
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WASSERSTEIN DISTANCES,
NEURONAL ENTANGLEMENT, AND SPARSITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Disentangling polysemantic neurons is at the core of many current approaches
to interpretability of large language models. Here we attempt to study how dis-
entanglement can be used to understand performance, in particular under weight
sparsity, one of today’s leading post-training optimization techniques. We suggest
a novel measure for estimating neuronal entanglement: the Wasserstein distance
of a neuron’s output distribution to a Gaussian. Moreover, we show the existence
of a small number of highly entangled “Wasserstein Neurons” in each linear layer
of an LLM, characterized by their highly non-Gaussian output distributions and
their significant impact on model accuracy. To study this phenomena, we pro-
pose a new experimental framework for disentangling polysemantic neurons. Our
framework separates each layer’s inputs to create a mixture of experts where each
neuron’s output is computed by a mixture of neurons of lower Wasserstein dis-
tance, each better at maintaining accuracy when sparsified without retraining. We
provide strong evidence that this is because the mixture of sparse experts is effec-
tively disentangling the input-output relationship of every individual neuron, in
particular the difficult Wasserstein neurons.

1 INTRODUCTION

Disentangling polysemantic neurons into their component, human-understandable features has been
a longstanding goal of machine learning interpretability research (Olah et al., 2020; Jermyn et al.,
2022; Elhage et al., 2022; Templeton, 2024; Gurnee et al., 2024). Here, we refer to the classical
definition of a neuron as a single row of a weight matrix within a linear layer during a left multiply.
While neurons are the basic building blocks of neural network architectures, they do not map one-
to-one with specific features. Instead, neurons frequently engage in polysemantic representations,
where they are activated by multiple, unrelated concepts and detect diverse features (Arora et al.,
2018; Mu & Andreas, 2020). It is suspected that every neuron is polysemantic to some degree
(Lecomte et al., 2023), and so we will refer to all neurons as polysemantic in this work.

Due to the importance of highly polysemantic neurons in a network’s computation (Bricken et al.,
2023), the question of whether these neurons require more parameters naturally arises. However, the
effects of polysemanticity on network performance under weight sparsity has not been well explored.
Weight sparsification (Hoefler et al., 2021) aims to reduce the number of executed parameters in
large language models (LLMs) by setting certain weight values to zero in order to improve efficiency
and performance. Various sparsification algorithms have been developed for this process (Han et al.,
2015; Sun et al., 2023; Frantar & Alistarh, 2023). This paper investigates the relationship between
an individual neuron’s degree of entanglement (which we will formally define in a later section) and
its ability to be sparsified in real-world models. To the best of our knowledge, this is the first work
to explore this crucial perspective of entanglement-dependent model sparsification.

In order to better understand the impact of entanglement on sparsification, we introduce a novel
metric that quantifies the degree of entanglement of a polysemantic neuron. This metric is the
Wasserstein distance between a neuron’s output distribution and a Gaussian (Equation 1). We find
that neurons with a particularly high Wasserstein distance (Figure 1d, A7d) are crucial for the perfor-
mance of a network and very sensitive to pruning. We provide evidence that a neuron’s Wasserstein
distance is related to its ability to distinguish similar inputs to different outputs through its dot prod-
uct computation, and so we thus refer to these neurons as especially entangled (Equation 2). Similar

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

to previous works investigating special types of neurons (Stolfo et al., 2024; Gurnee et al., 2024), this
work explores the role of certain crucial neurons with implications for mechanistic interpretability,
but specifically in the context of sparse network performance.

Figure 1: The output distributions of neurons in Llama 2 7B computed densely and at 90% sparsity
on Wikitext-2. WD refers to the Wasserstein distance of the output distribution to a Gaussian. RI
refers to the relative improvement of Sparse Expansion over SparseGPT. (a) The dense output dis-
tribution of a random neuron with a WD of 0.050 is well captured by SparseGPT, and (b) expanding
this neuron via Sparse Expansion imparts only a small (18%) increase in performance. (c) The clus-
ter outputs are all concentrated in close proximity to each other. (d) SparseGPT struggles to capture
the dense distribution of an entangled neuron with a WD of 0.524. (e) Following expansion, the
sparse output of the entangled neuron is much better captured, leading to more improvement (77%).
(f) Each expert specializes over a different portion of the distribution.

To analyze the phenomenon of neuron superposition under sparsity in greater detail, we create an ex-
perimental framework, which we dub Sparse Expansion. It expands a model into a mixture of sparse
experts by clustering input embeddings layer-wise. Based on this clustering, Sparse Expansion uti-
lizes the the input-aware nature of the SparseGPT (Frantar & Alistarh, 2023) pruning algorithm to
specialize different sparse experts to different sets of inputs, starting from the same base weights.
Through Sparse Expansion, we are able to analyze the entangled neurons in much more detail, since
now different subgroups of the inputs are being computed with different edges (Figure 1f, A7f). We
find that as a neuron lose edges, its output distribution tends to shift toward a Gaussian distribution
(Figure A8). However, through Sparse Expansion, the original output distribution can be better pre-
served under sparse computation (Figure 1e, A7e). We relate our findings to recent theoretical work
on the bounds of neural computation under superposition (Hänni et al., 2024; Adler & Shavit, 2024).

Our main technical contribution is a detailed study of how the accuracy of a model under sparsity
is related to its degree of neuronal entanglement. In every LLM, there exist neurons that have
striking, irregular output distributions (Figure 2c, A1). These neurons have an outsized effect on
model performance and seem to be responsible for differentiating similar input vectors (Figure 2).
We believe that the existence of these neurons is a manifestation of polysemanticity in real-world
language models. We find that the metric we introduced earlier - the Wasserstein distance to a
Gaussian - is a strong indicator of such neurons.

In the next section we explain such “Wasserstein neurons”, neuronal entanglement, and the im-
plication of ablating Wasserstein neurons in LLMs in detail. We then formulate our experimental
framework Sparse Expansion and show how to effectively disentangle the input-output relationship
of neurons through Sparse Expansion, as well as some empirical computational bounds. Finally, we
present some results showing its performance relative to other state-of-the-art one-shot compression
techniques in the hopes of inspiring future sparsification algorithms.

2 WASSERSTEIN NEURONS

2.1 CHARACTERIZING NON-GAUSSIAN NEURONAL OUTPUT DISTRIBUTIONS

We investigate the output distributions of individual neurons in all linear layers of transformer feed-
forward networks (FFNs) during inference. Specifically, consider a linear operation Y = WX+b,
where Y ∈ Rn×s is the output matrix, W ∈ Rn×m is the weight matrix, b ∈ Rn is the bias vector,
broadcasted across all neurons, and X ∈ Rm×s is the input matrix, where each column represents
an input vector. Each neuron is an individual row of W , and we collect individual scalar elements
from the corresponding row in Y as the output distribution for that neuron.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

We focus our analysis in Pythia 1.4B (Biderman et al., 2023), Llama 2 7B (Touvron et al., 2023a),
and Llama 3 8B (Dubey et al., 2024). Most neurons exhibit a reasonably Gaussian output distribution
after their dot product with the input vector (Figure 1a, 2a). However, we find the existence of a small
group neurons with highly non-Gaussian outputs (Figure 1d, 2c) in all FFNs (Figure A1).

