
Under review as a conference paper at ICLR 2023

HIERBATCHING: LOCALITY-AWARE OUT-OF-CORE
TRAINING OF GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) have become increasingly popular for analyzing
data organized as massive graphs. Efficient training of GNN models under limited
computing resources is critical for GNN’s widespread adoption. We consider the
use of a single commodity machine with limited memory (e.g., 128GB) but ample
external storage (e.g., 1TB). On such a platform, the feature data or even the graph
may not fit in the memory. When data is stored on external storage, gathering
features and constructing neighborhood subgraphs in a typical mini-batch training
incurs random storage accesses and thus, causes expensive data movement.
To overcome this bottleneck, we propose a locality-aware training scheme, coined
HierBatching, which significantly increases training speed while retaining the
training quality. The key idea is to exploit the memory hierarchy of a modern
GPU machine by constructing batches in an analogously hierarchical manner.
HierBatching groups nodes in partitions, each of which is laid out contiguously
in the disk for maximal spatial locality. Meanwhile, the main memory is treated
as a cache that holds a mega-batch, which is a random collection of partitions.
Mini-batches are sampled for GPU training from the mega-batch in the main
memory. Each mega-batch is reused multiple times to improve temporal locality.
Our experiments show that on a machine with 128GB main memory, HierBatching
is 3× to 20× faster than a straightforward out-of-core training approach by using
mmap, while maintaining the prediction accuracy.

1 INTRODUCTION

Graph neural networks (GNNs) have emerged as effective machine learning models for many
practical applications, such as social network analysis, financial forensics, recommendation, and
traffic forecasting (Hamilton et al., 2017b). Training GNNs has become increasingly challenging as
the size of the graphs has increased rapidly. Even benchmark datasets that mimic real-life applications
have grown to sizes that forbid the use of commodity laptops or servers for experimentation and model
development. For example, the MAG240M dataset (Hu et al., 2020) has 407GB of raw data (where
349GB accounts for node features). The storage requirement easily exceeds the memory capacity of a
single machine; hence, one considers either exploiting external storage or using a distributed-memory
cluster. The latter imposes a natural cost barrier for many individuals and organizations, and also has
been demonstrated to be often heavily communication-bound (Ramezani et al., 2022).

In this work, we exploit external storage (e.g., SSD) and perform out-of-core GNN training on a
single machine with one or a few GPUs. Fig. 1(a) illustrates the typical memory hierarchy of such
a machine. The ample external storage is assumed to be able to store the entire dataset in a format
that facilitates processing and training, while the main memory cannot. Each GPU, as is common in
machine architectures encountered nowadays, has an even smaller memory capacity than the main
memory. We use one or multiple GPUs to perform mini-batch training.

Traditional wisdom suggests that key to the exploitation of the memory hierarchy of a machine is
locality: spatial locality that takes advantage of sequential data accesses and thus reads data in blocks
instead of single words, and temporal locality, which takes advantage of the fact that recently accessed
data will be accessed again in the near future, and thus, put it at a place closer to the processors
to reduce access time. In disk-based computing, for spatial locality the operating system retrieves
data from disk to memory in fixed-sized 4KB to 8KB blocks, called pages. This avoids the read

1

Under review as a conference paper at ICLR 2023

External Storage — Disk

Main MemoryCPU

GPU Memory GPU Memory

GPU1 GPUm...
PCIe

~TB

~100GB

~10GB

Main MemoryGPU Memory

GPU Memory

node partition

training nodes

(a) memory hierarchy of a single machine (b) hierarchical batching

static cache

static nodes

dynamic cache

mega-batch

Disk

mini-batch

Figure 1: Overview of hierarchical batching. The disk stores the entire graph which is divided into partitions.
Multiple (four in this example) partitions are randomly selected and loaded into the main memory to form a
mega-batch, from which mini-batches are sampled and moved to the GPUs for training.

amplification problem (which dramatically reduces the effective disk bandwidth) when disk is read in
cache-line-size blocks. For temporal locality, it is desirable that data loaded from the disk be reused
as often as possible, given the significant latency caused by moving data from disk to memory.

Following this intuition, we propose a hierarchical batching scheme, abbreviated as HierBatching, to
exploit locality in modern commodity memory hierarchy (external storage, main memory, and GPU
memory). HierBatching batches data in an analogously hierarchical fashion: the entire set of graph
nodes (with features and edge lists) is stored in external storage, while a mega-batch of nodes is
sampled and copied to the main memory serving as a cache; mini-batches are then sampled from the
cache for gradient-based training. We make this scheme locality-aware by partitioning the graph nodes
into many small partitions that are stored consecutively in the disk (spatial locality), and performing
mini-batch training with the same cache multiple rounds (temporal locality). HierBatching preserves
the random nature of a stochastic training, as it forms each mega-batch with random combinations of
partitions and samples mini-batches from the mega-batch randomly.

A realization of HierBatching incurs a subtle challenge because some of the neighbors of a node
in a mega-batch may not be included in the cache, thereby degrading the training quality and the
prediction accuracy. To maximally increase the node degrees with a small memory, we propose
to permanently store the highest-degree nodes in the memory, because they are more likely to be
connected to nodes in the mega-batch. We thus divide the main memory into a static cache and a
dynamic cache and use the former to accommodate these nodes, such that their features are always
reachable without repetitive transfers from the external storage. See Fig. 1(b) for a preview.

Our work makes the following contributions:

• We study a practical but under-explored scenario for training GNNs on massive graphs using
external storage and propose HierBatching, a locality-aware batching scheme that fully leverages
the memory hierarchy of a machine, particularly disk, to improve training efficiency.

• We introduce a static cache to compensate the loss of node degrees in the formation of the batching
hierarchy, retaining model accuracy obtained by standard in-memory mini-batch training.

• We demonstrate empirically that, on a GPU equipped machine with 128GB main memory, Hier-
Batching is 3× to 20× faster than DGL with mmap support, while retaining prediction accuracy.
HierBatching is also competitive with in-memory DGL, which requires 3 times more memory.

2 PRELIMINARIES AND RELATED WORK

In this work, we consider message-passing GNNs that act on a given graph G(V,E), where V is the
node set and E is the edge set. For each node v ∈ V , let h0

v be the initial feature vector. A K-layer
GNN uses message passing to iteratively update the feature vector and produces an output vector hK

v .
Specifically, the update at the k-th layer (1 ≤ k ≤ K) reads

hk
v = updatek

(
hk−1
v , aggregatek

(
{hk−1

u | u ∈ N (v)}
))

,

where N (v) denotes the 1-hop neighborhood of v, and updatek and aggregatek are operators
on the feature vectors, generally layer-dependent. Common GNNs, such as GCN (Kipf & Welling,

2

Under review as a conference paper at ICLR 2023

2016), GraphSAGE (Hamilton et al., 2017a), GAT (Veličković et al., 2018), and GIN (Xu et al.,
2019), follow this framework but differ in the design of the two operators.

