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Abstract

In object re-identification (RelD) task, both cross-modal and multi-modal retrieval
methods have achieved notable progress. However, existing approaches are de-
signed for specific modality and category (person or vehicle) retrieval task, lacking
generalizability to others. Acquiring multiple task-specific models would result
in wasteful allocation of both training and deployment resources. To address the
practical requirements for unified retrieval, we introduce Multi-Modal and Multi-
Task object ReID (M3T-RelD). The M3T-RelD task aims to utilize a unified model
to simultaneously achieve retrieval tasks across different modalities and different
categories. Specifically, to tackle the challenges of modality distibution divergence
and category semantics discrepancy posed in M>T-RelD, we design a novel Unbi-
ased Prototype Consistency Learning (UPCL) framework, which consists of two
main modules: Unbiased Prototypes-guided Modality Enhancement (UPME) and
Cluster Prototype Consistency Regularization (CPCR). UPME leverages modality-
unbiased prototypes to simultaneously enhance cross-modal shared features and
multi-modal fused features. Additionally, CPCR regulates discriminative semantics
learning with category-consistent information through prototypes clustering. Under
the collaborative operation of these two modules, our model can simultaneously
learn robust cross-modal shared feature and multi-modal fused feature spaces,
while also exhibiting strong category-discriminative capabilities. Extensive exper-
iments on multi-modal datasets RGBNT201 and RGBNT100 demonstrates our
UPCL framework showcasing exceptional performance for M3T-ReID. The code
is available at https://github. com/ZhouZhongao/UPCL.

1 Introduction

Ob]ect re-identification (RelD) [75, 49, 65, 45, 18, 60, 3, s , 30, 4] leverages computer
vision techniques to identify specific objects (such as persons or vehlcles) in videos and still images.
ReID technology has been widely applied in intelligent video surveillance, public security, and
other related fields. Traditional ReID predominantly focuses on single-modal scenario, where
both the query and gallery consist of RGB images. However, RGB cameras are highly sensitive
to illumination variations, making it difficult to accurately capture target information under low-
light or overexposed conditions. To address the above challenges, Near-Infrared (NI) and Thermal
Infrared (TT) modalities have been introduced into RelD tasks, enabling robust imaging in challenging

environments [72, 15, 29, 55, 17, 71, 6, 63]. Depending on the retrieval scenarios, the existing
RelID methods can be broadly categorized into cross-modal RelD [58, 53, 36, 70, 41, 19, 2] and
multi-modal RelD [47, 50, 68, 67]. Specifically, cross-modal ReID focuses on retrieval between two

different modalities (e.g.,NI-RGB, TI-RGB), whereas multi-modal RelD utilizes RGB, NI, and TI
fusion to achieve feature matching.

*Equal contribution.
fCorresponding Author.


https://github.com/ZhouZhongao/UPCL

Multi-Modal Space

Cross-Modal Space

Modality-Unbiased Category-Consistent

T G Prototypes Prototypes

Small Ga arge Gap - - o
N p N '~ | Person ) I Person |
[ ) \ O g A
7 Distribution s ‘ —»'D -y ! ! i !

/! - . - 4 1 1 1 1

/! '{i\} ‘Hﬂ Divergence {}. NN . / !

J : . 1 1 > @ : | :

.. it . "N H ~ ~'Update, I ' !

~ -~ R ] y 1

Larg? Gap ' G C} i\ Smal Gap ) :OI , >, Vehicle | :\ehlcle :

| I |

1Fused Feature; 0-" | @ —[ase}+ 2 |

Clothi Color i [ ' !
othing A N B ' !

1 1
Gender [— Sjemanttcs «—| Logo 'L_A_:' Lol . (S
Discrepancy . ] |
Poses Lights

Person Vehicle Lypme Lcpcr

(a) Limitations (b) Our method

Figure 1: Illustration of limitations in M3 T-ReID and our method. (a) Distribution divergence: In
multi-modal feature space, the multi-modal fused features exhibit smaller gap while cross-modal gap
remain larger. Conversely, the opposite characteristic holds in cross-modal feature space. Semantics
discrepancy: Different categories of objects possess distinct discriminative semantics. (b) We
introduce modality-unbiased prototypes and cluster-derived category-consistent prototypes to enhance
the model’s comprehensive retrieval capability from both modality and category perspectives.

