]〉 = 〈Tf ⊗ δn−k,
∫
Rn
φ(y)e−ixTydy〉 =

〈Tf ,
∫
Rn
φ(y)e−ixT1:ky1:kdy〉 =

∫
Rn+k

f(x1:k)φ(y)e−ixT1:ky1:kdydx1:k =∫
Rn
f̂(y1:k)φ(y)dy = 〈Tr, φ〉

Let us calculate the image of Gk under the Fourier transform. It is easy to see that for any g ∈
S ′(Rn), φ ∈ S(Rn) and orthogonal U ∈ Rn×n we have:

〈F [gU ], φ(x)〉 = 〈gU ,F [φ](x)〉 = 〈g,F [φ](UTx)〉 =

= 〈g,F [φ(UTx)]〉 = 〈F [g], φ(UTx)〉 = 〈(F [g])U , φ(x)〉
Therefore, F [gU ] = (F [g])U . Thus, if g = Tf ⊗ δn−k, then

(F [gU ]) = (Tr)U = Tr′

where r′(x) = r(Ux) = f̂(Ukx) and Uk ∈ Rk×n is a matrix consisting of first k rows of U . Thus,
Tr′ ∈ Fk.

Let us show that by varying f ∈ S(Rk) and U in the expression f̂(Ukx) we can obtain any function
from Fk. For this it is enough to show that Fk is equivalent to the following set of functions:

Q = {g(Ukx)|g ∈ S(Rk), Uk ∈ Rk×n, UkUTk = Ik}
The factQ ⊆ Fk is obvious. Let us now prove thatQ ⊇ {g(Px)|g ∈ S(Rk), P ∈ Rk×n, rankP =
k} = Fk. Indeed, if f(x) = g(Px), then f(x) = g′(Ukx) where Uk = (PPT )−1/2P and
g′(y) = g((PPT )1/2y). By construction, UkUTk = Ik and g′ ∈ S(Rk). Thus, Q = Fk.

Therefore, F [Gk] = Fk, and from the bijectivity of the Fourier transform we obtain F−1[Fk] =
Gk.
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A.3 PROOF OF THEOREM 3

Proof of Theorem 3 (⇒). Let us prove that from T = (f ⊗ δn−k)U , f ∈ S ′(Rk), UTU = In it
follows that dim spanR{x1T, x2T, · · · , xnT} ≤ k.

It is easy to see that xi[f ⊗ δn−k] = 0 if i > k. If U = [u1, · · · ,un]T , then for i > k we have
0 = (xi[f ⊗ δn−k])U = uTi x(f ⊗ δn−k)U = uTi xT .

Thus, we have n − k orthogonal vectors, uk+1, · · · ,un, such that [x1T, · · · , xnT ]ui = 0. Using
standard linear algebra we obtain there are at most k′ distributions xi1T, · · · , xik′T, k

′ ≤ k that
form a basis of spanR{xiT}n1 .

To prove the second part of theorem we need the following lemma.

Lemma 2. If T ∈ S ′(Rn) is such that yiT = 0 for any i > k, then T ∈ G′k.

Proof of lemma. Recall from functional analysis, for f ∈ S ′(Rn), the tempered distribution ∂f
∂xi

is
defined by the condition 〈 ∂f∂xi , φ〉 = −〈f, ∂φ∂xi 〉. Once the Fourier transform is applied, our lemma’s

dual version is equivalent to the following formulation: if ∂f
∂xi

= 0, i > k, then f ∈ Fk
∗
. Let us

prove it in this formulation.

A set of infinitely differentiable functions with a compact support is denoted by C∞c (R). Suppose
φ ∈ S(Rn) and p ∈ C∞c (R) are chosen in such a way that

∫∞
−∞ p(yi)dyi = 1, supp p ⊆ [A,B]. Let

us define:

r(x) =

∫ xi

−∞
φ(x−i, yi)dyi −

∫ xi

−∞
p(yi)dyi

∫ ∞
−∞

φ(x−i, yi)dyi

It is easy to see that for any α ∈ Nn−1, α′ ∈ N, β ∈ Nn−1, β′ ∈ N we have (at least one derivative
over xi is present):

xα−ix
α′

i

∂β,1+β′r

∂xβ−i∂x
1+β′

i

= xα−ix
α′

i

∂β,β
′
[φ(x)− p(xi)

∫∞
−∞ φ(x−i, yi)dyi]

∂xβ−i∂x
β′

i

=

xα−ix
α′

i

∂β,β
′
φ(x)

∂xβ−i∂x
β′

i

− xα
′

i

∂β
′
p(xi)

∂xβ
′

i

∫ ∞
−∞

xα−i
∂βφ(x−i, yi)

∂xβ−i
dyi

The terms xα−ix
α′

i
∂β,β

′
φ(x)

∂xβ−i∂x
β′
i

and xα
′

i
∂β
′
p(xi)

∂xβ
′
i

are bounded by the definition of S(Rn), C∞c (R). The

boundedness of
∫∞
−∞ xα−i

∂βφ(x−i,yi)

∂xβ−i
dyi is a consequence of the inequality (which holds because

φ ∈ S(Rn)): |xα−i
∂βφ(x−i,yi)

∂xβ−i
| ≤ C

1+y2i
.

Analogously (not a single derivative over xi is present):

xα−ix
α′

i

∂βr

∂xβ−i
= xα

′

i

∫ xi

−∞
xα−i

∂βφ(x−i, yi)

∂xβ−i
dyi − xα

′

i

∫ xi

−∞
p(yi)dyi

∫ ∞
−∞

xα−i
∂βφ(x−i, yi)

∂xβ−i
dyi =

= xα
′

i (1−
∫ xi

−∞
p(yi)dyi)

∫ xi

−∞
xα−i

∂βφ(x−i, yi)

∂xβ−i
dyi−xα

′

i

∫ xi

−∞
p(yi)dyi

∫ ∞
xi

xα−i
∂βφ(x−i, yi)

∂xβ−i
dyi

The second term is 0 when xi ≤ A. It is also bounded when xi > A because |xα−i
∂βφ(x−i,yi)

∂xβ−i
| ≤

C′

(1+y2i )α′+1 and: ∣∣∣∣∣xα′i
∫ ∞
xi

xα−i
∂βφ(x−i, yi)

∂xβ−i
dyi

∣∣∣∣∣ ≤ |xi|α′
∫ ∞
xi

C ′

(1 + y2
i )α′+1

dyi

The latter is bounded because limxi→+∞ |xi|α
′ ∫∞
xi

C′

(1+y2i )α′+1 dyi = 0.
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The first term is 0 when xi ≥ B and it is bounded for xi < B:∣∣∣∣∣xα′i
∫ xi

−∞
xα−i

∂βφ(x−i, yi)

∂xβ−i
dyi

∣∣∣∣∣ ≤ |xi|α′
∫ xi

−∞

C ′

(1 + y2
i )α′+1

dyi

The latter is also bounded, since limxi→−∞ |xi|α
′ ∫ xi
−∞

C′

(1+y2i )α′+1 dyi = 0.

Thus, xα ∂
βr(x)
∂xβ

is bounded and r ∈ S(Rn). Therefore ∂f
∂xi

= 0 implies:

〈f, ∂r
∂xi
〉 = 0⇒ f [φ] = f [p(xi)

∫ ∞
−∞

φ(x−i, yi)dyi]

Since this sequence of arguments works for any i > k, we can apply them sequentially to initial φ ∈
S(Rn) w.r.t. xk+1, ..., xn and obtain for any pk+1, ..., pn ∈ Cc(R) such that

∫∞
−∞ pi(yi)dyi = 1:

f [φ] = f [pk+1(xk+1) · · · pn(xn)

∫
Rn−k

φ(x1:k,xk+1:n)dxk+1:n]

Moreover, since C∞c (R) is dense in S(R), we can assume that pk+1, ..., pn ∈ S(R). For the inverse
Fourier transform T = F−1[f ] the latter condition becomes equivalent to:

〈T, φ〉 = 〈T, p′k+1(xk+1) · · · p′n(xn)φ(x1:k,0k+1:n)〉

for any p′k+1, ..., p
′
n ∈ S(R) such that p′i(0) = 1. Let us define p′i(xi) = e−x

2
i . It is easy to check

that T = g ⊗ δn−k where g ∈ S ′(Rk), 〈g, ψ〉 = 〈T, e−|xk+1:n|2ψ(x1:k)〉 for ψ ∈ S(Rk). I.e.
T ∈ G′k and lemma is proved.

Proof of Theorem 3 (⇐). If dim spanR{x1T, x2T, · · · , xnT} ≤ k, then

dim{v ∈ Rn|[x1T, · · · , xnT ]v = 0} ≥ n− k

Thus, there exist at least n−k orthonormal vectors vk+1, · · · ,vn, such that [x1T, · · · , xnT ]vi = 0.
Therefore, [x1T, · · · , xnT ]vi = (vTi x)T = 0.

Let us complete vk+1, · · · ,vn to form an orthonormal basis of Rn: v1, · · · ,vn. Let us define a
matrix V = [v1, · · · ,vn]. It is easy to see that:(

(vTi x)T
)
V

= (vTi V x)TV = xiTV

Since for i > k we have (vTi x)T = 0, then xiTV = 0. Using lemma 2 we obtain TV ∈ G′k.
Therefore, (TV )V T = T ∈ G′k. Theorem proved.