To characterize the degree of difference in terms of the shape of these distributions—the non-
Gaussian output distributions of certain neurons with the Gaussian-like output distribution of most
neurons—we considered several metrics, such as entropy. However, the Wasserstein distance (WD)
(Kantorovich, 2006; Villani et al., 2009) proved to be the most effective metric for quantifying this
difference. In optimal transport theory, the WD measures the minimal transportation cost between
two distributions, taking their geometry in real space into account.

To find the WD of every neuron to the Gaussian N , we crucially first normalize the output distribu-
tions of each neuron n to have zero mean and unit variance, and compare this normalized distribution
n′ to N (0, 1). This normalization is performed because the range of neuron output distributions is
quite variable, and we wanted to prioritize the differences in the shape of the distributions, rather
than other properties. We use the 1-Wasserstein distance in one dimension, as shown in Equation 1.

W1(n
′,N) =

∫ 1

0

|F−1(z)− φ−1(z)|dz. (1)

F−1 and φ−1 are the inverse cumulative distribution function of n′ andN (0, 1), respectively, which
can be approximated with our empirical data. To compute the WD of every neuron efficiently, we
use the implementation provided by SciPy (Virtanen et al., 2020). When computing the differ-
ence metric in this way, we find that our originally observed neurons (Figure 1d, A7d) have been
designated correctly with high WD to N . We thus term these neurons “Wasserstein neurons.” Ad-
ditionally, we observe little correlation between neurons with high mean weight magnitudes and
Wasserstein neurons (Figure A4).

To ensure that these Wasserstein neurons are not a phenomena of inadequate feature learning in
other neurons (Yang et al., 2021), we additionally analyze Pythia 1.4B across its training check-
points, from network initialization to the final step. We find that Wasserstein neurons do not seem
to receive more weight updates than other neurons (Figure A2a). Interestingly, we also find that
the Wasserstein neuron phenomena arises relatively early on in training, within 10-20 billion tokens
(Figure A2b). We leave further investigations into this crucial training period to future work.

2.2 WASSERSTEIN NEURONS AND ENTANGLEMENT

Here, we define and study the notion of entanglement of these Wasserstein neurons in greater de-
tail by positing a new avenue to investigate entanglement. According to superposition theory, as
the number of features increases relative to the number of neurons, features are forced to become
non-orthogonal in order to represent more of them, thus becoming entangled (Elhage et al., 2022).
Consider neurons that must attend to multiple of these features. As the number of features increases,
and different features are forced to become more similar in direction, such neurons must still manage
to distinguish between them. Therefore, in this context, neurons that are highly entangled have the
task of differentiating between similar input vectors, and mapping them to different output values.

To mathematically explore this concept, we study the input-output (IO) relationship of individual
neurons. We introduce a metric we term “mapping difficulty” that measures how often a neuron must
generate dissimilar outputs from similar inputs through its dot product computation. The mapping
difficulty (MD) for a particular neuron, given its weights and a set of inputs, is calculated as follows
(Equation 2):

MD(w,X) = mean
1≤i<j≤n

{(
||yi − yj ||

Ny

)/(||xi − xj ||
Nx

)}
xi,xj ∈ X, yi = w · xi, n = |X|

Nx = max
1≤i<j≤n

{||xi − xj ||}, Ny = median
1≤i<j≤n

{||yi − yj ||}

(2)

xi and xj represent two distinct input vectors from the set of inputs X. yi and yj represent the two
output scalars as a result of the dot product of an individual neuron’s weights w with the inputs.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

For every pair of inputs, we compute the L2 norm of their difference, then scale the norms between
zero and one using the maximum norm Nx. We then compute the L2 norm of the difference in their
corresponding outputs, and normalize them with the median norm Ny . The MD of a neuron can
thus be calculated as the average of the ratio between the normalized difference in outputs to the
normalized difference in inputs. Intuitively, a greater MD means that a neuron generally increases
the separation of similar inputs into more dissimilar outputs.

Figure 2: A measure of neuronal entanglement. (a) The output distribution of a random neuron. (b)
The normalized L2 plot of a random neuron’s pairs of inputs and outputs. (c) The output distribution
of a Wasserstein neuron. (d) The normalized L2 plot of a Wasserstein neuron’s pairs of inputs and
outputs. This neuron must map fairly similar inputs to outputs that are very far apart through its
dot product operation. The neurons are from the up projection matrix of the second FFN block in
Pythia 1.4B. (e) The MD of a neuron is highly correlated with its Wasserstein distance. The selected
random and Wasserstein neurons are highlighted in their respective colors.

For the two neurons we have selected before, we plot the normalized L2 for pairs of inputs (||xi−xj ||
Nx

)

and outputs (||yi−yj ||
Ny

), as defined in Equation 2. These inputs and outputs were collected over the
course of running the Wikitext-2 dataset (Merity et al., 2016) through Pythia 1.4B. For the random
neuron, as the difference between inputs decreases, so too does the difference between outputs
(Figure 2b). However, for the Wasserstein neuron, this is not the case - even relatively similar inputs
are sometimes mapped to outputs almost as far apart as the entire range of the neuron (Figure 2d).
A clear trend between the MD of a neuron and its Wasserstein distance emerges (Figure 2e), and the
two measures are highly correlated. Thus, we propose the Wasserstein distance of a neuron’s output
distribution to a Gaussian as a novel measure of entanglement, with Wasserstein neurons as being
particularly entangled.

2.3 EFFECT OF HIGH WASSERSTEIN NEURONS ON SPARSIFICATION

In the previous section, we have related Wasserstein neurons to a novel formulation of neuron-level
entanglement. Now, we show that such neurons also have a substantially outsized effect on model
performance under sparsity. In Llama 3 8B, if just 3% of all neurons — those with the highest
Wasserstein distances — are sparsified via SparseGPT in every FFN, general model performance
significantly degrades. This degradation is far more severe than when 3% of random neurons are
sparsified, and remains true when compared to sparsifying the same number of other important
neurons, such as those with the greatest mean and variance in their output distributions and even
those with the greatest mean weight magnitude. As compression increases, this effect becomes more
obvious (Figure 3a). Therefore, Wasserstein neurons are crucial for maintaining model accuracy and
are severely limited in their ability to be compressed.

