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Abstract
Existing work on understanding deep learning often employs measures that com-
press all data-dependent information into a few numbers. In this work, we adopt a
perspective based on the role of individual examples. We introduce a measure of
the computational difficulty of making a prediction for a given input: the (effective)
prediction depth. Our extensive investigation reveals surprising yet simple relation-
ships between the prediction depth of a given input and the model’s uncertainty,
confidence, accuracy and speed of learning for that data point. We further cate-
gorize difficult examples into three interpretable groups, demonstrate how these
groups are processed differently inside deep models and showcase how this under-
standing allows us to improve prediction accuracy. Insights from our study lead to
a coherent view of a number of separately reported phenomena in the literature:
early layers generalize while later layers memorize; early layers converge faster
and networks learn easy data and simple functions first.

1 Introduction
Much of the existing work on understanding deep learning “integrates out” the data, viewing the
inductive bias of the model, or the properties of the optimizer as central to the success of the approach.
Examples of such work include studies of eigenvalues of the Hessian and the geometry of the loss
landscape (Ghorbani et al., 2019; Yao et al., 2020; Sagun et al., 2016; Li et al., 2018; Pennington
and Bahri, 2017; Sagun et al., 2018), studies of margin and effective generalization measures (Long
and Sedghi, 2019; Unterthiner et al., 2020; Jiang et al., 2020, 2018; Kawaguchi et al., 2017) and
mean-field studies of stochastic optimization (Smith et al., 2021; Stephan et al., 2017; Smith and Le,
2018). However, in practice, we are rarely concerned with only the average behavior of a model.
One pathway to understanding the principles that govern how deep models process data is to study the
properties of deep models for data points with different “amounts” or “types” of example difficulty.
There are a number of definitions of example difficulty in the literature (E.g. see Carlini et al.
(2019); Hooker et al. (2019); Lalor et al. (2018); Agarwal and Hooker (2020)). Two are particularly
relevant to this work. Firstly, the probability of predicting the ground truth label for an example,
when that example is omitted from the training set (Jiang et al., 2021), which represents a statistical
view of example difficulty. Secondly, the difficulty of learning an example, parameterized by the
earliest training iteration after which the model predicts the ground truth class for that example in
all subsequent iterations (Toneva et al., 2019). This measure represents a learning view of example
difficulty 2.

∗Work completed as part of the Google AI Residency Program
2We expand on other notions of example difficulty in Appendix B.
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These notions suffer from two fundamental limitations. While early-exit strategies in computer
vision (Teerapittayanon et al., 2016; Huang et al., 2018) and NLP (Dehghani et al., 2018; Liu et al.,
2020b; Schwartz et al., 2020; Xin et al., 2020) suggest predictions for easier examples require less
computation, the above example difficulty notions do not encapsulate the processing of data inside a
given converged model. Moreover, existing notions of example difficulty (E.g. Carlini et al. (2019))
provide a one-dimensional view of difficulty which can not distinguish between examples that are
difficult for different reasons.
In this paper, we take a significant step towards resolving the above shortcomings. To take the
processing of the data into account we propose a new measure of example difficulty, the prediction
depth, which is determined from the hidden embeddings. To escape the one-dimensional view of
difficulty, we introduce three distinct difficulty types by relating the hidden embeddings for an input to
high-level concepts about example difficulty: “Does this example look mislabeled?”; “Is classifying
this example only easy if the label is given?”; “Is this example ambiguous both with and without
its label?”. Furthermore, we show how this enhanced notion of example difficulty can unify our
understanding of several seemingly unrelated phenomena in deep learning. We hope that the results
presented in this work will aid the development of models that capture heteroscedastic uncertainty,
our understanding of how deep networks respond to distributional shift, and the advancement of
curriculum learning approaches and machine learning fairness. These connections are discussed in
Section 5.

Contributions Our main contributions are as follows:

• We introduce a measure of computational example difficulty: the prediction depth (PD). The
prediction depth, illustrated in Figure 1, represents the number of hidden layers after which
the network’s final prediction is already (effectively) determined (Section 2).

• We show that the prediction depth is larger for examples that visually appear to be more
difficult, and that prediction depth is consistent between architectures and random seeds
(Section 2.2).

• Our empirical investigation reveals that prediction depth appears to establish a linear lower
bound on the consistency of a prediction. We further show that predictions are on average
more accurate for validation points with small prediction depths (Section 3.1).

• We demonstrate that final predictions for data points that converge earlier during training
are typically determined in earlier layers which establishes a correspondence between the
training history of the network and the processing of data in the hidden layers (Section 3.2).

• We show that both the adversarial input margin and the output margin are larger for examples
with smaller prediction depths. We further design an intervention to reduce the output margin
of a network and show that this leads to predictions being made only in the latest hidden
layers (Section 3.3).

• We identify three extreme forms of example difficulty by considering the prediction depth in
the training and validation splits independently and demonstrate how a simple algorithm that
uses the hidden embeddings in one middle layer to make predictions can lead to dramatic
improvements in accuracy for inputs that strongly exhibit a specific form of example
difficulty (Section 4).

• We use our results to present a coherent picture of deep learning that unifies four seemingly
unrelated deep learning phenomena: early layers generalize while later layers memorize;
networks converge from input layer towards output layer; easy examples are learned first
and networks present simpler functions earlier in training (Section 5).