B STRUCTURE OF WD

Recall that (Rn, || · ||) is a Banach space. Now, let us consider an optimization problem: for a given
X ∈ Rn×N solve

||X − L|| → min
rank(L)≤k

(13)

where || · || is extended to Rn×N by ||[s1, · · · , sN ]|| def=
∑
i ||si||.

The following simple theorem shows that the two tasks are connected, so that the solution of one
directly leads to the solution of another.

Theorem 6. Given data points {x1, · · · ,xN}, let X = [x1, · · · ,xN ] ∈ Rn×N . Then,

min
ν∈Pk

W (µdata, ν) =
1

N
min

Y ∈Rn×N ,rank(Y )≤k
||X − Y ||

Moreover, minν∈PkW (µdata, ν) is attained on ν∗, where ν∗ is a uniform distribution over {yi}Ni=1
and [y1, · · · ,yN ] ∈ arg minY ∈Rn×N ,rank(Y )≤k ||X − Y ||.

13
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Proof. Let us prove first that infµ∈PkW (µdata, µ) ≤ 1
N ||X − Y

∗|| where

Y ∗ = [y1, · · · ,yN ] ∈ arg min
Y ∈Rn×N ,rank(Y )≤k

||X − Y ||

Let π be a uniform distribution over {(xi,yi)}Ni=1 and µ∗ be a uniform distribution over {yi}Ni=1.
Since π ∈ Π(µdata, µ

∗), we obtain W (µdata, µ
∗) ≤ 1

N

∑N
i=1 ||xi − yi|| = 1

N ||X − Y ∗||.
The support of µ∗ is k-dimensional, because rank(Y ∗) ≤ k. Thus, we have µ∗ ∈ Pk and
infµ∈PkW (µdata, µ) ≤ W (µdata, µ

∗) ≤ 1
N ||X − Y ∗||. Now, if we prove the inverse inequal-

ity, i.e. infµ∈PkW (µdata, µ) ≥ 1
N ||X − Y ∗||, this will imply that infµ∈PkW (µdata, µ) =

1
N ||X − Y

∗|| and therefore, infµ∈PkW (µdata, µ) = W (µdata, µ
∗). This will in the end give us

µ∗ ∈ arg infµ∈PkW (µdata, µ).

Let {µt}∞1 be such that µt ∈ Pk and W (µdata, µt) − infµ∈PkW (µdata, µ) → 0. Let Lt denote a
k-dimensional support of µt and Pt is a projection operator onto Lt.

Let µ∗t be a uniform distribution over {Ptx1, · · · , PtxN}, i.e. µ∗t (A) = 1
N

∑N
i=1[Ptxi ∈ A]. It is

easy to see that W (µ∗t , µdata) ≤ W (µt, µdata), because µ∗t and µt share the same k-dimensional
support Lt, but the “transportation of a mass” concentrated in point xi of the empirical distribution
µemp can be most optimally done by just moving it to Ptxi (i.e. to the closest point on Lt). Thus,
we have infµ∈PkW (µdata, µ) ≤ W (µdata, µ

∗
t ) ≤ W (µdata, µt), and therefore, W (µdata, µ

∗
t ) −

infµ∈PkW (µdata, µ)→ 0.

Since a set of projection operators is compact, one can always extract a subsequence {Pts}∞s=1,
such that Pts → P . It is easy to see that µ∗ts → µ∗∗ (i.e. W (µ∗ts , µ

∗∗) → 0) where µ∗∗ is
a uniform distribution over {Px1, · · · , PxN}. For that distribution we have W (µdata, µ

∗∗) =
lims→∞W (µdata, µ

∗
ts) = infµ∈PkW (µdata, µ). Thus, the infinum is attained on µ∗∗.

It is easy to see that W (µdata, µ
∗∗) = W (µ∗∗, µdata) = 1

N ||X − PX||. Since rank(PX) ≤ k we
obtain W (µdata, µ

∗∗) ≥ 1
N minY ∈Rn×N ,rank(Y )≤k ||X − Y ||. This completes the proof.

Note that the case of L1 norm ||x|| =
∑
i |xi| in the task 13 corresponds to the well-studied robust

PCA problem Candès et al. (2011). If, instead of the L1-norm, we use the L2-norm, this leads to
another task:

||X − L||1,2 → min
rank(L)≤k

(14)

where ||S||1,2 =
∑
j

√∑
i s

2
ij , which known as the outlier pursuit problem Xu et al. (2010).

C PROPER KERNELS AND PROOF OF THEOREM 4

C.1 PROPER KERNELS

In the main part of the paper we assumeM to be a gaussian kernel, though the theory can be applied
to a more general case of the so called proper kernels.

Recall that for any operatorO between spacesH1 andH2 we denote its range asR[O] = {O(x)|x ∈
H1}. For Ω ⊆ S(Rn), Ω denotes the sequential closure of Ω with respect to natural topology of
S(Rn). A set of continuous functions in Rn is denoted by C(Rn). A set of infinitely differentiable
functions with compact support in Rn is denoted as C∞c (Rn)

Definition 2. The function M(x,y) : Rn × Rn → C is called the proper kernel if and only if

• O(M)[f ] =
∫
RnM(x,y)f(y)dy is a linear operator from L2(Rn) to L2(Rn),

• M(y,x) = M(x,y)∗,

• 〈f,O(M)[f ]〉L2(Rn) > 0,∀f ∈ L2(Rn), f 6= 0.

• maxx,y |M(x,y)| <∞,

• R[O(M)] ∩ S(Rn) = S(Rn).

14
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The gaussian kernelM(x,y) = Gnσ(x−y), which is of special interest from an application-oriented
perspective, is captured by the following lemma:

Lemma 3. If ζ, ζ̂ ∈ C(Rn) are bounded, ∀x ζ̂(x) > 0, then M(x,y) = ζ(x − y) is a proper
kernel.

Proof. Verification of the first four conditions is easy, so we only check the fifth condition. Let us
denote linear operators Cζ [f ] = ζ ∗ f and Og[f ](x) = g(x)f(x). Then we have F [Cζ [L2(Rn)]] =
Oζ̂ [L2(Rn)] ⊇ C∞c (Rn). Therefore, R[O(M)] = Cζ [L2(Rn)] ⊇ F−1[C∞c (Rn)]. Since C∞c (Rn)

is dense in S(Rn), then F−1[C∞c (Rn)] also has this property. I.e. R[O(M)] ∩ S(Rn) = S(Rn).

Besides the gaussian kernel the lemma also captures a case of the Abel Kernel ζ(x) = e−|x|. It is
well-known that the Fourier tranform of the Abel Kernel is the Poisson kernel: ζ̂(x) = cn

(1+|x|2)
n+1
2

(which is also proper).

C.2 PROOF OF THEOREM 4

We will prove a more general statement:
Theorem 7. Let M(x,y) be a proper kernel and, additionally, a Lipschitz function. If f ∈ Gk, then
〈xif |M |xjf〉 is defined and rankMf ≤ k.

Proof. Let us first show that 〈f |M |g〉 is defined for all f, g ∈ Gk. Note that for any f = (Ta ⊗
δn−k)U ∈ Gk we have

Tfε = (Ta ⊗ δn−k)U ∗Gnε = ((Ta ∗Gkε )⊗ TGn−kε
)U

Let us denote aε = a ∗Gkε and bε = b ∗Gkε . It is easy to see that

fε = (aε(x1:k)Gn−kε (xk+1:n))U ∈ S(Rn)

From a well-known property of the Weierstrass transform we have:

||fε||L1 = ||aε||L1 · ||Gn−kε ||L1 ≤ ||a||L1

From this we obtain for any f = (Ta ⊗ δn−k)U , g = (Tb ⊗ δn−k)V ∈ Gk:

|〈fε|M |gε〉| ≤ max
x,y
|M(x,y)| ||fε||L1

||gε||L1
≤ max

x,y
|M(x,y)| ||a||L1

||b||L1
<∞

Thus, 〈fε|M |gε〉 is defined and:

〈fε|M |gε〉 =

∫
Rn×Rn

a∗ε (x1:k)Gn−kε (xk+1:n)M(UTx, V Ty)bε(y1:k)Gn−kε (yk+1:n)dxdy =

=

∫
Rk×Rk

a∗ε (x1:k)Mε(x1:k,y1:k)bε(y1:k)dx1:kdy1:k

where

Mε(x1:k,y1:k) =

∫
Rn−k×Rn−k

Gn−kε (xk+1:n)M(UTx, V Ty)Gn−kε (yk+1:n)dxk+1:ndyk+1:n

Let Uk, Vk ∈ Rn×n be matrices that comprise the first k rows of U, V correspondingly and n − k
zero rows below. Also, let L denote Lipschitz constant for M such that |M(x,y) −M(x′,y′)| ≤
L(|x− x′|+ |y − y′|). For the function Mε(x1:k,y1:k) we have:

|Mε(x1:k,y1:k)−M(UTk x, V
T
k y)| =

|
∫

R2n−2k

Gn−kε (xk+1:n)
(
M(UTx, V Ty)−M(UTk x, V

T
k y)