To better understand which specific capabilities are impacted by neuron entanglement, we evaluate
the Llama 3 8B model with its Wasserstein neurons sparsified across several language model evalu-
ation benchmarks. We select five tasks spanning four broad categories, similar to the original Llama
3 work (Dubey et al., 2024). For reading comprehension, we use the 1-shot variant of the SQuAD
2.0 dataset (Rajpurkar et al., 2018). To assess knowledge reasoning and mathematical capabilities,
we evaluate the model on the 5-shot TriviaQA-Wiki (Joshi et al., 2017) and 5-shot GSM8K (Cobbe
et al., 2021) datasets. Finally, to evaluate general reasoning, we test the model on two benchmarks:
an easy task, 5-shot MMLU (Hendrycks et al., 2020), and a more challenging task, 3-shot Chain-of-
Thought (CoT) Big Bench Hard (BBH) (Suzgun et al., 2022).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: Entangled neurons are much more sensitive to compression. In Llama 3 8B, 3% of neurons
from every FFN linear layer are sparsified in an unstructured manner. (a) Sparsifying Wasserstein
neurons (blue) impairs the model more than sparsifying neurons with the highest output distribution
means (orange) and variances (green), those with the highest average mean magnitude (purple), and
considerably more than random neurons (red). Sparsification of specific neurons is achieved via the
SparseGPT algorithm. Perplexity is measured on the Wikitext-2 dataset (Merity et al., 2016). (b-d)
Sparsifying the Wasserstein neurons (blue) affects general and mathematical reasoning much more
than random neurons (red), as shown in the capability charts. At higher levels of neuron sparsity
(≥ 95%), ablating Wasserstein neurons leads to a collapse in model performance, which does not
occur with random neurons.

Our findings reveal that when just a small fraction of neurons (the top 3% Wasserstein neurons) are
sparsified, the model’s performance on complex tasks involving general reasoning and mathematical
understanding is significantly impacted. However, when the same level of sparsification is applied
to random neurons, the model is able to preserve most of its capabilities effectively. Additionally,
as a neuron is increasingly sparsified, the output distribution becomes more Gaussian (Figure A8,
A9). This in turn places even more stress upon the neuron - not only is it contending with decreasing
mean and variance of the output distribution (Figure A10), but also with the less expressive dis-
tribution shape. Thus, it seems that, especially at the higher sparsities that we are analyzing, the
irregular shape of the entangled neurons is much more challenging to model with fewer weights
than a Gaussian-like distribution. To investigate the difficulty of sparsifying entangled neurons and
the relationship between superposition and performance, we introduce Sparse Expansion.

3 AN EXPERIMENTAL FRAMEWORK TO STUDY DISENTANGLEMENT

To better study these neurons and the phenomena between entanglement, sparsity, and performance
that we observe, we create the experimental framework Sparse Expansion. It is inspired by recent
work on the theoretical limits of computation within superposition (Hänni et al., 2024; Adler &
Shavit, 2024). Sparse Expansion was designed to achieve two goals in real-world models. First, it
must originate from a trained dense model and not be retrained. This way, the dynamics of a single
neuron, in particular Wasserstein neurons, can still be studied in depth after the model has been
expanded. Second, from a theoretical perspective, it must test how varying the number of effective
features in the input affects the number of required edges. Therefore, the relationship between
superposition and sparsity the can be further understood.

3.1 SPARSE EXPANSION IN DETAIL

Sparse Expansion clusters the inputs to each layer into separate groups via an optional PCA di-
mensionality reduction and K-means clustering. Each expert is then sparsified via the SparseGPT
(Frantar & Alistarh, 2023) algorithm (Algorithm A1). Briefly, SparseGPT approximates the opti-
mal sparse matrix of a layer with the Hessian of the error relative to the parameters of the layer
Y = WX + b. Doing so yields H = XXT , where H is the Hessian matrix.

During inference, each input will be passed through the PCA and K-means model to decide its
expert, then routed to the corresponding expert for the matrix multiply (Algorithm A2). As the
routing is done via K-means on a lower dimension, and the PCA is a very low dimension matrix
multiply, both are inexpensive to add on to normal LLM inference. Furthermore, routing in this
manner prevents the need to train and run a more expensive router.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 4: The Sparse Expansion process. One-shot expert creation process of Sparse Expansion
(left). Inference process in a FFN of an expanded model (right).

Our design explicitly achieves the goals we set out. First, by starting from a dense model, we are
able to study how the separation of inputs affects individual neurons, which we would not be able
to do for the same neuron index across experts in a MoE model such as Mixtral (Jiang et al., 2024).
Second, by utilizing SparseGPT, each expert has its weights sparsified and tailored to a subset of
inputs, testing the theoretical limits of how many weights are necessary to model a given number of
features.

3.2 SPARSE EXPANSION DISENTANGLES NEURONS

We revisit the output distributions of neurons to determine the effect that clustering has in a sparse
setting. First, we repeat the sparsification experiment conducted in Figure 3 on Wikitext-2 in Llama
3 8B. Now, for just the neurons we pruned, we expand them into 16 experts and measure the recovery
in performance. Sparse Expansion is able to recover significant performance following Wasserstein
neuron sparsification, much more than it does during random neuron expansion. However, the recov-
ery in performance for random neurons is not as noticeable, because these neurons were not under
significant entanglement initially (Figure 5a). Furthermore, both the weighted WD and weighted
MD of the majority of neurons decreases as a result of Sparse Expansion. This is especially true for
Wasserstein neurons, where 98% of neurons have a decrease in weighted WD by a median of 42%
per neuron (5b), and where 96% of neurons have a decrease in weighted MD by a median of 9% per
neuron (5c).

Figure 5: Sparse Expansion recovers performance of Wasserstein neurons. (a) Although Wasserstein
neurons are penalized more under sparsity, they also recover better in Sparse Expansion compared
to a random set of neurons. We quantify this recovery using normalized perplexity relative to the
dense model. Data from Llama 3 8B. (b) As a result of Sparse Expansion, the median decrease in
WD per neuron is 19%. Weighted cluster WD is the average WD within each cluster as calculated
in Equation 1, weighted by the cluster size. Although a few neurons with an initially low dense
WD exhibit a higher average weighted WD, the majority (68%) of all neurons show a decrease in
weighted WD. This is especially true in the top 10% of neurons with an originally high WD (the
Wasserstein neurons). (c) Sparse Expansion also decreases the weighted MD by a median of 2%
per neuron. Weighted cluster MD is the average MD within each cluster as calculated in Equation
2, weighted by the number of IO pairs within a cluster. 70% of all neurons and 96% of Wasserstein
neurons show a decrease in weighted MD, the latter with a median decrease of 9% per neuron. (b,
c) Data collected from of the up projection matrix in the second FFN of Pythia 1.4B.

For Llama 2 7B (Figure 1) and Pythia 1.4B (Figure A7), both models and both neuron types -
random and Wasserstein - improve through Sparse Expansion, with the entangled neuron showing

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

greater improvement. Furthermore, for the random neuron and especially for the entangled neuron,
the geometry of the sparse output distribution in Sparse Expansion much more closely matches that
of the dense distribution.

We also provide a visualization for the specialization of each cluster. Figure 1 and Figure A7 each
show the sparse output distributions of each individual cluster, with a different color per expert. For
the randomly selected neurons, there is still an improvement, although each expert is for the most
part responsible for approximately the same range and shape. For the entangled neurons, there is
significant specialization for different parts of the distribution further away from the mode.

However, Sparse Expansion is not limited to improving just Wasserstein neurons. Across different
sparsities and across different models, all but a tiny fraction of neurons improve through Sparse
Expansion (Figure A11). Thus, like other work regarding polysemanticity (Lecomte et al., 2023;
Bricken et al., 2023), we believe that, in fact, every neuron is to some extent in entanglement.
However, Wasserstein neurons are the most obviously entangled ones, and they benefit more from
sparse disentanglement, especially at higher sparsities. Finally, we note that other metrics of the
dense neuronal output distribution, such as their means and variances, fail to act as a predictor of
neuronal improvement to the degree that the Wasserstein distance to a Gaussian does (Figure 7,
A12). Thus, we believe that the WD to normal for a neuron’s output distribution is a very suitable
and intuitive metric of entanglement within a neuron.