To scale GNNs to massive datasets, a frequently studied approach is distributed-memory train-
ing (Yang, 2019; Zhang et al., 2020; Zheng et al., 2020; Jia et al., 2020; Tripathy et al., 2020; Hoang
et al., 2021; Md et al., 2021; Gandhi & Iyer, 2021; Kaler et al., 2022). However, such an approach
often requires frequent and voluminous inter-machine communication, including features, edge
lists, models, and gradients, causing substantial challenges in parallelization, synchronization, and
pipelining. LLCG (Ramezani et al., 2022) reduces communication by using local training and global
correction; however, it requires a powerful global server that can process the entire graph, at odds
with a limited memory budget.

GNN training is generally done by following the mini-batch training scheme, propelled by the
advances in stochastic optimizations and widely adopted by the designers of neural networks. Mini-
batch training on graph data, however, suffers the well-known neighborhood explosion problem: for a
K-layer GNN, the loss of a training example requires information of its K-hop neighborhood, whose
size is exponential in K in the worst case. Therefore, sampling techniques (Hamilton et al., 2017a;
Chen et al., 2018; Chiang et al., 2019; Zeng et al., 2020) have been proposed to limit the size of the
neighborhood. This batching-plus-sampling approach effectively reduces memory consumption, but
data movement remains a bottleneck that hampers training efficiency. Prior work that aims at reducing
data movement exists. GNS (Dong et al., 2021), PaGraph (Lin et al., 2020) and GNNLab (Yang
et al., 2022) all employ GPU memory as a cache of main memory and keep likely-reusable data for
fast accesses; GNS further prioritizes sampling from the cache nodes to reduce the cache misses.
LazyGCN (Ramezani et al., 2020) recycles the already-sampled data in GPU memory, also reducing
sampling and data movement overhead. However, none of the approaches handles the out-of-core
scenario; in particular, they do not eliminate random accesses or consider the spatial locality, which
are critical for data stored in the disk. MariusGNN and its prequel (Waleffe et al., 2022; Mohoney
et al., 2021) are rare works that studied out-of-core training. Yet, they employ random partitioning
that could render the in-memory graph overly sparsified and hurt the GNN prediction accuracy. A
detailed analysis of MariusGNN and a comparison with our approach are provided in Appendix D.2.

Other approaches to scaling up GNNs include GNNAutoScale (Fey et al., 2021), graph coarsen-
ing (Huang et al., 2021), compression (Liu et al., 2021), and quantization (Ding et al., 2021). They
are orthogonal to our approach and can be applied together with HierBatching in practice.

3 LOCALITY-AWARE HIERARCHICAL BATCHING

The typical mini-batching and sampling method for training GNNs works well in the in-memory
training setting, but is not efficient for the out-of-core setting. This is because the batching approach
is not aware of the memory hierarchy in a real machine. More specifically, external storage accesses
are much slower than memory accesses. The random nature of mini-batching causes random disk
accesses, rendering out-of-core training orders of magnitude slower than in-memory training. Even if
disk data is treated as a memory-mapped file (mmap), page alignment will inevitably cause movement
of unneeded data from disk to memory. Moreover, neighborhood sampling can be rather inefficient,
if in-memory sampling is interleaved with moving edge lists from disk to memory, hop by hop.

We thus propose HierBatching, an out-of-core scheme that effectively leverages the memory hierarchy
for efficient training. The development of HierBatching undergoes a series steps, including exploiting
spatial locality through graph partitioning (§3.1), compensating degree loss by using a static cache
(§3.2), and improving temporal locality through mega-batch reuse and pipelining (§3.3). We
summarize the overall training algorithm in §3.4 and analyze the training speedup in §3.5.

3.1 HIERARCHICAL BATCHING AND SPATIAL LOCALITY

The first step of an efficient solution is to create a hierarchy for the batches, analogous to the memory
hierarchy of a typical machine for training neural networks (external storage – main memory – GPU
memory; see Fig. 1(a)). We treat the main memory as a cache for the disk and call data residing in
the main memory a mega-batch. Once the mega-batch is formed through disk I/O, we may sample
mini-batches from it, eliminating extra disk accesses. It has been demonstrated that if the mega-batch

3

Under review as a conference paper at ICLR 2023

is sampled randomly from the entire graph, training will converge and the resulting model is as good
as that trained without using mega-batches (Ramezani et al., 2020).

The solution above reduces disk accesses, but the accesses are still random. To improve spatial
locality, we divide the nodes into partitions and randomly sample partitions instead of nodes to form
a mega-batch. Node data of a partition, i.e., feature vectors and edge lists, are laid out contiguously in
disk, so that accesses to the nodes in the same group are sequential. An obvious benefit of grouping
is the reduction of random disk accesses; moreover, it leads to the I/O of more consecutive data,
reducing the collateral movement of unneeded data due to page alignment. This mechanism is
illustrated in Fig. 1(b), where a box denotes a partition and the dots inside are the training nodes.

The number of partitions is chosen to balance two factors: too large a partition weakens the random-
ness of the mega-batch, compromising training quality; too small a partition weakens spatial locality,
slowing down the disk data transfer. One rule of thumb is to ensure that the edge lists of a partition
occupy only a few pages, given a specific page size and the average node degree. Moreover, it is
desirable to use the minimum edge cut as the partitioning objective, so that the mega-batch, as a set
of partitions, loses as few neighbors as possible. For a proof of concept, we use the off-the-shelf
partitioner METIS (Karypis & Kumar, 1998) in our experiments. In cases when the graph storage is
beyond the memory capacity, an out-of-core partitioner (Kaur & Gupta, 2021) is used.

3.2 STATIC AND DYNAMIC CACHES

Let the graph be divided into Np disjoined partitions and the capacity of the cache (main memory)
allows holding Nc (< Np) partitions. In each training epoch, we randomly shuffle the partitions and
move Nc partitions from the disk to perform in-memory training. The cache contains a subgraph
induced by the nodes inside these Nc partitions. We enumerate mini-batches and sample neighbors
for each layer from this subgraph to perform model updates. Compared with the full graph, however,
such a subgraph will inevitably lose edges between the nodes in it and those outside it. This fact
causes the degradation of prediction accuracy on some of the large graphs we experimented with.

To mitigate the performance loss due to insufficient neighbors, we permanently store in the memory
some high-degree nodes that are helpful to increase the overall node degree. The part of the memory
that holds these nodes is called the static cache. The rest of the memory acts as a dynamic cache,
which holds the randomly selected partitions from the disk. As we can only allocate a small amount
of memory for the static cache, we want to maximize its usage. A natural question is which static
nodes are the most beneficial. Let CS with cardinality k be the node set in the static cache and
let {C(i)

D } be the node set in the dynamic cache for the i-th mega-batch. Then, the objective is to
maximize the sum of increased degrees over all mega-batches:

max
CS⊆V, |CS |=k

∑
i

∆(C
(i)
D , CS), (1)

where for each mega-batch,

∆(CD, CS) :=
∑

u∈CD

∑
v∈CD∪CS

1(u, v)−
∑

u∈CD

∑
v∈CD

1(u, v), (2)

with 1(u, v) being the indicator function which denotes the existence of an edge between nodes u
and v. It is not hard to see that the solution to Eq. (1) is

Copt
S = { first k nodes v in the decreasing order of degree(v)− degreesub(v) }, (3)

where degree(v) and degreesub(v) denote the degree of v in the full graph and the degree in the
subgraph induced by C

(i)
D , respectively. See Appendix A for a proof.