Experimental Setup: To ensure that our results are robust to the choice of architectures and datasets,
we report empirical findings for ResNet18 (He et al., 2016), VGG16 (Simonyan and Zisserman, 2015)
and MLP architectures trained on CIFAR10, CIFAR100 (Krizhevsky et al., 2009), Fashion MNIST
(FMNIST) (Xiao et al., 2017) and SVHN (Netzer et al., 2011) datasets. All models were trained using
SGD with momentum. Our MLP comprises 7 hidden layers of width 2048 with ReLU activations.
Details of the datasets, architectures, and hyperparameters used can be found in Appendix A.
Related Work: Our work uses hidden layer probes to determine example difficulty. We have
discussed how our study relates to prior work on example difficulty. Hidden layer probes have also
been used to study deep learning. Deep k-NN methods (Papernot and McDaniel, 2018) determine
their predictions and estimate their own uncertainties by comparing the hidden embeddings of an
input to those of the training set. Cohen et al. (2018) showed that SVM, k-Nearest Neighbors (k-NN)

2



and logistic regression probes achieve similar accuracies. However, they did not study the processing
of individual data points nor did they relate the k-NN accuracy to notions of example difficulty. Alain
and Bengio (2017) used linear classifier probes in the hidden layers to interrogate deep models and
demonstrated that linear separability of the embeddings increases monotonically with depth. We
provide a more detailed discussion of related work in Appendix B.

2 Prediction Depth: a Computational View of Example Difficulty
We discussed the statistical and learning views of example difficulty in Section 1. In this section,
we introduce a computational view of example difficulty parametrized by the prediction depth as
defined in Section 2.1. This computational view asserts that, for “easy” examples, a deep model’s
final prediction is effectively made after only a few layers, while more layers are used for “difficult”
examples.

2.1 Definition
Asserting that the final prediction is effectively determined in earlier layers of a model, before the
output, we estimate the depth at which a prediction is made for a given input as follows 3:

1. We construct k-NN classifier probes from the embeddings of the training set after particular
layers of the network, including the input and the final softmax. The placement of k-NN
probes is described in Appendix A.5. We use k = 30 in the k-NN probes. Appendix A.4
establishes that the k-NN accuracies we report are insensitive to k over a wide range.

2. A prediction is defined to be made at a depth L = l if the k-NN classification after layer
L = l − 1 is different from the network’s final classification, but the classifications of k-NN
probes after every layer L ≥ l are all equal to the final classification of the network. Data
points consistently classified by all k-NN probes are determined to be (effectively) predicted
in layer 0 (the input) 4.

It is worth noting that the prediction depth can be calculated for all data points: both in the training
and validation splits. This leads to two notions of computational difficulty:

• The difficulty of predicting the (given) class for an input (in the training split)
• The difficulty of making a prediction for an input, unseen in advance (from the validation

split)

We examine both notions of computational difficulty in this paper and use the distinction between
them to describe different forms of example difficulty in Section 4.

2.2 Prediction depth is a meaningful and robust notion of example difficulty
In this section we show that prediction depth agrees with intuitive notions of example difficulty and
that it is consistent between different training runs and similar architectures.

Prediction depth is higher for examples and datasets that seem more difficult If prediction
depth is a sensible measure of example difficulty then we would expect the following sanity checks
to be observed:

1. Individual data points that are visually confusing or mislabeled should have larger prediction
depths as compared to images that are clear examples of their class.

2. Data points from tasks that are intuitively simpler should have lower prediction depths on
average.

Figure 1 shows that the prediction depth passes both of these sanity checks. Appendix C.1 presents
additional images, providing further evidence for this claim.

Prediction depth is consistent across random seeds and similar architectures Figure 2 shows
that the prediction depth is highly consistent between different architectures and random seeds for
all datasets. Perfect agreement is not expected as different deep learning algorithms have different
inductive biases which affects the perceived difficulty of examples. We observe stronger correlation

3In the process of arriving at this definition of the prediction depth we considered several alternatives,
including using the ground truth class in place of the predicted class and using logistic regression probes in place
of k-NN probes. See Appendix E for a discussion on the choices we made in our definition.

4Implementation details can be found in Appendix A.6.1.
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Figure 1: Deep models use fewer layers to (effectively) determine the prediction for easy examples and more
layers for hard examples. Left: A cartoon illustrating the definition of prediction depth (given in Section 2.1).
Also shown are training examples from CIFAR100 (“Clock”) and SVHN (“Digit 8”). The examples shown are
predicted at the input (first layer) or softmax (last layer) of ResNet18. The examples predicted in the input are
visually typical (“easy”), while those predicted in the softmax are mislabeled and/or visually confusing (“hard”
examples). To find the prediction depth, we build k-NN classifiers from the embeddings of the training set in
different layers of the model. The prediction depth corresponds to the earliest layer at which the predictions of
all subsequent k-NN classifiers converge to a fixed label. Right: Probability of prediction depth in ResNet18
models for four datasets (training split). We see that the four distributions have different characteristic prediction
depths. Ranking the mean prediction depths of these datasets in ascending order, we observe: Fashion MNIST
(smallest), SVHN (second), CIFAR10 (third), and CIFAR100 (largest). This order aligns with how one might
intuitively rank the difficulties of these classification tasks.
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Figure 2: Consistency of prediction depth between architectures and random seeds. Left: The panel shows the
correlation coefficient between prediction depths in different architectures, for both train and validation splits
in four datasets. Diagonal comparisons between an architecture and itself show the correlation for the same
architecture trained with different random seeds. Right: Histograms comparing the mean value of prediction
depth obtained for each data point in the training set of CIFAR10 from an ensemble of 250 trained models. In
this plot, for visual simplicity, we rescale prediction depth to the interval [0, 1] for each network. Similar results
for all other datasets are presented in Appendix C.2.

between prediction depth for ResNet18 and VGG16, than between VGG16 and MLP. This may be
explained by the fact that ResNet18 and VGG16 are both convolutional networks and we expect their
inductive biases to be more similar to one another than to MLP.

