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ABSTRACT

We reformulate unsupervised dimension reduction problem (UDR) in the lan-
guage of tempered distributions, i.e. as a problem of approximating an empirical
probability density function pemp (%) by another tempered distribution g(x) whose
support is in a k-dimensional subspace. Thus, our problem is reduced to the min-
imization of the distance between ¢ and pemp, D(g, Pemp), OVer a pertinent set of
generalized functions.

This infinite-dimensional formulation allows to establish a connection with an-
other classical problem of data science — the sufficient dimension reduction prob-
lem (SDR). Thus, an algorithm for the first problem induces an algorithm for the
second and vice versa. In order to reduce an optimization problem over distribu-
tions to an optimization problem over ordinary functions we introduce a nonneg-
ative penalty function R(f) that “forces” the support of f to be k-dimensional.
Then we present an algorithm for minimization of I(f) + AR(f), based on the
idea of two-step iterative computation, briefly described as a) an adaptation to real
data and to fake data sampled around a k-dimensional subspace found at a pre-
vious iteration, b) calculation of a new k-dimensional subspace. We demonstrate
the method on 4 examples (3 UDR and 1 SDR) using synthetic data and standard
datasets.

1 INTRODUCTION

Linear dimension reduction (LDR) is a family of problems in data science that includes principal
component analysis, factor analysis, linear multidimensional scaling, Fisher’s linear discriminant
analysis, canonical correlations analysis, sufficient dimensionality reduction (SDR), maximum au-
tocorrelation factors, slow feature analysis and more. In unsupervised dimension reduction (UDR)
we are given a finite number of points in R™ (sampled according to some unknown distribution)
and the goal is to find a “low-dimensional” affine (or linear) subspace that approximates “the sup-
port” of the distribution. The study field currently achieved a saturation level at which unifying
frameworks for the problem become of special interest [Cunningham & Ghahramani (2015). An
approach that we present in that paper is based on the theory of generalized functions, or tempered
distributions [Soboleff] (1936); Schwartz| (1949). An important generalized function that cannot be
represented as an ordinary function is the Dirac delta function, denoted §, and 6™ denotes its n-
dimensional version.

Any dataset {x;}*.; C R" naturally corresponds to the distribution pemp(X) = = Zf\;l 0™ (x—x;)
which, with some abuse of terminology, can be called the empirical probability density function.
Based on that, UDR can be understood as a task whose goal is to approximate pemp(x) by ¢(x),
where ¢(x) is a distribution whose density is supported in a k-dimensional affine subspace A C R™.
Note that a function whose density is supported in some low-dimensional subset of R™ is not an
ordinary function. Exact definitions of such distributions can be found in Section 3} To formulate
an optimization task we additionally need a loss D (pemp, ¢) that measures the distance between the
ground truth pen, and a distribution g, that we search for. Thus, in our approach, the UDR problem
is defined as:

I(q) =D (pempaq) — quin (D

under the condition that ¢(x) has a k-dimensional support.
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The SDR problem is tightly connected with the UDR problem. In SDR, given supervised data,
the goal is to find the so called effective subspace, defined by its basis vectors {wy, -+, wy} C
R™, such that the regression function can be searched in the form g(w?x,---,w}x). In|Wang
et al|(2010) it was shown how a method originally developed for SDR can be turned into an UDR
method, i.e. applied to unsupervised data, by simply setting an output to be equal to an input.
The key observatlon of our analysis, stated in Theorem [2] is that a class of functions of the form
g(wix,---,wlx) can be characterized as functions whose Fourier transform is supported in the
correspondlng effective subspace. In Section [4| we give 3 examples of UDR problems that we cast
as[T]and in the fourth example we formulate SDR as an optimization task with the search space dual
to that of UDR. Thus, all 4 examples can be studied within the same optimization framework.

The structure of the paper is as follows: in Section |3| we formally define the search space in
Problem El, denoted Gy, and an image of G under the Fourier transform, denoted Fj. In-
stead of searching directly in a set of generalized functions, Gy, in Section [5] we describe how
we substitute an ordinary function for a distribution in the optimization task at the expence of
adding a new penalty term to its objective, AR(f). Using a gaussian kernel M (x,y), Theorem [4]
characterizes generalized ¢ € Gy as such g for which the matrix of properly defined integrals

My = Re [[[an ypn Tiy59(x)* M(x,y)g(y )dxdy] —Tm is of rank k. We define R(f) as a squared

Frobenius distance from /M to the closest matnx of rank k. In Section |§I we suggest a method
for solving ming I(¢) + /\R(¢) which we call the alternating scheme. Section [7]is dedicated to
experiments with the alternating scheme on synthetic data and standard datasets.

2 PRELIMINARIES AND NOTATIONS

Throughout this paper we use standard terminology and notation from functional analysis. For
exact definitions one can address the textbook on the theory of distributions |[Friedlander & Joshi
(1998). The Schwartz space of functions and its dual space are denoted by S(R™) and S'(R")
correspondingly. For a tempered distribution T € §'(R™) and ¢ € S(R™), (T, ¢) denotes T'(¢).
The Fourier and inverse Fourier transforms are denoted by 7, F ! : §'(R") — S'(R™). For brevity,
we denote F|f] by f . If all required conditions are satisfied, an integrable f : R™ — C (or a Borel
measure 1 on R™) is used as the tempered distribution T (or, T),) where (T, ¢) = fRn x)dx
(or, (T, §) = [ ¢(x)dp). For @ C S'(R™), Q" denotes the sequentlal closure of 2 with respect to
weak topology of S'(R™). By L2(R™) we denote the Lo-space with the inner product: (u,v)r, =
Ju(x)*v(x)dx. For ¢ € S(R™),sp € S'(R™), their convolution and multiplication are denoted
by ¢ * ¢ and ¢¢) correspondingly. For g; € S'(R¥) and go € S'(R" %), g1 ® go € S'(R")
denotes their tensor product. For a square matrix A, Tr(A) denotes its trace and for arbitrary matrix,

[|Allr = Tr(AT A). Identity matrix of size n is denoted by I,,.

3 BASIC FUNCTION CLASSES

An example of a generalized function, whose density is concentrated in a k-dimensional subspace,
is any distribution that can be represented as g ® 6" def gRIR--- @3 where g € S'(RF).
———
n — k times
If g = T, where f : R* — R is an ordinary function, then g ® 6™~ * can be understood as a

generalized function whose density is concentrated in a subspace {x € R"|z; = 0,7 > k} and
equals f(x1.5). It can be shown that the distribution acts on ¢ € S(R™) in the following way:

<Tf @ 6717]67 ¢> = f(xlzk)d)(xlzk; On—k)dxlzk
Rk

Now to generalize the latter definition to any k-dimensional subspace we have to introduce a change
of variables in tempered distributions.

Let g € S'(R") and U € R™ " be an orthogonal matrix, i.e. UTU = I,,. Then, gy € S'(R") is
defined by the rule: (gy, ¢) = (g,1) where ¥(x) = ¢(UTx). If g = T}, the latter definition gives
gu = Ty where f'(x) = f(Ux). Now, we define classes of tempered distributions:

G ={(f@d" Mulf e SR, U e R™",UTU =I,,} 2)
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Gr = {(Ty ® 6" "y|f € SRY),U e R UTU = I,,} 3)
Fr = {T,|r(x) = f(Ux), f € S(R*),U € R**" rank(U) = k} (4)
The first two classes are related as:
Theorem 1. G, = Gr .

The last two classes are isomorphic under the Fourier transform.
Theorem 2. ]:[gk] = Fi and .7:71[.7:]6] = Gp.

For any collection f1, -+, f; € S'(R"), spang{f;}| denotes {Zlizl Aifilhi € R} C S'(R™),
which is a linear space over R. The set G, has the following simple characterization:

Theorem 3. Forany T € S'(R™), T € G, if and only if dimspang{z,T, zoT,--- ,z,T} < k.

Informally, the theorem holds because any linear dependency cvyz1T + - - - + a2, T = 0 over R
implies that if ayx1 + - - -+ apx, # 0, then T = 0. This is equivalent to a statement that the support
of T'is concentrated on a subspace ayx1+- - -+, = 0. If dim spang {z1 T, 22T, - - - , 2, T} < k,
then one can find n — k such dependencies, which means that the support of 7" is k-dimensional.

Let B(R™) denote the Borel sigma-algebra on R™ and P denote a set of all Borel probability mea-
sures on R™. Let us now define

Pe={ueP3vi, -, vi € R VA € BR") : u(A) = p(ANspan(vi,--- ,vi)}  (5)
i.e. Pp is a set of probability measures with all probability concentrated in some subspace

span(vy,---,Vvy) whose dimension is not greater than k. It is easy to see that 7, € G, for any
e Py.

4 EXAMPLES OF LDR FORMULATIONS

. . . . 1 I . .
UDR: Maximum mean discrepancy (MMD) Let k(x) = We 227 be the radial gaussian
kernel on R™. The kernel k(x) defines the so-called kernel embedding of probability measures
¢ Muandet et al.| (2017)):

peEP = o(u) =k*xpu=Ey  k(x—y)= /k(x —y)du(y)

The Maximum Mean Discrepancy (MMD) distance |Gretton et al.| (2012) is defined as the distance
induced by metrics on Lo (R™), i.e. for two probability measures u, v € P:

dyvmp (1, v) = [|¢(1) — d(V)|| Ly &)

Let x1,--- ,xy € R"™ be the dataset of points. This dataset defines the empirical probabilistic

measure [idata that corresponds to the tempered distribution 7)., = % Zfil 0" (x — x;). We

shall study a method concurrent to PCA that is based on solving the following problem:

I(v) = dvmp (Hdatas V) = ||#(tdata) — ¢W)]|Lo@n) — Helgl (6)
vePy
i.e. we shall attempt to approximate the empirical probabilistic measure fqata With another proba-
bilistic measure v which is supported in some k-dimensional subspace of R™.

UDR: Distance based on higher moments (HM) It is well-known that maximum mean discrep-
ancy measures the similarity between characteristic functions of two probability distributions in the
0] (%) -neighbourhood of the origin. Another approach to measure the similarity of two distributions
is based on the difference between moments:

4
A
2 s 2
dim(pv)* =Y s > (Mg, =iyl
s=1 1<y, ,is<n
where m;,...;, = Ex~, [X[i1] - X[is]] and 14, .5, = Exy [X[é1] - - - X[is]] are corresponding
moments. The positive parameters A1, Aa, A3, A4 are chosen to fix the relative importance of the
mean, the co-variance, the co-skewness and the co-kurtosis.



Under review as a conference paper at ICLR 2021

Thus, we will be interested in the following optimization task (analogous to [6)):

d ata, V) — mi 7
1M (Hdata, V) Jnin (7)
UDR: Wasserstein distance (WD) Another important distance between probability measures that
has the origins in the transport theory is the Wasserstein distance [Villani| (2008)).

Let (R™, || - ||) be a Banach space. Between any two Borel probability measures p, v on R™ with
JlIxl|dp < oo and [ ||x||dv < oo the Wasserstein distance is:

W(u,v) = inf / x —y||dm
()= _int [ lpe—yl
where II(u, v) is a set of all couplings of & and v. The Wasserstein distance defines another version
of LDR problem:

W(,Udataa V) — 5161%1 (8)
In the appendix [Bf one can find proofs that in the case of L; norm [|x|| = ), |z;], the task
corresponds to the well-studied robust PCA problem Candes et al.| (2011). If, instead of the L;-
norm, we use the Lo-norm, this leads to another well-studied task, which is known as the outlier
pursuit problem Xu et al.| (2010).