As illustrated in Figure 1, although existing cross-modal and multi-modal approaches have achieved
remarkable results, they still suffer from two significant limitations: 1) Real-world surveillance
environments present extreme complexity, where targets may appear in scenarios captured by either
single-modality cameras or aligned multi-modal imaging systems. While cross-modal RelD primarily
focuses on learning a shared cross-modal feature space, multi-modal ReID emphasizes the effective
fusion of different modalities to obtain more robust fused features. The cross-modal and multi-modal
approaches follow different optimization directions, thereby resulting in distribution divergence.
Therefore, existing ReID models cannot simultaneously handle both cross-modal and multi-modal
retrieval. 2) The retrieval tasks are confined to a specific category, necessitating separate model
training for either person or vehicle RelD tasks. In practical scenarios such as criminal investigations,
surveillance systems require the capability to simultaneously retrieve both suspects and vehicles.
Due to the discrepancy in semantics between diverse categories, existing ReID methods lack the
generalization capability to perform unified retrieval across categories. While training dedicated
retrieval models for distinct modalities and categories may serve as a feasible solution, this approach
inevitably leads to substantial redundancy in both training and deployment resources.

To meet the real-world demands for retrieval across diverse modalities and categories, we propose
the Multi-Modal and Multi-Task object ReID (M>*T-ReID). The M3T-RelID task aims to achieve a
unified model for simultaneous retrieval across multiple modalities and diverse categories. However,
achieving high-performance of M3T-RelD introduces several challenges. Firstly, since cross-modal
and multi-modal retrieval models optimize fundamentally different objectives, this leads to challenge
I: How to jointly learn both a robust cross-modal shared feature space and an effective multi-modal
fusion feature space. Secondly, discriminative features vary significantly across object categories.
For instance, person RelD primarily focuses on attributes like pose and clothing while vehicle RelD
emphasizes vehicle type and color, which raises the challenge Il : How fo enable a model to
simultaneously learn category-specific discriminative representations for heterogeneous objects.

To address the aforementioned chanllenges in M®*T-RelD, we propose Unbiased Prototype Consis-
tency Learning framework (UPCL) which comprises two key modules: Unbiased Prototypes-guided
Modality Enhancement (UPME) and Cluster Prototype Consistency Regularization (CPCR). For chal-
lenge I, UPME enhances both cross-modal shared features and multi-modal fused features through
modality-unbiased prototypes, thereby bridging the discrepancy across heterogeneous modalities and
simultaneously improving robustness of the overall feature space. For challenge II, CPCR derives
category-consistent features through prototypes clustering, thereby regulating the model to stably
acquire category-specific discriminative semantics from diverse categories.

The main contributions of this paper can be summarized as follows:



* To address the practical demands for retrieval of diverse modalities and categories, we propose a
novel Multi-Modal and Multi-Task object ReID (M?T-RelD).

* To address the challenges in M3T-RelD, we propose UPCL which comprises two main components:
UPME and CPCR. UPME leverages modality-unbiased prototypes to simultaneously enhance
cross-modal shared features and multi-modal fused features, and CPCR regulates the learning of
discriminative semantics across diverse object categories through prototypes clustering.

» Extensive experiments on the public multi-modal ReID benchmarks RGBNT201 and RGBNT100
have verified the advantage of our methods, achieving significantly higher accuracy compared to
existing counterparts in both cross-modal and multi-modal retrieval scenarios.

2 Related Work

2.1 Cross-modal and Multi-modal Re-identification

Cross-modal re-identification [23, 14, 20, 5, 8, 62, 31, 59, 11] aims to retrieve target RGB images
across heterogeneous modalities. The cross-modal retrieval capability of a model primarily depends
on the robustness of itscross-modal shared feature space. Wu et al.[52] utilize a zero-padding one-
stream network with grayscale inputs to learn the shared feature between RGB andNI images. Ye
et al.[61] introduce a Channel Augmentation (CA) mechanism that mitigates the modality gap by
generating color-irrelevant person representations. Liu ef al.[23] propose the Memory-Augmented
Unidirectional Metric (MAUM) method to enhance the cross-modality correlation by utilizing two
unidirectional metrics. Liang et al.[20] make an early attempt at unsupervised cross-modal RelD
with a two-stage framework. Yang et al.[57] design an Augmented Dual-Contrastive Aggregation
(ADCA) learning framework for Unsupervised Learning Visible-Infrared Person RelD.