3 Deep Learning Phenomena Through the Lens of Prediction Depth
In this section, we explore how the prediction depth can be used to better understand three important
aspects of Deep Learning: accuracy and consistency of a prediction; the order in which data is learned
and the simplicity of the learned function (as measured by the margin) in the vicinity of a data point.

3.1 Depth of a prediction gives a linear lower bound on its consistency
Adopting a statistical view of example difficulty, Jiang et al. (2021) identified example difficulty with
the expected accuracy of the learning algorithm for a given input, averaged over models trained on
different random subsets of the training set with different random seeds. In this section, we clarify the
relationship between the prediction depth and the expected accuracy by disentangling the accuracy
from the sensitivity of predictions to the particular training split and random seed. Following Jiang
et al. (2021), we measure the expected accuracy using the consistency score.

Consistency score Ĉ: The frequency of classifying an example correctly when it is omitted from
the training set. An empirical estimator of the consistency score for a validation point (x, y)
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Figure 3: Consistency score vs. prediction depth in the validation split (left) can be understood as the
superposition of two simple functions (middle and right). We trained 250 ResNet18 models on CIFAR10, with
90:10% random train:validation splits as described in Appendix A. These histograms compare the frequency of
correct predictions to the average prediction depth for a data point when it occurs in the validation split. The
density of data points is indicated by the color bar, which follows a log scale. The average prediction depth
forms two, surprisingly simple, linear bounds on the consistency score (see Section 3.1 for a full description.)
This Figure is reproduced for all datasets and architectures in Appendix C.3, illustrating the consistency of this
result.

is given by (Jiang et al., 2021):

ĈA,S(x, y) = Êr

S̃ n∼S\{(x,y)} [δyA,y] (1)

where A is a deep learning algorithm (architecture, loss and optimizer), y is the ground truth
class for x, S̃ is a random subset of n points sampled from a training dataset S excluding
(x, y), yA is the predicted class of x for A trained with data S̃ , δ is the Kronecker delta and
Êr denotes empirical averaging with r i.i.d. samples of such subsets S̃.

Figure 3 (left panel) shows the relationship between consistency score and prediction depth. This
plot indicates a surprising piecewise linear boundary which is symmetric around consistency score 1

2 .
This suggests the existence of a missing concept that could simplify the picture. We next show that
the missing concept is the notion of a consensus class which is defined below.

Consensus class ŷA: The consensus class of x is defined as the predicted class for input x by a
majority voting ensemble of r models each of which is trained on a randomly chosen subset
S̃ n∼ S\{(x, y)} 5.

Figure 3 (middle and right) shows how conditioning on whether consensus class matches the ground
truth can change the relationship between consistency score and the prediction depth. For points
where the consensus class matches the ground truth (middle) we see that the prediction depth forms a,
surprisingly simple, linear lower bound on the consistency score. For points where the consensus
class differs from the ground truth (right) at low prediction depth the consistency score is bounded
from above by a line that reflects the bound from the middle plot in Ĉ = 1

2 , suggesting that such
points are repeatedly mislabeled with a wrong class label. At high prediction depth, the consistency
score is low, which suggests highly inconsistent predictions and low accuracy. This result suggests
a simple hypothesis: that predictions with low prediction depth are consistent with the consensus
class, whether that matches the ground truth class or not, while predictions made in later layers
depend strongly on the specific training split and random seed used for training and initialization. We
measure consistency with the consensus class using the consensus-consistency score.

Consensus-consistency score C∗: The fraction of models in an ensemble that predict the ensemble’s
consensus class ŷA (x) for an unseen input x.

C∗A,S(x) = Êr

S̃ n∼S\{(x,y)}

[
δyA,ŷA(x)

]
(2)

where the notation is the same as in (1) 6.

Figure 4 (left) establishes that our simple hypothesis is indeed correct: the prediction depth forms a
linear lower bound on the consensus-consistency score for all data points, irrespective of whether the

5Implementation details can be found in Appendix A.6.2
6Consensus-consistency score is a measure of uncertainty and can be used for calibration (Lakshminarayanan

et al., 2017; Wenzel et al., 2020; Wen et al., 2019). See Appendix A.6.3 for details of our implementation.