Sufficient dimension reduction (SDR) Given a labeled dataset {(x;,y;)}}¥, where x; € R, y; €
C (C is a finite set of classes for a classification, or R for a regression problem), the suffi-
cient dimension reduction problem can be informally described as a problem of finding vectors
w1, , Wy € R" such that p(y|wix,---,wix) =~ p(y|x) (possibly, under some additional as-
sumptions on the form of p(y|x)).

We formulate the SDR problem as an optimization task:
inf J 9
fm ) (f) 9

The object f : R™ — R is a smooth real-valued function. We assume that f is a candidate for the
regression function and J(f) is a cost function that values how strongly f fits in this role. In practice
for the regression case and for the binary classification case with 0-1 outputs we use the following
cost functions correspondingly:

N
1
J(f) = N ZE€~N(O,U21n)|yi — f(xi +€)
i=1

N
) ef(xite)
J(f) = N ; Eewn(o,021,)H (y“ 1+ef(x1+€)>

where H(y,p) = —ylogp — (1 — y) log(1 — p) and v > 0 is a parameter.

By requiring f € Fy, we assume that the regression function f satisfies (for k fixed in advance):

f(x) =g(wix, -+ wix)
where wq,--- ,wy € R™. Thus, given an input x, an output of f depends on the projection of
x onto span(wy, - - ,Wg). The set span(wy,--- ,wy) is called the effective subspace. Note that

the way we defined the SDR’s objective J(f) for the regression and the classification cases is not
unique. There are definitions that has the same form [9] but deal with the conditional distribution
p(y|x) as an argument, instead of the regression function.

5 REDUCTION OF THE OPTIMIZATION PROBLEM TO ORDINARY FUNCTIONS

The central problem that our paper addresses is how to minimize an objective function over G;, (or
‘Pi)? In this section we describe an approach based on penalty functions and kernels.

Let us assume for simplicity that M is the gaussian kernel, i.e. M(x,y) = GZ(x — y) where
Ed

GI(x) = ﬁe_7. Besides the gaussian kernel our theory also captures many other kernels,

4
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L —Z¥ and the Fourier tranform of the Abel Kernel, the

(o2 +Hx—yl?) T
For f, g € S(R™) let us denote:

Poisson kernel:

def
uivlg ™ [[[ b y)aty)axdy < max MGl gl < o0
nwRn )

For general f,g € S’(R™) the expression (f|M|g) is defined if 3f,, g. € S(R™) such that Ty, =
f*G! T, = gxG!and (f|M|ge) — “=° A. Then, (fIMlg) I A. For example, (6"|M|o™) =
M(0,0).

Theorem. 3| concludes, from f € G, that dim spang{z1f, z2f, - ,2,f} < k. Using the kernel
M, one can build the Gram matrix from the collection of dlstrlbutlons [(a: f|M |z, )] 1<ij<n- FOT
any f € §'(R™) let us denote a real part of the Gram matrix [Re (z; f|M|z; f)] by M (if it
is defined).

Theorem 4. If f € Gy, then (x; f|M|x; f) is defined and rank My < k.

Definition 1. Let A € R™*" be a positive semidefinite matrix with eigenvalues A\ > o > -+ > A\,
(with counting multiplicities). Then, the Ky Fan k—anti-norm of A is || A||x = Zle Ant1—k-

1<ij<n

Let R(f) = ||Mg||n—k. Theorem [ tells us that that for f € Gy, R(f) = 0. For ordinary f,
the Eckart-Young-Mirsky theorem gives us R(f) = minecgnxn rank A<k ||\/ﬁ — Al|%. Thus,
by penalizing the value of R(f), we enforce My to be close to some matrix of rank k. For I :
G, US(R™) — R™, it is natural to reduce the optimization task over tempered distributions

I(f) = }Iengli (10)

to an optimization task over ordinary functions with a penalty term R:

I(f) + M| M¢||lpn—r = I(f) + AR(f) — inf 11

(1) + NIMylloic = () + AR() > inf an

Details on the conditions, under which this reduction holds, can be found in the appendix D} Let us
now concentrate on the task [TT]and describe the alternating scheme for its solution.

6 THE ALTERNATING SCHEME

We will concentrate on problem It is known [Hiai| (2013) that the Ky Fan anti-norm is a concave
function, i.e. R(¢) = ||My||n—i depends on My in a concave way. It can be shown that the
dependence of R(¢) on ¢ is both non-convex and non-concave, i.e. we deal with a non-convex
optimization task.

The kernel M(x y) : R" x R™ — C induces a linear operator from Ly(R™) to Ly(R™):
oM fR" (y)dy. For any operator O between spaces H; and Hs, we denote
its range as R[O] = {O x)|lxr € Hi}. Let B(Hy, Hy) denote a set of bounded linear oper-
ators between Hilbert spaces Hy and Hy. For O € B(H;, Hs) the rank of O is defined as
dim R(O). Let L5(R™) be the Hilbert space (over R) of real-valued functions from Lo (R™) and
L3(R™) = L5(R™) x L5(R™). The space Lj;(IR™) is equivalent to Lo(R™) treated as a linear space
over R. Below we do not distinguish [¢1, ¢2] € L5(R™) and ¢1 + ip2 € Lo(R™). Itis easy to see
that any O € B(L3(R™), R™) can be given by formula:

O[¢li = Re (Oi, @) L, wn), Oi € L2(R"),i =1,n

ie. O € B(L3(R™),R") can be identified with a vector of functions O = [Os],_1.,0;i € L2(R")
and the Hilbert-Schmidt norm on B(L3(R™), R") (i.e. vV Tr Ot0) is:
10]]. = E:HOHL2 R™) (12)
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Recall that for the kernel M, O(M) is positive and self-adjoint. Since O(M) is also bounded, then

the square root y/O(M) can be correctly defined |[Rudin|(1991). For any complex-valued function f
let us introduce a linear operator Sy : L3(R™) — R™ by the following rule:

St(pli = Re (@i f(x), VO(M)[@]) L, @ny ie. (Sp)i = VOM)[z: f(x)],i=1,n
Theorem 5. If Tr My < oo, then Sy € B(L5(R™),R"™) and SfS} = Mjy. Moreover,
R(f)

: 2
= min 1Sy = SII:

SeB(L3(R™),R"),rank S<k
and the minimum is attained at S = Py Sy where Py = Zi;l uiuj and {w; }} are unit eigenvectors
of My corresponding to the k largest eigenvalues (counting multiplicities).

Given the new representation R(f) = min 1S — S||? it is natural to view the
SeB(Lj;(R™),R"),rank S<k

Taskas a minimization of I(¢) + A||Ss; — S||? over two objects: ¢ and S € B(L3(R™),R") :
rank S < k. The simplest approach to minimize a function over two arguments is to optimize
alternatingly, i.e. first over ¢, and then over S : rank S < k, and so on. Theorem gives that the
minimization over S is equivalent to the truncation of SVD(.Sy) at the k-th term. This idea, that we
dub the alternating scheme, is described in Algorithm T}

Algorithm 1 The alternating scheme for [TT]
Py+— 0,5, +—0
fort=1,---,7Tdo
¢ +— arg mén I(¢) + N||Sp — Pi—1S4, . ||? (minimizing over ¢)
Calculate My, and find {v;}7 s.t. My, v, = A\jvi, Ay > - > A,
P +— Zle v;vl (Truncated SVD(Sy,) is P;Sy,)
Output: vy, -, vg

The alternating scheme allows for a reformulation in the dual space. By this we mean that in
Schemewe substitute ¢, for the original ¢,. If the primal Scheme deals with operators Sg, Sg,_,,

~

the dual version deals with vectors of functions 4/ @U %, Go 8%’:1 . Details of the dual algorithm
can be found in the appendix [F|

7 EXPERIMENTS

The alternating scheme |1|is a general optimization method which needs to be specified for every
optimization task. We designed numerical specifications of the alternating scheme [T for all 4 opti-
mization tasks: [6] and [9) and made experiments with all of them. Details of the algorithms, i.e.
numerical methods to minimize over ¢ and calculate Mg,, can be found in the appendix E]
and [J). Note that for Wasserstein distance minimization [§] we exploit the alternating scheme in the
initial form (i.e.[I), and for MMD[6] HM[7]and SDR [9] we use the dual version of the scheme.

Behaviour of MMD for small 4. We studied the difference in the behaviour of PCA and a solution
of [6] obtained by the alternating scheme [T (MMD), for the case when h is small compared to the
standard deviation of features. Experiments show that they are sharply different when data points
are sampled along a low-dimensional manifold 90, which is bent globally, goes through the origin
O and has a large curvature at O. Because PCA is a global method and points do not lie on an affine
subspace, interpreting principal directions is not straightforward.

We select a smooth function f : R"~! — R, such that f(0) = 0 and generate points in the
following way: points X1, Xz, -+ ,Xx ~ [—10,10]"~! are sampled uniformly, after calculation of
y; = f(x;) we add some noise: z; = (x;,y;) + €, €; ~ N(0,0.011,). Both PCA and MMD are
applied to the dataset (first 3 pictures on Figure [Ia). As we see, MMD, unlike PCA, tries to catch
ideal alignments of points rather that searching for a global alignment of points (which can be non-
existent). This property of MMD makes it a promising tool for the calculation of the tangent space
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(a) Visualization of outputs of the PCA and MMD methods. MMD (green line) tends to select a subcollection
of points that sharply aligns along the main direction, whereas the first principal component (red line) could be
a result of averaging over different directions in the data.

IIP*-PI|

‘ // lIPLP|

\ \ 1 \
\ 05 —
\ . t \ = In(o)
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(b) Left plot: ||P; — P||r: =~ 6 = 0.05, A = 20.0, case I, M &6 = 0.05, A = 20.0, case I, @ § = 0.05, \ =
100.0, case I, @ 6 = 0.05, A = 100.0, case II, © 6 = 0.1, A\ = 100.0, case I, ® 6 = 0.1, A\ = 100.0, case II.
Right plot: ||P* — P||r as a function of In o:ll MMD, BHM,  WD.

to a data manifold at a given point. Fourth picture shows that when we have 2 equally important
directions in data such that the first principal direction of PCA is between them (red line), and we
set k = 1, then MMD (green line) always chooses one of those directions.

Experiments with outlier detection (MMD, HM, Wasserstein distance). Following the experi-
ment setup of [Xu et al[(2010), we choose parameters N = n = 400,56 = 0.05(0.1), k = 10 and
generate random matrices A € RVN(1=8)xk B ¢ R"*k whose entries are iid as AV(0,1). Then,
to the columns of the matrix BAT € R"*N(1-8) (whose rank is < k) are concatenated with the
columns of the matrix C' € R"*N®: X = concat(BAT,C) € R"*¥. The entries in C are either
iid as A(0,1) (case I) or N copies of the same vector whose entries are iid as A/(0, 1) (case II).
Let X = [xy, - ,Xx], i.e. columns of X are the data points. Thus, N (1 — &) columns of BAT
lie in a k-dimensional subspace of R™ and N columns of C' are outliers, and solutions of tasks @
or for this dataset are expected to be supported in a column space of BAT.

