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Abstract

Deep neural networks (DNNs) are easily fooled by adversarial perturbations that
are imperceptible to humans. Adversarial training, a process where adversarial
examples are added to the training set, is the current state-of-the-art defense against
adversarial attacks, but it lowers the model’s accuracy on clean inputs, is com-
putationally expensive, and offers less robustness to natural noise. In contrast,
energy-based models (EBMs), which were designed for efficient implementation
in neuromorphic hardware and physical systems, incorporate feedback connections
from each layer to the previous layer, yielding a recurrent, deep-attractor architec-
ture which we hypothesize should make them naturally robust. Our work is the first
to explore the robustness of EBMs to both natural corruptions and adversarial at-
tacks, which we do using the CIFAR-10 and CIFAR-100 datasets. We demonstrate
that EBMs are more robust than transformers and display comparable robustness
to adversarially-trained DNNs on white-box, black-box, and natural perturbations
without sacrificing clean accuracy, and without the need for adversarial training or
additional training techniques.

1 Robustness with Top-Down/Feedback Connections

Deep neural networks (DNNs) are non-robust to manipulated inputs that are imperceptible to hu-
mansSzegedy et al. [2014], Madry et al. [2017], as well as natural noise Hendrycks and Dietterich
[2019]. The current state-of-the-art defense against adversarial attacks Madry et al. [2017] involves
training on adversarial examples. However, adversarial training leads to a drop in accuracy on
clean/unperturbed test input Tsipras et al. [2018], a well-established tradeoff that has been described
theoretically Schmidt et al. [2018], Zhang et al. [2019] and observed experimentally Stutz et al.
[2019], Raghunathan et al. [2019]. Moreover, adversarially-trained models overfit to the attack
they are trained with and perform poorly under different attacks Wang et al. [2020], as well as
natural noise/corruptions. On the other hand, ViTs have shown increased robustness compared to
standard Convolutional Neural Networks (CNNs) without requiring adversarial training. However,
ViTs require very large datasets containing millions of samples or more to achieve good clean and
robust accuracy Lee et al. [2022], which is simply not realistic in many applications. Training large
models as well as adversarial training runs into problems of huge energy consumption that is not
environmentally sustainable as well as inaccessible to the majority of researchers.

Biological perceptual systems, in contrast, are much more robust to noise and perturbations, can
learn from much fewer examples, not suffer from any drop in clean accuracy, and require much
less power than standard DNNs. One reason for this discrepancy in performance/behavior is the
fact that DNNs lack many well-known structural motifs present in biological sensory systems. For
example, feedback connections are abundant in virtually every sensory area of mammals Erişir et al.
[1997], Ghazanfar et al. [2001], Boyd et al. [2012], Homma et al. [2017], Jin et al. [2021], often
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outnumbering feedforward connections by many times Van Essen and Maunsell [1983], Erişir et al.
[1997], yet they remain absent in the vast majority of DNNs. Ample neuroscientific evidence suggests
that these massive feedback networks convey rich information from higher to lower cortical areas,
such as sensory context, Angelucci and Bressloff [2006], Czigler and Winkler [2010], Angelucci
et al. [2017], top-down attention Luck et al. [1997], Noudoost et al. [2010], and expectation Rao
and Ballard [1999]. It is also thought that feedback is critical for reliable inference from weak or
noisy stimuli DiCarlo et al. [2012], especially in real-world or complex scenarios with competing
stimuli Desimone and Duncan [1995], Kastner and Ungerleider [2001], McMains and Kastner [2011],
Homma et al. [2017].

2 Robustness of Equilibrium Propagation
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(a) In EP-CNNs, learning (nudged phase) as well
as inference (free phase) are dynamic recurrent
processes where information travels bidirectionally
through feedforward and feedback connections.
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(b) Test accuracy achieved by a trained EP-CNN
model, evaluated at each iteration of the free-phase.
Error bars represent five models trained with five
different seeds.