)
Gn−kε (yk+1:n)dxk+1:ndyk+1:n|

15
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≤ L|
∫

R2n−2k

Gn−kε (xk+1:n)
(
|(U − Uk)Tx|+ |(V − Vk)Ty|

)
Gn−kε (yk+1:n)dxk+1:ndyk+1:n|

= L|
∫

R2n−2k

Gn−kε (xk+1:n) (|xk+1:n|+ |yk+1:n|)Gn−kε (yk+1:n)dxk+1:ndyk+1:n| =

= 2L

∫
Rn−k

|xk+1:n|Gn−kε (xk+1:n)dxk+1:n = 2Lε

∫
Rn−k

|xk+1:n|Gn−k1 (xk+1:n)dxk+1:n

Thus, there exists bounded M̃(x1:k,y1:k) = M(UTk x, V
T
k y) such that:

Mε(x1:k,y1:k)
ε→0→ M̃(x1:k,y1:k) in L∞(R2k)

Further we assume that ε > 0 is small enough, so that Mε(x1:k,y1:k) ≤ C = 2 max |M |. Now we
have:

|〈fε|M |gε〉 −
∫

Rk×Rk

a∗(x1:k)M̃(x1:k,y1:k)b(y1:k)dx1:kdy1:k| =

|
∫

Rk×Rk

(a∗ε (x1:k)Mε(x1:k,y1:k)bε(y1:k)− a∗(x1:k)M̃(x1:k,y1:k)b(y1:k))dx1:kdy1:k| =

|
∫

Rk×Rk

Mε(x1:k,y1:k)a∗ε (x1:k)(bε(y1:k)− b(y1:k))dx1:kdy1:k+

∫
Rk×Rk

Mε(x1:k,y1:k)b(y1:k)(a∗ε (x1:k)− a∗(x1:k))dx1:kdy1:k+

∫
Rk×Rk

a∗(x1:k)b(y1:k)(Mε(x1:k,y1:k)− M̃(x1:k,y1:k))dx1:kdy1:k| ≤

C||aε||L1
||bε − b||L1

+ C||b||L1
||aε − a||L1

+ ||a∗(x1:k)b(y1:k)||L1
||Mε − M̃ ||L∞

It is well-known (e.g. see Theorem 2.25) that ||aε − a||Lp , ||bε − b||Lp → 0, ||aε||L1
≤ ||a||L1

and
||Mε − M̃ ||L∞ → 0. Thus, limε→0〈fε|M |gε〉 exists and 〈f |M |g〉 is defined.

Let us now prove that rankMf ≤ k. Since f ∈ Gk, then f = (Tg ⊗ δn−k)U where U is an
orthogonal matrix and U = [w1, · · · ,wn]. It is easy to see that:

〈xif |M |xjf〉 = 〈(xif)UT |M(UTx, UTy)|(xjf)UT 〉 =

〈wT
i xTg ⊗ δn−k|M(UTx, UTy)|wT

j xTg ⊗ δn−k〉

Let us now denote V = [u1, · · · ,un] ∈ Rk×n a submatrix of U in which only first k rows of U are
present. Then, the latter integral is equal to:∫∫

Rk×Rk
uTi x1:ky

T
1:kujg(x1:k)∗M(V Tx1:k, V

Ty1:k)g(y1:k)dx1:kdy1:k = uTi Buj

where
B = [〈xig|M ′|xjg〉]1≤i,j≤k ,M

′(x1:k,y1:k) = M(V Tx1:k, V
Ty1:k)

is the Gram matrix of the collection {xig(x1:k)}ki=1 ⊆ S(Rk).

Obviously, rankMf = rank
[
ReuTi Buj

]
1≤i,j≤n = rankV T (ReB)V ≤ rankV = k.

D GENERAL THEORY OF THE REDUCTION FOR SECTION 5

For a sequence {fs}∞s=1 ⊆ S ′(Rn), Lim
s→∞

fs denotes a set of points f ∈ S ′(Rn), such that there

exists a growing sequence {si} ⊆ N and limi→∞ fsi = f .
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D.1 REGULAR SOLUTIONS AND REDUCTION THEOREMS

For I : G′k ∪ S(Rn) → R+, it is natural to reduce the optimization task 10 to an optimization task
over ordinary functions with a penalty term 11. To have an equivalence between 10 and 11 we need
to assume that I’s behaviour when approaching f ∈ G′k from a set S(Rn) is continuous, i.e. for any
sequence {fi} ⊆ S(Rn) such that Tfi →∗ f ∈ G′k, we have limi→∞ I(Tfi) = I(f).

Let us introduce the notion of a regular solution both for 10 and 11. Let

Bk =
⋃
C>0

{f ∈ Gk|Tr(Mf ) ≤ C}
∗

Definition 3. Any f ∈ Arg min
f∈G′k

I(f)
⋂
Bk is called a regular solution of 10.

In other words, Bk formalizes a set of distributions from G′k, that can be approached through se-
quences {fi} ⊆ Gk, for which Tr(Mfi) does not blow up. Obviously, Gk ⊆ Bk ⊆ G′k. In ap-
plications, regular solutions include all Arg min

f∈G′k
I(f) if we choose the kernel M correctly. This

regularity is important for a reduction to the penalty form 11, because when approaching a non-
regular solution we are unable to guarantee a bounded behaviour of Mf (and of R(f)).
Definition 4. A sequence {fi}∞1 ⊆ S(Rn) is said to solve 11 if:

I(fi) + λiR(fi) ≤ inf
f∈S(Rn)

I(f) + λiR(f) + εi (15)

where εi → +0 and λi → +∞, i→ +∞. If, additionally, Tr(Mfi) is bounded, then {fi}∞1 is said
to solve 11 regularly.

Let us define
rsol (I(f), R(f)) =

⋃
{fi}∞1 r. solves (11)

Lim
i→∞

Tfi

Theorem 8. If M is a proper kernel, then rsol (I(f), R(f)) ⊆ Arg min
f∈G′k

I(f).

Theorem 9. If M is a proper kernel and rsol (I(f), R(f)) 6= ∅, then Arg min
f∈G′k

I(f)
⋂
Bk ⊆

rsol (I(f), R(f)).
Theorem 10 (Reduction theorem). If M is a proper kernel, Arg min

f∈G′k
I(f) ⊆ Bk and

rsol (I(f), R(f)) 6= ∅, then rsol (I(f), R(f)) = Arg min
f∈G′k

I(f).

Suppose that we now solve a sequence of problems 11 and find {fs}∞1 . According to Theorems 8
and 9, the following are potential scenarios:

(1) Tr(Mfs) blows up and the convergence is not guaranteed. This situation can be avoided by
controlling Tr(Mf ) in an optimization process. In practice, when f has a parameterized form, this
can be done by bounding parameters.

If Tr(Mfs) does not blow up, we still have two subcases:

(2.1) Lim
s→∞

Tfs 6= ∅. This implies a positive outcome to approach 11 to the optimization problem,
Problem 10.

(2.2) Lim
s→∞

Tfs = ∅. This exotic situation can happen only if a sequence Tfs leaves any sequentially

compact subset of S ′(Rn). Bounding parameters also tackles this case.

D.2 PROOFS OF THEOREM 8 AND 9

For any f = (Tl ⊗ δn−k)U ∈ Gk and σ > 0, let us define fσ as:

Tfσ = (Tl ⊗ δn−k)U ∗Gnσ = (Tlσ ⊗ TGn−kσ
)U

fσ = (lσ(x1:k)Gn−kσ (xk+1:n))U

17
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lσ = l ∗Gkσ
We have Tfσ →∗ (Tl ⊗ δn−k)U as σ → +0.

Lemma 4. For any f ∈ Gk, limσ→+0〈xifσ|M |xjfσ〉 = 0, for any (i, j) /∈ {1, ..., k}2, and
supσ∈[0,1]〈xifσ|M |xjfσ〉 <∞, for any (i, j) ∈ {1, ..., k}2.

Proof. W.l.o.g. we can assume that f = Tl ⊗ δn−k, l ∈ S(Rk). If i > k, j ≤ k we have:

〈xifσ|M |xjfσ〉 =
1

(2πσ2)n−k

∫∫
Rn×Rn

xiyje
−
|xk+1:n|

2

2σ2 lσ(x1:k)M(x,y)e−
|yk+1:n|

2

2σ2 lσ(y1:k)dxdy =∫
Rn

1
√

2πσ2
n−k xie

−
|xk+1:n|

2

2σ2 lσ(x1:k)P (x)dx

where P (x) =
∫
Rn

1√
2πσ2n−k

yjM(x,y)e−
|yk+1:n|

2

2σ2 lσ(y1:k)dy. Using the Hólder inequality we
obtain:

|〈xifσ|M |xjfσ〉| ≤ ||
1

√
2πσ2

n−k xie
−
|xk+1:n|

2

2σ2 lσ(x1:k)||L1(Rn)||P ||L∞(Rn)

= || 1
√

2πσ2
n−k xie

−
|xk+1:n|

2

2σ2 ||L1(Rn−k)||lσ||L1(Rk)||P ||L∞(Rn)

Since |M(x,y)| ≤ γ for some γ, we have:

|P (x)| ≤ γ|| 1
√

2πσ2
n−k yje

−
|yk+1:n|

2

2σ2 lσ(y1:k)||L1(Rn) =

γ|| 1
√

2πσ2
n−k e

−
|yk+1:n|

2

2σ2 ||L1(Rn−k)||yj lσ(y1:k)||L1(Rk) = γ||yj lσ(y1:k)||L1(Rk)

Thus,

|〈xifσ|M |xjfσ〉| ≤ ||
1

√
2πσ2

n−k xie
−
|xk+1:n|

2

2σ2 ||L1(Rn−k)||lσ||L1(Rk)γ||yj lσ||L1(Rk)

Using ||lσ||L1(Rk)−||l||L1(Rk)
σ→+0→ 0, ||yj lσ||L1(Rk)−||yj l||L1(Rk)

σ→+0→ 0, we see the boundedness
of ||lσ||L1(Rk)γ||yj lσ||L1(Rk) and proceed:

≤ C|| 1
√

2πσ2
n−k xie

−
|xk+1:n|

2

2σ2 ||L1(Rn−k)

It is easy to see that || 1√
2πσ2n−k

xie
−
|xk+1:n|

2

2σ2 ||L1(Rn−k) → 0 as σ → 0, therefore
〈xifσ|M |xjfσ〉 → 0.