After every iteration (step ¢ of the alternating scheme|[T) we calculate the Frobenius distance between
the projection operator P, of [1| and the projection operator P to the column space of BAT, i.e.
||P; — P||p. For the task [8] the dependence of ||P; — P||r on t for different values of parameters
b and X is shown in Figure [Ib] For tasks [6] [7] the behaviour of the alternating scheme is similar, 7
iterations are enough to approach the optimal subspace.

Besides the speed of convergence we were also interested in how ||P* — P||p, where P* =
lim;_, P; is the final projection operator (e.g. P in practice), depends on the parameter o
of the kernel M = G,. It is natural to expect the quality of the solution P* to degrade as
o — 400 (this corresponds to M (x,y) — 0), and, less trivially, as ¢ — 0 (this corresponds to
M(x,y) = "(x = ¥)).

Experiments with the sufficient dimension reduction. We made experiments on the standard
datasets, [Heart, Breast Cancer, lonosphere, Diabetes, [Boston house prices and Wine quality. First
we applied Sliced Inverse Regression algorithm (SIR)[Li/ (1991)) to the training set and calculated the
effective subspace for £k = 2, 3. All points were projected onto that space and we obtained two- or
three-dimensional representations of input points. In the last step we applied 10 nearest neighbours
algorithm (KNN) to predict outputs (based on reduced inputs) on the test set (for the regression case,
the 10-KNN regression was used). The same scheme was repeated with PCA, Kernel Dimensionality
Reduction (KDR) algorithm [Fukumizu et al.| (2004)) and the alternating scheme|l|adapted for SDR.


https://archive.ics.uci.edu/ml/datasets/heart+disease
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Ionosphere
https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
https://archive.ics.uci.edu/ml/machine-learning-databases/wine/
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We experimented with the dual version of algorithm [T} setting (after the data was standardized) the
kernel’s parameter 0 = O.ﬂ]_-] and A = 10.0. Details of its numerical implementation can be found
in the appendix [J] In the table[I]one can see the obtained test set accuracy on the classification tasks
and R? on the regression tasks. As we see from the table after reducing the dimension of an input
to k = 2,3, we are still able to obtain good accuracy of prediction on a test set.

Method | SIR KDR As|i
Dataset
Dimension & 2 3 2 3 2 3 2 3
Heart (acc) 79.80 79.46 | 82.49 81.82 | 86.33 88.77 | 81.48 83.50
Breast (acc) 93.46 93.65 | 97.30 96.73 | 93.13 9595 | 97.88 97.69

Ionosphere (acc) 80.29 86.57 | 89.14 89.43 | 8343 86.29 | 88.29 90.57
Diabetes (R?) 2534 2872 | 43.47 43.61 | 41.82 4430 | 43.07 4448
Boston (R?) 5642 67.12 | 76.03 7429 | 77.88 79.97 | 73.21 77.88
Wine (R?) 9391 94.12 | 98.68 99.24 | 9830 96.02 | 97.10 96.93

Table 1: The cross-validated accuracies/R? of KNN on 2 or 3-dimensional input representations.

The code is available on github|to facilitate the reproducibility of our results.

8 RELATED WORK

We present an optimization framework in which the search space is G;,, or Pj. Another unifying
framework for LDR tasks is suggested by |Cunningham & Ghahramani| (2015)) in which the basic
search space is the Stiefel manifold S(n, k). The main disadvantage of using G;,, instead of the
Stiefel manifold, is that its infinite number of dimensions requires a special procedure to turn an op-
timization into a finite-dimensional task. Both an optimization over G;, and over S(n, k) is typically
hard: for a final point, at best one can guarantee that it is a local extremum. Promising aspects of
g,; are: a) g,g allows to formulate naturally a new class of objectives on it, b) local extrema on g,;
substantially differ from local extrema on S(n, k), because a local search over g,; uses more degrees
of freedom.

Using Ky-Fan k-antinorm as a regularizer for the matrix completion problem has been suggested
by Hu et al.|(2013) and further developed in |Oh et al.| (2016)); Liu et al.| (2016)); Hong et al.| (2016)).
Unlike this chain of works, we formulate an infinite-dimensional task. Also, our regularizer R(f) =
|| M ¢||n—k is a sum of smallest n—k squared singular values of the operator Sy where Sy depends on
f linearly. The idea of alternating two basic stages, the convex optimization and SVD, is ubiquitous
in low-rank optimization, see e.g. Mazumder et al.[(2010); [Hastie et al.| (2015)).

Zhu & Zeng| (2006) applied the Fourier transform for estimating the effective subspace in SDR,
implicitely using an analog of Theorem 2}

9 CONCLUSIONS

We develope a new optimization framework for LDR problems. The alternating scheme for the
optimization task demonstrates both the computational efficiency and the applicability to real-world
data. The algorithm performs quite stably when we vary most of the hyperparameters, though it
crucially depends on two parameters, the bandwidth of the “smoothing” kernel M, o, and the penalty
parameter A. We believe that the MMD/HM/WD methods for UDR could be used as an alternative
to PCA in study fields in which data demonstrate “heavy-tailed” and “non-gaussian” behaviour,
such as financial applications. Also, our formulation of SDR is free from any assumptions on the
distribution of input-output pairs, which makes it an alternative to other methods of the efficient
subspace estimation. More detailed report on these topics is a subject of future research.

'Since the role of the parameter o is similar to that of the bandwidth in the kernel density estimation, we
use Silverman’s rule of thumb to set o = N~/ (+49),
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A PROOFS FOR SECTION 3]

A.1 PROOF OF THEOREM[I} GIVEN FOR COMPLETENESS

Proof. The inclusion G;, C Gi follows from a well-known fact that S(R*) is dense in S’(R*). Le.
for any f € S’(R*) one can always find a sequence {f;} C S(R¥) such that Ty, —* f. Therefore,
forany (f ® 6"~ %)y € G, there is a sequence {(Ty, ® 6" %)} C Gy such that (Ty, ® 6" F)y —*
(f ® " %)y Thus, G C Gy, -
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Since Gi, C Gy, to prove G; = Gr itis enough to show that G, is sequentially closed.
We need a simple fact from a theory of distributions.
Lemma 1. If T; —* T and ¢; — ¢, then (T}, ¢;) — (T, ¢).

Proof of Lemma. Schwartz space S(R"™) is a Fréchet space, therefore the Banach-Steinhaus theo-
rem applies to S’(R™). Since T; —* T, we have sup, |(T;, )| < oo for any ¢ € S(R™). From the
Banach-Steinhaus theorem, applied to a set {T;}3°, we obtain for any e > 0, there is a neighbour-
hood U of 0 € S(R™) such that [(T;, ¢)| < € whenever ¢ € U. Thus, [(T;, p; — ¢)| < € for a large
enough . From that we conclude that (T}, ¢;) — (T, ¢). O

Forany T € &'(R") and ¢ € S(R"%), let us define T% € S'(RF) as (T%, ¢) = (T, ¢ @ 1)).

Suppose that {f;}3° C S’(RF), {U;}5° are such that (f; ® 6"~ *)y, —* f. We need to prove that
f € Gj. Since a set of orthogonal matrices is compact, then one can always find a subsequence
{Up,,} such that U,,, — U. Since (f,, ® (5"_’“)Uni —* fand ¢(Uy,,x) — ¢(Ux) (for any fixed
¢ € S(R™)), using lemma|[l| we obtain:

(fri @ 0", ) = {(fn, @ 6" F)ur, s 6(Un,x)) = (f,0(UX)) = (fyr, d(x))
Thus, we have:
frn, @ 6"TF = fur
From the last we see that f,,, —* fﬁT where 1 is such that ¢)(0) = 1. Therefore, fy;r = fﬁT ®6nk
and f = (f;’]bT ® "My € G O

A.2 PROOF OF THEOREM[2]

Proof. Let us prove first that if g = T ® 6" ~*, then
Flgl =T:

where 7(x) = f(x1.x),x € R™ For that we have to prove that (F[g],¢) = (T}, ) for any
¢ € S(R™). Indeed,

(Flgl,0) = (g, Flo]) = (Ty @ 6", [ (y)e ™ ¥dy) =

R

(0 [, sty = [ fona)oty)e sy =
R™ Rn+k

[ fetdy = (@0

Let us calculate the image of Gy, under the Fourier transform. It is easy to see that for any g €
S'(R™), ¢ € S(R™) and orthogonal U € R™*™ we have:

(Floul, ¢(x)) = (g, F[9](x)) = (9, F[}(Ux)) =
= (9. F6(UTx)]) = (Flgl, o(UTx)) = {(Flg))v, $(x))
Therefore, Flgy] = (Flg])u. Thus, if g = Ty ® 6", then
(f[gU]) = (TT)U =T
where 7/ (x) = r(Ux) = f(Urx) and Uj, € R¥*™ is a matrix consisting of first & rows of U. Thus,
T, € Fg.

Let us show that by varying f € S(R¥) and U in the expression f(Uxx) we can obtain any function
from F. For this it is enough to show that F}, is equivalent to the following set of functions:

Q = {g(Upx)|g € S(R*), U}, € R**" U, UL = I}
The fact Q@ C Fy is obvious. Let us now prove that @ D {g(Px)|g € S(R¥), P € R¥*" rank P =
k} = Fi. Indeed, if f(x) = g(Px), then f(x) = ¢'(Uxx) where Uy = (PPT)~'/2P and
g (y) = g((PPT)'/2y). By construction, UpU] = I, and ¢’ € S(RF). Thus, Q = Fy.

Therefore, F[Gy] = Fi, and from the bijectivity of the Fourier transform we obtain F~1[F;] =
Gk. O
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A.3 PROOF OF THEOREM[3]

Proof of TheoremB|(=). Let us prove that from T = (f ® §" %)y, f € S'(R*),UTU = I, it
follows that dim spang {z1 T, 22T, - -+ ,x, T} < k.

It is easy to see that z;[f ® 6" %] = 0ifi > k. If U = [uy,--- ,u,]7, then for i > k we have
0= (z:[f " ¥y =ul'x(f ® 6" F)y = ul'xT.

Thus, we have n — k orthogonal vectors, ug41,- - , Uy, such that [z17,--- ,x,T]u; = 0. Using
standard linear algebra we obtain there are at most ' distributions x;, T',--- ,z;,, T, k" < k that
form a basis of spang{x;T}7. O

To prove the second part of theorem we need the following lemma.
Lemma 2. If T € S'(R") is such that y;T = 0 for any i > k, then T' € Gj_.