3.3 MORE SPARSE EXPERTS BETTER FIT THE OUTPUT DISTRIBUTION

The complex dense output distribution of highly entangled neurons is difficult to model with a single
sparse expert, as in the case of SparseGPT. In Figure 6, we show the output distribution of a Wasser-
stein neuron in both dense and sparse computation. As the number of sparse experts increases, the
output distribution of the sparse computation more closely matches that of the dense computation, as
measured in the WD between the two distributions. Furthermore, the relative improvement (RI) of
Sparse Expansion over SparseGPT increases. In this paper, RI is measured as the ratio of the RMSE
between the SparseGPT sparse computation and the dense computation, to the RMSE between the
Sparse Expansion sparse computation and the dense computation.

Figure 6: Modeling recovery with more experts. The sparse computation output distribution (red)
better matches the dense one (blue) with more clusters. Sparsity is set to 90% for each expert.
Here, WD refers to the Wasserstein distance between the Sparse Expansion sparse and dense output
distributions, rather than to a Gaussian. RI represents relative improvement of Sparse Expansion
(n ≥ 1 clusters) over SparseGPT (n = 1 cluster). This is the same neuron from Figure 2c.

3.4 WASSERSTEIN DISTANCE BEST EXPLAINS IMPROVEMENT

So far, we have claimed that Wasserstein distance is not only a pertinent indicator of neuronal entan-
glement, but also a predictor of its improvement in Sparse Expansion over SparseGPT. To test this
idea, we compare how well the RI is modeled by a neuron’s output WD, mean output magnitude,
and output variance. Of these metrics, a neuron’s Wasserstein distance is most correlated with its
improvement in sparse computation from disentanglement (Figure 7).

In addition, we test whether the estimated number of components in a Gaussian mixture model
(GMM) is enough to explain the the improvement as a result of disentanglement. Specifically, given
a neuronal output distribution, we applied Gaussian mixture modeling to determine the optimal
number of Gaussians required to model the distribution, using the Bayesian Information Criterion

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 7: Wasserstein distance best explains improvement among tested metrics. The RI of each
neuron in Pythia 1.4B was calculated as before and compared against the optimal number of Gaus-
sians needed to model its output distribution (gray), the average magnitude of its output distribution
(orange), the variance of its output distribution (green), and the Wasserstein distance of its output
distribution to normal (blue). For each metric, the line of best fit is calculated, and the coefficient
of determination R2 is found. For each optimal number of Gaussians, the mean improvement is
marked. Of these metrics, the Wasserstein distance best correlates with relative improvement. Data
collected from of the second up projection layer in Pythia 1.4B.

(BIC) for evaluation. BIC is a metric that penalizes model complexity and tries to identify the
minimum number of Gaussians which can optimally model the distribution. However, when testing
the optimal number of Gaussians between one and sixteen models, our findings indicated almost no
correlation (R2 ≤ 0.001) between the optimal number of Gaussians and the relative improvement
in the Sparse Expansion setup, as seen in Figure 7. Thus, in our experiments, we find that the
Wasserstein distance is a better indicator than others that we have tested.

3.5 THEORETICAL IMPLICATIONS OF SPARSE EXPANSION

Recent theoretical work (Hänni et al., 2024; Adler & Shavit, 2024) investigates the algorithmic up-
per and lower bounds of polysemantic neuronal computation in toy examples. To explore empirical
evidence along this body of work for real-world models, we investigate the improvements made by
Sparse Expansion in Pythia 1.4B in 80% unstructured sparsity. We estimate the approximate number
of effective features a set of inputs has by applying PCA to the set and finding the minimum num-
ber of components required to reach 90% explained variance. As expected, the average minimum
required components for the inputs to the experts, weighted by the number of inputs in each group,
decreases after clustering for every FFN weight matrix (Figure 8a).

To provide empirical evidence on the bounds of computation under entanglement, we explore mod-
eling ability as a function of the number of input features. To identify a bound for minimum error of
a network under sparse computation, we consider the the RMSE of each clustered sparse output to
the dense output, normalized to the overall RMSE for that layer as a proxy for computational abil-
ity. We compare this to the number of required PCA components for said cluster as before. Across
all clusters in all layers of the network, there is a linear front that emerges in log-log scale: as the
number of required components increases, so too does the minimum error (Figure 8b). Next, we
consider the bound on maximum improvement in sparse computation under entanglement. When a
cluster has fewer effective features, since each expert has the same number of parameters, Sparse
Expansion allocates relatively more parameters to model these features than SparseGPT does, as the
latter must account for all inputs. However, when a cluster has many required components, Sparse
Expansion and SparseGPT allocate a similar amount of parameters, leading to relatively lower im-
provement. Therefore, performance improvements increase with fewer effective features. However,
beyond a certain point, adding more features no longer yields further performance gains. This trend
is also visible in the linear frontier of the log-log plot (Figure 8c). Thus, we provide some empiri-
cal demonstrations of the existence of bounds of both loss and improvement of sparse computation
under entanglement.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 8: Empirical demonstrations of performance bounds. (a) As a result of clustering, the
weighed average minimum number of components to capture 90% of the explained variance de-
creases for every layer. (b) As the number of required components for a particular cluster increases,
so too must the error. (c) As the number of required components for a particular cluster decreases,
Sparse Expansion improves more over SparseGPT, but up to a bound. Data collected in Pythia 1.4B.

3.6 SPARSE EXPANSION PERFORMANCE

We evaluate how well Sparse Expansion performs against other competitive one-shot pruning tech-
niques, including in terms of inference speed (Table A3). Despite its leading evaluation performance
(Figure 9; Table A1, A4), this method is likely not practically implementable without further opti-
mizations to counteract the increase in memory footprint, including tuning the number of clusters
per neuron (Figure A3). Nevertheless, we hope that Sparse Expansion serves as an inspiration for
future sparsification techniques that address entanglement for better performance.

3.6.1 MODELS, DATASETS, AND SETUP

We use the Pythia (Biderman et al., 2023) series of pre-trained LLMs to evaluate how Sparse Ex-
pansion performs across model sizes, from Pythia 70M to Pythia 12B. We further evaluate Sparse
Expansion across the entire Llama 2 family (Touvron et al., 2023b). We use a subset of the Wikitext-
2 (Merity et al., 2016) train dataset as calibration data for input-aware pruning and evaluate using
the corresponding test set through the perplexity metric. Furthermore, to evaluate the performance
of Sparse Expansion in out-of-distribution (OOD) data, we evaluate the sparse model in 5 zero-shot
standard benchmark tasks in both Llama and Pythia. For our performance benchmarks, we use 16
clusters at each level of routing in Sparse Expansion. We rely upon the RAPIDS library (Raschka
et al., 2020) to accelerate the PCA and K-means models by orders of magnitude. Finally, we utilize
and build upon the SparseGPT GitHub repository.