Figure 1: Characteristics of the Equilibrium Propagation learning framework

We hypothesize that, when incorporated into standard DNNs, top-down feedback will lead to increased
robustness against adversarial attacks and natural corruptions on standard image recognition tasks.
To investigate this, we focus on a recent class of biologically-plausible DNNs referred to as Energy-
Based Models (EBMs), which are trained with a learning framework referred to as Equilibrium
Propagation (EP). In contrast to standard DNNs, information in EBMs flows both forward and
backward due to the incorporation of feedback connections between consecutive layers. These
feedback connections allow EBMs to be trained with a spatio-temporally local update rule (EP)
Scellier and Bengio [2017], Luczak et al. [2022] in low-power neuromorphic hardware, an important
factor given the environmental cost of training DNNs on standard hardware Strubell et al. [2020],
Van Wynsberghe [2021]. This feedback also endows EBMs with global attractors, which should make
EBMs more robust to perturbations. After the landmark study by Scellier and Bengio [2017], recent
advances in EP have focused primarily on scaling EBMs to larger and more complex tasks Laborieux
et al. [2021], Kubo et al. [2022] or modifying them for use in non-standard hardware Kendall et al.
[2020], Laborieux and Zenke [2022]. As a result, studies on the robustness of EP-based models to
adversarial and natural perturbations remain nonexistent.

3 Related Works on Adversarial Defenses

The use of recurrent networks that involve complex dynamics to reach a steady state is common
in biologically plausible defense methods. Inclusion of trainable feedback connections inspired by
regions in cerebral cortex Walsh et al. [2020], in order to implement predicting coding frameworks,
have demonstrated marginal robustness against both black-box and white-box attacks Boutin et al.
[2020], Choksi et al. [2021]. Evidence of perceptual straightening of natural movie sequences
in human visual perception Hénaff et al. [2019] has also inspired robust perceptual DNNs which
integrate visual information over time, leading to robust image classification Vargas et al. [2020],
Daniali and Kim [2023]. However, the above models have either not been tested against adversarial
or natural perturbations, and the ones that have, have only exhibited marginal increases in robustness
relative to standard DNNs.
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Figure 2: Examples of perturbed images using an l2 PGD attack with ϵ = 3. Attacks on EBMs/EP
appear more semantic compared to other models.

A line of work similar to equilibrium propagation was introduced by Bai et al. [2019], known as
deep equilibrium models (DEQ). DEQs involve finding fixed points of a single layer and since the
fixed point can be thought of as a local attractor, these models were expected to be robust to small
input perturbations, although empirical observations have proven otherwise Gurumurthy et al. [2021].
Robustness evaluations of DEQs often involve approximate/inexact gradients in order to carry out
gradient-based attacks, raising concerns about gradient obfuscation Liang et al. [2021], Wei and
Kolter [2021], Yang et al. [2022]. Also, DEQs alone are not robust to adversarial attacks, and, as a
result, are often paired with adversarial training or other additional techniques to gain robustness Li
et al. [2022], Chu et al. [2023], Yang et al. [2023].

4 Attacks on Equilibrium Propagation
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(c) PGD Attack

Figure 3: Adversarial attack results on CIFAR-10 dataset. Error bars represent the 95% CI over 5
different seeds.

For our experimental setup, we trained a model (referred to as EP-CNN) with equilibrium propagation
using the symmetric weight update rule provided by Laborieux et al. [2021]. EP-CNN had four
convolutional layers followed by a fully connected (FC) layer. To compare the performance of EP
with standard training techniques, we also trained a model consisting of four convolutional layers
followed by a fully connected layer with backpropagation, referred to as BP-CNN. Additionally each
of the convolutional layers was followed by a batch normalization layer. While these BP-CNNs’ did
not achieve state-of-the-accuracy on the tested datasets, the purpose was to compare results from
EP with an equivalent model. We also adversarially trained a model with similar architecture as
that of BP-CNN with various ∥ϵ2∥ constraints and 200 iterations of the projected gradient descent
(PGD) attacks Madry et al. [2017]. Finally we also trained an vision transformer ViT with 7 layers,
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each with 12 heads using a patch size of 4× 4. These architectural hyperparameters were chosen to
provide a clean test performance similar to that of other models, using a grid search.