Multi-modal re-identification [47, 15] jointly leverages complementary information from multiple
modalities to extract more robust fused features, thereby improving retrieval accuracy. Zheng et
al.[72] propose PENet which hierarchically fuses RGB,NI, and TI features to obtain more robust rep-
resentations. Wang et al.[49] design a Cross-Modal Interacting Module to enhance modality-specific
information during feature fusion. Wang et al.[50] utilize the relationship among heterogeneous
modalities to fine-tune the network prior to inference, thereby improving generalization to unseen
data. Zhang et al.[68] propose a general PromptMA framework, which employs learnable prompts
to aggregate modalities and bridge the modality distribution gap. Wang et al.[46] introduce the
token permutation to enhance inter-modal interaction and facilitate multi-spectral feature alignment.
Zhang et al.[67] propose EDITOR framework, which obtains spatial-frequency masks to refine multi-
modal features. Wang et al.[48] adaptively balances decoupled features using a mixture-of-experts
mechanism to produce more robust multi-modal representations.

Due to the divergent optimization objectives between cross-modal and multi-modal, a single model
cannot be effectively applied to both retrieval scenarios simultaneously. Furthermore, significant
semantic discrepancies exist among objects of different categories, models trained on one category
cannot achieve generalized to retrieval of other categories. To address diverse retrieval requirements
in real-world scenarios, we propose the UPCL framework, which trains a unified model capable of
performing retrieval across multiple modalities and object categories.

2.2 Prototypes Learning

Prototype is calculated as the mean feature of the instances belonging to the same ID [38]. Due to
its simplicity and scalability, prototype plays an indispensable role across various domains, such as

few-shot learning [56, 38, 13, 27, 42] , unsupervised learning [54, 7, 16, 53],incremental learning
[74, 76, 66, 43, 37], and federated learning [21, 12, 26, 22, 28, 25, 40, 64, 34, 35]. In object ReID
research [24, 57, 58, 53], prototypes and other feature-centric concepts have also demonstrated

significant effectiveness. Luo et al.[24] introduce Center Loss to enhance the feature similarity of
same-ID samples in the model. Yang ef al.[57] assigns pseudo-labels to unannotated data through
clustering and dynamically update the centers of samples corresponding to each pseudo-ID as
supervisory signals for network optimization.

Current applications of prototypes or similar concepts primarily leverage their statistical properties
at ID-level to enhance feature compactness within the same category, thereby improving network
robustness. In this work, we innovatively utilize modality-unbiased prototypes from a modality-
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Figure 2: Overview of of the proposed UPCL framework. It consists of two core components:
Unbiased Prototypes-guided Modality Enhancement (UPME) and Cluster Prototype Consistency
Regularization (CPCR). We dynamically update the multi-modal prototype memory for each ID
during every training iteration. UPME aggregates modality-unbiased prototypes via Equation (9),
leveraging their identity-consistent information to strengthen both cross-modal and multi-modal
representation learning. CPCR further utilizes category-consistent prototypes clustered from modality
prototypes, exploiting their category-consistent semantics to regularize the model and achieve more
discriminative category-wise decision boundaries.

consistency perspective and employ clustering strategies to obtain category-level (rather than identity-
level) discriminative features. This approach significantly enhances the unified ReID model’s
capability to perform robust retrieval across multiple categories and modalities.

3 Method

In this section, we present the Unbiased Prototype Consistency Learning framework (UPCL) which
consists of two main modules. The Unbiased Prototypes-guided Modality Enhancement (UPME)
module leverages modality-unbiased prototypes to simultaneously enhance both cross-modal shared
features and multi-modal fused features, thereby improving the model’s performance across different
retrieval modes. The Cluster Prototype Consistency Regularization (CPCR) module utilizes modality-
unbiased prototypes via clustering to derive category-consistent prototypes, which are then utilized to
regulate the model’s discriminative semantic learning process for different categories. The overview
of UPCL is illustrated in Figure 2 and the details are discussed in the following subsections.

3.1 Overall Architecture

Our method utilizes the pretrained CLIP [32] model as the visual encoder which is shared with RGB,
NI and TI modalities. Specifically, for the i-th multi-modal instance V; = {V;"9°, V" Vi1, the
images of three modalities are cropped into equal-sized patches and then mapped to embedding
vectors with fixed dimensions. Next, we feed these embedding vectors into the visual encoder to obtain
their corresponding class token f/™ € R® and patch tokens p7* € RNe*P where m € {rgb,ni, ti},
N, denotes the number of patch tokens and D is the embedding dimension.