5



0 2 4 6 8 10
Prediction Depth

0.0

0.2

0.4

0.6

0.8

1.0

Co
ns

en
su

s-
Co

ns
ist

en
cy

10 1

100

101

0 2 4 6 8 10
Prediction Depth

0.6

0.8

1.0

Co
ns

en
su

s-
Co

ns
ist

en
cy

FMNIST
SVHN
CIFAR10
CIFAR100

0 2 4 6 8 10
Prediction Depth

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

FMNIST
SVHN
CIFAR10
CIFAR100

Figure 4: Left: Prediction depth provides us with a linear lower bound on consensus-consistency. Results
for CIFAR100 with ResNet18. We train 250 models (90:10% random train:validation splits) and compare
the average prediction depth when a point occurs in the validation set, to the consensus-consistency of the
corresponding predictions. Predictions made for points with low mean prediction depths are highly consistent.
Conversely, predictions for points with high mean prediction depths are typically more sensitive to the particular
training split and random seed used during training. This left plot shows the result for CIFAR100 with ResNet18.
The density of data points is indicated by the color bar, which follows a log scale. Middle: Prediction depth
in one model predicts the consensus-consistency of an ensemble that does not include that model. For each
dataset we train 25 ResNet18 models with the full training set (see Appendix A). The consensus-consistency of
each test point is obtained from 24 of the models, while the prediction depth is obtained from the remaining 1
model. We see that prediction depth in one model predicts the consensus-consistency of a separate ensemble: a
measure of the uncertainty of the prediction. The size of each marker in the middle and right plots shows the
fraction of the dataset with each prediction depth. Reaffirming the second sanity check in Section 2.2, and in
agreement with Figure 1 (right), intuitively simpler datasets (Fashion MNIST and SVHN) have low average
prediction depths, while CIFAR100 (intuitively the hardest dataset) has the largest average prediction depth.
Right: Prediction depth predicts accuracy. For each dataset we train 250 ResNet18 models (90:10% random
train:validation splits). Each time a point appears in the validation split we record the prediction depth and
whether the prediction was correct. Predictions made in earlier layers are more likely to be correct. Consistency
of these plots is demonstrated for all datasets and architectures in Appendix C.3 where we also describe the
relationship between the prediction depth and the entropy of the predictions for an ensemble.

consensus class matches or differs from the ground truth. Interestingly, Figure 4 (middle and right)
shows how the prediction depth in a single model, can be used to estimate both of these quantities.
That is, predictions of data points with lower prediction depth are both more likely to be consistent
and more likely to be correct.

3.2 The prediction depth of an input is correlated with its learning difficulty
In Section 3.1, we describe the relationship between the prediction depth, which represents a
computational view of example difficulty and the consistency and consensus-consistency scores,
which represent a statistical view. In this section we compare prediction depth to a learning view
of example difficulty. We measure the difficulty of learning an example by the speed at which the
model’s prediction converges for that input during training. The following definition is adapted
from Toneva et al. (2019):

Iteration learned A data point is said to be learned by a classifier at training iteration t = τ if the
predicted class at iteration t = τ − 1 is different from the final prediction of the converged
network and the predictions at all iterations t ≥ τ are equal to the final prediction of the
converged network. Data points consistently classified after all training steps and at the
moment of initialization, are said to be learned in step t = 0 7.

Figure 5 (left plot) shows the positive correlation between the prediction depth and the iteration
learned, for all four datasets in VGG16. Consistent results are presented for all architectures and
datasets, in both the validation and training splits in Appendix C.4. As a result of the reported
correlation, we anticipate that many of the data points correctly classified by the k-NN probe in
a particular layer should also be correctly classified by the network at a corresponding interval of
training steps. If this is correct then we would expect there to be a visual correspondence between the
training learning curve (which shows how the accuracy of the network changes during training) and
the accuracy of the k-NN probes as data passes from input, through the network, towards the output
layer. We call the series of k-NN probe accuracies the inference learning curve.

7Note that this definition can be applied to points in both training and validation splits. In order to compare
different models and datasets we rescale the iteration learned in each model so that the 95th percentile occurs at
1.0 and network initialization at 0.
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Figure 5: Left: Data points with small prediction depths are on average learned before data points with
higher prediction depths. We train 250 VGG16 models for each dataset, using a 90:10% random train:validation
split as described in Appendix A. Each time an input appears in the validation split we record the prediction
depth and the iteration learned in that model. This plot shows the average iteration learned for data points at
each prediction depth. Marker size shows the fraction of the dataset with each prediction depth. The Pearson
correlation coefficients for the four data sets are as follows. CIFAR100: 0.83. CIFAR10: 0.7. Fashion MNIST:
0.79. SVHN: 0.77. Middle and right: The training learning curve (middle) shares several important features
with the inference learning curve (right). Blue, yellow and green curves represent different components of the
CIFAR10 training split, in which we have randomized (and fixed) 40% of the labels, and red curves show the
test split. The middle and right plots show results from 5 random seeds. The inference learning curve (right)
is the sequence of k-NN probe accuracy values for each split. All three plots show results for VGG16. The
hyperparameters used are given in Appendix A.

Figure 6: Left and Middle: Test examples with smaller prediction depths, on average, have larger output
and input margins. We train 25 VGG16 models with different random seeds on CIFAR10 (see Appendix A for
details) and compare the mean prediction depth of each test point in these 25 runs to its mean output and input
margins (log scales). Correlation coefficients are −0.70 (output margin) and −0.69 (input margin). The density
of data points is indicated by the color bar, which follows a log scale. Although the prediction depth could be at
most 14, no data point has an average prediction depth greater than 12. Right: An intervention that does not
encourage large output margin (“0-Hinge”) results, as predicted, in models where the predictions are effectively
determined in higher layers in the network compared to the standard training (“CE”).

To test this hypothesis we train a model on a training split where a subset of labels are corrupted and
compare the training and inference learning curves on four splits of the data: unchanged training
data; mislabeled training data; the original labels of the mislabeled training data and the test split. In
Figure 5 (middle and right plots) we see that many of the important features of the training learning
curve are indeed present in the inference learning curve. During training (middle), mislabeled
data are initially processed as though they are a member of their original class (before they were
mislabeled) (Liu et al., 2020a). After an initial period of learning, the network begins to learn the new
(random) labels that have been assigned to those data points, so the orange curve moves upwards,
and the green curve downwards. At this point, a maximum is observed in the training accuracy (Arpit
et al., 2017). In the right plot we see that these same phenomena occur in the inference learning
curve.