3.6.2 PERFORMANCE ACROSS SCALES

We evaluate the performance of Sparse Expansion against other one-shot pruning techniques across
a range of model sizes in Pythia and sparsities in Llama 2 7B (Figure 9). Across all model sizes
of Pythia, Sparse Expansion outperforms all other pruning techniques at 50% unstructured sparsity,
approaching dense performance as model size increases. Moreover, for Llama 2 7B, across all levels
of sparsity, Sparse Expansion outperforms all other techniques. At higher levels of sparsity, the gap
in performance between the techniques grows. We run further experiments on the entire Llama 2
family as well, and Sparse Expansion similarly outperforms other methods (Table A4). Finally,
our experiments show Sparse Expansion outperforming contemporary pruning algorithms in OOD
settings as well (Table A1, A2).

4 RELATED WORK

Polysemanticity There is a plethora of ongoing research contributing to the understanding of pol-
ysemanticity in neural networks from a mechanistic interpretability perspective (Bricken et al., 2023;
Huben et al., 2023; Lecomte et al., 2023; Templeton, 2024). These efforts primarily rely upon sparse
autoencoders to disentangle output activations into human-interpretable features, losing information
specific to individual neurons in the process. As we focus on neurons due to their direct role in net-
work pruning, we derive our own formulation of entanglement as an extension of previous notions.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 9: Sparse Expansion across model sizes and sparsities. (a) Performance comparisons on
Wikitext-2 perplexity between Magnitude Pruning (MP), Wanda, SparseGPT, and Sparse Expansion
on Pythia models from sizes of 70M parameters to 12B parameters. Every FFN in each model was
sparsified to 50% sparsity. Each star represents a particular model size on the dense curve, and the
corresponding sparsified model is the marker directly to its left on the sparse curves. (b) Performance
for Llama 2 7B at different levels of sparsity for MP, Wanda, SparseGPT, and Sparse Expansion. The
x-axis points in both graphs take into account the cost of routing.

There are also other works on identifying special neuron types in LLMs, such as Universal neurons
(Gurnee et al., 2024) and Confidence Regulatory neurons (Stolfo et al., 2024). However, there is no
recent literature tying polysemanticity and neuronal entanglement to sparse network performance.

Compression A multitude of advanced weight pruning algorithms, such as Wanda (Sun et al.,
2023) and SparseGPT (Frantar & Alistarh, 2022), and quantization algorithms (Kim et al., 2023;
Dettmers et al., 2022; Ashkboos et al., 2024; Egiazarian et al., 2024; Dettmers et al., 2023; Zhao
et al., 2023; Lin et al., 2024) exist. Most advanced algorithms are input-aware so as to specialize
the weights to the most important input features. Other pruning approaches, such as SWAP (You
& Cheng, 2024) and WD-based channel pruning (Duan & Li, 2020), have also used WD, though
for the gradient of the loss or for channel similarity, rather than for analyzing neurons as we do.
While outliers in the features and weights are known to be the among the most challenging factors
to address when quantizing to extremely low bits, no equivalent understanding has been made for
high sparsities.

5 CONCLUSION AND DISCUSSION

In this work, we for the first time demonstrate the impact of neuronal entanglement on network
performance under weight sparsity, a previously unexplored avenue. From our work and others, we
suspect that every neuron is to some extent entangled, but that this entanglement of features is easier
for some neurons to resolve than it is for others. We explore this notion of entanglement through our
metric of mapping difficulty, and find that Wasserstein distance is a novel, highly pertinent indicator
of entangled neurons that must differentiate similar inputs into different outputs. Furthermore, as
Wasserstein neurons in particular are incredibly sensitive to sparsification, we posit that the robust-
ness of a neuron to sparsity is directly dependent on its degree of entanglement. Finally, we have
shown that our experimental framework Sparse Expansion is an effective way to disentangle the
complex entangled state of a sparse neuron, and use it to explore computational bounds in empir-
ical real-world models. The disentanglement provided by Sparse Expansion benefits Wasserstein
neurons the most, providing further support that such neurons are the most entangled.

In future work, we plan to further study these Wasserstein neurons in the framework of mechanistic
interpretability to better understand what circuits they form. From our insight that more entangled
neurons are harder to sparsify, we will investigate creating efficient, entanglement-aware sparsifica-
tion algorithms to better preserve model performance at higher sparsities. Looking forward, perhaps
just as outlier features and weights are well understood to be one of the most significant challenges
when quantizing to fewer bits, so too can neuronal entanglement be understood as the challenge of
pruning to higher sparsities.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Micah Adler and Nir Shavit. On the complexity of neural computation in superposition. arXiv
preprint arXiv:2409.15318, 2024.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. Linear algebraic struc-
ture of word senses, with applications to polysemy. Transactions of the Association for Compu-
tational Linguistics, 6:483–495, 2018.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin Jaggi, Dan Alistarh,
Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms. arXiv
preprint arXiv:2404.00456, 2024.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, et al. Towards monosemanticity: Decom-
posing language models with dictionary learning. Transformer Circuits Thread, 2, 2023.

Roberto Lopez Castro and Dan Alistarh. Sparse marlin: a fast sparse plus 4-bit kernel for generative
inference. https://github.com/IST-DASLab/Sparse-Marlin, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized repre-
sentation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023.

Haoran Duan and Hui Li. Channel pruning for accelerating convolutional neural networks via
wasserstein metric. In Proceedings of the Asian Conference on Computer Vision, 2020.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan Al-
istarh. Extreme compression of large language models via additive quantization. arXiv preprint
arXiv:2401.06118, 2024.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposi-
tion. arXiv preprint arXiv:2209.10652, 2022.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475–4488,
2022.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Elias Frantar and Dan Alistarh. Marlin: a fast 4-bit inference kernel for medium batchsizes. https:
//github.com/IST-DASLab/marlin, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

11

https://github.com/IST-DASLab/Sparse-Marlin
https://github.com/IST-DASLab/marlin
https://github.com/IST-DASLab/marlin

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Wes Gurnee, Theo Horsley, Zifan Carl Guo, Tara Rezaei Kheirkhah, Qinyi Sun, Will Hathaway,
Neel Nanda, and Dimitris Bertsimas. Universal neurons in gpt2 language models. arXiv preprint
arXiv:2401.12181, 2024.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Kaarel Hänni, Jake Mendel, Dmitry Vaintrob, and Lawrence Chan. Mathematical models of com-
putation in superposition. arXiv preprint arXiv:2408.05451, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. Journal of
Machine Learning Research, 22(241):1–124, 2021.

Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse
autoencoders find highly interpretable features in language models. In The Twelfth International
Conference on Learning Representations, 2023.

Adam S Jermyn, Nicholas Schiefer, and Evan Hubinger. Engineering monosemanticity in toy mod-
els. arXiv preprint arXiv:2211.09169, 2022.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

Leonid V Kantorovich. On the translocation of masses. Journal of mathematical sciences, 133(4):
1381–1382, 2006.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629, 2023.