Consistent with existing multi-modal methods [72, 49, 50, 46], we employ the label smoothing
cross-entropy loss L. [39] and triplet loss Ly,; [10] to supervise the learning of visual encoder:

Eg = £ce + £tri' (D

To further encourage cross-modal feature alignment, we introduce an additional cross-modal align-
ment loss function:

£m=m 0 — _1o exp ((fi", f) /7) 7 )
v S e (U 17) /7)

Zj:l exp (<on7 fjm> /T>
where (-, -) represents the cosine similarity function. f/™ and f!* denote the features of i-th instance

with different modalities m, n € {rgb, ni, ti}. B is the batch size, and 7 is the temperature parameter.
Then the cross-modal loss function between modalities m and n can be formulated as:

B
e = 3 L0 + L0770 @)
Building upon this, we derive the cross-modal loss function L,ss:
Leross = Lrgbesni + Lrgbosti + Lnicsti- (5)
Finally, we obtain the base objective L;, of the framework :
Ly =Ly + Leross- (6)

3.2 Unbiased Prototypes-guided Modality Enhancement

To enable the model to achieve high performance in both cross-modal and multi-modal retrieval, it is
essential to design optimization strategies that maintain directional consistency between these two
paradigms. Inspired by the successful application of prototypes in other domains, we leverage the
identity-consistent information encapsulated in prototypes to guide the feature learning.
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Figure 3: Comparison of different prototypes. (a) Global prototypes; (b) Modality-specific prototypes;
(C) Modality-unbiased Prototypes (Ours). It is obviously observed that our proposed Modality-
Unbiased Prototypes exhibit superior ID-consistent semantic representation in the feature space.

We compare two commonly used prototypes (global prototypes and modality-specific prototypes) in
multi-modal learning alongside our newly proposed unbiased prototype in Figure 3.

Global Prototypes. The features of all samples across three modalities under the same ID are fused
to obtain the global prototype:

lobal _ b rni  pti
Pl = ot 3 Lyuaeal £ £, 1), ™
i€l(c)

where I(c) denotes the indices of all instances with identity c. L fseq is an MLP designed to fuse
the features from the three modalities, producing a global feature in R”.



Modality-Specific Prototypes. We compute modality-specific prototypes for identity c :

1
Pl = —— ft,m e {rgb,ni, ti}.
el Z() { J ®)

Then this yields a set of prototypes P, = {Pr9°, Pni PLi} for three modalities .

Modality-Unbiased Prototypes. Global prototypes tend to incorporate semantic features biased
toward the dominant modality, thereby deviating from identity-consistent semantics. Conversely,
modality-specific prototypes primarily focus on intra-modal identity information, which inherently
carries modality-specific bias relative to identity consistency. Therefore, in order to optimize the
features towards identity-consistent semantics, we comprehensively derive a modality-unbiased
prototype from P, = {P19b pni pti}.

U. = (Pr9° 4+ P 4 Pl /3. 9)

As illustrated in Figure 3, compared with global prototypes and modality-specific prototypes, the
modality-unbiased prototypes mitigate both inter-modal and intra-modal distribution discrepancies,
thereby thereby capturing more robust identity representations.

Under the guidance of modality-unbiased prototypes, we enhance features of modality m by:
B
1 exp ((fi", Ue,) /7)
Lipyue=—5 ) log—5 : * ;
B ; > e exp (S Uey) /7)

where c; represents the identity of the i-th sample. Finally, we formulate the Unbiased Prototypes-
guided Modality Enhancement loss through summation:

(10)

b . .

Lupme = Lipyp + LUpme + LUpue (1D
By enhancing semantic consistency across multi-modal features, the discriminative capability for
identities in any modality is improved, thereby boosting the cross-modal retrieval performance.
Simultaneously, the approach reduces inter-modal divergence and improves fusion efficiency, yielding
more robust multi-modal representations.

3.3 Cluster Prototype Consistency Regularization

Current RelD methods typically train dedicated models for specific object categories (e.g., persons or
vehicles). However, since discriminative semantic features vary significantly across different object
categories, models trained on specific category lack generalization capability. To develop a unified
model capable of retrieving diverse object categories, we need to enable the model to accurately
capture category-consistent semantic information. As detailed in Section 3.2, the modality-unbiased
prototypes inherently encapsulate identity-consistent semantic information that is strongly correlated
with sample categories. This intrinsic correlation motivates us to explore a novel approach for
extracting category-consistent semantics directly from these prototypes.