3.3 Deep models exhibit larger margins for inputs with lower prediction depth

It is reported in the literature that deep networks learn functions of increasing complexity during
training (Hu et al., 2020; Kalimeris et al., 2019). We frame this observation differently: the learned
function is “locally simpler” in the vicinity of data points with smaller prediction depths, and these
points are typically learned earlier in training (Section 3.2).
Two known measures of the simplicity of a learned function are the output margin (the difference
between the largest and second-largest logits) and the adversarial input margin (the smallest norm
required for an adversarial perturbation in the input to change the model’s class prediction). We
estimate the adversarial input margin, γ, with a linear approximation (Jiang et al., 2018): for an input
x with predicted class i, γ ' minj 6=i

|zi−zj |
|∇x(zi−zj)| where zj is the logit returned by the network for

class j. Figure 6 (left and middle plots) show that data points with smaller prediction depths have
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Figure 7: The prediction depth can be the same, or very different for the same input when it occurs in the train
and validation splits. Corners of this plot correspond to different forms of example difficulty. (See Section 4
for discussion.) We train 250 ResNet18 models on CIFAR10 with random 90:10% train:validation splits as
described in Appendix A. These histograms compare average prediction depth for each data point when it
occurs in the validation split vs the training split. This behavior is consistently reproduced for all datasets and
architectures in Appendix C.6. Below we show extreme (not hand-chosen) images of “Birds” that appear closest
to the corners of this plot. The consensus class is given above each image (tiebreaks favor the class “Bird”.)

both larger input and output margins on average and that variances of the input and output margins
decrease as the prediction depth increases.
To illustrate the strength of the relationship between the prediction depth and output margin, we
demonstrate that reducing the output margin of the learned function results in a model that clusters
the data only in the latest layers: such a solution has a very high average prediction depth. We do
not minimize the output margin directly but rather use a loss and an optimizer that do not encourage
high output margin. Naturally there are many unknowns that may contribute to this effect. We simply
report the intervention and the outcome.
The intervention is performed as follows: we construct a loss function that does not promote
confidence: a zero-margin hinge loss (“0-Hinge”), and optimize the network using full-batch gradient
descent with momentum and very small learning rate. For an input x with label i the 0-Hinge loss
is given by l(x) =

∑
j 6=i max(0, zi − zj) where zj represents the logit for class j. The form of

this intervention is justified in Appendix A.7. As a control, we additionally train a model in the
standard fashion using the cross-entropy loss and SGD with momentum and large initial learning
rate. Since full-batch gradients are computationally expensive, we train on a subset of CIFAR10
(see Appendix A.7, where we also give the hyperparameters and learning curves.). The output
margin obtained with the intervention is 5 orders of magnitude smaller than in the control experiment:
2.0 × 10−4 ± 2.0 × 10−4 for the 0-Hinge loss and 1.6 × 101 ± 0.50 × 101 for cross-entropy loss.
Figure 6 (right) compares the accuracies of the k-NN probes resulting from these training approaches.
The 0-Hinge loss training achieves only a marginal improvement in accuracy (red) over an untrained
network (purple), and the training split is accurately clustered only in the latest layers. This confirms
the predicted behavior: the intervention leads to a model that exhibits both very small average output
margins and very late clustering of the data. Very late clustering of the data implies high prediction
depths since the k-NN probe classifications change in the latest layers for many data points.

4 Beyond a One-Dimensional Picture of Example Difficulty
In this section we transcend the one-dimensional picture of example difficulty by identifying dif-
ferent underlying reasons behind the difficulty of an example, in a way that is general to different
architectures and datasets.
Figure 7 shows that the prediction depth can be different when an input occurs in the training split vs.
the validation split. Thus, there are two axes of example difficulty:

1. Difficulty of making a prediction when an input is in the validation set
2. Difficulty of finding commonalities during training with other examples of the same ground

truth class

Both axes have a range from “clear” to “ambiguous”. In Section 3.1 we show that predictions
made for validation points with later prediction depths are often inconsistent, with low consensus-
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Figure 8: Average k-NN probe confidence (solid lines) and accuracy (dotted lines) for the ground truth class
(left) and consensus class (right), in the validation split for examples exhibiting extreme forms of difficulty.
Mean values for 100 examples with each form of difficulty, identified as the 100 examples closest to the corners
in Figure 7 (left). This result is for CIFAR10 with ResNet18: similar plots for all datasets and architectures
are shown in Appendix C.7. See Section 4 for the discussion of the result and how it can be used to improve
prediction accuracy.

consistency. Conversely, a low prediction depth typically indicates an input with high consensus-
consistency. For Axis 1 we will identify validation points with low prediction depths as “clear”
and those with high prediction depths as “ambiguous”. We will additionally identify a low or high
prediction depth in the training split with examples that are respectively “clear” and “ambiguous” on
Axis 2. By making combinations of low/high values of (PDVal.,PDTrain) we obtain four extremes
of example difficulty:

Easy examples: (Low PDVal., Low PDTrain). Such examples are often visually typical members
of their class and the predicted label nearly always matches the ground truth.

Looks like a different class: (Low PDVal., High PDTrain). In the validation set, there is a clear
(and nearly always incorrect) classification for such an input, but it is difficult to connect such
inputs to other examples of their ground truth class during training. Mislabeled examples are
of this kind, as are visually confusing images which at first appear to show something else.

Ambiguous unless the label is given: (High PDVal., Low PDTrain). These examples are difficult
to connect to their predicted class in the validation split but easy to connect to their ground
truth class during training. These points may, for example, visually resemble both their own
class and another class. They are likely to be misclassified.