Note that the optimal selection for the static cache derived in Eq. (3) is not “static”: it depends
on the content in the dynamic cache, as degreesub(v) changes over epochs due to the shuffling of
partitions. In practice, we use degree(v) to approximate degree(v)− degreesub(v) when forming the
static cache; that is, it contains the k nodes with the highest degrees. Inclusion of these nodes is
intuitively sensible: a high-degree node connects more neighbors and offers a larger degree increase.
Moreover, if all nodes have similar degrees in the subgraph as those in the full graph, then the first k
nodes in the ordering of degree(v) would be similar to those in Eq. (3).

4

Under review as a conference paper at ICLR 2023

Fig. 2 illustrates the degree increase due to the use of a static cache, among nodes grouped by their
degrees in the mega-batch. The orange part is the total degree increase for all nodes in the group.
One sees that the group of lowest-degree nodes (0-5) incurs the most increase, benefiting the most
significantly from the inclusion of static nodes; whereas the highest-degree nodes (>50) incurs the
least amount of degree increase. Implementation details of the static cache are in Appendix C.1.

3.3 PIPELINING AND MEGA-BATCH REUSE

0-5 5-10 10-20 20-50 >50
Degree buckets (d-cache only)

100k

200k

300k

400k

500k

Su
m

 o
f n

od
e

de
gr

ee
s

full graph
d-cache+s-cache
d-cache only

Figure 2: Node degree increase for five groups of
nodes, bucketed by their degrees in the mega-batch.
For each group, the green bar shows the sum of de-
grees before adding the static cache. The orange bar
is the increase of degrees due to the inclusion of static
cache, while the blue bar shows the loss of degrees.

Given a mega-batch, we enumerate mini-batches
of training nodes from it to perform training on
GPUs. We define a “pass” as using every training
node in the mega-batch exactly once. The data
transfer from disk to form a mega-batch usually
takes more time than that of executing one pass on
GPUs. This means HierBatching’s speed can still
be limited by the disk data transfer time. On the
other hand, for datasets with a low training node
ratio, performing one pass may underutilize the
data in the memory, i.e., some of the nodes in the
mega-batch may not even be sampled.

Hence, we employ two techniques cooperatively,
pipelining and mega-batch reuse, to overcome this
bottleneck. The idea is to repeatedly use the cur-
rent mega-batch in memory while waiting for the
disk transfer for the next mega-batch, in an ex-
change of lowering the number of epochs required
to reach training convergence. In the context of
HierBatching, pipelining refers to overlapping the
computation, i.e., training with the current mega-
batch, with communication, i.e., the data transfer of the next mega-batch. In addition, mega-batch
reuse lets the training go through a mega-batch in multiple passes to exhaust the disk transfer time
for the next mega-batch. Repeated use of the mega-batch in the cache improves temporal locality.

Training with a mega-batch in multiple passes deviates from the usual setting of stochastic optimiza-
tion. In our experiments it always converges, but its theoretical analysis is rather challenging and is
beyond the scope of this paper. When done in one pass, the training is similar to ClusterGCN (Chiang
et al., 2019), whose empirical success in convergence supports our proposal. On the other hand, if
we are willing to assume that the mega-batches and the mini-batches therein are all sampled with
replacement, the setting falls back to standard stochastic gradient descent and we do obtain conver-
gence guarantees (Bottou et al., 2018). The challenge of analysis lies in the fact that these batches
are sampled without replacement. Only very recently, analysis of such a setting was conducted and
even so, it considered only strongly convex objective functions (HaoChen & Sra, 2019). We leave the
analysis as future work but supplement it through empirical evidences in §4.1.

3.4 OVERALL ALGORITHM

Let us summarize the training procedure in Algorithm 1. We assume that the graph has been
partitioned and each of the Np partitions is laid out contiguously on external storage. First, fill
the static cache (line 9). Then, we train in epochs (line 10), each of which performs a sweep over
the entire training set. In each sub-epoch (line 11), Nd partitions are sampled and loaded to main
memory, forming a maga-batch (lines 12–15). This part includes loading node features and edge
lists and forming the subgraph induced by the nodes in the dynamic cache and the static cache.
Furthermore, this part is pipelined with the rest of the algorithm, which performs GNN training
in memory. Therein, the mega-batch is recycled in p passes (line 17). For each pass, a standard
multi-GPU training procedure is followed to update the model parameters (lines 18–23).

5

Under review as a conference paper at ICLR 2023

Algorithm 1 Out-of-core GNN training with hierarchical batching (multi-GPU single-machine)
1: Input
2: G(V,E) input graph, pre-partitioned, with nodes in the same partition stored contiguously in disk
3: Np total number of partitions
4: Nd number of partitions in the dynamic cache
5: rs the ratio of nodes in V pinned in the static cache
6: p number of passes per mega-batch
7: B mini-batch size, i.e., number of training nodes in a mini-batch
8: q number of GPUs

9: Let the set of rs × |V | highest-degree nodes be P . Move features of P to the main memory. ▷ static cache
10: for each epoch do
11: for each i ∈ [0, Np

Nd
) do ▷ hierarchical batching at the main memory level

▷ lines 12–15 are pipelined with lines 16–23

12: Random sample Nd node partitions and let the sampled node set be T
13: Move the features of T to the dynamic cache in the main memory ▷ disk data transfer
14: Move the edge lists of T ∪ (N (T) ∩ P) to the main memory ▷N (T) is T ’s neighborhood
15: Form a subgraph Gcache with node set T ∪ (N (T) ∩ P) ▷ a new mega-batch formed

16: Let ST be the number of training nodes in T , and r = ST
B

be the number of mini-batches per pass
17: for each pass j ∈ [1, p] do ▷ reuse the mega-batch in the main memory
18: Shuffle training nodes in Gcache into GPU-level mini-batches {B1, . . . ,Bq×r}
19: for each mini-batch k ∈ [0, r) do ▷ hierarchical batching at the GPU level
20: for each GPU d ∈ [1, q] in parallel do ▷ multi-GPU training
21: Sample a message-flow graph Gs from Gcache for the mini-batch Bk×q+d

22: Move Gs to the GPU and compute the gradient
23: All GPUs average the gradient and update the model

3.5 SPEEDUP ANALYSIS

We analyze the speedup of the proposed locality-aware hierarchical batching scheme, over a straight-
forward out-of-core training by using mmap without exploiting locality. We use the same notation in
Algorithm 1, in which we run p passes and execute p× r mini-batches for each mega-batch. Let D be
the node feature dimension and Sfeat be the data precision in bytes. Let BWseq and BWrand be the
disk bandwidth when performing sequential accesses and random accesses, respectively. Generally,
BWrand/BWseq := α ≈ Sacc/Sopt, where Sacc = D × Sfeat is the size of a single random
access and Sopt is the optimal disk request size that leads to sequential access. For example, in the
MAG240M dataset, D = 768 and Sfeat = 2B, while Sopt = 4KB for a modern flash disk. Then,
α = 768 × 2/4069 = 0.375, which means that random access of a node feature vector leverages
only 37.5% of the peak disk bandwidth.