Proof of lemma. Recall from functional analysis, for f € S’(R™), the tempered distribution % is
defined by the condition <%7 ) = —(/f, %). Once the Fourier transform is applied, our lemma’s

dual version is equivalent to the following formulation: if % = 0,7 > k, then f € Fr . Letus
prove it in this formulation.
A set of infinitely differentiable functions with a compact support is denoted by C2>°(R). Suppose
¢ € S(R™) and p € C2°(R) are chosen in such a way that [~ p(y;)dy; = 1, suppp C [A, B]. Let
us define: N N -

r(x) = / G(x—i, yi)dy; — / p(yi)dy; / D(x—i, yi)dyi

It is easy to see that for any o« € N"~! o/ € N, 3 € N*~1, 3’ € N we have (at least one derivative
over x; is present):

0 o 0PI o PP ((x) = plai) [2, Sxisyi)dyi]
- ox? oz

) —————= =x%
b oxP? ox P

w0770 07 p(a) /C” o POxiyi)
—i% e -t axﬂ

7 3 7 dy
ox”? 927 C9) —i 1

The terms x® 2%’ % and 2’ % are bounded by the definition of S(R™), C>°(R). The

i

o0 B X_; i . . . .
boundedness of Loo xii%éf’y’)dyi is a consequence of the inequality (which holds because
nY\Y). « a? X—i)Yi /
¢ € SRM): [x2, EF| < o

Analogously (not a single derivative over x; is present):

, o8 [T Po(x_i,yi o[ ~ PPx_iyi
< . p& 0°r :xloz/ Xgiwdyi_'x? / p(yz)dyz/ xiiwdyi:

— 5Xi —00 aXﬁZ —o0 —00 ax[ji
, T T P p(x_i, v , [T oo ABod(x_i,y;
=y (1- / p(yi)dy:) / X%Mdyrw? / p(y:)dy; / XgiMdyi
—0o —o0 8X7i —o0 x; 8X,i
The second term is 0 when z; < A. It is also bounded when z; > A because |x* Z% <

o’

et and:

P o 0P(x_y,ys)
A it D
! /ac ox” i

—i

, o Cl
< a|® o Wi
< | / (el

i

The latter is bounded because lim,, —, t |l‘i|al fmoo mﬁﬁdw =0.
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The first term is O when x; > B and it is bounded for x; < B:

, Z; 8’8 i Vi , x; C/

z§ X%, ———F—=dy;
The latter is also bounded, since lim,;, , |:Ei|"/ ff;o Wdyi =0.

—00 3x[ii

Thus, xa% is bounded and r € S(R"™). Therefore fﬁ% = 0 implies:

. gm) =0 f16] = Fip(er) [ o0c-s.)dud

Since this sequence of arguments works for any ¢ > k, we can apply them sequentially to initial ¢ €
S(R™) w.rt. 41, ..., &, and obtain for any pgi1, ..., pn € C.(R) such that f_oooo pi(yi)dy; = 1:

0] = flpeia(osn) - palen) | 0 K)o

Moreover, since C2°(R) is dense in S(R), we can assume that i1, ..., p, € S(R). For the inverse
Fourier transform 7' = F ~![ f] the latter condition becomes equivalent to:

<Ta ¢> = <T7p;c+1(xk+1) o 'P;L(l'n)(ls(xl:ky 0k+1:n)>

for any pj., ¢, ..., p;, € S(R) such that p;(0) = 1. Let us define pj(z;) = e~7%. Tt is easy to check

that T = g ® 6" % where g € S'(R¥), (g,¢) = <T,e"xk+1="‘2w(x1:k)) for ¢y € S(RF). Le.
T € G, and lemma is proved. O

Proof of TheoremB|(<=). If dim spang{x1 T, z2T, -+ , 2, T} < k, then
dim{v € R"|[z1T, - ,z,T)Jv=0} >n—k

Thus, there exist at least n — k orthonormal vectors vy 1, - - , Vy, such that [v1 7, - - - , 2, T]v; = 0.
Therefore, 21T, -+ , 2, T|v; = (vIx)T = 0.
Let us complete vi41,- -, Vv, to form an orthonormal basis of R": vy,---,v,. Let us define a
matrix V = [vy,- -+, v,]. Itis easy to see that:

((ViTX)T)V = (vi VX)Ty = z;Ty

Since for i > k we have (vIx)T = 0, then ;T}y = 0. Using lemma [2| we obtain Ty, € G-
Therefore, (Ty)yr =T € G,.. Theorem proved. O

B STRUCTURE OF WD

Recall that (R™, || - ||) is a Banach space. Now, let us consider an optimization problem: for a given
X € R™N solve
[|X — L|| - min (13)
rank(L)<k
where || - || is extended to R"*¥ by ||[s1, - - - ,sn]|| = > Isill-

The following simple theorem shows that the two tasks are connected, so that the solution of one
directly leads to the solution of another.

Theorem 6. Given data points {x1,--- ,xn}, let X = [x1,--+ ,xn] € R"™N, Then,
1
in W = — i X-Y
min (Hdatas V) = YERM@;}MY)QH |

Moreover, min,ep, W (jidata, V) is attained on v*, where v* is a uniform distribution over {y;}N |

and [y1,- -+ ,yN] € argminy cgnx~ rank(v)<k [|[X — Y|.

13
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Proof. Let us prove first that inf ,cp, W (Kaata, ) < + || X — Y*|| where

Y =[y-yncarg min XV
YeR"XN rank(Y)<k

Let 7 be a uniform distribution over {(x;,y;)}~_, and u* be a uniform distribution over {y;},.

Since 7 € TI(gdata, #*), we obtain W (pdata, p*) < %Zf\; lIx; — yill = %HX - Y.
The support of u* is k-dimensional, because rank(Y*) < k. Thus, we have u* € Py and
inf,ep, W(ttdatas 1) < W(ptdata, 1) < %HX — Y™||. Now, if we prove the inverse inequal-
ity, i.e. inf,ep, W(ttdata, ) > %HX — Y*||, this will imply that inf,cp, W (tdata, ) =
+||X = Y*|| and therefore, inf,cp, W (fidatas ) = W (Kdata, #*). This will in the end give us

p* € arginf,cp, W(itdatas t4)-

Let {1 }5° be such that ;; € Py, and W (pdata, it¢) — infep, W(ttdata, 1) — 0. Let Ly denote a
k-dimensional support of y; and P; is a projection operator onto L.

Let 117 be a uniform distribution over {P;x1, - , Pxpy}, ie. pj(4) = 4 vazl[PtX,- € A]. Ttis
easy to see that W (uy, ttdata) < W (g, fdata), because p; and p, share the same k-dimensional
support L, but the “transportation of a mass” concentrated in point x; of the empirical distribution
Memp €an be most optimally done by just moving it to F;x; (i.e. to the closest point on L;). Thus,
we have infuepk W(,u*dataa ,U,) < W(,U/datm MI) < W(/Ldatav /«Lt)s and therefore’ W(ﬂdatav ﬂr) -
inf,ep, W (ttdata, ) — 0.

Since a set of projection operators is compact, one can always extract a subsequence {P;_}2,
such that Py, — P. It is easy to see that pj — p** (i.e. W(u; ,u™) — 0) where p** is
a uniform distribution over {Pxy, -, Pxy}. For that distribution we have W (udata, u**) =
limg s oo W(ptdata, pf,) = infep, W(pidata, i£). Thus, the infinum is attained on p**.

It is easy to see that W (pgata, #**) = W(u**, tdata) = %HX — PX]||. Since rank(PX) < k we
obtain W (uqata, ™) > % miny cgnx ¥ rank(v)<k ||[X — Y||. This completes the proof. O

Note that the case of Ly norm ||x|| = >~ |;| in the task[I3|corresponds to the well-studied robust
PCA problem |Candes et al.| (2011). If, instead of the L;-norm, we use the Lo-norm, this leads to
another task:

HX — L||172 — min (14)
rank(L)<k

where |[S|[1,2 = 32, />_; s7;, which known as the outlier pursuit problem Xu et al.| (2010).

C PROPER KERNELS AND PROOF OF THEOREM 4]

C.1 PROPER KERNELS

In the main part of the paper we assume M to be a gaussian kernel, though the theory can be applied
to a more general case of the so called proper kernels.

Recall that for any operator O between spaces H; and H5 we denote its range as R[0] = {O(z)|x €
H1}. For Q C S(R™), Q) denotes the sequential closure of §2 with respect to natural topology of
S(R™). A set of continuous functions in R™ is denoted by C(R™). A set of infinitely differentiable
functions with compact support in R" is denoted as C'2°(R™)

Definition 2. The function M (x,y) : R™ x R™ — C is called the proper kernel if and only if
* OM)[f] = Jgn M(x,y)f(y)dy is a linear operator from Ly(R™) to Lo(R™),
© M(y,x) = M(x,y)",
s (f,OM)[f]) Lomny > 0,Yf € Lao(R™), f # 0.

* maxy [M(x,y)] < oo,

« RO NS(RY) = S(R™).
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The gaussian kernel M (x,y) = G%(x—y), which is of special interest from an application-oriented
perspective, is captured by the following lemma:

Lemma 3. If ¢,{ € C(R") are bounded, ¥x ((x) > 0, then M(x,y) = ((x —y) is a proper
kernel.

Proof. Verification of the first four conditions is easy, so we only check the fifth condition. Let us
denote linear operators C¢[f] = ¢ * f and O4[f](x) = g(x) f(x). Then we have F[C;[Lo(R™)]] =
O¢[L2(R™)] 2 C2°(R™). Therefore, R[O(M)] = C¢[L2(R™)] 2 FHCX(R™)]. Since C°(R™)

is dense in S(R™), then F~[CS°(IR™)] also has this property. Le. R[O(M)] NS(R") = S(R™).
O

Besides the gaussian kernel the lemma also captures a case of the Abel Kernel ¢(x) = eI, Tt is

Cn

well-known that the Fourier tranform of the Abel Kernel is the Poisson kernel: é (x) = T
(+x[?) "2

(which is also proper).

C.2 PROOF OF THEOREM[4]

We will prove a more general statement:

Theorem 7. Let M (x,y) be a proper kernel and, additionally, a Lipschitz function. If [ € Gy, then
(x; f|M|x; f) is defined and rank My < k.

Proof. Let us first show that (f|M|g) is defined for all f,g € Gi. Note that for any f = (T, ®
")y € G we have

Th = (T, ® Ry« Gt = (T, *GY ® TGLHC)U

Let us denote a. = a * G¥ and b, = b * G*. Tt is easy to see that
fe = (ae(xlzk)Ggik(Xk+1:n))U € S(Rn)
From a well-known property of the Weierstrass transform we have:
1 fellzy = laellz, - N1 Iz, < Hlallz,
From this we obtain for any f = (T, ® 6" F)y, g = (T, @ 6" %)y € Gy
[(fel Mlge)l < max |M(x,y)] [|fel |z, llgellz, < max[M(x,y)[ llallz,[[bllz, < oo

Thus, (fc|M|g.) is defined and:

(felM|ge) = / a; (Xlrk)G?_k(karl:n)M(UTXv VTYﬂ’E(Yl:k)G?_k(YkJrl:n)dXdy =

R™ xR"™
== / a:(xl:k)Me(Xl:kayl:k)bs(ytk)dxl:kdyl:k
Rk xRk
where
Me(xlzkvylzk) = / G;’Lik(xlﬂ»l:n)M(UTXv VTy)G:;lik(yk+1:n)dxk+1:ndyk+1:n
Rn—kxRn—k

Let Uy, Vi, € R™ ™ be matrices that comprise the first k rows of U, V' correspondingly and n — k
zero rows below. Also, let L denote Lipschitz constant for M such that |M (x,y) — M (x',y’)| <
L(|x —x'| + |y — ¥'|). For the function M,(x1.,y1.x) We have:

|Me(X1:k,Y1:k) - M(Ulzxa VkTy)| =

| / G?_k(xk—i-l:n) (M(UTX7 VTy) - M(Ulng VkTy)) G?_k(yk:-‘rl:n)ka+1:ndyk+l:n|

R2n—2k
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< L| / G?_k(XkJrl:n) (l(U - Uk)TX| + ‘(V - Vk)Ty|) G?_k(ykJrl:n)dkarl:ndyk:Jrl:n'

R2n—2k

= L| / G:;lik(xk—o—l:n) (|Xk+1:n| + |yk+1:n|) Grgik(yk+l:n)dxk+1:ndyk+1:n‘ ==

R2n—2k

=2L / ‘Xk—&-l:n‘Gzik(xk-i-l:n)dxk—&-l:n =2Le / ‘Xk—s-l:n|G?_k(xk+1:n)dxk+1:n
n—k

R Rn —k

Thus, there exists bounded M(xlzk, Vik) = M(ng, VkTy) such that:

e—0 ~ .
M (X1, Y1:k) = M (X126, y1:%) in Loo (R?)