Similarly, we can prove that 〈xifσ|M |xjfσ〉 → 0 if i, j > k.

The entries of the main k × k minor [〈xifσ|M |xjfσ〉]1≤i,j≤k are bounded, because:

TrMfσ =
1

(2πσ2)n−k

∫∫
Rn×Rn

x · ye−
|xk+1:n|

2

2σ2 lσ(x1:k)M(x,y)e−
|yk+1:n|

2

2σ2 lσ(y1:k)dxdy ≤

γ

(2πσ2)n−k

∫∫
Rn×Rn

(|x1:k ·y1:k|+|xk+1:n ·yk+1:n|)e−
|xk+1:n|

2+|yk+1:n|
2

2σ2 lσ(x1:k)lσ(y1:k)dxdy ≤

γ

∫∫
Rn×Rn

|x1:k · y1:k|lσ(x1:k)lσ(y1:k)dx1:kdy1:k + γ||lσ||2L1
(n− k)σ2 ≤

γ

k∑
j=1

||yj lσ||2L1(Rk) + γ||lσ||2L1
(n− k)σ2

Again, using ||lσ||L1(Rk) − ||l||L1(Rk)
σ→+0→ 0, ||yj lσ||L1(Rk) − ||yj l||L1(Rk)

σ→+0→ 0, we obtain the
boundedness of RHS.
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Corollary 1. For any f ∈ Gk, limσ→0R(fσ) = 0.

Proof. W.l.o.g. we can assume that f = Tl⊗δn−k, l ∈ S(Rk). By lemma, all entries ofMfσ except
those of the main k × k minor approach 0 as σ → 0. This means that

lim
σ→+0

Q(fσ) = 0

where Q(fσ) =
∑n
i=k+1〈xifσ|M |xifσ〉. Let v1, · · · ,vn be unit eigenvectors of Mfσ correspond-

ing to the eigenvalues λ1 ≥ · · · ≥ λn, P =
∑n
i=k+1 eie

T
i , then

R(fσ) =

n∑
i=k+1

λi = min
pi∈[0,1],

∑n
1 pi=n−k

n∑
i=1

λipi ≤
n∑
i=1

λiTr (Pviv
T
i P ) = Tr (PMfσP ) = Q(fσ)

Since R(fσ) ≤ Q(fσ), we obtain limσ→0R(fσ) = 0.

D.2.1 PROOF OF THEOREM 8

Proof. Suppose that a sequence {fi}∞s=1 ⊆ S(Rn) regularly solves (7) and T ∈ Lim
i→∞

fi. W.l.o.g.

we can assume that Tfi →∗ T and Tr(Mfi) is bounded and I(fi) + λiR(fi) ≤ inf
f∈S(Rn)

I(f) +

λiR(f) + εi, εi → 0. Below we use continuity of I and corollary 1:

inf
f∈S(Rn)

I(f) + λiR(f) ≤ inf
f∈Gk

inf
σ>0

I(fσ) + λiR(fσ) ≤ inf
f∈Gk

lim
σ→+0

I(fσ) + λiR(fσ) ≤ inf
f∈Gk

I(f)

from which we conclude that λiR(fi) ≤ inf
f∈Gk

I(f) + εi and, therefore, R(fi)
i→∞→ 0.

For each l, let us define Pl as the projection operator to a subspace spanned by first principal com-
ponents of the matrix

√
Mfl , i.e.

Pl =

k∑
i=1

vliv
l
i
T

where vl1, ...,v
l
k are orthonormal eigenvectors that correspond to k largest eigenvalues of

√
Mfl .

From the Eckart-Young-Mirsky theorem we see that R(fl) = ||
√
Mfl − Pl

√
Mfl ||2F . Since a

set of all projection operators {P ∈ Rn×n|P 2 = P, PT = P} is a compact subset of Rn2

, one
can always find a projection operator P =

∑k
i=1 viv

T
i and a growing subsequence {ls} such that

||Pls − P ||F → 0 as s→∞. Thus, for the subsequence {fls} we have:

||
√
Mfls

− P
√
Mfls

||F = ||
√
Mfls

− Pls
√
Mfls

+ Pls

√
Mfls

− P
√
Mfls

||F ≤

||
√
Mfls

− Pls
√
Mfls

||F + ||Pls − P ||F ||
√
Mfls

||F =
√
R(fls) + ||Pls − P ||F

√
Tr(Mfs)

and using the boundedness of Tr(Mfs) we obtain ||
√
Mfls

− P
√
Mfls

||F → 0.

Since ||
√
Mfls

−P
√
Mfls

||F → 0, let us complete v1, ...,vk to an orthonormal basis v1, ...,vn and
make the change of variables yi = vTi x. Let us denote V = [v1, ...,vn] and let V T = [w1, ...,wn].
Then, after that change of variables any function f(x) corresponds to f ′(y) = f(V y) and the kernel
M corresponds to M ′(y,y′) = M(V y, V y′). If we apply that change of variables in the integral
expression of 〈xif |M |xjf〉, we will obtain:

〈xif |M |xjf〉 = 〈wT
i yf

′|M ′|wT
j yf

′〉 = wT
i [〈yi′f ′|M ′|yj′f ′〉]n×nwj ⇒

Re 〈xif |M |xjf〉 = wT
i [Re 〈yi′f ′|M ′|yj′f ′〉]n×nwj

I.e. Mf = VM ′f ′V
T , or M ′f ′ = V TMfV . Note that P = V IknV

T where Ikn is a diagonal matrix
whose main k × k minor is the identity matrix, and all other entries are zeros. Using the fact that
the Frobenius norm of orthogonally similar matrices are equal and the identity V T

√
Mfls

V =√
V TMfls

V , we obtain:

||
√
Mfls

− P
√
Mfls

||F = ||V T
√
Mfls

V − V TP
√
Mfls

V ||F =
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||
√
V TMfls

V − V TV IknV T
√
Mfls

V ||F = ||
√
M ′f ′ls

− Ikn
√
M ′f ′ls

||F

Thus, the property ||
√
Mfls

− P
√
Mfls

||F → 0 implies that:

Re 〈yif ′ls |M
′|yjf ′ls〉 → 0, IF i > k

Moreover, for i = j we have Re 〈yif ′ls |M
′|yjf ′ls〉 = 〈yif ′ls |M

′|yjf ′ls〉. It is easy to see that after
the change of variables we still have f ′ls →

∗ TV . Since f ′ls ∈ S(Rn), we have yif ′ls ∈ S(Rn)
and, therefore, yif ′ls ∈ L2(Rn). Let us treat now M ′ as an operator O(M ′) : L2(Rn) →
L2(Rn), O(M ′)[f ](x) =

∫
RnM

′(x,y)f(y)dy. Let us take any function φ ∈ L2(Rn) such that
ψ = O(M ′)[φ] ∈ S(Rn). Since O(M ′) is a strictly positive self-adjoint operator, by the Cauchy-
Schwarz inequality, we obtain:

|〈yif ′ls , O(M ′)[φ]〉| ≤
√
〈yif ′ls |M

′|yif ′ls〉
√
〈φ,O(M ′)[φ]〉

Therefore, for any ψ ∈ R[O(M ′)] ∩ S(Rn) and i > k we have lims→∞〈yif ′ls , ψ〉 =
lims→∞〈f ′ls , yiψ〉 = 0. Since f ′ls →

∗ TV we obtain 〈TV , yiψ〉 = 〈yiTV , ψ〉 = 0 for any
ψ ∈ R[O(M ′)]∩S(Rn). But the denseness ofR[O(M ′)]∩S(Rn) in S(Rn) implies that yiTV = 0.

Using lemma 2 and (TV )V T = T we obtain T ∈ G′k. Thus, we proved that Tfi → T ∈ G′k.

Since I(fi) ≤ I(fi) + λiR(fi) ≤ inf
f∈G′k

I(f) + εi and I is continuous, we finally get that I(T ) ≤

inf
f∈G′k

I(f), i.e. T ∈ Arg min
f∈G′k

I(f).

D.2.2 PROOF OF THEOREM 9

Proof. Suppose f∗ ∈ Arg min
f∈G′k

I(f)
⋂
Bk, i.e. f∗ ∈ Bk and I(f∗) = min

f∈G′k
I(f). Since f∗ ∈ Bk,

then there exists a sequence {si} ⊆ Gk such that Tsi →∗ f∗ and TrMsi <∞.

Let us define siσ ∈ S(Rn) as
Tsiσ = Tsi ∗Gnσ

Since limσ→0R(siσ) = 0 (lemma 4), there exists σi > 0, such that R(siσ) < 1
i whenever 0 <

σ ≤ σi. Also, by definition TrMsi = limσ→0 TrMsiσ
. Therefore, there exists σ′i > 0, such that

TrMsiσ
< TrMsi + 1 whenever 0 < σ ≤ σ′i.