We evaluated the adversarial robustness of Equilibrium Propagation, a biologically plausible learning
framework, compatible with neuromorphic hardware, for image classification tasks. We demonstrate
clean accuracy comparable to models trained with backpropagation. Through our experiments,
we demonstrate competitive accuracy and inherent adversarial robustness of EP-CNNs to natural
corruptions and black-box attacks. We also demonstrate competitive robustness to white-box attacks
when compared with adversarially-trained models AdvCNN. EP-CNNs far outperform the ViT
models across the datasets used in this study for both adversarial and natural noise, even though ViT
models were trained on input extensively augmented using similar noise perturbations. EP-CNNs
also do not suffer from lower clean accuracy unlike models that have been adversarially trained. These
adversarially trained models also fail catastrophically when subjected to noise they were not trained
on, such as the natural corruptions, whereas EP-CNNs are far more robust across both adversarial
attacks and natural corruptions, without any extensive augmentation or adversarial training.

5 Discussion and Conclusion
The role of feedback connections in the brain has long been overlooked in DNNs. Neuroscientific
studies suggest that the abundant feedback connections present in the cortex are not merely modulatory
and convey valuable information from higher to lower cortical areas, such as sensory context and
top-down attention. Recent experiments have shown that time-limited humans process adversarial
images much differently compared to their DNN counterparts Elsayed et al. [2018], thus leading to the
hypothesis that perception of static images is a dynamic process and benefits hugely from recurrent
feedback connections Daniali and Kim [2023]. Earlier studies Hupé et al. [1998] hypothesized the
role of feedback connections in discriminating the object of interest from background information
and recent studies Kar et al. [2019] showed that challenging images took more time to be recognized
compared to control images, providing more reasons to believe that feedback connections is critical
to improving robustness of the ventral stream. Our findings solidify the above claim, thus paving the
way for robust artificial networks that include feedback connections.

While EP is not the only training algorithm that involves settling into a fixed point before making
inference, the complex dynamics showcased in EP gets rid of small input perturbations in the process
of attaining a steady state. In case of white-box attacks, large perturbations computed on EBMs/EP
appear semantically meaningful as shown in Figure 2 in contrast to all other models tested, thus
strengthening the hypothesis that large perturbations are able to move the trajectory of the state
past a decision boundary for models trained with EP. This is concurrent with the assumption that
equilibrium propagation allows learning of features of the input dataset in a hierarchical manner, akin
to the hierarchical ground state structure of a spin-glass.

As mentioned in the initial paper Scellier and Bengio [2017], we also found that EP is relatively
sensitive to the hyperparameters used to train the model as well as the seed used to initialize the
weights. Since the inference is defined implicitly in terms of the input and the parameters of the
model, this makes even our optimized implementation less practical for applications on traditional
hardware (like GPUs). Apart from the instability of EP models shown during training, another
limitation of our work is the amount of time required to perform the free phase to reach a steady state,
when trained on traditional GPUs. While this limits the EP models to relatively shallow architectures
and datasets when using standard hardware, EP-CNNs are ideal for implementation in neuromorphic
hardware, leading to faster and more robust bio-plausible models. While spiking implementations of
EP exist O’Connor et al. [2019], future work would then involve optimizing those implementations
in order to run on realistic datasets like ImageNet.

We performed the first investigation into the robustness of EBMs trained with EP (EP-CNNs) to
adversarial and natural perturbations/noise. Our results indicate that EP-CNNs are significantly more
robust than standard CNNs and ViTs. We also show that EP-CNNs exhibit significantly greater
robustness to natural perturbations and similar robustness to state-of-the-art black-box attacks when
compared with adversarially-trained CNNs, but they do not suffer from decreased accuracy on clean
data. We also find that the adversarial attacks on EBMs are more semantic than those computed on
standard and adversarially-trained DNNs, which indicates that EBMs learn features that are truly
useful for the classification tasks they are trained on. Overall, our work indicates that many of the
problems exhibited by current DNNs, including poor energy-efficiency and robustness, can be solved
by an elegant, biophysically-plausible framework for free.
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