For simplicity of analysis, we neglect the disk transfer of the graph, as loading node features is way
more time consuming for large D. Using mmap without locality, the time to load one mini-batch
is tmini

disk = B × F × D × Sfeat/BWrand, where B is the mini-batch size and F is the sampling
fanout. Let γ be the ratio of training nodes in the graph, and we assume even distribution of training
nodes across mega-batches, so that ST /Cd ≈ γ. Let the time to train one mini-batch be tgpu,
which includes data transfer from memory to GPUs, doing forward and backward calculations,
averaging gradients, and updating the model. Typically, tmini

disk /tgpu := β > 1. Assuming pipelining,
the majority time to train p × r mini-batches is tmmap = p × r × tmini

disk . On the other hand, for
HierBatching, loading one mega-batch takes time tmega

disk = Cd×D×Sfeat/BWseq and thus training
takes time thier = max{tmega

disk , p×r×tgpu}. Therefore, the speedup is tmmap/thier = p×γ×F/α
if disk access takes more time in HierBatching; otherwise, tmmap/thier = β.

6

Under review as a conference paper at ICLR 2023

4 EVALUATION

Datasets and evaluation metric. We use large benchmark datasets listed in Table 1. Mag240M and
ogbn-* datasets come from the Open Graph Benchmark Hu et al. (2020; 2021). Mag240M-C is the
subgraph extracted from Mag240M that contains only paper citation edges. All graphs are made
undirected if they are originally not. The data statistics after the transformation are listed in Table 1.
On each dataset, the task is to predict node labels. Although smaller datasets such as ogbn-arxiv and
ogbn-products could easily fit into the main memory in our setting, they are included in the evaluation
to demonstrate the competitive model quality produced by HierBatching.

Table 1: Summary of evaluated datasets
Dataset # Nodes # Edges Feature Classes Multi-label Train / Val / Test Raw data size
ogbn-arxiv 169,343 2,332,486 128 40 No 0.54 / 0.18 / 0.29 123MB
ogbn-products 2,449,029 123,718,024 100 47 No 0.08 / 0.02 / 0.90 2.8GB
ogbn-papers100M 111,059,956 3,231,371,744 128 172 No 0.01 / 0.001 / 0.002 103GB
Mag240M-C 121,751,666 2,595,497,852 768 153 No 0.01 / 0.001 / 0.001 214GB
Mag240M 244,160,499 3,456,728,464 768 153 No 4.5e-3 / 6e-4 / 6e-4 407GB

Evaluation platform. We use two compute platforms in our experiments, a local cluster and AWS.
Each compute node in the local cluster has 32 CPU cores, 1TB DRAM and 4 NVIDIA V100 GPUs.
The AWS instance has 24 CPU cores (2-way hyperthreading, 48 threads), 386GB DRAM and 4
NVIDIA T4 GPUs. The AWS machine is equipped with a fast local flash storage while the local
cluster stores the datasets in a networked file system. The difference of the two is useful in showing
how I/O throughputs could affect training speed. We regulate the DRAM size on both platforms, e.g.,
from 128GB to 386GB, to meet the memory budget assumptions of different experiments.

Experimental Setup. We implement HierBatching based on PyTorch Paszke et al. (2019) and
DGL Wang et al. (2019). We use the micro F1-score to measure accuracy. For accuracy-related
experiments, we run the training for a fixed number of epochs as listed in Table 4 in the Appendix.
We report the test scores produced by the model at the best validation epoch during the training.
To obtain the training time per epoch, we run each experiment for five epochs and take an average.
Further details of our experimental settings are deferred to Appendix C.

4.1 ACCURACY COMPARISON WITH STANDARD NEIGHBORHOOD SAMPLING

To demonstrate that HierBatching retains the accuracy of standard in-memory training schemes,
we compare test accuracy of HierBatching (HB) with that of neighbor sampling (NS), the standard
mini-batching and sampling method used to train large-scale GNNs (Hamilton et al., 2017a). NS
assumes full graph accesses during sampling. We allocate as much memory as NS needs to run in
memory. For HB, we choose static cache capacity Cs = |V |/100 and number of passes p = 2. For
a given dataset and model, we keep common hyper-parameters the same (e.g. GNN layers, hidden
dimensions, learning rates) across all methods. Detailed hyper-parameter settings are in Appendix C.

Table 2 lists the test F1-micro scores obtained by NS and HB. We observe that their resulting accuracies
are nearly the same across models and datasets. However, without the static cache, HB(-s) suffers
notable accuracy degradation (≥1%) in many cases, as shown in red. This observation demonstrates
the importance of static cache for HierBatching. We also observe that HB and the no mega-batch
reuse version, HB(-r), achieve a similar accuracy, which means that mega-batch reuse does not
compromise the training quality. Note that similarly to HB(-s), MariusGNN (Waleffe et al., 2022)
also suffers accuracy degradation, as it does random partitioning without compensating the edge loss.
We conduct a detailed comparison with MariusGNN in Appendix D.2.

4.2 CONVERGENCE RATES AND TRAINING TIME

Fig. 3 shows the model convergence in terms of epochs, for both NS and HB approaches. We observe
that without the static cache, HB(-s) not only lowers final accuracy but converges at a much slower
rate, while HB(-r) converges almost as fast as NS. Even though we follow a non-standard stochastic
training approach in HB by reusing each mega-batches, the model still converges well and in some
cases even faster than NS (e.g., ogbn-products), primarily because it perform twice as many gradient
updates per epoch. More gradient updates do not necessarily translate into longer training time in HB
since the system is bottlenecked by I/O, not gradient computation. As we will show immediately, the
training time per epoch in HB is very much comparable to the in-memory NS approach.

7

Under review as a conference paper at ICLR 2023

Table 2: Comparison of test accuracies (F1-micro score) between HierBatching (HB) and neighbor sampling
(NS). HB uses Cs = |V |/100 and p = 2. HB(-s) disables the static cache on top of HB, i.e., Cs = 0. HB(-r)
disables mega-batch reuse on top of HB, i.e., p = 1. Significant accuracy drops are hignlighted in red.

GNN Model Dataset NS HB(-s) HB(-r) HB

SAGE

ogbn-arxiv 71.52 70.99 71.43 71.42
ogbn-products 78.90 78.98 78.90 78.84
ogbn-papers100M 64.94 63.85 64.56 64.83
Mag240M-C 65.92 64.94 65.69 65.98
Mag240M 68.83 67.08 68.25 68.56

GAT

ogbn-arxiv 71.76 69.58 71.21 71.73
ogbn-products 79.54 79.61 79.58 79.55
ogbn-papers100M 64.58 61.45 64.31 64.20
Mag240M-C 65.74 65.06 65.69 66.09
Mag240M 68.40 67.33 68.07 68.89

GIN

ogbn-arxiv 70.24 68.61 70.22 70.10
ogbn-products 75.70 76.58 76.15 76.77
ogbn-papers100M 65.07 62.33 64.63 64.81
Mag240M-C 63.73 62.93 63.59 63.36
Mag240M 67.47 66.33 67.02 66.58

0 10 20 30 40 50
Epochs

0.88

0.89

0.90

0.91

0.92

Va
lid

at
io

n
Sc

or
e

ogbn-products

NS
HB(-s)
HB(-r)
HB

0 5 10 15 20 25
Epochs

0.60

0.61

0.62

0.63

0.64

0.65

0.66

0.67
ogbn-papers100M

NS
HB(-s)
HB(-r)
HB

0 5 10 15 20 25
Epochs

0.60

0.61

0.62

0.63

0.64

0.65

0.66
Mag240M-C

NS
HB(-s)
HB(-r)
HB

Figure 3: GraphSAGE convergence history for neighbor sampling and HierBatching.