If we set σ∗i = min{σi, σ′i, 1
i }, then a sequence {siσ∗i } ⊆ S(Rn) satisfies:

lim
i→∞

R(siσ∗i ) = 0

TrMsi
σ∗
i

<∞

and (using lemma 1)
Tsi

σ∗
i

→∗ f∗

Due to the continuity of I we have

lim
i→∞

I(siσ∗i ) = I(f∗)

Now we set fi = siσ∗i , λi = 1√
R(fi)

and we obtain the needed sequence:

lim
i→∞

I(fi) = lim
i→∞

I(fi) + λiR(fi) = I(f∗), lim
i→∞

λi = +∞

where TrMfi is bounded. It remains to check that our sequence regularly solves (7), i.e.
limi→∞ inf

f∈S(Rn)
I(f)+λiR(f) = I(f∗) (this will imply limi→∞ I(fi)+λiR(fi)− inf

f∈S(Rn)
I(f)+

λiR(f) = 0). The inequality in one direction is obvious,

inf
f∈S(Rn)

I(f) + λiR(f) ≤ inf
f∈Gk

inf
σ>0

I(fσ) + λiR(fσ) ≤ inf
f∈Gk

lim
σ→+0

I(fσ) + λiR(fσ) =
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inf
f∈Gk

I(f) = I(f∗)

Let us prove the inverse inequality.

Since rsol (I(f), R(f)) 6= ∅, there exists {f̃i} ⊆ S(Rn) such that:

I(f̃i) + λ̃iR(f̃i) ≤ inf
f∈S(Rn)

I(f) + λ̃iR(f) + εi, lim
s→+∞

λ̃i = +∞, lim
i→+∞

εi = 0,TrMf̃i
<∞

and a = limi→+∞ Tf̃i . From theorem 5 we obtain a ∈ Arg min
f∈G′k

I(f).

One can always find a subset {λ̃di} ⊆ {λ̃i} such that λ̃di < λi, λ̃di →∞ and obtain:

inf
f∈S(Rn)

I(f) + λiR(f) ≥ inf
f∈S(Rn)

I(f) + λ̃diR(f) ≥

I(f̃di) + λ̃diR(f̃di)− εdi ≥ I(f̃di)− εdi
Therefore,

lim
i→∞

inf
f∈S(Rn)

I(f) + λiR(f) ≥ lim
i→∞

I(f̃di)− εdi = I(a) = inf
f∈G′k

I(f) = I(f∗)

This proves that {fi} regularly solves (7) and limi→∞ fi = f∗ i.e. f∗ ∈ rsol (I(f), R(f)).

E PROOF OF THEOREM 5

Again we will prove a more general statement.

Theorem 11. If M is a proper and a real-valued kernel, O(M) is bounded and TrMf <∞, then
Sf ∈ B(L∗2(Rn),Rn) and SfS

†
f = Mf . Moreover,

R(f) = min
S∈B(L∗2(Rn),Rn),rankS≤k

||Sf − S||2∗

and the minimum is attained at S = PfSf where Pf =
∑k
i=1 uiu

†
i and {ui}k1 are unit eigenvectors

of Mf corresponding to the k largest eigenvalues (counting multiplicities).

Proof. The boundedness of Sf follows from the Cauchy-Schwarz inequality:

|Sf [φ]i|2 = |Re 〈
√
O(M)[xif ], φ〉|2 ≤ 〈

√
O(M)[xif ],

√
O(M)[xif ]〉〈φ, φ〉 =

〈xif,O(M)[xif ]〉〈φ, φ〉
and therefore:

||Sf [φ]||2 =

n∑
i=1

|Sf [φ]i|2 ≤ TrMf ||φ||2L2(Rn)

I.e. we have checked that Sf is bounded.

By definition, S†f : Rn → Lr2(Rn) × Lr2(Rn) and 〈u, Sf [φ1, φ2]〉 = 〈S†f [u], [φ1, φ2]〉,u ∈
Rn, [φ1, φ2] ∈ Lr2(Rn) × Lr2(Rn). Let us denote f1 = Re f, f2 = Im f . It is easy to see that
the following operator satisfies the latter identity:

O[u] =
[√

O(M)[f1(x)xTu],
√
O(M)[f2(x)xTu]

]
Since the adjoint is unique, then S†f = O. Let us calculate SfS

†
f :

u
S†f−−→

[√
O(M)[f1(x)xTu],

√
O(M)[f2(x)xTu]

] Sf−−→〈x1f1(x),
√
O(M)[

√
O(M)[f1(x)xTu]]〉+ 〈x1f2(x),

√
O(M)[

√
O(M)[f2(x)xTu]]〉

· · ·
〈xnf1(x),

√
O(M)[

√
O(M)[f1(x)xTu]]〉+ 〈xnf2(x),

√
O(M)[

√
O(M)[f2(x)xTu]]〉

 =
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∑2
j=1〈x1fj(x), O(M)[fj(x)xTu]〉

· · ·∑2
j=1〈xnfj(x), O(M)[fj(x)xTu]〉

 = [Re 〈xif,M [xjf ]〉]
1≤i,j≤n u = Mfu

Thus, SfS
†
f = Mf . Since TrSfS

†
f < ∞ and ||S†f [u]||2 ≤ 〈u,Mfu〉, we obtain S†f is a bounded

operator.

Let u1, · · ·un be orthonormal eigenvectors of Mf = SfS
†
f and λ1 ≥ · · · ≥ λn′ > 0 be corre-

sponding nonzero eigenvalues. For σi =
√
λi let us define vi =

S†f [ui]

σi
. Vector vi corresponds to a

pair of functions:

vi =
1

σi

[√
O(M)[f1(x)xTui],

√
O(M)[f2(x)xTui]

]
∈ Lr2(Rn)× Lr2(Rn)

It is easy to see that v1, · · ·vn′ is an orthonormal basis in ImS†f , and S†f can be expanded in the
following way:

S†f =

n′∑
i=1

σiviu
†
i

and therefore, SVD for Sf is:

Sf =

n′∑
i=1

σiuiv
†
i

By the Eckart-Young-Mirsky theorem (see Theorem 4.4.7 from Hsing & Eubank (2015)), an optimal
S in min

S∈B(L∗2(Rn),Rn),rankS≤k
||Sf − S||2∗ is defined by a truncation of SVD for Sf at kth term, i.e.:

S =

k∑
i=1

σiuiv
†
i = PfSf (16)

where Pf =
∑k
i=1 uiu

†
i is a projection operator to first k principal components ofMf . Moreover,

||Sf − PfSf ||2 =
∑n′

i=k+1 σ
2
i = ||Mf ||n−k = R(f).

F THE ALTERNATING SCHEME IN THE DUAL SPACE FOR M(x,y) = ζ(x− y)

When M(x,y) = ζ(x − y), the alternating scheme 1 allows for a reformulation in the dual space.
By this we mean that in Scheme 1 we substitute φ̂t for the original φt. If the primal Scheme 1 deals

with operators Sφ, Sφt−1
, the dual version deals with vectors of functions

√
ζ̂ ∂φ̂∂x ,

√
ζ̂ ∂φ̂t−1

∂x . The
substitution is based on the following simple fact:

Theorem 12. IfM(x,y) = ζ(x−y), ζ, ζ̂ ∈ C(Rn) and ∀x ζ̂(x) > 0, then there exist constants c1
and c2 such that ||Sφ − Pt−1Sφt−1

||2∗ = c1|| ||∂φ̂∂x − Pt−1
∂φ̂t−1

∂x ||2 ||
2
L2,ζ̂(Rn) and 〈xif |M |xjf〉 =

c2〈 ∂f̂∂xi ,
∂f̂
∂xj
〉L2,ζ̂(Rn)

Proof. Let f : Rn → C be such that ||xif ||L2(Rn) <∞.

O(M)[ψ] = ζ ∗ ψ ⇒ F {O(M)[ψ]} ∼ ζ̂ψ̂ ⇒ F
{√

O(M)[ψ]
}
∼
√
ζ̂ψ̂ ⇒

Sf [ψ]i = Re 〈xif,
√
O(M)[ψ]〉 ∼ Re 〈F {xif} ,F

{√
O(M)[ψ]

}
〉 ∼

Re 〈i ∂f̂
∂xi

,

√
ζ̂ψ̂〉 = Re 〈i

√
ζ̂
∂f̂

∂xi
, ψ̂〉
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Since Sf [ψ]i = Re 〈(Sf )i, ψ〉 ∼ Re 〈(̂Sf )i, ψ̂〉, we obtain

(̂Sf )i = κ

√
ζ̂
∂f̂

∂xi
(17)

where κ is a constant.

Let us now introduce a vector of functions Vf = [(Sf )1, · · · , (Sf )n]
T ∈ Ln2 (Rn). Using 17 we

obtain (̂Sf )i = κ

√
ζ̂ ∂f̂∂xi , and therefore:

V̂f = κ

√
ζ̂
∂f̂

∂x

Thus, the expression ||Sφ − Pt−1Sφt−1 ||2∗ in the alternating scheme can be rewritten as:

||Vφ − Pt−1Vφt−1
||2Ln2 (Rn) ∼ ||κ

√
ζ̂
∂φ̂

∂x
− Pt−1κ

√
ζ̂
∂φ̂t−1

∂x
||2Ln2 (Rn) ∼

|| ||∂φ̂
∂x
− Pt−1

∂φ̂t−1

∂x
||2 ||2L2,ζ̂(Rn)

The matrix Mf can also be calculated from f̂ using the following identity:

〈xif,M [xjf ]〉 = 〈xif, ζ ∗ (xjf)〉 ∼ 〈 ∂f̂
∂xi

, ζ̂
∂f̂

∂xj
〉 = 〈 ∂f̂

∂xi
,
∂f̂

∂xj
〉L2,ζ̂(Rn)

Let us introduce a function Ĩ such that Ĩ(f) = I(f̂). Then, we see that all steps in Scheme 1 can be
performed with φ̂t rather than with φt, using the algorithm 2.