Victor Lecomte, Kushal Thaman, Trevor Chow, Rylan Schaeffer, and Sanmi Koyejo. Incidental
polysemanticity. arXiv preprint arXiv:2312.03096, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Jesse Mu and Jacob Andreas. Compositional explanations of neurons. Advances in Neural Informa-
tion Processing Systems, 33:17153–17163, 2020.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 5(3):e00024–001, 2020.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc-Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1525–1534, 2016.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for squad. arXiv preprint arXiv:1806.03822, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sebastian Raschka, Joshua Patterson, and Corey Nolet. Machine learning in python: Main develop-
ments and technology trends in data science, machine learning, and artificial intelligence. arXiv
preprint arXiv:2002.04803, 2020.

Alessandro Stolfo, Ben Wu, Wes Gurnee, Yonatan Belinkov, Xingyi Song, Mrinmaya Sachan,
and Neel Nanda. Confidence regulation neurons in language models. arXiv preprint
arXiv:2406.16254, 2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Adly Templeton. Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet.
Anthropic, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: funda-
mental algorithms for scientific computing in python. Nature methods, 17(3):261–272, 2020.

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
W-NUT 2017, pp. 94, 2017.

Ge Yang, Edward Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tuning large neural networks via zero-shot
hyperparameter transfer. Advances in Neural Information Processing Systems, 34:17084–17097,
2021.

Lei You and Hei Victor Cheng. SWAP: Sparse entropic wasserstein regression for robust network
pruning. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=LJWizuuBUy.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate llm serving. arXiv preprint arXiv:2310.19102, 2023.

13

https://openreview.net/forum?id=LJWizuuBUy

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PSEUDO-CODE FOR SPARSE EXPANSION

Algorithm A1 describes the sparsification process of Sparse Expansion. The sparse experts are
created in a layer-wise sequential fashion for each linear layer of every FFN transformer block to
create the sparse model. Algorithm A2 refers to the inference procedure of Sparse Expansion once
the model is pruned following the methods described in Algorithm A1 and Section 3.1.

Algorithm A1 Sparse Expansion model generation. The following layerwise procedure can be
repeated for each MLP layer in the transformer.

1: procedure LAYERWISE SPARSE EXPANSION SPARSIFICATION PROCESS
2: {x} ← xi ∈ Rn //set of calibration inputs to layer
3: W ← m× n //layer weights
4: c //number of clusters
5: r //factor to reduce dimensionality by
6: R← PCA(nr) //new PCA object with n

r components
7: R.fit({x}) //fit R to inputs
8: K ← Kmeans(c) //new K-means object with c initial centroids
9: K.fit({R(x)}) //fit K to dimensionality reduced inputs

10: for j = 1, 2, 3...c do
11: Xj ← {x|K(R(x)) = j} //group {x} into its component clusters
12: Wj ←W //make a copy of the original weight matrix
13: Sj ← SparseGPT //make a SparseGPT object
14: W ′

j ← Sj .sparsify(Wj , Xj) //sparsify Wj using Xj

Algorithm A2 Sparse Expansion inference. The following layerwise procedure is repeated at infer-
ence time for each clustered layer.

1: procedure LAYERWISE SPARSE EXPANSION INFERENCE PROCESS
2: {x} ← xi ∈ Rn //set of inputs to layer
3: {W} //set of experts
4: R //PCA model
5: K //K-means model
6: for i = 1, 2, 3... do
7: j ← K(R(xi)) //find the cluster assignment of x
8: yj ←Wj(xi) //run inference with the correct expert

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 DISTRIBUTION OF WASSERSTEIN DISTANCES ACROSS ALL LLAMA 2 7B FFN LAYERS

After collecting the Wasserstein distance to the normal distribution for every neuron, we find that
all up and gate projection matrices in each Llama 2 7B FFN block have high WD neurons. We also
find that certain down projection matrices also have high WD neurons, though most do not.

Figure A1: High Wasserstein distance neurons in each layer. Many neurons with a high WD to
the Gaussian distribution exist in every FFN block, and in every up (a) and gate projection (b)
specifically. Certain down projection layers also have high WD neurons (c). The box plots show the
range of non-outliers, as well as the first quartile, the median, and the third quartile of neuronal WD.
The outliers are defined as 1.5 times the interquartile range less than the first or more than the third
quartile and are represented by the points.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.3 SPARSE EXPANSION PERFORMANCE IN OUT-OF-DISTRIBUTION DATA

We evaluate the performance of Llama 3.2 1B1 (Table A1) and Pythia 1.4B (Table A2) on a range
of natural language modeling tasks, including ARC-e (Easy) and ARC-c (Challenge) for arithmetic
reasoning, Lambada (Paperno et al., 2016) for contextual word prediction, SciQ (Welbl et al., 2017)
for scientific question answering, and MMLU for multitask general knowledge assessment. As
dense Pythia 1.4B does not score better than random chance on MMLU, we do not benchmark it
on this task. We compare various pruning algorithms at 50% sparsity, including Magnitude Pruning
(MP), Wanda, SparseGPT, and Sparse Expansion with 16 clusters, to the dense baseline. Sparse
Expansion consistently excels across both models, achieving the highest scores on tasks among
sparsification algorithms.

Table A1: Performance of Llama 3.2 1B under different pruning algorithms.
Algorithm Sparsity ARC-e ARC-c Lambada SciQ MMLU

Dense 0% 65.488 31.314 53.969 91.4 37.701
Magnitude 50% 45.244 22.354 4.677 67.1 23.493

Wanda 50% 50.800 23.635 31.457 85.2 25.428
SparseGPT 50% 55.640 24.403 31.613 86.8 25.046

Sparse Expansion 50% 57.713 26.962 35.807 87.5 28.729

Table A2: Performance of Pythia 1.4B under different pruning algorithms
Algorithm Sparsity ARC-e ARC-c Lambada SciQ

Dense 0% 61.742 27.389 48.981 86.9
Magnitude 50% 42.003 19.198 1.533 69.0

Wanda 50% 54.630 23.976 45.041 85.7
SparseGPT 50% 56.608 24.061 44.615 85.8

Sparse Expansion 50% 58.449 25.720 46.424 86.3

1https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.4 NEURONAL ENTANGLEMENT TRAJECTORY ACROSS TRAINING IN LLMS

Figure A2: Analyzing neuronal entanglement during training. The intermediate checkpoints of
Pythia 1.4B are available over the course of its training, from initialization to completion. Thus, we
collect data from 17 different checkpoints over the course of its training, first at intervals of 5,000
steps, then at intervals of 10,000 steps after step 20,000. (a) We calculate each neuron’s output
distribution WD to a Gaussian as before in Equation 1. We do so for each training step. From the
WD of neurons in the last training step, we separate out the top 3% of neurons with the highest
WD, as well as the bottom 3% of neurons with the lowest WD. The progression of neuronal WD
across training reveals that all neurons initially exhibit a Gaussian-like distribution, as expected, but
some neurons rapidly differentiate into entangled neurons with very high WD and within just 5,000
steps (corresponding to approximately 10 billion tokens). The WD of such neurons then levels off
afterward. (b) Using the same groups as in (a), we visualize the change in neuronal weights as a
proxy for sufficient gradient updates and learning. We calculate the L2 norm between each neuron’s
weights at each training step and its weights at model initialization (step 0), and normalize this value
by the L2 norm of the neuron’s weights at initialization. Notably, neurons with high WD do not
demonstrate more changes in their weights over the course of training than the average neuron, or
neurons with low WD. Error bars represent one standard error of the mean. Neurons from the up
projection matrix in the second FFN block of Pythia 1.4B.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.5 OPTIMIZATIONS FOR PRACTICAL IMPLEMENTATION