Assuming that there are IV, and [V, identities belonging to persons and vehicles, respectively, we

utilize UP = {Uc}i\]:pl and YUY = {Z/{c}ﬁ;:\f:l to denote the sets of modality-unbiased prototypes.

To obtain category-consistent information, we aim to fully integrate prototypes from all identities
within a specific category. While the identities of any two prototypes in U or " are distinct, they
may share highly similar semantic characteristics (e.g. males wearing short sleeves). Such semantic
similarity naturally forms clusters among these identities, where the dominant clusters contribute
more representative information within U4” or L.

To better capture discriminative semantic features of specific categories, we propose to utilize
cluster-level statistics instead of identity-level information. The acquisition of reliable cluster-level
statistics fundamentally depends on achieving proper clustering of &/” and &/”. Unlike conventional
clustering algorithms K-means [1] and HAC [51], FINCH [33] operates in a completely parameter-
free manner, automatically determining the optimal number of clusters based on the inherent similarity
relationships among all prototypes. Therefore, we employ FINCH to cluster P*P and P*'?, obtaining
the sets of multiple clustered prototypes CP and C”:

ur = {U N, S er = (ery (12)



Cluster

U = Uy, 4y S O = (O (13)

where L,, and L, denote the number of elements in C? and C". The [-th cluster prototypes for person
and vehicle are denoted as C* and C}*, which are calculated by averaging all modality-unbiased
prototypes in [-th cluster. Then we obtain the category-consistent prototype through:

LTJ

Cate? = -3 CF. (14)
Ly =1
1 L’U

Cate’ = I > ey (15)

=1

Then, we introduce the CPCR loss function with CateP and Cate for specific category:

BP
1 exp ((f™,CateP) /1)
P — 1 v 1
Eeron = 2 218 o (07 Caten) 1) 3 o (rCate 10 (19
N
1 exp ((f™,Cate’) /1)
v _ 1 2 1
Eéren =i 22 2 18 o (17 Gaten) /1) 4 e (T Cate 710 (7

where I” and I denote the index sets of all person-class and vehicle-class instances within a batch,
respectively. It is natural to derive the total CPCR loss:

Leper = Liper + Léper: (18)

Under the regularization of category-consistent prototypes, the model effectively learns discriminative
semantic features that represent object categories, thereby achieving robust performance across diverse
retrieval tasks involving different object categories.

Finally, we integrate all components to formulate a comprehensive optimization objective:

Liotal = Lo + aLypme + BLcpcrs (19)

where « and (3 are the the hyper-parameters to balance the contributions of each loss function.

4 Experiments

4.1 Experimental Settings

Datasets and Evaluation Protocols. To evaluate the performance of our UPCL, we combined
RGBNT201 [72] and RGBNT100 [15] to construct a multi-modal dataset with diverse object cate-
gories. Specifically, RGBNT201 is the first multi-modal person RelD dataset, where each pedestrian
ID contains RGB, NI and TI modalities. RGBNT 100 contains the same modalities as RGBNT201,
but collects vehicle images instead. We evaluate the performance of our proposed UPCL with Rank-k
matching accuracy, mean Average Precision (mAP) which are the commonly utilized metrics in
object RelD tasks. The evaluation protocol encompasses six cross-modal testing scenarios (R — N,
N—RR—T,T— R, N—T,and T — N) along with one multi-modal testing configuration (RNT
— RNT).

Implementation Details. The implementation platform is Pytorch with a NVIDIA 3090 GPU. We
utilize the pre-trained CLIP as the visual encoder. Images of all modalities are resized to 256x128.
For data augmentation, we apply random horizontal flipping, cropping and erasing. The batch size
is set to 64, sampling 8 images per identity. The training process is conducted with the Adam
optimizer for 50 epochs, and the initial learning rate is set to 3.5e-4. We select 0.03 as the temperature
parameter 7. The hyper-parameters « and 3 are set as 2.0 and 0.5 respectively. During the testing
phase, cross-modal retrieval directly computes similarity using features from two modalities, while
multi-modal retrieval concatenates features from three modalities for matching.



Table 1: Comparison with the state-of-the-art methods. Each model is trained on a combined dataset
consisting of RGBNT201 and RGBNT100, and evaluated separately.