Ambiguous: (High PDVal., High PDTrain). These examples may be corrupted or show an example
of a rare sub-class. Predictions for these inputs can depend strongly on the random seed
used for training and initialization.

In Figure 7 we visualize CIFAR10 “Bird” images with the extreme forms of example difficulty for
ResNet18, as identified using the prediction depth in the training and validation splits. In the full
dataset (left panel) we see that the prediction depth can be very different in the training and validation
splits: the two prediction depths are typically similar for points where the consensus class is equal
to the ground truth (right panel), but can be very different when the consensus class is different
from the ground truth (middle panel). This behavior is consistently reproduced for all datasets and
architectures in Appendix C.6.
Looking at these examples of the class “Bird” with different difficulty types, we observe that ResNet18
finds small garden birds easiest, while birds in flight against a blue background “look like airplanes”,
ostriches are “ambiguous without their label” and the “ambiguous” examples are either unclear
photographs or examples of rare sub-groups that don’t appear frequently in the data. We found
the consensus-consistency of inputs that are “Ambiguous” or “Ambiguous without its label” to be
significantly lower than those of examples that are “Easy” or “Look like a different class”.
In order to better understand how networks process examples with different, extreme forms of
example difficulty, Fig. 8 examines how the k-NN confidence (fraction of votes) and accuracy of
the ground truth class and of the consensus class progress, as validation points pass through the
network. “Easy” examples are classified as their consensus class (which is equal to their ground truth
class) in all k-NN probes and the confidence in the consensus class steadily increases as data points
proceed through the hidden layers. Examples that “look like a different class” are also processed as
members of their consensus class, similarly to “easy” examples. However, unlike “easy” examples,
their consensus classes do not match their ground truth classes. Examples that are “ambiguous
without their labels” are initially processed as members of their ground truth classes with intermediate
confidence, but in later layers become mistaken for their consensus class. “Ambiguous” examples are
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processed with low confidence and accuracy in the early layers, for both ground truth and consensus
classes. In later layers “ambiguous” examples are recognized, with intermediate confidence and
accuracy, as members of the consensus class, which matches the ground truth class for a sizeable
fraction of “ambiguous” examples.

Improving the prediction accuracy Can the prediction accuracy be improved using our under-
standing of how each class of difficult examples are processed by deep models? Figure 8 suggest
that k-NN probes in intermediate layers may be more accurate than the full deep model for examples
that are “ambiguous without their label” (data points closest to the lower right corner of Figure 7).
In order to test this hypothesis, we compare the accuracy of the k-NN probe in layer 4 to the full
model’s prediction for the 100 examples closest to the lower right corner of Figure 8. We obtain a
striking improvement in accuracy from 25% to 98% for these examples. This showcases how insights
from this study can be directly used to improve prediction accuracy.

5 Discussion
Summary We have introduced a notion of example difficulty called the prediction depth, which
uses the processing of data inside the network to score the difficulty of an example. We have shown
how the prediction depth is related to the accuracy and uncertainty of a prediction, the adversarial
input margin and the output margin of the learned solution, and that data points that are easier
according to the prediction depth are also typically learned earlier in training. We have also shown
that the difficulty of an example can be both similar, or very different depending on whether an input
appears in the validation split or the training split, and described four extremes of example difficulty.
For data points that are “ambiguous without their label”, we have demonstrated how returning the
k-NN prediction in a middle layer can lead to impressive increases in model accuracy: for CIFAR10
in ResNet18 we obtained an increase in accuracy from 25% to 98% for the inputs that are most
“ambiguous without their label”.

Connecting known phenomena In the literature, the following phenomena are separately reported
from different experimental paradigms:

1. Early layers generalize while later layers memorize (Stephenson et al., 2021).
2. Model layers converge from input layer towards output layer (Raghu et al., 2017; Morcos

et al., 2018).
3. Deep models learn easy data (Jiang et al., 2021; Toneva et al., 2019) and simple functions

first (Hu et al., 2020; Kalimeris et al., 2019).

Following this paper, a coherent and closely related picture emerges:

1. Predictions made in early layers are more likely to be consistent than those made in later lay-
ers. Consistent predictions are likely to be correct and the expected accuracy of inconsistent
predictions is naturally low (Section 3.1).

2. Data points learned early in training typically have smaller prediction depths than those
learned later during training (Section 3.2).

3. On average, deep neural networks exhibit wider input and output margins (common measures
of “local simplicity”) in the vicinity of data with smaller prediction depths (Section 3.3).

Pertinence of example difficulty to topics in machine learning Curriculum Learning attempts
to treat hard examples differently from easy examples during training. Robustness to distribution
shifts that change the relative frequencies of common and rare subgroups in the test set (which we
have shown can have different forms of example difficulty) is important for ML Fairness. Methods
developed to address heteroscedastic uncertainty typically address example difficulty as a one-
dimensional quantity. We expand upon the relevance of our work to these three topics in Appendix D.

Limitations We believe that the results we report stem from a deep model’s representation, which
is hierarchical by construction. We expect that the same results will therefore apply in larger models,
larger datasets, and tasks other than image classification, but testing this remains as further work.
Although we demonstrate that returning the results of a hidden k-NN can yield dramatic increases in
accuracy for examples that are “ambiguous without their label”, we otherwise do not explore ways
to practically apply the insights we present. In particular, we expressly do not claim that all that is
required for good accuracy is to reduce the prediction depth: freezing later layers of the network
would not be expected to result in good generalization.

10



Funding Transparency Statement
This research was funded by, and undertaken at, Google. All calculations were performed using
Google’s computer infrastructure.