Further we assume that € > 0 is small enough, so that M, (x1.x,y1.x) < C = 2max |M|. Now we
have:

[(felM|ge) — / a* (x1:6) M (X128, Y1) b(y 10 dX 126 dy 1.8, =
RF xRF
| / (a:(xl:k)Me(Xl:lmy1:k)be(y1:k) —a” (Xlzk)M(Xlzka Y1:k)b(Y1:k))dX1:de1:k| =
Rk xRk

| / M (%1, Y1) (%00 ) (e (¥120) = By 100 A1y 1+
Rk xRF

Me(xl:ka Y1:k)b(}’1:k)(a: (Xl:k) - a* (Xlzk))dxl:kdyl:k’+
Rk xRk
/ 0 (x1)b(3 1) (Mo (X1es Y130) — M (1.1 y 1))y 1] <
Rk xRF
Cllacl| L, |be = bl|L, + C|bl|z, llac — allz, + |la* (x16)b(y 1)L, [|Me — M|

It is well-known (e.g. see Theorem 2.25) that ||a. — al|,. [|be — b|[z, — O,
||[M, — M||.. — 0. Thus, lim._,o(f.|M|gc) exists and (f|M|g) is defined.

Let us now prove that rank M; < k. Since f € Gy, then f = (T, ® 6" %)y where U is an
orthogonal matrix and U = [wy,- -+, Wy]. It is easy to see that:

(wif Mz f) = (@i )ur MU, UTy)|(z;f)or) =
(wixT, @ 6" F|M(UTx, UTy)|WjTX T,® ")

acl|z, <|laf[r, and

Let us now denote V = [uy, - -+, u,] € RF*™ a submatrix of U in which only first k rows of U are
present. Then, the latter integral is equal to:

//k . u) X1y 1 9(x1) "M (VI %006, V1) 9(yik)dxwdy e = u] Bu;
RE xR

where

B = [(zig|M'|z;9)] M (x1.4,¥1:%) = M(V 10, VEyi)

1<i,j <k’
is the Gram matrix of the collection {z;g(x1.x)}r_; C S(R¥).

Obviously, rank My = rank [Re u! Bu;] =rank VT (Re B)V < rankV = k. O

1<i,j<n
D GENERAL THEORY OF THE REDUCTION FOR SECTION[3]

For a sequence {f;}22; C S’'(R™), Lim f, denotes a set of points f € S’(R™), such that there
§— 00

exists a growing sequence {s;} C Nand lim; o fs, = f.
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D.1 REGULAR SOLUTIONS AND REDUCTION THEOREMS

For I : G, US(R™) — R*, it is natural to reduce the optimization task 10| to an optimization task
over ordinary functions with a penalty term[I1] To have an equivalence between [I0]and [IT| we need
to assume that I’s behaviour when approaching f € G;, from a set S(R"™) is continuous, i.e. for any
sequence { f;} C S(R™) such that Ty, —* f € G}, we have lim;_, o I(Ty,) = I(f).

Let us introduce the notion of a regular solution both for[I0]and[T1] Let

By = |J {F el <CY
C>0

Definition 3. Any f € Arg ]{nlgn I(f) N Bk is called a regular solution of
€Gk

In other words, Bj, formalizes a set of distributions from G, that can be approached through se-

quences {f;} C Gy, for which Tr(My,) does not blow up. Obviously, G, C By C G;. In ap-

plications, regular solutions include all Arg ;mgn I(f) if we choose the kernel M correctly. This
€9

regularity is important for a reduction to the peﬁalty form [T1] because when approaching a non-
regular solution we are unable to guarantee a bounded behaviour of My (and of R(f)).

Definition 4. A sequence {f;}3° C S(R™) is said to solve[lI]if:

I(f)+Mb(fi) < ot I(f)+MR(f) +e (15)

where €; — +0 and \; — +00,1 — +o00. If, additionally, Tr(My,) is bounded, then { f;}3° is said
to solve[I 1| regularly.

Let us define
wol (I(f).R(f))=  |J  LimTy,

1—00
{fi}$° . solves (11)

Theorem 8. If M is a proper kernel, then rsol (I(f), R(f)) C Arg }mgn I(f).
&gy,

Theorem 9. If M is a proper kernel and rsol (I(f), R(f)) # 0, then Arg ch’nlgl’l I(f)NBr C
€9

rsol (I1(f), R(f))-
Theorem 10 (Reduction theorem). If M is a proper kernel, Argmin I(f) C By and

fear
150l (1(), R(f) # 0. then xsol (1(f), R(f)) = Arg min I(f)

Suppose that we now solve a sequence of problems |1 1|and find { fs}$°. According to Theorems
and 9] the following are potential scenarios:

(1) Tr(My,) blows up and the convergence is not guaranteed. This situation can be avoided by
controlling Tr(M ) in an optimization process. In practice, when f has a parameterized form, this
can be done by bounding parameters.

If Tr(Mj, ) does not blow up, we still have two subcases:

(2.1) Lim Ty, # (. This implies a positive outcome to approach [ 1]to the optimization problem,
S§— 00
Problem[10]

(2.2) Lim T}, = 0. This exotic situation can happen only if a sequence T, leaves any sequentially
S— 00
compact subset of S’(R™). Bounding parameters also tackles this case.
D.2 PROOFS OF THEOREM 8| AND
Forany f = (T} ® 6" *)y € Gx and o > 0, let us define f, as:
Ty, = (T © 6" )y« Gy = (T, @ Tgn+)u

fo = (la(xl:k)Ggik(Xk-‘rl:n))U

17
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l,=1%xGF
We have Ty, —* (T; ® 6" %)y as 0 — +0.
Lemma 4. For any [ € Gy, limy_yo(z; fo|M|z;fy) = 0, for any (i,j) ¢ {1,...k}> and
SUP,efo,1](Tifo| M|z fo) < 00, for any (i, j) € {1, ..., kY2

Proof. W.l.o.g. we can assume that f = T} ® 6" %1 € S(R¥). If i > k, j < k we have:

2 2
Xkl Yk41:nl

(ifo|M|z;fo) = (2mo2)n k// ziyje” 207 lo(Xpp)M(x,y)e” 207 I (y1.k)dxdy =
xea nwRn

\Xk+1n|
/ e 2 (x1) P(x)dx
n—k
R" /2102

1Y kt1:nl?

where P(x) = [z ﬁy]M(x7 y)e 202 l,(y1.x)dy. Using the Hélder inequality we
obtain:
1 _ g1inl?
Kzifo|Mlz; fo)l < [l ———zie” ™ 227 lo(x1) |2, ) 1P| Lo ()
2mo2
1 _ %10 12

zie” 22 ||p, o0 |llo |l Ly o) 1Pl Do )

=ll/—=
Voro?

Since |[M(x,y)| <  for some v, we have:

[ — A
X)| SVl —==xYi¢ 2 lo(Yur)llL,rr) =
V2mo? '
— el [yl (y1:4)]| [yl (y1:t)]|
Y ﬁe Lq(R™—F) Yilo (Y1)l ®ReY = VYjlo\Y1:k) || L, (RF)
V2mo? ' '
Thus,
1 Ix k+1w
|<35z‘fn|M|~’ijo>| < ||ﬁx HLl(R" k)||l ||L1(1Rk)7||ygl ||L1(Rk
2o

o—+0
Using ||l5|| 1, (Rk)*HZHL ®ry — 0, lylol, (Rk)7||y]l||L (R¥) ey 0 we see the boundedness

of [|lo||z, &) V[|Yjlo || L, mr) and proceed:

1 Ix k+1 nl?
S Oll—— = mie” |z, @n-r)
2mo?
1% k+l'n|

ﬁxle ll,(gn-%y — 0 as o — 0, therefore

It is easy to see that ||
(zifo|Mlx;fo) = 0.
Similarly, we can prove that (z; fo|M|z; fo) — 0if i, j > k.

The entries of the main k x k minor [(z; f,|M|z; fs)]1<i,j<k are bounded, because:

Xk nl? _ [Ypt1:nl?
Tr Mfﬂ = 271_0_2 VG v // T2 |, (Xl:k)M(X7Y)e 202 lcr(ylzk)dXdy <
R’ILXR?’I

2 2
k1 P YR

% // (|X1:k"y1:k‘+|Xk+1:n'yk+1:n|)e 202 lo(xlzk)la'(ytk)dXdy S
(27T0 ) R” xR"

’y// X1 - Y llo (%1a)lo (Y1k)dXedy e + Y|l [7, (n — k)o? <
Rn xR™

k

¥ 2 yilall7, ey + 112, (0 = K)o
j=1

. . o—+0 o——+0 .
Again, using ||l0||L1(]Rk) — ||lHL1(R’C) — 0, HyjlgHLl(Rk) — ||yjl||L1(]Rk) — 0, we obtain the
boundedness of RHS. [
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Corollary 1. Forany f € Gy, lim,_o R(f,) = 0.

Proof. W.l.o.g. we can assume that f = Ty®6" %, 1 € S(R¥). By lemma, all entries of M, except
those of the main k£ x k minor approach 0 as 0 — 0. This means that

01320 (fg) =0
where Q(fo) = > (Tifo| M|z fs). Let vy, -, v, be unit eigenvectors of My correspond-

ing to the eigenvalues Ay > --- > \,,, P = Z?:m-l eieiT, then

n

R(f,) = \i = ' Aipi <) NTr(Pv,viP)=Tr(PM: P) = Q(f,
(f2) izzk;l piE[O,l],%l;ppi:n—kizzl P _; (Pviv{ P) =Tt (PMy,P) = Q(f,)

Since R(f,) < Q(f,), we obtain lim,_,o R(f,) = 0. O

D.2.1 PROOF OF THEOREM|§]

Proof. Suppose that a sequence {f;}52,; C S(R™) regularly solves (7) and T € Lim f;. W.Lo.g.
1—00

we can assume that Ty, —* T and Tr(My,) is bounded and I(f;) + A R(fi) < ; }Sn(% )I(f) +
cS(R?
AR(f) + €, ¢; — 0. Below we use continuity of I and corollary

inf I Ai < inf inf I(f,) + NR(f,) < inf lim I(f,)+MNR(f,) < inf I
PR (f)+ R(f)_flggk;go (fo) + AiR(fo) fuf lim (fo) + AiR(fo) fnf (f)

i—00

from which we conclude that A\; R(f;) < fing I(f) + €, and, therefore, R(f;) — 0.
€0k

For each [, let us define P; as the projection operator to a subspace spanned by first principal com-
ponents of the matrix /My, , i.e.

k
— 1 ,IT
P = g V,V;
i=1
! l

where v1, ..., vy are orthonormal eigenvectors that correspond to k largest eigenvalues of |/My,.
From the Eckart-Young-Mirsky theorem we see that R(f;) = ||\/My — P,\/My,||%. Since a
set of all projection operators {P € R"*"|P? = P, PT = P} is a compact subset of IR{"Z, one

can always find a projection operator P = Zle v;v! and a growing subsequence {ls} such that
[|P.. — P||F — 0as s — oc. Thus, for the subsequence { f;_} we have:

I/ My, — P\ My, ||r = [\/ My, — P, Mfzs"‘Pls\/Mfzs_P\/MfstFg

/M, = P/ My lle + 1P, = Pllzlly/M, e = VR + 1, = Plley/Te(My,)

and using the boundedness of Tr(My, ) we obtain |[/My, — P\/My, || — 0.