To evaluate the inference latency of Sparse Expansion we implemented a Sparse Expansion layer
based on PyTorch and optimized sparse-quantized GPU kernels called Sparse Marlin (Frantar &
Alistarh, 2024; Castro & Alistarh, 2024), which supports the INT4 + 2:4 sparsity format. To better
utilize the compression kernel, we use both sparsification and quantization to demonstrate speedup.
We use a linear layer of appropriate size as an upper bound approximation for our router cost, which
is followed by 4 bit, 2:4 sparse matrix multiplication. We have run the layer-wise benchmarks for
the typical layers sizes from Llama models on a single RTX3090 GPU. We can see in Table A3 that
Sparse Expansion allows us to get up to a 4.8× speedup over the dense baseline. The speedup comes
from the highly-compressed linear layer representation. Although there is overhead compared to a
regular compressed matrix due to the presence of the router, such overhead decreases as layer size
increases.

Table A3: Sparse Expansion inference speedup. Layer-wise single batch inference latency (in µs).
The layer sizes are chosen specifically to match the layers of Llama 2 7b and Llama 2 70B.

Layer Size 4k × 12k 4k × 22k 11k × 4k 8k × 10k 8k × 57k 28k × 8k
Dense 132 227 114 220 1168 556
Sparse Expansion 76 76 75 76 241 138
Speedup 1.7× 3.0× 1.5× 2.9× 4.8× 4.0×
Sparse 26.8 44.7 24.4 42.3 216 109
Overhead 2.9× 1.7× 3.1× 1.8× 1.1× 1.3×

Additionally, we investigate how many experts different neurons need to improve performance. We
find the relative improvement of each neuron, as defined in Section 3.3, across a different number
of total experts. Specifically, we choose 2, 4, 8, and 16 experts for Sparse Expansion, compared to
SparseGPT with its single expert. In this setting, we analyze the top 3% of neurons with the high-
est WD as well as the bottom 3% of neurons with the lowest WD, as defined before (Equation 1).
We observe that Wasserstein neurons benefit far from Sparse Expansion than average for increasing
clusters (left). Additionally, we split neurons into decile groups based on their relative improvement
at 16 clusters. We find that, indeed, certain groups of neurons benefit very little from further addi-
tional experts past eight experts (right). Thus, further optimizations can be made to reach a balance
between performance and memory increase.

Figure A3: Improvement across clusters for different groups of neurons. (a) Wasserstein neurons
benefit much more from Sparse Expansion than average with increasing clusters. (b) Different
deciles of neurons have varying degrees of improvement from Sparse Expansion. Dn indicate the
deciles from D1 to D9. The decile groups are decided by their relative improvement at 16 clusters.
For example, the first decile group consists of relative improvements between the minimum and D1
at 16 clusters, the second decile group consists of relative improvements between D1 and D2 at
16 clusters, and so on. Error bars represent one standard error of the mean. Neurons from the up
projection matrix of the second FFN block of Pythia 1.4B.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.6 WASSERSTEIN NEURONS DO NOT HAVE PARTICULARLY HIGH WEIGHTS

To understand whether Wasserstein neurons arise from having substantially higher or lower weights,
we measure the average weight magnitude for each neuron. We find no substantial correlation
between a neuron’s average weight magnitude and the WD to a Gaussian of its output, as defined
previously in Equation 1.

Figure A4: Wasserstein neurons do not have particularly large weights, in terms of their average
magnitude. The neurons are from the up projection of the second FFN block in Pythia 1.4B.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.7 ADDITIONAL CLUSTERS IMPART MORE PERFORMANCE

To understand how Sparse Expansion scales with the number of experts per linear layer, we test its
performance from 2 to 32 experts. Interestingly, with 2 experts, very little performance benefits are
realized. However, with each doubling of experts following 2 experts, we realize a nearly constant
linear improvement in perplexity.

Figure A5: Increasing the number of clusters improves Sparse Expansion performance in Llama 2
7B.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.8 FURTHER EXAMPLES OF DISENTANGLEMENT

We present additional evidence of neuronal disentanglement in Pythia 1.4B and Llama 2 7B. Figure
A6 shows the recovery of the dense output distribution with increasing experts in Llama 2 7B. This
is analogous to Figure A8, where we see a similar trend in Pythia models. Clustering gradually
decreases the WD of the sparse output to that of the dense, thus improving upon SparseGPT, equiv-
alent to the single cluster case. Moreover, this results in direct improvement of model performance
as depicted in figure A5.

Figure A6: Modeling recovery with more experts in Llama 2 7B. Use of more experts can recover
the dense output distribution even at very high sparsity, which is set to 90% for each expert. This is
the same neuron from Figure 1d.

Analogous to Figure 1, we observe the effect of clustering inputs on a random neuron and an en-
tangled neuron in the gate projection of the second FFN of Pythia 1.4B. SparseGPT fails to capture
the output distribution of the high WD neuron as it does for a random neuron. With clustering via
Sparse Expansion, both neurons improve, but the entangled neuron improves more. The granular
analysis of the component clusters within both neurons reveals the specialization to vastly different
parts of the output distribution in the entangled neuron as compared to the normal neuron (Figure
A7).

Figure A7: Sparse Expansion disentangles neurons in Pythia 1.4B. The dense output distribution
of a random neuron, along with its sparse via SparseGPT (a) and via Sparse Expansion (b) sparse
output distributions. The dense output distribution of a random neuron, along with its sparse via
SparseGPT (d) and via Sparse Expansion (e) sparse output distributions. For both the random and
entangled neuron, component clusters are shown in a distinct color to visualize their range (c, e).
WD represents the Wasserstein distance between the Sparse Expansion sparse output distribution
and the dense distribution. RI represents relative improvement. These are the same neurons from
Figure 2.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

A.9 PERFORMANCE ACROSS THE LLAMA FAMILY

We analyze the performance of Sparse Expansion against other sparsification algorithms across all
members of the Llama 2 family - Llama 2 7B, Llama 2 13B, and Llama 2 70B - both under sparsity
and joint sparsity-quantization compression (Touvron et al., 2023a).

Table A4: Sparse Expansion across the Llama family.