Informally, the dual algorithm works as follows: at each iteration t we compute a function φ̂t adapt-
ing it to data (the term Ĩ(φ̂)) and adapting its gradient field to the rank reduced gradient field of
the previous φ̂t−1. For a sufficiently large T , it will converge and φ̂T ≈ φ̂T−1. Then, the second
term in the last step will be approximately equal to λ|| ||∂φ̂T∂x − PT−1

∂φ̂T
∂x ||2 ||

2
L2,ζ̂(Rn), enforcing

∂φ̂T
∂x ≈ PT−1

∂φ̂T
∂x for random x ∼ ζ̂

||ζ̂||L1

. Thus, gradients ∂φ̂T
∂x lie in a k-dimensional subspace

colPT−1. This last property is a characteristic property of functions from Fk.

Algorithm 2 The alternating scheme in the dual space.

P0 ←− 0, φ̂0 ←− 0
for t = 1, · · · , T do
φ̂t ← arg min

φ̂
Ĩ(φ̂) + λ̃|| ||∂φ̂∂x − Pt−1

∂φ̂t−1

∂x ||2 ||
2
L2,ζ̂(Rn)

Calculate Mt =
[
Re 〈∂φ̂t∂xi

, ∂φ̂t∂xj
〉L2,ζ̂(Rn)

]
Find {vi}n1 s.t. Mtvi = λivi, λ1 ≥ · · · ≥ λn
Pt ←−

∑k
i=1 viv

T
i

Output: v1, · · · ,vk

G A NUMERICAL ALTERNATING SCHEME FOR MMD

G.1 STRUCTURE OF F [Pk]

From theorems 1 and 2, F [Pk] ⊆ Fk
∗
. In fact, a famous theorem of Bochner (1932) gives us that

the Fourier transform of any positive finite Borel measure is a continuous positive definite function.
That is, if f ∈ F [P], then for any distinct y1, · · · ,ys ∈ Rn the matrix [f(yi − yj)]i,j=1,n is
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positive semidefinite. Since µ(Rn) = 1, we additionally have f(0) = 1. Let PDF denote the set of
all continuous positive definite functions on Rn and

Mk = {f ∈ PDF|∃v1, ...,vk ∈ Rn, g : Rk → C s.t. f(x) = g(vT1 x, ...,v
T
k x), f(0) = 1} (18)

Thus, the following characterization of F [Pk] becomes evident.

Theorem 13. F [Pk] =Mk.

G.2 THE DUAL FORM OF MMD

Let us define another gaussian kernel γ(x) = e−
h2|x|2

2 = F [k]. Let pdata(x) denote the charac-
teristic function of the random vector Xdata ∼ µdata. By definition, pdata(x) = E[eiXT

datax] =
1
N

∑N
i=1 e

ixTi x. Thus, pdata ∝ F−1[µdata] and µdata ∝ F [pdata].

Using the isometry property of the Fourier transform for L2(Rn) and the convolution theorem, we
see that:

dMMD(µ, ν) = ||k ∗ µ− k ∗ ν||L2(Rn) ∝ ||γ(x)(F [µ](x)−F [ν](x))||L2(Rn)

Thus, from Theorem 13 we obtain that the task 6 is equivalent to:

||pdata − q||L2,γ2 (Rn) → min
q∈Mk

(19)

G.3 ALGORITHMS FOR MMD

Let Πk : Gk → {1,+∞} and Mk : Fk → {1,+∞} be simple penalty functions:

Πk(φ) = 1, if φ ∈ Pk and Πk(φ) =∞, otherwise

Mk(φ) = 1, if φ ∈Mk and Mk(φ) =∞, otherwise

Then, the task 6 is equivalent to:

I(φ) = d2
MMD(µdata, φ)Πk(φ)→ inf

φ∈Gk

From the result of the previous section we see that if I(φ) = Ĩ(φ̂), then:

Ĩ(φ̂) = ||pdata − φ̂||2L2,γ2 (Rn)Mk(φ̂)

Thus, the Algorithm 3 is an adaptation of Algorithm 2 to MMD.

Algorithm 3 The alternating scheme in the dual space for MMD
P0 ←− 0, q0 ←− 0
for t = 1, · · · , T do

1 qt ←− arg min
q∈Mk

∫
Rn γ(x)2|pdata(x)− q(x)|2dx + λ

∫
Rn ζ̂(x)|| ∂q∂x − Pt−1

∂qt−1

∂x ||
2
2dx

2 Calculate Mt =
[
〈 ∂qt∂xi

, ∂qt∂xj
〉L2,ζ̂(Rn)

]
3 Find {vi}n1 s.t. Mtvi = λivi, λ1 ≥ · · · ≥ λn
4 Pt ←−

∑k
i=1 viv

T
i

Output: L = span(v1, · · · ,vk)

If the function pdata is real-valued, then only real-valued functions can appear in the Algorithm 3.
This assumption can be satisfied by adding reflections of initial points to the dataset (after it was
centered).

At step 1, we search over q given in the following parameterized form:

qθ(x) =

nn∑
i=1

αicos(ω
T
i x) (20)
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where αi > 0 and
∑nn
i=1 αi = 1. In our implementation, we set [αi]i=1,nn = softmax([ui]i=1,nn)

and ui’s are unconstrained. The number of neurons in a single layer neural network with a cosine
activation function, nn, is a hyperparameter. Let us denote parameters {ωi, ui}nn

i=1 by θ. It is easy
to see the function qθ is positive definite. Moreover, using Theorem 2 from Barron (1993), it can
be shown that a set of all such functions, i.e. the convex hull of {cos(ωTx)|ω ∈ Rn}, is dense
in a set of real-valued functions from Mk. Though this parameterization is quite natural, finding
architectures with more expressive power in a space of real-valued positive definite functions is an
open problem.

Now, to minimize

Ψ(θ) =

∫
Rn
γ(x)2|pdata(x)− qθ(x)|2dx + λ

∫
Rn
ζ̂(x)||∂qθ

∂x
− Pt−1

∂qθt−1

∂x
||22dx

with stochastic gradient descent methods (in our case, the Adam optimizer) we need to have an
unbiased estimator of

∇θΨ(θ) ∝ Ez∼γ2∇θ|pdata(z)− qθ(z)|2 + λ̃Ez′∼ζ̂∇θ||
∂qθ
∂x

(z′)− Pt−1
∂qθt−1

∂x
(z′)||22

where z ∼ f denotes that the random vector z is sampled according to the probability density
function f(x)∫

Rn f(x)dx
. Thus, a natural estimator of the gradient is:

1

m

m∑
i=1

∇θ|pdata(zi)− qθ(zi)|2 +
λ̃

m

m∑
i=1

∇θ||
∂qθ(ξi))

∂x
− Pt−1

∂qθt−1(ξi))

∂x
||22

where {zi}mi=1 ∼iid γ2 and {ξi}mi=1 ∼iid ζ̂.

The last important issue with the practical numerical algorithm is the calculation of Mt at step 2. It
is easy to see that:

Mt = Eχ∼ζ̂
∂qt
∂x

(χ)
∂qt
∂x

(χ)T

In practice we sample χ1, · · · ,χl ∼ ζ̂ and estimate Mt as follows:

Mt ≈
1

l

l∑
i=1

∂qt
∂x

(χi)
∂qt
∂x

(χi)
T

The details of the numerical algorithm are given below 4. In all our experiments with MMD we set
ζ̂ = γ2.

Algorithm 4 The numerical algorithm for MMD. Hyperparameters: λ̃, h, σ,m, l, α, β1, β2,nn.
P0 ←− 0, θ0 ←− 0
for t = 1, · · · , T do

while θ has not converged do
Sample {zi}mi=1 ∼iid γ2

Sample {ξi}mi=1 ∼iid ζ̂
L←− 1

m

∑m
i=1 |pdata(zi)− qθ(zi)|2 + λ̃

m

∑m
i=1 ||

∂qθ(ξi))
∂x − Pt−1

∂qθt−1
(ξi))

∂x ||22
θ ←− Adam(∇θL, θ, α, β1, β2)

θt ←− θ
Sample {χi}li=1 ∼iid ζ̂
Calculate Mt = 1

l

∑l
i=1

∂qθt (χi))

∂x

∂qθt (χi))

∂x

T

Find {vi}n1 s.t. Mtvi = λivi, λ1 ≥ · · · ≥ λn
Pt ←−

∑k
i=1 viv

T
i

Output: v1, · · · ,vk
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H A NUMERICAL ALTERNATING SCHEME FOR HM

H.1 THE DUAL FORM OF HM

Due to a well-known relationship between moments of the probability measure µ and its character-
istic function p, i.e. ismi1···is = ∂sp(0)

∂xi1 ···∂xis
, the task 7 is equivalent to:

4∑
s=1

λs
ns

∑
1≤i1,··· ,is≤n

| ∂
spdata(0)

∂xi1 · · · ∂xis
− ∂sq(0)

∂xi1 · · · ∂xis
|2 → min

q∈Mk

(21)

Note that the maximum mean discrepancy distance and the distance based on higher moments are
substantially different. Indeed, even if we set h as a large value (which makes 1

h ≈ 0), the MMD
distance, unlike the HM distance, neglects higher order derivatives of the characteristic functions in
the neigbourhood of the origin. Moreover, from the dual form 21 it is clear that dHM(µdata, ν) is a
degenerate case of a weighted Sobolev norm between characteristic functions of µdata and ν.