Acknowledgment
We would like to thank Hanie Sedghi, Ilya Tolstikhin, Ibrahim Alabdulmohsin, Daniel Keysers and
Julian Eisenschlos for valuable discussions on the topic and Arthur Baldock for proofreading the
manuscript.

References
Agarwal, C. and Hooker, S. (2020). Estimating example difficulty using variance of gradients. In

ICML, Workshop on Human Interpretability in Machine Learning (WHI).

Alain, G. and Bengio, Y. (2017). Understanding intermediate layers using linear classifier probes. In
International Conference on Learning Representations (Workshop).

Arpit, D., Jastrzebski, S., Ballas, N., Krueger, D., Bengio, E., Kanwal, M. S., Maharaj, T., Fischer,
A., Courville, A., Bengio, Y., et al. (2017). A closer look at memorization in deep networks. In
International Conference on Machine Learning.

Bahri, D., Jiang, H., and Gupta, M. (2020). Deep k-nn for noisy labels. In International Conference
on Machine Learning.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning. In Proceedings
of International Conference on Machine Learning.

Carlini, N., Erlingsson, U., and Papernot, N. (2019). Distribution density, tails, and outliers in
machine learning: Metrics and applications. arXiv preprint arXiv:1910.13427.

Chatterjee, S. (2019). Coherent gradients: An approach to understanding generalization in gradient
descent-based optimization. In International Conference on Learning Representations.

Cohen, G., Sapiro, G., and Giryes, R. (2018). Dnn or k-nn: That is the generalize vs. memorize
question. In NeurIPS, Workshop on Integration of Deep Learning Theories.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and Kaiser, L. (2018). Universal transformers.
In International Conference on Learning Representations.

Elman, J. L. (1993). Learning and development in neural networks: The importance of starting small.
Cognition, 48(1):71–99.

Feldman, V. and Zhang, C. (2020). What neural networks memorize and why: Discovering the
long tail via influence estimation. In Proceedings of the 34th International Conference on Neural
Information Processing Systems.

Ghorbani, B., Krishnan, S., and Xiao, Y. (2019). An investigation into neural net optimization via
hessian eigenvalue density. In International Conference on Machine Learning.

Hacohen, G., Choshen, L., and Weinshall, D. (2020). Let’s agree to agree: Neural networks share
classification order on real datasets. In International Conference on Machine Learning.

Hacohen, G. and Weinshall, D. (2019). On the power of curriculum learning in training deep networks.
In International Conference on Machine Learning.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition.

Hooker, S., Courville, A., Clark, G., Dauphin, Y., and Frome, A. (2019). What do compressed deep
neural networks forget? arXiv preprint arXiv:1911.05248.

Hooker, S., Moorosi, N., Clark, G., Bengio, S., and Denton, E. (2020). Characterising bias in
compressed models. arXiv preprint arXiv:2010.03058.

11



Hu, W., Xiao, L., Adlam, B., and Pennington, J. (2020). The surprising simplicity of the early-time
learning dynamics of neural networks. In Proceedings of the 34th International Conference on
Neural Information Processing Systems.

Huang, G., Chen, D., Li, T., Wu, F., van der Maaten, L., and Weinberger, K. (2018). Multi-scale
dense networks for resource efficient image classification. In International Conference on Learning
Representations.

Jiang, Y., Krishnan, D., Mobahi, H., and Bengio, S. (2018). Predicting the generalization gap in deep
networks with margin distributions. In International Conference on Learning Representations.

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., and Bengio, S. (2020). Fantastic generalization
measures and where to find them. In International Conference on Learning Representations.

Jiang, Z., Zhang, C., Talwar, K., and Mozer, M. C. (2021). Characterizing structural regularities of
labeled data in overparameterized models. In International Conference on Machine Learning.

Kalimeris, D., Kaplun, G., Nakkiran, P., Edelman, B., Yang, T., Barak, B., and Zhang, H. (2019). Sgd
on neural networks learns functions of increasing complexity. In Advances in Neural Information
Processing Systems, volume 32.

Kawaguchi, K., Kaelbling, L. P., and Bengio, Y. (2017). Generalization in deep learning. arXiv
preprint arXiv:1710.05468.

Kendall, A. and Gal, Y. (2017). What uncertainties do we need in bayesian deep learning for computer
vision? In Proceedings of the 31st International Conference on Neural Information Processing
Systems.

Kendall, A., Gal, Y., and Cipolla, R. (2018). Multi-task learning using uncertainty to weigh losses for
scene geometry and semantics. In Proceedings of the IEEE conference on computer vision and
pattern recognition.

Keskar, N. S., Nocedal, J., Tang, P. T. P., Mudigere, D., and Smelyanskiy, M. (2017). On large-batch
training for deep learning: Generalization gap and sharp minima. In International Conference on
Learning Representations.

Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J., Gelly, S., and Houlsby, N. (2020). Big
transfer (bit): General visual representation learning. In European Conference on Computer Vision.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images.
Technical Report.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017). Simple and scalable predictive uncertainty
estimation using deep ensembles. In Proceedings of the 31st International Conference on Neural
Information Processing Systems.

Lalor, J. P., Wu, H., Munkhdalai, T., and Yu, H. (2018). Understanding deep learning performance
through an examination of test set difficulty: A psychometric case study. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T. (2018). Visualizing the loss landscape of
neural nets. In Proceedings of the 32nd International Conference on Neural Information Processing
Systems.