Since |[\/My, —P\/Mj, ||r — 0,letus complete vy, ..., v, to an orthonormal basis v, ..., v,, and

make the change of variables y; = ViTX. Let us denote V' = [vq, ..., vy] and let VT = [W1, ..., Wp].
Then, after that change of variables any function f(x) corresponds to f/(y) = f(Vy) and the kernel
M corresponds to M'(y,y’) = M(Vy,Vy’). If we apply that change of variables in the integral
expression of (z; f|M|x; f), we will obtain:

(wifIM |z f) = Wiy f'|M'\wiy f') =wi [(yi f'IM lys )], Wi =
Re (x; f|M|z; ) = w [Re (yir f'|M'|y; )], ., Wi
Le. My = VM VT, or M}, = VT MV. Note that P = VI;VT where I} is a diagonal matrix

whose main k X k minor is the identity matrix, and all other entries are zeros. Using the fact that
the Frobenius norm of orthogonally similar matrices are equal and the identity V7' /M nV =

\/ VT My, V, we obtain:

[[\/ My, — P/ My,

P =V /My, V= VTP [My, V[p =

19



Under review as a conference paper at ICLR 2021

VT V= VIVIVT Mg Ve = || M, 18 6 e
Thus, the property ||\/My, — P\/Mj, ||r — 0 implies that:
Re <y7fl,s |M/|yjflls> — 0, IFi >k

Moreover, for i = j we have Re (y; fj |[M'ly;f] ) = (yif; |M'[y; f] ). Ttis easy to see that after
the change of variables we still have fl/s —* Ty. Since fl/s e S(R™), we have y; fi, € S(R")
and, therefore, y;f; € L2(R"). Let us treat now M’ as an operator O(M') : Lo(R™) —
Ly(R™),O(M")[f](x) = [gn M'(x,y)f(y)dy. Let us take any function ¢ € L(R™) such that
P = O(M")[¢] € S(R™). Since O(M’) is a strictly positive self-adjoint operator, by the Cauchy-
Schwarz inequality, we obtain:

yifr, OM)[N)| < \/{wify, M|y fi )/ (6, O(M')[¢])

Therefore, for any ¢ € R[O(M')] N S(R™) and i > k we have lim, oo (yif] %)
limg oo (f] ,9i9) = 0. Since f| —* Ty we obtain (T, y;v0) = (yiTv,¥) = 0 for any
P € RIO(M")]NS(R™). But the denseness of R[O(M')]NS(R™) in S(R™) implies that y; Ty = 0.

Using lemmaand (Tv)yr =T we obtain T' € G.. Thus, we proved that Ty, — T € Gj..
Since I(f;) < I(f:) + MR(f;) < fingf I(f) + €; and T is continuous, we finally get that I(T) <
€9

inf I(f),ie. T € Arg min I(f). O
A (f) g min (f)

D.2.2 PROOF OF THEOREM[J]

Proof. Suppose f* € Arg)rcnign I(f)N\ Bk, ie. f*€ Biand I(f*) = ]rcmgn I(f). Since f* € By,
€g;, €9y,

then there exists a sequence {s'} C Gy, such that T,; —* f* and Tr M,: < oo.

Let us define si € S(R™) as

T‘sfr =Ty GZ
Since lim,_,0 R(s) = 0 (lemma , there exists o; > 0, such that R(s’) < 1 whenever 0 <
o < 0. Also, by definition Tr M, = lim,_,o Tr Msg . Therefore, there exists ag > 0, such that
Tr My < Tr M + 1 whenever 0 < o < 0.

If we set o] = min{o;, 07, T}, then a sequence {s’.} C S(R") satisfies:
lim R(s’.) =0
71— 00 v

Tr Mg < oo
and (using lemma [T}
Tsi —* f*

Due to the continuity of I we have

lim I(sh.) = (/")

1—> 00

1

Now we set f; = st., A\; = and we obtain the needed sequence:

R(f3)
lim I(f;) = lim I(f;) + MiR(fs) = 1(f7), lim A; = +00
1—>00 1—>00 1—>00

where Tr My, is bounded. It remains to check that our sequence regularly solves (7), i.e.
lim; oo inf T(f)+NR(f)=I(f*) (this will imply lim; oo I(f;)+ N R(f;) inf I(f)+

fes®™) S(R™)
AiR(f) = 0). The inequality in one direction is obvious,

. _ e _ e _ _
feg}%n) I(f) + MR(f) < nf inf T (fo) + MiR(fs) < nf i T (fo) + AiR(fs)

7fe
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inf I(f)=1(f"
jnf 1(£) = I(f")
Let us prove the inverse inequality.
Since rsol (I(f), R(f)) # 0, there exists { f;} € S(R") such that:

I(ﬁ)—I—;\iR(ﬂ)Sf isnf I(f)—&—S\iR(f)—l—el, hm Ai = 400, lim € =0, Tr Mj < oo
€

(") i 400

and a = lim;, o T'y,. From theorem 5 we obtain a € Arg }mgn I(f).
CY%

One can always find a subset {A\g,} € {\;} such that \g, < A;, \g, — 0o and obtain:

Ldnt () FNR() >t 1)+ R R(T) >

I(fdl) +5\d1R(fd1) —€d; = I(fdl) — €d;

Therefore,
3 3 . > — = = 1 = *
Jim fe%n)l(f) +NR(f) 2 lim I(fa,) — €a, = I(a) = flégg I(f) = I(f7)
This proves that { f; } regularly solves (7) and lim;_, f; = f* i.e. f* € rsol(I(f), R(f)). O

E PROOF OF THEOREM

Again we will prove a more general statement.

Theorem 11. If M is a proper and a real-valued kernel, O(M) is bounded and Tr My < oo, then
Sy € B(L5(R™),R™) and SfS;[c = M. Moreover,

R(f) = min 1Sy = SII2

SeB(LL(R™),R™),rank S<k

and the minimum is attained at S = Py Sy where Py = Zle uiuj and {w;}¥ are unit eigenvectors
of My corresponding to the k largest eigenvalues (counting multiplicities).

Proof. The boundedness of Sy follows from the Cauchy-Schwarz inequality:

1S¢[)il* = |Re (\/O(M)[zi f], 9)* < (VO(M)[z; f], /OM)[z: f]) (¢, $) =
(i f, O(M)[z:f])(¢, D)

and therefore:

15191l = Z\Sf il < Te My[[9]17, )

I.e. we have checked that Sy is bounded.

By definition, S} : R* — L5(R™) x Ly(R™) and (u, S¢[¢1, ¢2]) = (S}[u],[d)l,@]),u €
R™, [¢1, ¢2] € L5(R™) x LL(R™). Let us denote f1 = Re f, fo = Im f. It is easy to see that
the following operator satisfies the latter identity:

Olu] = [\/O(M)[f1(x)x"u], \/O(M)][f2(x)x"u]]
Since the adjoint is unique, then St = O. Let us calculate S ¢ S}:
w2 [ OO A oxTul), OTD fa)xu]] 25
(x1£1(x), VOM)[\/OM)[f1(x)x"a]]) + (21 f2(x), \/O(M)[\/O(M)[ f2(x)x"u]])
(@0 f1(x), V/OM)[\/OM)[ fr(x)x"0]]) + (2 f2(x), v/ O(M)[/O(M)][ fo(x)x" u]])
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2 (@1 fi(x), O(M)[f;(x)xTu])

31 (@ f(x), O(M)[f;(x)x"u)])

Thus,tSfS} = Mjy. Since Tr SfS} < oo and HS} [u]||? < (u, Myu), we obtain S} is a bounded
operator.

= [Re (zif, M[xjf]>]1§i7j§n u= Mysu

Let uy, - - - u,, be orthonormal eigenvectors of M; = S fS} and Ay > --- > A\, > 0 be corre-

i,
sponding nonzero eigenvalues. For o; = v/); let us define v; = ng[?ll . Vector v; corresponds to a
pair of functions:
1 T n T n
vi = — [VOM)[f(x)x" ), JOM) [ f2 (x)x"w;]] € L5(R™) x L5(R™)

It is easy to see that v, - - - v, is an orthonormal basis in Im S}, and S} can be expanded in the
following way:

and therefore, SVD for S is:

n/
Sf = Z 0'7;111'V}/L

By the Eckart- Young -Mirsky theorem (see Theorem 4.4.7 from|Hsing & Eubank/(2015)), an optlmal

in |S¢ — S||? is defined by a truncation of SVD for Sy at kth term, i.e.:
SeB(L3 (]R"),R”),rank S<k

S=> ol =P8y (16)

i=1
where Py = Zle uiuj is a projection operator to first £ principal components of M ;. Moreover,

1S5 = PrS¢ll* = 3oiipya 07 = IMslln—k = R(J).
O

F THE ALTERNATING SCHEME IN THE DUAL SPACE FOR M (x,y) = ((x —y)

When M (x,y) = ((x — y), the alternating schemeﬂ] allows for a reformulation in the dual space.
By this we mean that in Scheme |1 Iwe substitute ¢t for the original ¢,. If the primal Schemel 1{deals

with operators Sy, S4,_,, the dual version deals with vectors of functions \[ %, \/E %. The
substitution is based on the following simple fact:

Theorem 12. If M (x,y) = ((x—y),(, ¢ € C(R™) and ¥x é( ) > 0, then there exist constants ¢,
and cy such that ||Sy — P;_1Ss, ,||? = - P 8¢t L2 ||L (&™) and (x; f|M|x; f) =

of of
2 Fa7s Ba; ) Lo ¢ (BY)

Proof. Let f : R™ — C be such that ||z; f|| 1, ®») < 00.

O] = ¢+ = FLOM) W]} ~ &b = F{ VOO } NG
87)i = Re (z:f, OOD)[Y]) ~ Re (F {z:f}, f{ M) ~

of /- Sof -
e<ia£,\ﬁw>=f{e<i\/g8;:, )
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Since Sy[¢]; = Re((Sy)i,¥) ~ Re ((g\f)“zﬁ), we obtain

— Aaf
(Sp)i=r C@xi

a7

where k is a constant.