H.2 ALGORITHMS FOR HM

Analogously to the case of MMD we see that the task 7 is equivalent to:

I(φ) = dHM(µdata, φ)2Πk(φ)→ inf
φ∈Gk

and

Ĩ(φ̂) =

4∑
s=1

λs
ns

∑
1≤i1,··· ,is≤n

| ∂
spdata(0)

∂xi1 · · · ∂xis
− ∂sφ̂(0)

∂xi1 · · · ∂xis
|2Mk(φ̂)

Thus, the Algorithm 5 is an adaptation of Algorithm 2 to HM.

Algorithm 5 The alternating scheme in the dual space for HM
P0 ←− 0, q0 ←− 0
for t = 1, · · · , T do

1 qt ←− arg min
q∈Mk

∑4
s=1

λs
ns

∑
1≤i1,··· ,is≤n |

∂spdata(0)
∂xi1 ···∂xis

− ∂sq(0)
∂xi1 ···∂xis

|2 + λ
∫
Rn ζ̂(x)|| ∂q∂x −

Pt−1
∂qt−1

∂x ||
2
2dx

2 Calculate Mt =
[
〈 ∂qt∂xi

, ∂qt∂xj
〉L2,ζ̂(Rn)

]
3 Find {vi}n1 s.t. Mtvi = λivi, λ1 ≥ · · · ≥ λn
4 Pt ←−

∑k
i=1 viv

T
i

Output: L = span(v1, · · · ,vk)

Again, as in a numerical algorithm for MMD, at step 1, we search over q given in the form 20. The
objective of step 1 can be represented as:

Φ(θ) =

4∑
s=1

λsEi1,··· ,is∼iidU(1,n)|
∂s(pdata − qθ)(0)

∂xi1 · · · ∂xis
|2 + λ̃Ez′∼ζ̂ ||

∂qθ
∂x

(z′)− Pt−1
∂qθt−1

∂x
(z′)||22

where U(1, n) is the discrete uniform distribution over {1, · · · , n}. To apply the stochastic gradient
descent methods we need to have an unbiased estimator of∇θΦ(θ) which is equal to:

4∑
s=1

λsEi1,··· ,is∼iidU(1,n)∇θ|
∂s(pdata − qθ)(0)

∂xi1 · · · ∂xis
|2 + λ̃Ez′∼ζ̂∇θ||

∂qθ
∂x

(z′)− Pt−1
∂qθt−1

∂x
(z′)||22

Thus, a natural estimator of the gradient is:
4∑
s=1

λs
m1

m1∑
i=1

∇θ|
∂s(pdata − qθ)(0)

∂xa[s,i,1]∂xa[s,i,2] · · · ∂xa[s,i,s]
|2 +

λ̃

m2

m2∑
i=1

∇θ||
∂qθ(ξi))

∂x
− Pt−1

∂qθt−1
(ξi))

∂x
||22

where {a[s, i, j]}s=1,4,i=1,m1,j=1,s ∼iid U(1, n) and {ξi}
m2
i=1 ∼iid ζ̂. Overall, we obtain the fol-

lowing Algorithm 6.
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Algorithm 6 The numerical algorithm for HM. Hyperparameters:
λ̃, {λs}s=1,4,m1,m2, l, α, β1, β2,nn.

P0 ←− 0, θ0 ←− 0
for t = 1, · · · , T do

while θ has not converged do
Sample {a[s, i, j]}s=1,4,i=1,m1,j=1,s ∼iid U(1, n)

Sample {ξi}
m2
i=1 ∼iid ζ̂

L ←−
∑4
s=1

λs
m1

∑m1

i=1∇θ|
∂s(pdata−qθ)(0)

∂xa[s,i,1]∂xa[s,i,2]···∂xa[s,i,s]
|2 + λ̃

m2

∑m2

i=1∇θ||
∂qθ(ξi))
∂x −

Pt−1
∂qθt−1

(ξi))

∂x ||22
θ ←− Adam(∇θL, θ, α, β1, β2)

θt ←− θ
Sample {χi}li=1 ∼iid ζ̂
Calculate Mt = 1

l

∑l
i=1

∂qθt (χi))

∂x

∂qθt (χi))

∂x

T

Find {vi}n1 s.t. Mtvi = λivi, λ1 ≥ · · · ≥ λn
Pt ←−

∑k
i=1 viv

T
i

Output: v1, · · · ,vk

I A NUMERICAL ALTERNATING SCHEME FOR WD

By Theorem 6, the task 13 is equivalent to minµ∈PkW (µ, µdata), or to the following task:

I(φ)→ inf
φ∈Gk

where I(Tµ) = W (µ, µdata) if µ ∈ Pk and I(φ) = ∞, if otherwise. The alternating scheme 1 is
designed to solve the penalty form of the problem, i.e.

I(φ) + λR(φ)→ min
φ∈S(Rn)

which is equivalent to
W (φ, µdata) + λR(φ)→ min

φ∈Sp(Rn)

where Sp(Rn) ⊆ S(Rn) is a set of Schwartz functions that can serve as pdf: φ(x) ≥ 0,∫
Rn φ(x)dx = 1. A numerical version of the alternating scheme requires additional specifications

on: a) how to minimize over φ at step 1, and b) how to estimate Mφt .

I.1 HOW TO MINIMIZE OVER φ?

In the case of WD, the minimization step of the alternating scheme makes the following:

φt ←− arg min
φ∈Sp(Rn)

W (φ, µdata) + λ||Sφ − Pt−1Sφt−1
||2 (22)

where Sf =
√
O(M)[xf(x)].

For a numerical implementation of that step we need to choose some family of functions that is
dense in Sp(Rn) (or, rich enough to approach the solution µ∗). Following the tradition of GAN
research let us assume that the family is given in the following form2:

H = {φθ|φθ(x) is pdf of random vector gθ(z), z ∼ p(z), θ ∈ Θ} (23)

where {gθ|θ ∈ Θ} is a parameterized family of smooth functions (usually, a neural network) and
p(z) is some fixed distribution (usually, the gaussian distribution). Following Arjovsky et al. (2017),
we make the assumption 1. In a numerical algorithm we need an access to a procedure that samples
according to φθ(x), not the function itself.
Assumption 1. ||gθ′(z′)− gθ(z)|| ≤ L(θ, z)(||θ′ − θ||+ ||z′ − z||) where

Ez∼p(z)L(θ, z) < +∞
2IfH ⊆ S(Rn) is not satisfied, then we can chooseHε = {φθ ∗Gnε |θ ∈ Θ} for a very small ε.
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Thus, instead of solving 22 we solve:

φt ←− arg min
φ∈H

W (φ, µdata) + λ||Sφ − Pt−1Sφt−1 ||2

taking into account that φt−1 ∈ H.

The Kantorovich-Rubinstein duality theorem gives us that:

W (φθ, µdata) = max
f :||fx||≤1

Ex∼µdata
[f(x)]− Ez∼p(z)[f(gθ(z))]

which turns 22 into the following minimax task:

φt ←− arg min
φ∈H

max
f :||fx||≤1

Ex∼µdata
[f(x)]− Ez∼p(z)[f(gθ(z))] + λ||Sφ − Pt−1Sφt−1

||2 (24)

In practice, we choose a family of functions L = {fw|w ∈ W} and internal maximization is made
over w ∈ W with an additional penalty term that penalizes a violation of the Lipschitz condition:
∀x : ||fx|| ≤ 1.

A family of minimax algorithms for the minimization of W (φθ, µemp) was developed in a series
of papers Arjovsky et al. (2017); Gulrajani et al. (2017); Wei et al. (2018). The standard minimax
scheme that gained popularity in GAN literature iterates two steps: a) niter times make a gradient
ascent over w ∈ W , b) make a gradient descent over θ. The task 24 can be viewed as a Wasser-
stein GAN with an additional regularization term λT (θ) where T (θ) = ||Sφθ − Pt−1Sφθt−1

||2. To
adapt these algorithms to the minimization of our function, we only need to have an unbiased esti-
mator of the gradient ∂T∂θ . This estimator is needed for the generator to make its gradient descent
step. The discriminator’s part of the algorithm (in which we maximize over Lipschitz functions
fw) can be set in a standard fashion — we choose Petzka et al. (2018)’s version, in which the term
max{0, ||∂fw∂x (ξx + (1 − ξ)gθ(z))|| − 1}2 enforces Lipschitz condition (see step (*) of the Algo-
rithm 7).