RGBNT201
Methods R—N N—R R—T T—R N—T T—N RNT — RNT | Harm_Mean
mAP Rank-1\ mAP Rank-1 mAP Rank-1|mAP Rank-1| mAP Rank-1| mAP Rank-1| mAP Rank-1|mAP Rank-1
HTT [50] 443 331 (359 326 |2.73 048 |3.26 036 |3.26 227 [425 431 |9.16 4.67 |3.83 1.05
TOP-ReID [46]|10.50 8.61 [10.71 9.33 |3.55 1.32 |3.54 1.20 |540 4.31 |6.10 4.67 |63.74 64.95|6.27 3.07
PromptMA [68](20.37 17.70 |19.39 14.35 {11.80 7.06 |13.77 12.32 |11.56 8.49 |10.28 6.34 [65.71 68.18 [15.32 10.95
EDITOR [67] |3.70 2.03 |3.38 227 |3.83 239 |3.72 0.60 |4.37 251 |3.32 0.96 [56.03 56.70 | 4.26 1.56
DeMo [48] [3.98 227 [433 263 [330 144 [4.09 359 |3.10 0.60 |3.44 275 |64.35 63.76 | 422 1.82
UPCL (Ours) |22.33 23.21 {20.09 18.54 |16.77 14.59 |18.19 18.54 |17.93 14.47 |17.56 21.17 |64.91 67.12 |20.75 19.97
RGBNTI100
Methods R—N N—R R—>T T—R N—T T— N |RNT — RNT | Harm_Mean
mAP Rank-1| mAP Rank-1 mAP Rank-1|mAP Rank-1| mAP Rank-1| mAP Rank-1| mAP Rank-1|mAP Rank-1
HTT [50] 594 589 (464 233 |3.00 0.64 |3.59 1.05 |3.57 2.33 [390 233 |32.21 53.00 |4.48 1.76
TOP-RelID [46]|15.47 20.06 |12.24 12.01 |3.50 2.86 |3.17 140 |396 431 [3.80 192 |71.47 89.15|548 3.57
PromptMA [68]|141.73 53.64 |42.64 51.78 | 8.54 7.46 [9.96 828 |7.87 4.90 [10.37 8.92 |71.07 86.53 {13.93 11.28
EDITOR [67] |2.59 140 (299 2.04 [345 292 |320 239 |2.61 1.57 |3.19 2.16 |74.25 93.00 |3.44 2.28
DeMo [48] [3.12 1.69 |4.14 239 (242 0.76 |3.07 233 |431 251 |455 3.27 |79.12 9347|397 2.02
UPCL (Ours) |48.41 64.08 [49.83 64.61 (16.50 19.42 [17.20 18.31 |17.26 21.40 [17.25 18.08 |79.41 94.87 |22.63 27.50

4.2 Comparison with State-of-the-art Methods

We present a comprehensive comparison of UPCL with state-of-the-art methods as outlined in
Table 1. To thoroughly evaluate the model’s holistic performance on six cross-modal and one multi-
modal testing scenarios, we employ the harmonic mean of task-specific metrics as the aggregated
performance measure, given that the harmonic mean places greater emphasis on smaller values
compared to the arithmetic mean.

As demonstrated in Table I, on the person-category dataset (RGBNT201) , UPCL significantly
outperforms all competing methods across all six cross-modal scenarios, which strongly validates its
cross-modal matching capability. For multi-modal retrieval results, compared with PromptMA which
contains module specifically designed for multi-modal fusion matching, our approach trails by merely
0.8 percentage points in mAP. Regarding the arithmetic mean of all seven metrics, UPCL achieves
substantial superiority over other methods, surpassing the second-best approach by 5.43 and 9.02
percentage points on these two metrics, respectively. For the vehicle-category dataset (RGBNT100) ,
our UPCL demonstrates consistent superiority across every scenario. Across both category-specific
datasets (person and vehicle) under all seven evaluation protocols, our method achieves remarkable
performance, which conclusively demonstrates its effectiveness for the M3 T-RelD task.

4.3 Ablation Studies

To thoroughly validate the effectiveness of our proposed UPME and CPCR modules, we conducted
extensive ablation experiments on both RGBNT201 and RGBNT100 datasets. The experimental
protocol involves incrementally integrating our proposed modules into the baseline model without
introducing any extra modifications, enabling direct performance comparison through controlled
ablation studies. As illustrated in Table 2, all reported metrics are presented as the harmonic mean of
performance across seven evaluation scenarios.