We compare the training speed of HierBatching with two settings of DGL, DGL* and DGL+mmap.
DGL* is the vanilla DGL which requires all data to be resident in the memory. It uses 386GB main
memory. DGL+mmap adds the mmap 1 support on top of DGL to handle the case of insufficient main
memory. This setting uses 128GB main memory.

Table 3 lists the training time per epoch on the AWS machine. The first observation is that HierBatch-
ing (HB) can run all of the cases, thanks to HierBatching’s awareness of the memory hierarchy. In
contrast, DGL runs out of memory for the largest dataset, Mag240M, which requires 349GB space to
accommodate the feature data and 135GB for the graph structures (DGL maintains all three COO,
CSC and CSR formats in memory). Even with mmap support, DGL+mmap can not run Mag240M
within the limited memory budget, since it fails to hold the graph structures in memory.

The second observation is, HB runs significantly faster than mmap, and is only slightly slower than in-
memory training. Compared with DGL+mmap, HierBatching achieves 2.6× to 20.4× speedup across
different datasets and models (4.3× on average), mainly because of the improved spatial locality. As
shown in §3.5, speedup depends on training nodes ratio γ and fanout F , thus speedups vary across
different datasets. Compared to DGL*, The training HierBatching can achieve competitive training
speed with a maximum slowdown of 41% (GIN on mag240M-C), even though HierBatching has only
one third of the memory capacity. Surprisingly, for some cases, e.g., GIN on ogbn-papers100M, HB
is faster than DGL*. It turns out that these cases are GPU compute bound, and HB usually has smaller
sampled graphs than DGL*, which means less GPU computation. Overall, these results demonstrate
that HierBatching is extremely efficient in taking advantage of the system resources.

Notice that the AWS instance has a faster storage than the local cluster. We show the training time
per epoch on the the local cluster in Table 6 in Appendix D. Due to slower network-based storage

1We use the PyTorch API torch.Storage.from_file to create mmap-ed tensors. It is infeasible to mmap
graph structure data without significant modifications to the DGL codebase. Thus, we only mmap node features.

8

Under review as a conference paper at ICLR 2023

Table 3: Comparison of training time (sec) per epoch between HierBatching (HB), DGL* and DGL+mmap, on
the AWS machine. DGL* uses 386GB memory, while HB and DGL+mmap use 128GB memory.

Dataset SAGE GAT GIN
DGL* DGL+mmap HB DGL* DGL+mmap HB DGL* DGL+mmap HB

ogbn-papers100M 202.6 1017.8 278.0 382.3 1426.3 385.8 822.2 9131.6 448.0
Mag240M-C 178.6 678.3 249.4 379.9 1042.7 326.9 183.5 664.6 258.3
Mag240M OoM OoM 521.3 OoM OoM 546.6 OoM OoM 528.3

HB HB-
mmap HB HB-

mmap

0
20

40
60

80
10

0
Ru

nt
im

e
Pe

rc
en

ta
ge

papers100M Mag240M-C

IO
CPU

CPU to GPU
GPU

Figure 4: Training time break-
down. Pipelining is disabled to
better illustrate the overhead of
each components.

0.00 0.02 0.04 0.06 0.08
Static cache ratio

70.0

70.5

71.0

71.5

72.0

72.5

Ac
cu

ra
cy

test-accuracy
val-accuracy

(a) ogbn-arxiv

0.00 0.02 0.04 0.06
Static cache ratio

62.5

63.5

64.5

65.5

66.5

67.5

Ac
cu

ra
cy

test-accuracy
val-accuracy

(b) ogbn-papers100M

Figure 5: Trade-off on static and dynamic
cache sizes. ‘Static cache ratio’ refers to
Cs/|V |. The overall budget for dynamic cache
and static cache is |V | × 1%.

system, we observe even larger speedup (up to 58×) of HierBatching over DGL+mmap. Note that
this network-based storage architecture is quite common in modern datacenters and supercomputing
centers, which means HierBatching will be quite useful in the real systems.

4.3 ABLATION STUDY AND SENSITIVITY STUDY

In order to study the influence of spatial locality, we disrupt HB’s feature contiguous layout in disk,
denoted as HB-, which thus access node features randomly and can not enjoy spatial locality. HB-
differs from DGL+mmap as it forms mega-batches in memory. Fig. 4 reports the training time
breakdown of three approaches. Interestingly, HB- exhibits different behaviors with two datasets. For
ogbn-papers100M where the node feature size is relatively small, HB- allows the operating system to
cache most of the feature data in the memory as training proceeds and yields almost no slowdown.
This is not possible with DGL+mmap since the full graph structure takes almost all the available
memory space, leaving little space for caching. In contrast, the node feature size of Mag240M-C far
exceeds the memory budget and cannot be cached efficiently. In this case, HB- behaves very similarly
with DGL+mmap, spending most of the time on gathering node features from the external storage.

Given a certain memory budget, the static cache capacity Cs and dynamic cache capacity Cd are
two competing parameters. Increasing Cs can keep more high-degree nodes in the memory, but
also decreases Cd and thus reduces randomness. Oppositely, increasing Cd increases randomness
but reduces the degrees compensation by the static cache. We conduct an experiment with a fixed
memory quota for dynamic cache and static cache, and study how the accuracy changes as the static
cache ratio changes in Fig. 5. As shown, all curves in both figures peak at a static cache ratio between
(0, 0.04), which demonstrates that there does exist a sweet spot to pick the sizes of the two caches.

5 CONCLUSIONS

We have proposed a novel locality-aware GNN training approach, HierBatching, for scaling up GNNs
to massive graphs. HierBatching targets a single machine with multiple GPUs but a limited memory
budget. The core of our approach is hierarchical batching, which hierarchically divides the training
data to match the memory hierarchy of the machine. The main memory serves as a cache for the disk,
and is fully utilized as a dynamic cache and a static cache, to balance training speed and prediction
quality. Overall, our approach effectively improves both spatial and temporal locality. Experiment
results demonstrate that HierBatching dramatically improves GNN training speed for massive graphs
on a single machine, while retaining the prediction accuracy.

9

Under review as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

We provide a link to an ananymous Github repository hosting the code, scripts and instructions to
reproduce results in our evaluation section: https://github.com/HierBatching/HierBatching. Detailed
instructions on how to prepare the datasets, build and run the code are included in the README.txt
file under the repository.

REFERENCES

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223–311, 2018.

Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: Fast learning with graph convolutional networks
via importance sampling. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=rytstxWAW.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn:
An efficient algorithm for training deep and large graph convolutional networks. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD ’19, pp. 257–266, New York, NY, USA, 2019. Association for Computing Machinery.
ISBN 9781450362016. doi: 10.1145/3292500.3330925. URL https://doi.org/10.1145/
3292500.3330925.

Mucong Ding, Kezhi Kong, Jingling Li, Chen Zhu, John Dickerson, Furong Huang, and Tom
Goldstein. Vq-gnn: A universal framework to scale up graph neural networks using vector
quantization. Advances in Neural Information Processing Systems, 34:6733–6746, 2021.

Jialin Dong, Da Zheng, Lin F. Yang, and George Karypis. Global neighbor sampling for mixed
cpu-gpu training on giant graphs. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, KDD ’21, pp. 289–299, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 9781450383325. doi: 10.1145/3447548.3467437.
URL https://doi.org/10.1145/3447548.3467437.

Matthias Fey, Jan E Lenssen, Frank Weichert, and Jure Leskovec. Gnnautoscale: Scalable and
expressive graph neural networks via historical embeddings. In International Conference on
Machine Learning, pp. 3294–3304. PMLR, 2021.

Swapnil Gandhi and Anand Padmanabha Iyer. P3: Distributed deep graph learning at scale. In 15th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 21), pp. 551–568.
USENIX Association, July 2021. ISBN 978-1-939133-22-9. URL https://www.usenix.
org/conference/osdi21/presentation/gandhi.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS ’17, pp. 1025–1035, Red Hook, NY, USA, 2017a. Curran Associates Inc. ISBN
9781510860964.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and
applications. arXiv preprint arXiv:1709.05584, 2017b.

Jeff HaoChen and Suvrit Sra. Random shuffling beats SGD after finite epochs. In ICML, 2019.

Loc Hoang, Xuhao Chen, Hochan Lee, Roshan Dathathri, Gurbinder Gill, and Keshav Pingali.
Efficient Distribution for Deep Learning on Large Graphs. In Proceedings of the Workshop
on Graph Neural Networks and Systems, 2021. URL https://chenxuhao.github.io/
docs/gnnsys-2021.pdf.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on
graphs. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 22118–22133. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf.

10

https://github.com/HierBatching/HierBatching
https://openreview.net/forum?id=rytstxWAW
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.1145/3447548.3467437
https://www.usenix.org/conference/osdi21/presentation/gandhi
https://www.usenix.org/conference/osdi21/presentation/gandhi
https://chenxuhao.github.io/docs/gnnsys-2021.pdf
https://chenxuhao.github.io/docs/gnnsys-2021.pdf
https://proceedings.neurips.cc/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf

Under review as a conference paper at ICLR 2023

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-lsc: A
large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430, 2021.

Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. Scaling up graph
neural networks via graph coarsening. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pp. 675–684, 2021.

Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. Improving the accuracy, scalability,
and performance of graph neural networks with roc. In Proceedings of the 3rd Conference on
Machine Learning and Systems (MLSys), March 2020.

Tim Kaler, Nickolas Stathas, Anne Ouyang, Alexandros-Stavros Iliopoulos, Tao Schardl, Charles E.
Leiserson, and Jie Chen. Accelerating training and inference of graph neural networks with fast
sampling and pipelining. In D. Marculescu, Y. Chi, and C. Wu (eds.), Proceedings of Machine
Learning and Systems, volume 4, pp. 172–189, 2022. URL https://proceedings.mlsys.
org/paper/2022/file/35f4a8d465e6e1edc05f3d8ab658c551-Paper.pdf.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on scientific Computing, 20(1):359–392, 1998.

Gurneet Kaur and Rajiv Gupta. Go: Out-of-core partitioning of large irregular graphs. In 2021 IEEE
International Conference on Networking, Architecture and Storage (NAS), pp. 1–10, 2021. doi:
10.1109/NAS51552.2021.9605433.

Thomas Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, ICLR ’16, 2016.

Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. Pagraph: Scaling gnn training
on large graphs via computation-aware caching. In Proceedings of the 11th ACM Symposium on
Cloud Computing, pp. 401–415, 2020.

Zirui Liu, Kaixiong Zhou, Fan Yang, Li Li, Rui Chen, and Xia Hu. Exact: Scalable graph neural
networks training via extreme activation compression. In International Conference on Learning
Representations, 2021.

Vasimuddin Md, Sanchit Misra, Guixiang Ma, Ramanarayan Mohanty, Evangelos Georganas, Alexan-
der Heinecke, Dhiraj Kalamkar, Nesreen K. Ahmed, and Sasikanth Avancha. DistGNN: Scalable
distributed training for large-scale graph neural networks. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC ’21, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450384421. doi:
10.1145/3458817.3480856. URL https://doi.org/10.1145/3458817.3480856.

Jason Mohoney, Roger Waleffe, Henry Xu, Theodoros Rekatsinas, and Shivaram Venkataraman.
Marius: Learning massive graph embeddings on a single machine. In 15th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 21), pp. 533–549. USENIX Association,
July 2021. ISBN 978-1-939133-22-9. URL https://www.usenix.org/conference/
osdi21/presentation/mohoney.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems
32, pp. 8026–8037. Curran Associates, Inc., 2019. URL http://papers.nips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Morteza Ramezani, Weilin Cong, Mehrdad Mahdavi, Anand Sivasubramaniam, and Mah-
mut Kandemir. Gcn meets gpu: Decoupling “when to sample”from “how to sample”.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 18482–18492. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
d714d2c5a796d5814c565d78dd16188d-Paper.pdf.

11

https://proceedings.mlsys.org/paper/2022/file/35f4a8d465e6e1edc05f3d8ab658c551-Paper.pdf
https://proceedings.mlsys.org/paper/2022/file/35f4a8d465e6e1edc05f3d8ab658c551-Paper.pdf
https://doi.org/10.1145/3458817.3480856
https://www.usenix.org/conference/osdi21/presentation/mohoney
https://www.usenix.org/conference/osdi21/presentation/mohoney
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://proceedings.neurips.cc/paper/2020/file/d714d2c5a796d5814c565d78dd16188d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d714d2c5a796d5814c565d78dd16188d-Paper.pdf

Under review as a conference paper at ICLR 2023

Morteza Ramezani, Weilin Cong, Mehrdad Mahdavi, Mahmut T Kandemir, and Anand Sivasubrama-
niam. Learn locally, correct globally: A distributed algorithm for training graph neural networks.
In The International Conference on Learning Representations, 2022.

Alok Tripathy, Katherine Yelick, and Aydın Buluç. Reducing communication in graph neural network
training. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’20. IEEE Press, 2020. ISBN 9781728199986.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
ICLR ’18, 2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Roger Waleffe, Jason Mohoney, Theodoros Rekatsinas, and Shivaram Venkataraman. Mariusgnn:
Resource-efficient out-of-core training of graph neural networks. CoRR, abs/2202.02365, 2022.
URL https://arxiv.org/abs/2202.02365.

Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang,
Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang Li, Alexander J.
Smola, and Zheng Zhang. Deep graph library: Towards efficient and scalable deep learning on
graphs. In International Conference on Learning Representations, ICLR ’19, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, ICLR ’19, 2019. URL
https://openreview.net/forum?id=ryGs6iA5Km.

Hongxia Yang. Aligraph: A comprehensive graph neural network platform. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD ’19, pp. 3165–3166, New York, NY, USA, 2019. Association for Computing Machinery.
ISBN 9781450362016. doi: 10.1145/3292500.3340404. URL https://doi.org/10.1145/
3292500.3340404.

Jianbang Yang, Dahai Tang, Xiaoniu Song, Lei Wang, Qiang Yin, Rong Chen, Wenyuan Yu, and
Jingren Zhou. Gnnlab: a factored system for sample-based gnn training over gpus. In Proceedings
of the Seventeenth European Conference on Computer Systems, pp. 417–434, 2022.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=BJe8pkHFwS.

Dalong Zhang, Xin Huang, Ziqi Liu, Jun Zhou, Zhiyang Hu, Xianzheng Song, Zhibang Ge, Lin
Wang, Zhiqiang Zhang, and Yuan Qi. Agl: A scalable system for industrial-purpose graph
machine learning. Proc. VLDB Endow., 13(12):3125–3137, Aug 2020. ISSN 2150-8097. doi:
10.14778/3415478.3415539. URL https://doi.org/10.14778/3415478.3415539.

Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan Gan, Zheng Zhang,
and George Karypis. DistDGL: Distributed graph neural network training for billion-scale graphs,
2020.

12

https://openreview.net/forum?id=rJXMpikCZ
https://arxiv.org/abs/2202.02365
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1145/3292500.3340404
https://doi.org/10.1145/3292500.3340404
https://openreview.net/forum?id=BJe8pkHFwS
https://doi.org/10.14778/3415478.3415539

Under review as a conference paper at ICLR 2023

A PROOF OF EQ. (3)

Simplifying Eq. (2), we obtain

∆(CD, CS) =
∑

u∈CD

∑
v∈CS\CD

1(u, v)

=
∑

u∈CD

(∑
v∈CS

1(u, v)−
∑

v∈CD∩CS

1(u, v)

)
=
∑
v∈CS

∑
u∈CD

1(u, v)−
∑

v∈CD∩CS

∑
u∈CD

1(u, v).

(4)

Define the partition assignment function f : f(v) = i ⇐⇒ v ∈ C
(i)
D . Then, by substituting

∆(C
(i)
D , CS) with Eq. (4) in Eq. (1), it follows that

∑
i

∆(C
(i)
D , CS) =

∑
i

∑
v∈CS

∑
u∈C

(i)
D

1(u, v)−
∑

v∈C
(i)
D ∩CS

∑
u∈C

(i)
D

1(u, v)

=
∑
v∈CS

∑
i

∑
u∈C

(i)
D

1(u, v)−
∑
i

∑
v∈C

(i)
D ∩CS

∑
u∈C

(f(v))
D

1(u, v)

=
∑
v∈CS

∑
u∈V

1(u, v)−
∑
v∈CS

∑
u∈C

(f(v))
D

1(u, v)

=
∑
v∈CS

(degree(v)− degreesub(v)) .

(5)

Therefore, to maximize Eq. (5) with a cache budget k, we sort all nodes in V according to degree(v)−
degreesub(v) and take the first k nodes.

B CHOICE OF PARAMETERS IN ALGORITHM 1

Choosing Np. Assume that Sp = |V |
Np

is the size of a single partition, D is the node feature dimension,
Sfeat is the data precision in bytes, and Sopt is the optimal disk request size that leads to sequential
access. We choose Sp to be no less than Sopt/(D × Sfeat), such that disk accesses are sequential.
Hence, Np is no greater than |V | ×D × Sfeat/Sopt. As mentioned in §3.1, the partition should not
be too large, either. In practice, we recommend choosing Np so that each partition consists of several
thousands of nodes.

Choosing Nd and rs. Let rd = Nd/Np. The static cache capacity rs × |V | and the dynamic cache
capacity rd × |V | are faced with a trade off: if the dataset has A GB feature data and B GB edge list
data, we require 2(rs + rd)× (A+B) ≤ C where C is the allocated memory space for the static
and dynamic cache. The factor 2 comes from double buffering required for pipelining. Typical values
of rs and rd in our experiments are rs = 0.01 and rd ∈ [0.0625, 0.25].

Choosing p. It is straightforward to select the reuse ratio p after training for a few epochs. Assume
the time to load and construct and mega-batch is Tload, and the time to train a mega-batch with
no reuse is Tcomp. Since the two stages are pipelined, the latency between two mega-batches is
max{Tload, Tcomp}. Only when Tload > Tcomp, we select a reuse ratio of 1 < p ≤ Tload/Tcomp to
hide the remaining data-loading latency and guarantee that Tcomp never becomes the bottleneck.

Other parameters including the mini-batch size B are common hyper-parameters present in most
GNN training systems. We do not have additional constraints for those parameters.

13

Under review as a conference paper at ICLR 2023

C EVALUATION DETAILS

C.1 IMPLEMENTATION DETAILS

Since static nodes are high-degree nodes, their edge lists may be too large to stay in the main memory,
especially for power-law graphs. As a trade-off, only the features of the static nodes are stored in
the cache, while the edge lists are kept in the disk. Because the static nodes are scattered in the
disk, we store another copy of the edge lists for them in the disk contiguously, so that disk accesses
remain sequential when edge lists are moved to the memory at every reloading of the dynamic cache
(i.e., forming a new mega-batch). While loading edge lists, we only keep the edges of the induced
subgraph of the mega-batch in memory, which needs much less memory space.

C.2 CLARIFICATION OF DATASETS

The complete Mag240M dataset is a heterogeneous academic graph on which a relational GNN model
would work the best. For ease of implementation, in the evaluation we treat it as a homogeneous
graph and apply non-relational GNN models instead. Only minor accuracy drops are observed
when compared with relational GNN baselines posted on OGB-LSC benchmark Hu et al. (2021).
For datasets without publicly available test sets (Mag240M-C, Mag240M), we report the highest
validation F1-scores. Considering the scales of large datasets, test and validation are performed with
minibatching and sampling, similar to the practice in Kaler et al. (2022).

C.3 HYPER-PARAMETER SETTINGS

Table 4 lists the key hyper-parameters we use in our experiment. Note that when evaluating the
training speed, we use the same hyper-parameters, except that GAT uses hidden size of 512 in Table 3,
but 1024 in Table 2 due to the smaller GPU memory on the AWS instance.