Let us now introduce a vector of functions Vy = [(Sf)1,---, (S)n]" € LB(R™). Using|17| we
obtain (E-\)Z = /ﬁ\/g , and therefore:

-0f

ox

Thus, the expression ||S, — P;—1S, ,||? in the alternating scheme can be rewritten as:

200 =0,
Ve = PecaVi gy ~ 14/E 02 — ProamE22 2 )

8¢t1
1152 = P =22 11, e

Vf—li C

The matrix M can also be calculated from f using the following identity:

of .of of of
if s Mz f]) = (@i f, ¢ * (x; ) P Gy L2 e (RY
<xf [l'ij <5CfC (xjf)> < <8x3> <ax1 8Ij>L2'<(R)

O

Let us introduce a function I such that I(f) = I(f). Then, we see that all steps in Scheme can be
performed with ¢, rather than with ¢, using the algorithm

Informally, the dual algorithm works as follows: at each iteration ¢ we compute a function ét adapt-
ing it to data (the term [ (cZ))) and adapting its gradient field to the rank reduced gradient field of
the previous (bt 1. For a sufficiently large 7', it will converge and ¢1 ~ ¢r_1. Then, the second
term in the last step will be appr0x1mately equal to Al ||‘9¢T — Pr alie |2 ||2 @) enforcing

—179x
8¢T =~ PT_l— for random x ~

T CII . Thus, gradients = ¢T lie in a k- dlmensmnal subspace
Ly

col Pr_. This last property is a characteristic property of functlons from Fy,.

Algorithm 2 The alternating scheme in the dual space.

P0<—0,q30<—0
fort=1,---,T do

qﬁteargm(;nf( 5) + Al H - P 16¢t I]2 ||L c(R7)

Calculate M; = [Re (32, 82), (5]

Find {vz}1 St Myvi = XNV, A\ > - >\,
Pt — Z 1Vz T
Output: vy, -, vy

G A NUMERICAL ALTERNATING SCHEME FOR MMD
G.1 STRUCTURE OF F[Py]
From theorems and FlPr] C fk* In fact, a famous theorem of Bochner]| (1932) gives us that

the Fourier transform of any positive finite Borel measure is a continuous positive definite function.
That is, if f € F[P], then for any distinct y;,--- ,ys € R™ the matrix [f(y; — Yj)hpj:ﬁ is
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positive semidefinite. Since p(R™) = 1, we additionally have f(0) = 1. Let PDF denote the set of
all continuous positive definite functions on R™ and

My, ={f € PDF|3vy,...,vi €R" g : R* = Cs.t. f(x) = g(vix,..,vIx), f(0) =1} (18)

Thus, the following characterization of F[Py] becomes evident.
Theorem 13. F[Pj] = M.

G.2 THE DUAL FORM OF MMD

2 x 2
Let us define another gaussian kernel y(x) = e~ = F [k]. Let pdata(x) denote the charac-

teristic function of the random vector Xgata ~ fdata. BY definition, pgata(x) = E[eixfatax] =
N ixT _
% Zi:l eXi X, ThUS, Pdata X F ! [,udata] and Hdata X f[pdata]-

Using the isometry property of the Fourier transform for Ly (R™) and the convolution theorem, we
see that:

dymp (1, v) = [k po = ks vl L@y o< [y () (Flul(x) = F] ()2, @)
Thus, from Theorem [I3| we obtain that the task [6]is equivalent to:

|lpaata — allr, »@n) = qrél}\,rﬁ (19)
’ k

G.3 ALGORITHMS FOR MMD
LetIIj, : G — {1,400} and My, : Fj, — {1, 400} be simple penalty functions:
I (¢p) = 1,if ¢ € Py and I (¢) = oo, otherwise

My (¢) = 1,if ¢ € My, and My (¢) = oo, otherwise
Then, the task [6]is equivalent to:

1(8) = dinap (Haata; 911k (@) — inf

5
From the result of the previous section we see that if I(¢) = I(¢), then:
1(9) = lIpaata — ST, . @mMi(@)

Thus, the Algorithm [3]is an adaptation of Algorithm 2]to MMD.

Algorithm 3 The alternating scheme in the dual space for MMD

P0<_0,q0<_0
fort=1,---,7Tdo

) . Oqs_
1g; +— arg min Jan 7(%)2|Pdata(x) — q(x)]2dx + A [ ((x)[| 2L — Py 24=1| 3dx
k

2 Calculate M; = [(23;, %)Lzyé(R")
3 Find {VZ}? S.t. MtVi = )\ivi, )\1 > 2> /\n
4 Py «+— Zle vivl

Output: £ = span(vy, -, Vi)

If the function pqata is real-valued, then only real-valued functions can appear in the Algorithm [3]
This assumption can be satisfied by adding reflections of initial points to the dataset (after it was
centered).

At step 1, we search over ¢ given in the following parameterized form:

qo(x) = Z aicos(wl x) (20)
i=1
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where @ > Oand > ;" o; = 1. In our implementation, we set ], —17m = softmax([u;];_777)
and u;’s are unconstrained. The number of neurons in a single layer neural network with a cosine
activation function, nn, is a hyperparameter. Let us denote parameters {w;, u; }’; by 6. It is easy
to see the function ¢y is positive definite. Moreover, using Theorem 2 from Barron| (1993), it can
be shown that a set of all such functions, i.e. the convex hull of {cos(w?x)[w € R"}, is dense
in a set of real-valued functions from M. Though this parameterization is quite natural, finding
architectures with more expressive power in a space of real-valued positive definite functions is an
open problem.

Now, to minimize

O
ox 2

W) = [ A6 Ipanal) = wGOPax + A [ GG - P

with stochastic gradient descent methods (in our case, the Adam optimizer) we need to have an
unbiased estimator of

0 940, _,
Vo (0) X EyorzVo|Pdata(z) — q0(2)[> + AE,, N<V0|| qe( "= Py ;x ()3

where z ~ f denotes that the random vector z is sampled according to the probability density

function ff# Thus, a natural estimator of the gradient is:
an [

d

1 i 3(10 8QQ1 1(5 ))
E;vﬂpdma(zz —Q9 Zz Zv H - P Ix Hz

where {z;}7" | ~9 42 and {¢;}7, ~iid (.

The last important issue with the practical numerical algorithm is the calculation of M; at step 2. It
is easy to see that:

o 0qy T
= y—_ _—
My =E, ¢35 05 ()
In practice we sample X1, , X1 ~ é and estimate M, as follows:

l
1 Iq aQt T
% 2 e X))

The details of the numerical algorithm are given below 4] In all our experiments with MMD we set
¢=7%

Algorithm 4 The numerical algorithm for MMD. Hyperparameters: X, h,o,m,l,a, B, B2, nn.
Py +— 0, 90 <—0
fort=1,---,Tdo
while ¢ has not converged do
Sample {z;}/, ~%d 42
Sample {€;}7; ~" ¢ s )
m )Y m I5) ) 90, _ i
L £ [paata(z) — qo(z:)? + 2 o7 || 2250 — Py == 3
0 «— Adam(v9L7 07 «, /617 /82)
0 +— 0 R
Sample {x;}i_, ~"* ¢
Calculate Mt 1 Zl_ 8(10f (X-L ) 8‘19:, (X )

Find {VZ}1 s.t. M,gv2 =\ VZ, /\1 > ... 2 An
Py «— Zi:l viv)
Output: vy, -, vg

25



Under review as a conference paper at ICLR 2021

H A NUMERICAL ALTERNATING SCHEME FOR HM

H.1 THE DUAL FORM OF HM

Due to a well-known relationship between moments of the probability measure p and its character-
istic function p, i.e. i*m;,...;, = aaﬁ the taskis equivalent to:

4
& aspdata(o) _ BSQ(O) 2 .
Z Z <n | 8Ii1 e axis 8.131‘1 e axis | - qren/gtlk D

Note that the maximum mean discrepancy distance and the distance based on higher moments are
substantially different. Indeed, even if we set h as a large value (which makes % ~ 0), the MMD
distance, unlike the HM distance, neglects higher order derivatives of the characteristic functions in
the neigbourhood of the origin. Moreover, from the dual form it is clear that dgwm (fhdata, V) 1s @
degenerate case of a weighted Sobolev norm between characteristic functions of 1., and v.

H.2 ALGORITHMS FOR HM

Analogously to the case of MMD we see that the task [7]is equivalent to:
I(¢) = dHM(,LLdata; ¢)2Hk(¢) — inf
PEGK

and

(h=3k el 260y

1<iris<n 8a:i1 ce 83’75 81‘,‘1 tee (9ZEZ‘S
5

Thus, the Algorlthmﬁ]ls an adaptation of Algorithm [2]to HM.

Algorithm 5 The alternating scheme in the dual space for HM
PO — 0, qo <— 0
fort=1,---,7Tdo
: 4 A 9°Pdata (0 9°q(0
l g «— arg mlnk pIp— 5219'1,---,1'5@ |axid-fa(zii - axil%aii
Py 22t 2dx
dq: Oqu

2 Caleulate My = (535, 525) L, &)
3 Find {Vi ? s.t. Myv, = \vi, M > - > Ay,
4P +— Zle vivl

Output: £ = span(vy, -, Vi)

A fpn C()]1 82 —

Again, as in a numerical algorithm for MMD, at step 1, we search over ¢ given in the form 20} The
objective of step 1 can be represented as:

Jq aqet—l
o (7)) = P ()3

Pdata do 0 3
Z)‘ En, s~ (1, n)| ( t. ax)( )|2 +AEZ/~<A|

s=1

where U(1, n) is the discrete uniform distribution over {1, - -- , n}. To apply the stochastic gradient
descent methods we need to have an unbiased estimator of V®(#) which is equal to:

aS(indata )( ) 2 8qet—1 2
Z)‘ ]E'Ll i~ (1, n)v9| axil 6«%1; | + )\Ez NCV || ( ) - Ptfl ox (Z/)HZ

Thus a natural estimator of the gradient is:

*(Pdata — 49)(0) 2, A X~ 990() 999,_,(£i)) | 2
ANy, 1 290\S))  po 940-1Si))
Z Z 89: a[s,i,1 81@[5 4,2] " 81:(1[8,1:,8] ‘ * m2 z:zl 0” ox o ox ||2
where {a[s, i, j]} 17—, j—15 ~"¢ U(1,n) and {&;}7"% ~¥@ (. Overall, we obtain the fol-
lowing Algorithm 6]
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Algorithm 6 The numerical algorithm for HM. Hyperparameters:
)‘7 {)\S}s:ﬁ7 mi,ma, la «, Bla ﬂ?v nn.
Py +— 0, 6‘0 «—0
fort=1,--- ,Tdo
while 6 has not converged do
Sample {a[s, Z’J]}s 1,4 4 i=1,m1,j=1,s ~iid u(l n)
Sample {¢; }m2 ~iid ¢
ata A m o i
Lo Tl X Velg o maie iSSP+ e D Vell#e -
Pt_ 8‘19t 1 £ )) |2
0 «— Adam(VgL 0 04,51,[32)
0 +— 0 R
Sample {x;}i—; ~" ¢
Calculate Mt _ 1 Zl_ 8‘10t (X )) 849:, (X ))

Find {vz}1 s.t. Mtvl =\ VZ, )\1 > ... 2 An
Py — Zi:l viv)
Output: vy, -, vy

I A NUMERICAL ALTERNATING SCHEME FOR WD

By Theorem [6} the task[13]is equivalent to min,cp, W (1, fidata), OF to the following task:

I inf
(¢) — Auf

where I(T,) = W (j, fidata) if o € Py and I(¢) = oo, if otherwise. The alternating scheme 1] is
designed to solve the penalty form of the problem, i.e.