Algorithm 7 Numerical algorithm for WD. We use M(x,y) = e−
||x−y||2

n and default values of
λ = 10,Λ = 100, ncritic = 5,m = 40, l = 10000n, α = 0.00001, β1 = 0.5, β2 = 0.9

P0 ←− 0, θ0 ←− 0
for t = 1, · · · , T do

Minimax realization of min
θ
W (φθ, µemp) + λT (θ) (*):

while θ has not converged do
for s = 1, ..., ncritic do

Discriminator updates w
Sample {zi}mi=1, {z′i}mi=1 ∼ p(z)

L←− − 1
m

∑m
i=1 fw(gθ(zi)) + λ

∑
i,j Ξ(θ,zi,z

′
j)

m2 (Ξ is defined in equation 25)
θ ← Adam(∇θL, θ, α, β1, β2)

θt ←− θ
Realization of step (**):
Sample {zi}li=1, {z′i}li=1 ∼ p(z)
Mt ←−

∑
ij gθt(zi)gθt(z

′
j)
TM(gθt(zi), gθt(z

′
j))

Find {vi}n1 s.t. Mtvi = λivi, λ1 ≥ · · · ≥ λn
Pt ←−

∑k
i=1 viv

T
i

Output: v1, · · · ,vk

I.2 HOW TO ESTIMATE ∂T
∂θ AND Mφθt

?

Another important aspect of the numerical algorithm is the complexity of estimating the matrix
Mφθt

at step (**). The following theorem shows that we only need to sample z ∼ p a sufficient
number of times to estimate ∂T

∂θ and Mφθt
.

Theorem 14. If φθ is pdf of the random vector gθ(z), z ∼ p(z), then
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∂T

∂θ
= Ez,z′∼p

∂Ξ(θ, z, z′)

∂θ

Mφθ = Ez,z′∼pgθ(z)gθ(z
′)TM(gθ(z), gθ(z

′))

where

Ξ(θ, z, z′) = (gθ(z) · gθ(z′))M(gθ(z), gθ(z
′))−

2(gθ(z) · Pt−1gθt−1
(z′))M(gθ(z), gθt−1

(z′))
(25)

and RHS is well-defined.

I.2.1 DEFINITION OF H

Specifically, for robust PCA/outlier pursuit applications, we define φθ(x) as a probability density
function of the random vector a + b, where a, b are independent and a is the i-th column of
matrix θ1 ∈ Rn×N (where i ∼ U(1, N) is sampled uniformly from {1, · · · , N}), b = gθ2(c),
c ∼ N (0, In) and gθ2 : Rn → Rn is a neural network with weights θ2. Thus, θ = (θ1, θ2). It
can be checked that H, defined in this way, satisfies the Assumption 1. We specifically introduce
the random vector a here because, according to Theorem 6, the ultimate solution of the problem
corresponds to θ1 = Y and b = 0. This guarantees that the solution is approachable from setH.

I.3 PROOF OF THEOREM 14

We need to following lemma.

Lemma 5. ||Sφ −PSψ||2 = Ex,y∼φ(x · y)M(x,y) +Ex,y∼ψ(x ·Py)M(x,y)− 2Ex∼φ,y∼ψ(x ·
Py)M(x,y)

Proof of lemma.

||Sφ − PSψ||2 = ||
√
O(M)[xφ(x)]− P

√
O(M)[xψ(x)]||2 =

= ||
√
O(M)[xφ(x)− Pxψ(x)]||2 =

n∑
i=1

||
√
O(M)[xiφ(x)− (Px)iψ(x)]||2 =

n∑
i=1

〈xiφ(x)|O(M)[xiφ(x)]〉+〈(Px)iψ(x)|O(M)[(Px)iψ(x)]〉−2〈(Px)iψ(x)|O(M)[xiφ(x)]〉 =

Ex,y∼φ(x · y)M(x,y) + Ex,y∼ψ(x · Py)M(x,y)− 2Ex∼φ,y∼ψ(x · Py)M(x,y)

Proof of theorem 14. Using lemma 5 we have:

T (θ) = Ex,y∼φθ (x · y)M(x,y) + Ex,y∼φθt−1
(x · Pt−1y)M(x,y)−

−2Ex∼φθ,y∼φθt−1
(x · Pt−1y)M(x,y) =

Ez,z′∼p(gθ(z) · gθ(z′))M(gθ(z), gθ(z
′))+

Ez,z′∼p(gθt−1(z) · Pt−1gθt−1(z′))M(gθt−1(z), gθt−1(z′))−

2Ez,z′∼p(gθ(z) · Pt−1gθt−1
(z′))M(gθ(z), gθt−1

(z′))

The second term does not depend on θ. Therefore,

∂T

∂θ
=

∂

∂θ
Ez,z′∼pΞ(θ, z, z′)

where

Ξ(θ, z, z′) = (gθ(z) · gθ(z′))M(gθ(z), gθ(z
′))− 2(gθ(z) · Pt−1gθt−1(z′))M(gθ(z), gθt−1(z′))
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If Ez,z′∼p
∂Ξ(θ,z,z′)

∂θ is well-defined (the proof of sufficiency of that condition is similar to the proof
of Theorem 3 from Arjovsky et al. (2017)), then, using Leibniz integral rule, we obtain:

∂

∂θ
Ez,z′∼pΞ(θ, z, z′) = Ez,z′∼p

∂Ξ(θ, z, z′)

∂θ

The fact that
Mφθ = Ez,z′∼pgθ(z)gθ(z

′)TM(gθ(z), gθ(z
′))

is obvious from the definition Mφθ = Ex,y∼φθxy
TM(x,y).

J A NUMERICAL ALTERNATING SCHEME FOR SDR

For a binary classification case, given a labeled dataset {(xi, yi)}Ni=1, xi ∈ Rn, yi ∈ C, C = {0, 1}
we formulate the sufficient dimension reduction problem as the minimization task:

J(f) = E(z,c)∼µdata,ε∼N(0,υ2In)L(c, f(z + ε))→ min
f∈Fk

where L(c, y) = −c log(y)− (1− c) log(1− y).

We apply the alternating scheme in the dual space (Algorithm 2) to this task. We set M(x,y) =

ζ(x − y), where ζ̂ is a strictly positive probability density function. A numerical version of the
scheme is given below (Algorithm 8).

At every iteration t = 1, · · · , T of the Algorithm 2 we solve the task (in our case Ĩ = J):

φ̂t ← arg min
φ̂
Ĩ(φ̂) + λ̃|| |∂φ̂

∂x
− Pt−1

∂φ̂t−1

∂x
| ||2L2,ζ̂(Rn)

In a numerical version of the algorithm we assume that φ̂ is given as a neural network fθ, i.e. our
task becomes:

θt ← arg min
θ
J(fθ) + λ̃Eξ∼ζ̂ ||

∂fθ
∂x

(ξ)− Pt−1
∂fθt−1

∂x
(ξ)||2

The gradient of the function Φ(θ) = J(fθ) + λ̃Eξ∼ζ̂ ||
∂fθ
∂x (ξ)− Pt−1

∂fθt−1

∂x (ξ)||2 equals:

∂Φ(θ)

∂θ
= E(z,c)∼Pdata,ε∼N(0,υ2In)

∂

∂θ
L(c, fθ(z + ε)) + λ̃Eξ∼ζ̂

∂

∂θ
||∂fθ
∂x

(ξ)− Pt−1
∂fθt−1

∂x
(ξ)||2

That is why ∇θL (given to Adam optimizer in the gradient descent loop) in the Algorithm 8 is an
unbiased estimator of ∂Φ(θ)

∂θ . Thus, in the “while loop” we find optimal φ̂t = fθt .

According to Algorithm 2, the next goal is to estimate Mt =
[
Re 〈∂φ̂t∂xi

, ∂φ̂t∂xj
〉L2,ζ̂(Rn)

]
. It is easy to

see that

Mt = Eχ∼ζ̂
∂φ̂t
∂x

(χ)
∂φ̂t
∂x

(χ)T = Eχ∼ζ̂
∂fθt
∂x

(χ)
∂fθt
∂x

(χ)T

From the last we see that the matrix Mt can be estimated by sampling χ ∼ ζ̂ a sufficient number of
times (the parameter l in our algorithm). All the rest is identical to Algorithm 2.

The regression version of the algorithm can be obtained by setting L(c, c′) = (c− c′)2. Implemen-
tations for different databases can be found at github.

30

https://github.com/k-nic/Alternating-Scheme


Under review as a conference paper at ICLR 2021

Algorithm 8 The numerical alternating scheme for SDR. We use υ = 1.0, ζ̂(x) = Gn0.8(x) and
default values of λ̃ = 10,m ≈ 50,m′ = 100, l = 30000, α = 0.0001, β1 = 0.5, β2 = 0.9

P0 ←− 0, θ0 ←− 0
for t = 1, · · · , T do

while θ has not converged do
Sample {(zi, ci)}mi=1 ∼ Pdata

Sample {εi}mi=1 ∼ N(0, υ2In)

Sample {ξi}m
′

i=1 ∼ ζ̂
L←− 1

m

∑m
i=1 L(ci, fθ(zi + εi)) + λ̃

m′

∑m′

i=1 ||
∂fθ(ξi))
∂x − Pt−1

∂fθt−1
(ξi))

∂x ||2
θ ←− Adam(∇θL, θ, α, β1, β2)

θt ←− θ
Sample {χi}li=1 ∼ ζ̂
Calculate Mt = 1

l

∑l
i=1

∂fθt (χi))

∂x

∂fθt (χi))

∂x

T

Find {vi}n1 s.t. Mtvi = λivi, λ1 ≥ · · · ≥ λn
Pt ←−

∑k
i=1 viv

T
i

Output: v1, · · · ,vk
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