Table 4: Training configurations for results in Table 2

Dataset SAGE
Epochs Hidden Learning rate Dropout Fanouts Layers

ogbn-arxiv 100 256 0.001 0.5 (15,10,5) / (50,50,50) 3
ogbn-products 50 256 0.001 0.5 (15,10,5) / (20,20,20) 3
ogbn-papers100M 25 256 0.001 0.5 (15,10,5) / (20,20,20) 3
Mag240M-C 25 1024 0.001 0.5 (25,15) / (25,15) 2
Mag240M 25 1024 0.001 0.5 (25,15) / (25,15) 2

Dataset GAT
Epochs Hidden Learning rate Dropout Fanouts

ogbn-arxiv 100 256 0.001 0.5 (15, 10, 5) / (50,50,50) 3
ogbn-products 50 512 0.001 0.5 (15, 10, 5) / (20,20,20) 3
ogbn-papers100M 25 1024 0.001 0.5 (15, 10, 5) / (20,20,20) 3
Mag240M-C 25 1024 0.001 0.5 (25,15) / (25,15) 2
Mag240M 25 1024 0.001 0.5 (25,15) / (25,15) 2

Dataset GIN
Epochs Hidden Learning rate Dropout Fanouts

ogbn-arxiv 100 128 0.001 0.5 (20,20,20) / (20,20,20) 3
ogbn-products 50 512 0.003 0.5 (15,10,5) / (20,20,20) 3
ogbn-papers100M 25 512 0.003 0.5 (20,20,20) / (20,20,20) 3
Mag240M-C 25 1024 0.001 0.5 (25,15) / (25,15) 2
Mag240M 25 1024 0.001 0.5 (25,15) / (25,15) 2

Table 5 shows some extra parameters for HierBatching. Np is the total number of partitions. Nd is
the maximum number of partitions held in the dynamic cache. rs = Cs/|V | is the ratio of nodes kept
in the static cache. p is the number of passes per mega-batch.

14

Under review as a conference paper at ICLR 2023

Table 5: Extra training configurations for HierBatching in Table 2

Dataset Np Nd rs p

ogbn-arxiv 1024 256 0.01 2
ogbn-products 4096 512 0.01 2
ogbn-papers100M 16384 1024 0.01 2
Mag240M-C 16384 1024 0.01 2
Mag240M 16384 1024 0.01 2

D ADDITIONAL EXPERIMENTS

D.1 TRAINING PERFORMANCE WITH THE LOCAL CLUSTER

Table 6 shows the training time per epoch on the local cluster. As it has faster GPUs (V100), its
in-memory training, i.e., DGL*, is faster than that on the AWS machine. However, since it uses a
network-based storage system, its random access latency is significantly larger than that of the AWS
machine. Consequently, the DGL+mmap setting performs dramatically worse than that on AWS. In
comparison, HierBatching (HB) becomes faster than that on AWS, as the storage system in the local
cluster has similar sequential IO throughput as that of AWS, and HB can fully enjoy fast sequential
accesses, thanks to the spatial locality aware design.

Table 6: Comparison of training time (s) per epoch between HierBatching (HB), DGL* and DGL+mmap on the
local cluster. DGL* uses 386GB memory, while HB and DGL+mmap use 128GB memory. TO: timeout (>5
hours). ⋆ The unusual long training time with the Mag240M dataset is possibly due to the inefficiency of the
network-based storage system when handling huge files. We forward the readers to Table 3 for a more realistic
runtime ratios between Mag240M and other datasets.

Dataset SAGE GAT GIN
DGL* DGL+mmap HB DGL* DGL+mmap HB DGL* DGL+mmap HB

ogbn-papers100M 105.4 11037.5 190.3 254.2 11850.3 260.7 348.7 TO 238.8
Mag240M-C 77.7 TO 229.1 142.3 TO 185.8 75.7 TO 193.7
Mag240M⋆ OoM OoM 1708.3 OoM OoM 1828.5 OoM OoM 1788.9

D.2 COMPARISON BETWEEN HIERBATCHING AND MARIUSGNN

Both MariusGNN and HierBatching operate over pre-partitioned graph datasets, loading parts of
the graph in the memory for training at one time. MariusGNN proposes two modes for training
node-prediction GNNs:

• Sequential mode. When the training nodes and its induced subgraph could fit into the main
memory, MariusGNN pins all training nodes and selects partitions randomly to form a
partial in-memory graph. The graph remains unchanged throughout an epoch.

• Dispersed mode. When the sequential mode is not applicable, MariusGNN assumes the
training nodes are dispersed across partitions. It then loads partitions into the in-memory
buffer in a semi-random fashion until all training nodes appear once in the memory.

Our approach is similar to the dispersed mode of MariusGNN, with several key differences: 1)
we identify the importance of min-cut graph partitioning while MariusGNN simply uses random
partitioning; 2) MariusGNN in the dispersed mode does not keep a static cache; 3) MariusGNN never
uses mega-batch reuse to hide extra IO latency.

An important component in MariusGNN is COMET, a fine-grained partition replacement policy. In
addition to the number of partitions p, number of in-memory partitions c, it specifies one extra tunable
parameter l ≤ c corresponding to the number of partitions to be replaced at each step. The partition
sampling procedure in HierBatching could be seen as implementing a specific COMET policy with
l = c. We argue that it is not a limitation of HierBatching. The value of l actually has no influence on
the overall IO traffic in the dispersed mode, since all partitions are loaded once in an epoch. Instead,
a smaller l would lead to less data randomness in the mega-batch and could affect the model accuracy.
Although MariusGNN does not have analysis of how to choose l for node prediction tasks, as a side
note, MariusGNN suggests to make l as large as possible for link prediction tasks (Section 4).

15

Under review as a conference paper at ICLR 2023

Compared to our work, the main concern with MariusGNN is that it employs no techniques to make
up for the lost neighbors during the mega-batch construction. This has not been an big issue because
the datasets used in MariusGNN are “easier” in a sense: e.g. for ogbn-papers100M if we only keep
edges connected by training nodes for training and discard the remaining 99% edges, the model
could still achieve a test accuracy of 62.95%, an accuracy drop of merely 2% from training with the
full graph. To reveal the risk of accuracy degradation in MariusGNN, we construct a new dataset by
changing the data splits of ogbn-arxiv: 10% of nodes are chosen randomly as the training nodes and
the rest as validation nodes. We compare the validation F1 scores of different approaches (we use the
same set of hyper-parameters as in our paper):

• NS (training with full graph): 69.61±.07
• HB (Nd/Np = 1/16, rs = 0.01): 69.64±.08
• MariusGNN (sequential mode, c/p = 1/8): 67.08±.14
• MariusGNN (dispersed mode, c/p = 1/8): 67.29±.10

With this “harder” dataset, MariusGNN suffers from more significant accuracy losses, while HB
still retains the model accuracy with NS. Therefore, we believe that HierBatching is a more robust
out-of-core training solution than MariusGNN.

16

	Introduction
	Preliminaries and Related Work
	Locality-Aware Hierarchical Batching
	Hierarchical Batching and Spatial Locality
	Static and Dynamic Caches
	Pipelining and Mega-batch Reuse
	Overall Algorithm
	Speedup Analysis

	Evaluation
	Accuracy Comparison with Standard Neighborhood Sampling
	Convergence Rates and Training Time
	Ablation Study and Sensitivity Study

	Conclusions
	Proof of eq:pcache-choice
	Choice of Parameters in alg3:main
	Evaluation Details
	Implementation Details
	Clarification of Datasets
	Hyper-parameter Settings

	Additional Experiments
	Training performance with the local cluster
	Comparison between HierBatching and MariusGNN