1(¢) + AR(¢) — ¢§2}§n)

which is equivalent to
W(¢a ;u’data) + )\R((b) - min

PeSH(R™)
where Sp(R™) C S(R™) is a set of Schwartz functions that can serve as pdf: ¢(x) > 0,
fRn dx = 1. A numerical version of the alternating scheme requires additional specifications

on: a) how to minimize over ¢ at step 1, and b) how to estimate M, .

I.1 HOW TO MINIMIZE OVER ¢?

In the case of WD, the minimization step of the alternating scheme makes the following:

O é—arg min W(, paara) + A|Sy =~ PiaSo, | 22)

(R™)
where Sy = /O(M)[xf(x)].

For a numerical implementation of that step we need to choose some family of functions that is
dense in S,(IR™) (or, rich enough to approach the solution p*). Following the tradition of GAN

research let us assume that the family is given in the following for
H = {po|po(x) is pdf of random vector go(z),z ~ p(z),0 € O} (23)

where {gg|0 € ©} is a parameterized family of smooth functions (usually, a neural network) and
p(z) is some fixed distribution (usually, the gaussian distribution). Following|Arjovsky et al.|(2017),
we make the assumption [T} In a numerical algorithm we need an access to a procedure that samples
according to ¢y (x), not the function itself.

Assumption 1. ||gg/(z') — go(2)[| < L(6,2)(]|0" — 0[| + [|2" — 2||) where
Ezwp(z)L(9>Z) < +00o
2If H C S(R™) is not satisfied, then we can choose H. = {¢q * G*|0 € O} for a very small e.
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Thus, instead of solving 22] we solve:

04— axg min W (0, faia) + XS5 — Pt Sor, |

taking into account that ¢y_1 € H.

The Kantorovich-Rubinstein duality theorem gives us that:

W (60 hanea) = 100 By [£00] = By [ (00(2)]

which turns [22]into the following minimax task:

Or ¢ arg iy AKX Focpugura [F ()] = Banpn) [f(90(2)] + Al - P18y 0l1* 2%

In practice, we choose a family of functions £ = {f,,|w € W} and internal maximization is made
over w € W with an additional penalty term that penalizes a violation of the Lipschitz condition:
Vx| fx]] < 1.

A family of minimax algorithms for the minimization of W (¢g, ttemp) Was developed in a series
of papers |Arjovsky et al|(2017); \Gulrajani et al.|(2017); Wei et al.| (2018). The standard minimax
scheme that gained popularity in GAN literature iterates two steps: a) njie; times make a gradient
ascent over w € VW, b) make a gradient descent over 6. The task [24] can be viewed as a Wasser-

stein GAN with an additional regularization term AT'(¢) where T'(6) = [[Sg, — Pi—15,, . ||2. To
adapt these algorithms to the minimization of our function, we only need to have an unbiased esti-
mator of the gradient ‘gg. This estimator is needed for the generator to make its gradient descent
step. The discriminator’s part of the algorithm (in which we maximize over Lipschitz functions
fw) can be set in a standard fashion — we choose [Petzka et al.| (2018))’s version, in which the term
max{0, H%(fx + (1 = &)go(z))|| — 1} enforces Lipschitz condition (see step (*) of the Algo-
rithm 7).

lx—y]|?
n

Algorithm 7 Numerical algorithm for WD. We use M (x,y) = e~ and default values of
A =10, A =100, neritic = 5, m = 40,1 = 100007, o = 0.00001, 31 = 0.5, B2 = 0.9
Py +— 0, 6‘0 «—0
fort=1,--- ,Tdo
Minimax realization of n%in W (0, pemp) + AT(6) (*):

while 6 has not converged do
for s = 1,..., Nerigic do
Discriminator updates w
Sample {77y, &}y ~p(z)
L+— —L5" fu(ge(zi)) + )\W (Z is defined in equation

0 AdarlrILl(VQL, 97 «, /817 62)
0 +— 0
Realization of step (¥%*):
Sample {z; é:p {Zg}ézl ~ p(z)
Mt A Z’ZJ 9o, (zi)g9t (Z;«)TM(ggt (Zi)a 99, (Z;))
Find {Vi}? St Myv; = Njvi, Ay > - > Ay,
P, +—— Zle vivl

Output: vy, -, v

1.2 HOW TO ESTIMATE %—g AND My, ?

Another important aspect of the numerical algorithm is the complexity of estimating the matrix
My, at step (**). The following theorem shows that we only need to sample z ~ p a sufficient

number of times to estimate %—g and My, .
t

Theorem 14. If ¢g is pdf of the random vector gy(z), z ~ p(z), then
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[ 0=(0,2,2)
06 06

My, = By prnpgo(2)go(z')" M(go(2), go(2"))

- IEz,z’fvp

where

E(0,2,2") = (90(2) - 90(2")) M (g0(2), go(2))— (25)
2(90(2) - Pi-190,_,(2)) M (90(2). 90, _, (2'))
and RHS is well-defined.

1.2.1 DEFINITION OF H

Specifically, for robust PCA/outlier pursuit applications, we define ¢y (x) as a probability density
function of the random vector a + b, where a, b are independent and a is the ¢-th column of
matrix §; € R"*¥ (where i ~ U(1,N) is sampled uniformly from {1,--- ,N}), b = gy, (c),
c ~ N(0,I,) and gp, : R™ — R"™ is a neural network with weights 6. Thus, § = (01,63). It
can be checked that H, defined in this way, satisfies the Assumption [I] We specifically introduce
the random vector a here because, according to Theorem |§L the ultimate solution of the problem
corresponds to #; = Y and b = 0. This guarantees that the solution is approachable from set 7.

1.3 PROOF OF THEOREM 4]

We need to following lemma.

Lemma 5. ||S, — PS¢||2 =Exyo(x-y)M(X,¥) + Ex you(x- Py)M(X,y) — 2Exrg yryp (X
Py)M(x,y)

Proof of lemma.

1S5 = PSylI* = [[v/OM)[x¢(x)] = P/OM)[x(x)]||* =
= [WVO(M)[x¢(x) — Pxp(x)]||* = Z IVOM)[zip(x) — (Px)ip(x)][]* =

n

D (@id(x)|O(M)[2:6 (%)) +{(Px) () [O(M)[(Px)ith (3)]) —2{(Px)itp () |O (M) [zip(x)]) =

=1
Ex,ymo(X - y)M(X,y) + Ex yyp(x - Py)M(X,y) — 2Exng y~y (X - Py)M(x,y)

Proof of theorem[I4} Using lemma 5] we have:

T(0) = Exymgy (x - y)M(x,y) + Ex7y~¢>9t, (x Pro1y)M(x,y)—

_2Ex~¢9 Yo,y (X . Ptfl}I)M(X? y) =
Ez.2~p(90(2) - 90(2")) M (g0(2), 9o (2'))+
Eysnp(90,1 () - Pe-196,_,(2)) M (g6, _, (2), 90,_, (2))—

2Es 2 np(90(2) - Pio190,_,(2')) M (9(2), go,_, (2))
The second term does not depend on 6. Therefore,

o _ o
06 00

E, 2 p=(0, 2, z')
where

E(0,2,2") = (90(2) - 90(2)) M (96(2), 96(2")) — 2(96(2) - Pi-19s,_,(2')) M (g0(2). go,_, (2))
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If ELZ/NP%’GZ’Z/) is well-defined (the proof of sufficiency of that condition is similar to the proof
of Theorem 3 from |Arjovsky et al.[(2017)), then, using Leibniz integral rule, we obtain:

) 0=(0,2,2")

—_ !
EppnpS(0,2,2") = Epprp

a0 90
The fact that
o0 = Eaarnpgo(2)90(2')" M(go(2), go(2'))
is obvious from the definition My, = Ex yp, Xy’ M(x,y). O

J A NUMERICAL ALTERNATING SCHEME FOR SDR

For a binary classification case, given a labeled dataset {(x;,v;)}¥ ;. x; € R",y; € C,C = {0,1}
we formulate the sufficient dimension reduction problem as the minimization task:

J(f) = E(z,c)wudata,ewN(O,v2ln)L(Cv f(Z + 6)) — HllIl
FEFkK

where L(c,y) = —clog(y) — (1 — ¢)log(1 — y).

We apply the alternating scheme in the dual space (Algorithm [2) to this task. We set M (x,y) =

¢(x — y), where ( is a strictly positive probability density function. A numerical version of the
scheme is given below (Algorithm|g)).

At every iterationt = 1, ... , T of the Algorithmwe solve the task (in our case I = .J):

Od1—1
¢t<—argmm1( b+ All I*—Pt 1 L, ey

In a numerical version of the algorithm we assume that ¢? is given as a neural network fy, i.e. our
task becomes:
0fo of 01

(&) = P == I

3fet 1

0y argmin J(fo) + )\IE£N<||

The gradient of the function ®(0) = J(fp) + /\]E£NC|| s () — P, (€)||? equals:

% (6) o) 5 9, 9f Afo._,
50— ]E(LC)NPdam,eNN(O,’UQIn)%L(C7 fo(z+€)) + AE@@@HT(@ - t—lT(f)”Q

That is why VL (given to Adam optimizer in the gradient descent loop) in the Algorithm [§]is an

unbiased estimator of a<1>(0) . Thus, in the “while loop” we find optimal (bt fo,-

According to Algorithm the next goal is to estimate M; = [Re <%, g%%) L, C_(Rn)} . Itis easy to
i 0wyl Lo
see that

b, , ¢ dfo, ,_\Ofo,
i g 05 00T =By (005 ()"

M, =E

From the last we see that the matrix A/, can be estimated by sampling x ~ f a sufficient number of
times (the parameter [ in our algorithm). All the rest is identical to Algorithm 2}

The regression version of the algorithm can be obtained by setting L(c,¢’) = (¢ — ¢’)?. Implemen-
tations for different databases can be found at github.
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Algorithm 8 The numerical alternating scheme for SDR. We use v = 1.0, ((x) = G} 4(x) and
default values of A\ = 10, m ~ 50, m’ = 100, = 30000, v = 0.0001, 8; = 0.5, B2 = 0.9
Pr+—0,0) <0
fort=1,---,7T do
while 6 has not converged do
Sample {(z;,¢;) 2y ~ Paata
Sample {¢; }7 1~ N(O, v21,)

Sample {£,}1%, ~

St BeE, Ofo,_, (€)
L 550 (ci,fe(zi+€i))+%2i:1||w—Pt* — P
6 +— Adam(VgL,0,a, (1, 32)

9,5(*9

Sample {x;}i_; ~ 6
Calculate Mt _ 1 Z’L L Bfet(xﬂ) Bfet(x ))

ox

Find {v7}1 s.t. Mtv7 = \iVi, A\ > > An
P +— Zi:l vivl
Output: vy, -, v
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