Liu, S., Niles-Weed, J., Razavian, N., and Fernandez-Granda, C. (2020a). Early-learning regulariza-
tion prevents memorization of noisy labels. Advances in Neural Information Processing Systems,
33.

Liu, W., Zhou, P., Wang, Z., Zhao, Z., Deng, H., and JU, Q. (2020b). Fastbert: a self-distilling bert
with adaptive inference time. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 6035–6044.

Long, P. M. and Sedghi, H. (2019). Generalization bounds for deep convolutional neural networks.
In International Conference on Learning Representations.

12



Mangalam, K. and Prabhu, V. (2019). Do deep neural networks learn shallow learnable examples
first? In ICML, Workshop on Identifying and Understanding Deep Learning Phenomena.

Morcos, A. S., Raghu, M., and Bengio, S. (2018). Insights on representational similarity in neural
networks with canonical correlation. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems.

Nagarajan, V., Andreassen, A., and Neyshabur, B. (2021). Understanding the failure modes of
out-of-distribution generalization. In International Conference on Learning Representations.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011). Reading digits in
natural images with unsupervised feature learning. Technical Report.

Neyshabur, B., Bhojanapalli, S., McAllester, D., and Srebro, N. (2017). Exploring generalization
in deep learning. In Proceedings of the 31st International Conference on Neural Information
Processing Systems.

Papernot, N. and McDaniel, P. (2018). Deep k-nearest neighbors: Towards confident, interpretable
and robust deep learning. arXiv preprint arXiv:1803.04765.

Pennington, J. and Bahri, Y. (2017). Geometry of neural network loss surfaces via random matrix
theory. In International Conference on Machine Learning.

Raghu, M., Gilmer, J., Yosinski, J., and Sohl-Dickstein, J. (2017). Svcca: singular vector canonical
correlation analysis for deep learning dynamics and interpretability. In Proceedings of the 31st
International Conference on Neural Information Processing Systems.

Recht, B., Roelofs, R., Schmidt, L., and Shankar, V. (2019). Do imagenet classifiers generalize to
imagenet? In International Conference on Machine Learning.

Sagun, L., Bottou, L., and LeCun, Y. (2016). Eigenvalues of the hessian in deep learning: Singularity
and beyond. arXiv preprint arXiv:1611.07476.

Sagun, L., Evci, U., Guney, V. U., Dauphin, Y., and Bottou, L. (2018). Empirical analysis of
the hessian of over-parametrized neural networks. In International Conference on Learning
Representations (Workshop).

Sanger, T. D. (1994). Neural network learning control of robot manipulators using gradually
increasing task difficulty. IEEE transactions on Robotics and Automation, 10(3):323–333.

Schwartz, R., Stanovsky, G., Swayamdipta, S., Dodge, J., and Smith, N. A. (2020). The right tool for
the job: Matching model and instance complexities. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics.

Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations.

Smith, S. L., Dherin, B., Barrett, D. G., and De, S. (2021). On the origin of implicit regularization in
stochastic gradient descent. In International Conference on Learning Representations.

Smith, S. L., Kindermans, P.-J., Ying, C., and Le, Q. V. (2018). Don’t decay the learning rate, increase
the batch size. In International Conference on Learning Representations.

Smith, S. L. and Le, Q. V. (2018). A bayesian perspective on generalization and stochastic gradient
descent. In International Conference on Learning Representations.

Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., and Srebro, N. (2018). The implicit bias of
gradient descent on separable data. The Journal of Machine Learning Research, 19(1):2822–2878.

Stephan, M., Hoffman, M. D., Blei, D. M., et al. (2017). Stochastic gradient descent as approximate
bayesian inference. Journal of Machine Learning Research, 18(134):1–35.

Stephenson, C., suchismita padhy, Ganesh, A., Hui, Y., Tang, H., and Chung, S. (2021). On the
geometry of generalization and memorization in deep neural networks. In International Conference
on Learning Representations.

13



Teerapittayanon, S., McDanel, B., and Kung, H.-T. (2016). Branchynet: Fast inference via early
exiting from deep neural networks. In International Conference on Pattern Recognition.

Toneva, M., Sordoni, A., des Combes, R. T., Trischler, A., Bengio, Y., and Gordon, G. J. (2019).
An empirical study of example forgetting during deep neural network learning. In International
Conference on Learning Representations.

Unterthiner, T., Keysers, D., Gelly, S., Bousquet, O., and Tolstikhin, I. (2020). Predicting neural
network accuracy from weights. arXiv preprint arXiv:2002.11448.

Wen, Y., Tran, D., and Ba, J. (2019). Batchensemble: an alternative approach to efficient ensemble
and lifelong learning. In International Conference on Learning Representations.

Wenzel, F., Snoek, J., Tran, D., and Jenatton, R. (2020). Hyperparameter ensembles for robustness
and uncertainty quantification. In Proceedings of the 34th International Conference on Neural
Information Processing Systems.

Wu, X., Dyer, E., and Neyshabur, B. (2021). When do curricula work? In International Conference
on Learning Representations.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747.

Xin, J., Tang, R., Lee, J., Yu, Y., and Lin, J. (2020). Deebert: Dynamic early exiting for accelerating
bert inference. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics.

Yao, Z., Gholami, A., Keutzer, K., and Mahoney, M. (2020). Pyhessian: Neural networks through the
lens of the hessian. In International Conference on Machine Learning (Workshop).

Zielinski, P., Krishnan, S., and Chatterjee, S. (2020). Weak and strong gradient directions: Explaining
memorization, generalization, and hardness of examples at scale. arXiv preprint arXiv:2003.07422.

14