Effect of UPME. By leveraging the identity-consistent information captured in modality-unbiased
prototypes, the UPME module enhances feature representations across different modalities, thereby
boosting cross-modal and multi-modal representation capabilities. The experimental results demon-
strate that our UPME module achieves mAP improvements of 3.20% and 2.19% on RGBNT201
and RGBNT100 respectively, compared to the baseline. When aggregated across both datasets, the
module delivers average gains of 2.41% mAP and 3.37% rank-1 accuracy.

Effect of CPCR. The CPCR module clusters modality-unbiased prototypes from UPME to derive
category-consistent prototypes, then exploits their category-discriminative semantics to guide model
optimization. After incorporating CPCR, the model achieves a 4.10% mAP and 5.99% rank-1
improvement on RGBNT201, while attaining 0.73% mAP and 2.91% rank-1 gains on RGBNT100.



Table 2: Ablation study of each component on RGBNT201 and RGBNT100.

Components RGBNT201 RGBNT100 Average
UPME CPCR | mAP Rank-1 Rank-5 Rank-10 | mAP Rank-1 Rank-5 Rank-10 | mAP Rank-1 Rank-5 Rank-10
13.85 10.06  20.62 2793 |19.89 21.78 24.39 2639 | 16.87 1592 2251 27.16
v 16.65 1398 2559 3356 |21.90 2459 28.06 30.61 | 19.28 19.29  26.83 32.09
v v 20.75 1997  36.03 46.13 | 22.63 27.50 31.13 32.79 | 21.69 23.74 33.58 39.46
Multi-modal Feature Space Cross-modal Feature Space
*
» @?
ﬁ oy
\ %
1 5.6%
4
Baseline UPME UPME + CPCR Baseline UPME UPME + CPCR

Figure 4: The t-SNE visualization of several randomly selected identities. Color indicate identities.

Visualization. To intuitively demonstrate the effectiveness of UPME and CPCR, we visualize the
t-SNE[44] feature distribution of several identities in Figure 4. Specifically, the three subplots on
the left visualize the embedding space of multi-modal fused features. Under the effects of UPME
and CPCR, the fused features of the same ID progressively converge, while the discriminability
between different identities becomes increasingly pronounced. The cross-modal features of identical
IDs in the right figure exhibit consistent variation trends. Therefore, the t-SNE visualization clearly
indicates that integrating UPME and CPCR enhances the intra-identity consistency and inter-identity
discriminability of both fused and cross-modal features.

Effects of Diverse Categories . As discussed
earlier, different categories of retrieval tar-
gets contain distinct discriminative semantics,
making it challenging for a model to main-
tain high performance across retrieval tasks in-

Table 3: Comparison between specifc and uni-
fied model. Each model is trained on a combined
dataset consisting of RGBNT201 and RGBNT100,
and evaluated separately. mAP(%) is reported.

volving diverse categories. To validate this Methods RGBNT201 RGBNT100

claim, Table 3 presents a comparison between Specific  Unified | Specific Unified
category-specific model and a unified model. HTT [50] 69.0 9.16 757 3221
The category-specific model is trained on a  TOP-RelD [46] | 723 63.74 81.2 7147
single-category dataset, either RGBNT201 or  PromptMA [63] | 784  65.71 853 7107
RGBNT100, while the unified model is trained EDITOR [67] 66.5 56.03 79.8 74.25
on a multi-category dataset formed by combin- DeMo [48] 79.0 6435 86.2  79.12

ing RGBNT201 and RGBNT100. It can be

clearly observed that, for the same method, the unified model exhibits a significant performance drop
compared to its corresponding category-specific model. This suggests that mixing multiple categories
in training introduces substantial interference, hindering the model’s ability to simultaneously learn
discriminative semantics for all categories. These findings strongly support our hypothesis that
multi-category training can negatively impact model optimization.

5 Cross-domain Retrieval Evaluation

In conventional Re-ID evaluations, both training and testing sets are typically collected under the same
scene conditions. As a result, the learned feature space may be constrained to a specific environment,
making the evaluation results insufficient to reflect the generalization capability required in real-world
applications. To assess the cross-domain generalization ability of our model, we train it on a combined
dataset of RGBNT201 and RGBNT100, and evaluate it on the unseen MSVR310 dataset.

The comparison results are presented in Table 4. All models show significantly lower detection
accuracy on the MSVR310 dataset compared to RGBNT201 and RGBNT100, indicating that cross-
domain generalization remains highly challenging for existing Re-ID models. In particular, methods



Table 4: Performance analysis of cross-domain generalization on MSVR310 dataset. All models are
trained on the combined dataset of RGBNT201 and RGBNT100, and evaluated on the MSVR310
dataset. Rank-k accuracy (%) and mAP(%) are reported.