Sparsity Bits Llama 2 7B Llama 2 13B Llama 2 70B
Dense 0% 16-bit 5.1168 4.5736 3.3192
MP 50% 16-bit 16.029 6.8270 4.9846
Wanda 50% 16-bit 6.7757 5.8527 4.0219
SparseGPT 50% 16-bit 5.7082 5.0521 3.9013
Sparse Expansion 50% 16-bit 5.5839 4.9728 3.8791
SparseGPT 2:4 16-bit 6.9767 5.9934 4.8002
Sparse Expansion 2:4 16-bit 6.4456 5.6255 4.6671
SparseGPT 2:4 4-bit 7.2759 6.1101 4.9036
Sparse Expansion 2:4 4-bit 6.5745 5.7151 4.7586
SparseGPT 2:4 3-bit 13.076 6.5055 5.2552
Sparse Expansion 2:4 3-bit 7.0757 5.9872 5.0588

Sparse Expansion outperforms all other pruning techniques for both 50% unstructured sparsity as
well 2:4 sparsity in all Llama models (Figure A4). In addition to non-quantized sparsity, we consider
how Sparse Expansion performs in the context of compression with 2:4 structured sparsity and
quantization via GPTQ (Frantar et al., 2022). We first sparsify each linear layer in each FFN block
to 2:4 sparsity, then quantized to 3 and 4 bits. Our method outperforms SparseGPT across all models
and across both conditions and in all models (Figure A4).

Across multiple model sizes, sparsity and compression levels, and advanced models, Sparse Expan-
sion attains state-of-the-art performance for post-training one-shot sparsification when compared to
other highly competitive pruning techniques. We do so by leveraging the powerful pruning algo-
rithm of SparseGPT and combining it with input specialization to utilize the insights we gain from
how entangled neurons behave under sparsity.

Because GPTQ (Frantar et al., 2022), a leading post-training quanization scheme, also relies upon
the Hessian matrix for its algorithm, we combine it with SparseGPT for combined one-shot com-
pression. Sparse Expansion also outperforms native SparseGPT and GPTQ across all compression
settings.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A.10 EFFECT OF SPARSITY ON NEURONAL OUTPUT DISTRIBUTIONS

With increasing sparsity, the sparse output distributions of the high WD neurons and random neurons
converge toward the normal distribution (Figure A9). A specific example of a neuron is shown in
Figure A8.

Figure A8: Increasing sparsity induces normality. A highly entangled neuron’s dense distribution
(blue) and sparse distribution (red). As sparsity increases, the output distribution of the sparse neuron
becomes progressively more Gaussian. WD represents the Wasserstein distance. This is the same
neuron from Figure 2c.

Figure A9: Output distributions become more normal under sparsity. The Wasserstein distance
between a neuron’s normalized sparse output distribution and the Gaussian distribution is shown
as sparsity increases for the top 3% of entangled neurons as well as the same number of random
neurons. For highly entangled neurons, the WD decreases significantly at higher sparsities whereas
it remains more or less constant for random neurons. Range indicates maximum and minimum WD
for a group. Data collected from of the second up projection matrix in Pythia 1.4B.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Furthermore, with increasing sparsity, the magnitudes of the means and variances of each neurons’
sparse output distribution both shift toward zero. This is reasonable, as with fewer nonzero weights
to combine together features, both the mean and variance should decrease in magnitude.

Figure A10: Mean and variance shift toward zero under sparsity. Across all neurons, with increasing
sparsity, the magnitude of the mean of output distribution (left) and the variance of the output distri-
bution (right) both tend toward zero. Both mean and variance have been normalized to their dense
values. Error bars represent one standard error. Data collected from of the second up projection
matrix in Pythia 1.4B.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

A.11 ALL NEURONS IMPROVE, BUT ENTANGLED NEURONS IMPROVE MORE AT HIGHER
SPARSITIES

Measuring the relative improvement of each neuron through Sparse Expansion, defined previously
as the ratio between the L2 norm of the dense output distribution and the SparseGPT sparse output
distribution to L2 norm of the dense output distribution and the Sparse Expansion sparse output
distribution, we find that all neurons improve as a result of Sparse Expansion across both Pythia
1.4B and Llama 2 7B. Thus, we believe that every neuron has some level of innate entanglement, and
thus all neuron performances can be and are improved. Interestingly, we note that, with increasing
sparsity, highly entangled neurons tend to improve more.

Figure A11: Entangled neurons improve more at higher sparsities. Relative improvement of each
neuron in the second up projection matrix in Pythia 1.4B (top row) and in the second gate projection
matrix in Llama 2 7B (bottom row) with respect to their WD from the Gaussian. Two sparsity
levels, 80% and 90%, are shown. Sparse Expansion improves the expressibility of every neuron,
thus improving performance. However, the entangled neurons improve more with higher sparsities,
as visible in right columns.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

A.12 THE WASSERSTEIN DISTANCE BEST CAPTURES WHICH NEURONS IMPROVE

We also consider whether the magnitude of the mean of the output distribution or the variance of the
distribution would be good predictors of the degree of neuronal improvement through Sparse Expan-
sion. However, across both Pythia 1.4B and Llama 2 7B, the Wasserstein distance from the normal
a better predictor of relative improvement, as defined previously. Though there is some correlation
of the magnitude of the mean and variance of the output distribution with the relative improvement
in Pythia 1.4B, that is not the case in Llama 2 7B. Furthermore, using the WD to preduct neuronal
improvement yields the highest coefficient of determination, R2, across both models. Thus, we be-
lieve that the Wasserstein Distance to the normal distribution is the most accurate metric of the three
to characterize entanglement.

Figure A12: Wasserstein distance best captures improvement. Relative improvement of each neuron
in the second gate projection matrix in Llama 2 7B with respect to the magnitude of the mean,
variance, and Wasserstein distance from normal of the dense output distribution. Neurons pruned to
90% sparsity.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

A.13 OUTPUT DISTRIBUTIONS OF ENTANGLED NEURONS IN PYTHIA AND LLAMA

Figures A13 and A14 show the non-trivial, non-Gaussian output distribution of a subset of neurons
from the Pythia 1.4B and Llama 2 7B models, illustrating examples of entangled neurons. We
observe such neurons in every FFN block of the LLMs we investigated and believe that the existence
of these neurons is a global phenomenon in transformers.

Figure A13: Dense output distributions of top 30 high WD neurons in Pythia 1.4B. The distributions
are shown for the neurons of the up projection matrix in the second FFN block.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure A14: Dense output distributions of top 30 high WD neurons in Llama 2 7B. The distributions
are shown for the neurons of the up projection matrix in the sixteenth FFN block.

28

	Introduction
	Wasserstein Neurons
	Characterizing non-Gaussian neuronal output distributions
	Wasserstein neurons and entanglement
	Effect of high Wasserstein neurons on sparsification

	An experimental framework to study disentanglement
	Sparse Expansion in detail
	Sparse Expansion disentangles neurons
	More sparse experts better fit the output distribution
	Wasserstein distance best explains improvement
	Theoretical implications of Sparse Expansion
	Sparse Expansion performance
	Models, datasets, and setup
	Performance across scales

	Related Work
	Conclusion and Discussion
	Appendix
	Pseudo-code for Sparse Expansion
	Distribution of Wasserstein distances across all Llama 2 7B FFN layers
	Sparse Expansion Performance in out-of-distribution data
	Neuronal entanglement trajectory across training in LLMs
	Optimizations for practical implementation
	Wasserstein neurons do not have particularly high weights
	Additional clusters impart more performance
	Further examples of disentanglement
	Performance across the Llama family
	Effect of sparsity on neuronal output distributions
	All neurons improve, but entangled neurons improve more at higher sparsities
	The Wasserstein distance best captures which neurons improve
	Output distributions of entangled neurons in Pythia and Llama