MSVR310
Methods R—N N—R R—T T—R N—T T— N |RNT — RNT | Harm_Mean
mAP Rank-1\ mAP Rank-1\mAP Rank-1\mAP Rank-1\mAP Rank-1\mAP Rank-1|mAP Rank-1| mAP Rank-1
HTT [50] 199 1.18 (200 1.52 [1.88 1.18 |2.33 1.34 |1.91 1.02 |1.88 220 [590 897 |2.20 1.02
TOP-ReID [46]| 431 6.43 387 3.21 (223 0.85 |1.84 1.52 |2.30 1.02 |2.54 2.71 (1491 2555|294 1.89
PromptMA [68]{11.92 14.72 (10.71 13.37 (243 1.02 |2.64 1.52 |2.82 253 |3.70 3.21 (23.14 31.98 |4.28 2.78
EDITOR [67] |2.16 1.18 | 1.53 0.52 [1.59 0.51 [1.49 0.63 |1.45 0.85 |1.35 1.02 [17.05 30.96 | 1.70 0.82
DeMo [48] |2.12 034 |1.73 0.17 |1.87 1.35 [1.77 1.02 |1.66 1.02 |1.76 0.51 [15.89 26.90 | 2.07 0.52
UPCL (Ours) (13.89 20.30 (14.09 20.14 |9.43 10.15 |9.03 9.14 |9.57 11.68 [9.35 11.17 |24.60 38.07 |11.44 13.77

such as HTT, TOP-RelD, EDITOR, and DeMo exhibit severe performance degradation under both
cross-modal and multi-modal testing scenarios on the unseen MSVR310 dataset. In contrast, the
UPCL and PromptMA methods achieve considerably better results, with UPCL consistently outper-
forming PromptMA across various detection settings. These experimental results provide strong
evidence that our model possesses excellent cross-domain generalization capability. The superior
cross-domain retrieval performance of UPCL further validates our method from another perspec-
tive—not only does it enhance the robustness of the fused feature space across modalities, but it also
strengthens the model’s ability to discriminate semantic features across different categories.

6 Limitations

Although our method has demonstrated promising performance on existing multi-modal RelD
datasets, it still exhibits several notable limitations. The current multi-modal RelD datasets are
relatively scarce, mainly restricted to the pedestrian and vehicle domains. Considering the practical
demands of real-world applications, it is crucial to explore how incorporating a broader range of
categories affects retrieval performance. In addition, our unified model may slightly underperform
task-specific models in a very limited number of test scenarios. Although this is reasonable, this also
indicates that our approach still has potential for further enhancement. Therefore, our future work
will focus on extending UPCL to more generalized multi-modal and multi-task retrieval scenarios.

7 Conclusion

In this paper, we introduce a novel M>T-RelD task to address the practical demands of retrieval across
diverse modalities and categories. To tackle the challenges in M>T-RelD, we propose the Unbiased
Prototype Consistency Learning framework (UPCL) which consists of two main modules UPME and
CPCR. Specifically, UPME mitigates the divergence between cross-modal shared spaces and multi-
modal fusion distributions by leveraging identity-consistent information from modality-unbiased
prototypes, thereby enhancing both cross-modal and multi-modal representations. Meanwhile, CPCR
reduces semantic discrepancies across categories by clustering modality-unbiased prototypes to obtain
category-consistent prototypes with discriminative semantics. Extensive experiments on multiple
datasets validate the superiority and effectiveness of our method, demonstrating its robustness and
generalization ability in diverse retrieval scenarios.
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Justification: : The claims are clearly stated in the abstract and the introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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2. Limitations
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The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
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For example, a facial recognition algorithm may perform poorly when image resolution
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Justification: Our work focuses on computer vision applications, not including theoretical
results.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide all the details of our proposed methods to reproduce the results.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: The datasets used in this paper are fused directy by two public datasets which
can be downloaed from https://github.com/924973292/DeMo. We will release the
relevant algorithm code after the paper is accepted.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The training and testing details are available in the paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to the limited resources, our paper does not provide error bars. Also,
previous relative methods do not provide error bars either.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The information of computer resources is provided.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conforms to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Our research has no negative societal impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators and original owners of assets used in the paper are properly
credited, and the license and terms of use are explicitly mentioned and properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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