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Abstract— In this article, we explore the potential of zero-
shot Large Multimodal Models (LMMs) in the domain of drone
perception. We focus on person detection and action recognition
tasks and evaluate two prominent LMMs, namely YOLO-World
and GPT-4V(ision) using a publicly available dataset captured
from aerial views. Traditional deep learning approaches rely
heavily on large and high-quality training datasets. However,
in certain robotic settings, acquiring such datasets can be
resource-intensive or impractical within a reasonable time-
frame. The flexibility of prompt-based Large Multimodal Mod-
els (LMMs) and their exceptional generalization capabilities
have the potential to revolutionize robotics applications in these
scenarios. Our findings suggest that YOLO-World demonstrates
good detection performance. GPT-4V struggles with accurately
classifying action classes but delivers promising results in
filtering out unwanted region proposals and in providing a
general description of the scenery. This research represents
an initial step in leveraging LMMs for drone perception and
establishes a foundation for future investigations in this area.

I. INTRODUCTION

Recent advances in Large Language Models (LLMs) have
transformed many aspects of Machine Learning and AI [1],
[2]. Previously, the most common approach involved gather-
ing datasets that captured small contexts within specific task
domains. However, with the advent of foundation models
such as LLMs, trained on much larger datasets, this paradigm
has shifted. These models can now be utilized by providing
them with prompts that specify the domain and task. Thanks
to their strong generalization abilities, these foundation mod-
els can often be applied in a zero-shot manner [3]. While
LLMs were originally designed for processing text in Natural
Language Processing (NLP) tasks, Large Multimodal Models
(LMMs) have expanded their capabilities by incorporating
additional modalities [4], [5], [6] such as images, sounds,
and videos.

In this article, we delve into the application of two
recent image-based LMMs within a drone setting. Firstly,
we examine the YOLO-World model [7], which facilitates
prompt-based object detection. Secondly, we utilize the more
general vision model GPT-4V [4] for classifying the detected
region proposals.

An important challenge in aerial robotics is ensuring that
drones operate reliably across a wide spectrum of potential
failures. This necessitates the acquisition of a high-quality,
problem-specific dataset, which can be resource-intensive or
even impractical to obtain. Moreover, conventionally trained
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models tend to excel only within the confines of their training
data. Minor variations in the environment, such as changes
in weather, seasonal fluctuations, or geographical differences,
can lead to a significant decline in the robot’s reliability.

LMMs, trained on a broader contextual scope, may not
achieve competitive performance compared to their tradi-
tional counterparts within their narrowly defined training
contexts [1]. However, their ability to generalize across
domains, facilitated by their training on significantly broader
ranges of data, enables them to better handle challenging
conditions.

This preliminary study investigates the feasibility of ap-
plying YOLO-World and GPT-4V in a practical aerial robotic
scenario involving person detection and action recognition.
A real-world application could entail locating individuals in
need following a disaster [8], [9]. Given the unpredictable
nature of potential disasters, it is crucial to utilize a model
with extensive generalization capabilities, capable of oper-
ating effectively across diverse settings. Both YOLO-World
and GPT-4V are zero-shot approaches prompted with text.
This means they could potentially be deployed in unforeseen
scenarios, as the text prompts can be adjusted quickly,
enabling the equipped robot to adapt to entirely different
objectives instantly.

This manuscript is structured as follows: Section II pro-
vides an overview of the most important related works.
Section III-A discusses the publicly available Okutama-
Action dataset that we are utilizing for our evaluation. In
Section III-B, we focus on detecting persons using YOLO-
World. In Section III-C, we apply GPT-4V on the detected
region proposals to recognize the persons’ actions. Finally,
Section IV summarizes our findings and concludes the paper.

II. RELATED WORK

From the very beginnings of computer vision research,
object detection has been a prominent task of interest. First,
hand-crafted features [10] were utilized for detecting and
recognizing objects. With the rise of deep learning, convolu-
tional neural networks, which derive features automatically
from the training data, quickly overtook established hand-
crafted methods in terms of accuracy and robustness [11].
“Two-stage” methods like R-CNN [12] and R-FCN [13] first
detect candidate regions proposals, and then classify them.

Later, “one-stage” methods such as SSD [14] and
YOLO [15] established themselves, achieving higher pro-
cessing speeds by detecting and classifying objects with one
forward pass through the network. YOLO in particular has
become extremely popular object detection method, with



numerous iterations and variants [16], [17], [18], [19], [20].
New variants like YOLOX [19], [21] and FCOS [22] have
found improvements by moving away from the concept of
fixed anchor boxes [23], integrating new data augmentation
techniques and optimizing for new training objectives.

Still, the basic training paradigm of those models is
the same compared with traditional handcrafted approaches.
There is a fixed task definition and the need to acquire a data
set that captures this task definition very accurately. Then the
model is trained on a large part of the data and evaluated on
a smaller fraction [24], [25].

With the introduction of LLMs, there was also a shift
in this training paradigm. OpenAI demonstrated this by
autoregressively pre-training a large transformer-based model
on a vast collection of internet text corpora [1], showcasing
that the contained general knowledge can be effectively
compressed. With a fine-tuning step the model can be tuned
for a specific task. ChatGPT [26] and GPT-4 [2] are trained
in this post-training step with supervised data and with
reinforcement learning from human feedback to realize a
conversational agent that can be prompted with a wide range
of tasks.

Recently, OpenAI has released the vision-enabled variant
GPT-4V [4], which shows promising capabilities on real-
world visual understanding [3]. However, GPT-4V still un-
derperforms in detecting humans within a drone context
where humans are usually captured in a few pixels and
recorded from steep angles. We could not replicate the person
detection results shown in [3] (pp. 42, Figure 27) for those
difficult conditions.

To compensate for these shortcomings we decided to
explore whether YOLO-World [7] can be utilized for the
detection task within this challenging application. YOLO-
World is a very new approach within the YOLO family,
published only two and a half weeks from the writing of
this manuscript. While the approach incorporates traditional
YOLO elements like the YOLO backbone and bounding box
heads, the model employs a CLIP [27] text embedding and
uses an intermediate vision-language network for fusing both
modalities. These advancements allow prompting the model
with new classes at inference time, letting it detect objects
it was not explicitly trained to detect.

In the realm of aerial view person detection, several
methods such as Mobilenetv2 [28], Faster R-CNN [29],
SSPNet [30], and YOLOv3 [31] have been employed. These
models are typically fine-tuned with bespoke datasets cap-
tured using drones and manually annotated. However, the
significant effort required for recording and annotating such
datasets prompts us to explore alternative approaches.

III. EVALUATION

A. DATASET

For our evaluation, we consider the Okutama-Action
dataset [32] because it presents a challenging scenario and
covers both our areas of interest: person detection and
action classification. In the Okutama-Action dataset, multiple
persons are captured from aerial views using two drones at

Fig. 1. Sample image of the Okutama-Action dataset. The image shows
eight persons, performing the actions calling, carrying, push/pulling, lying,
reading, sitting, and standing.

various times of the day. The dataset comprises different
flights, each averaging about one minute in duration. Each
camera frame depicts up to 10 individuals engaged in 12
distinct actions. These actions include running, walking,
lying, sitting, standing, reading, drinking, pushing/pulling,
carrying, calling, handshaking, and hugging.

While the dataset includes a total of 43 minutes of
recordings, we’re focusing solely on the test dataset, which
consists of 10 flights totaling 9 minutes and 32 seconds. An
example image from the dataset is illustrated in Figure 1.

B. PERSON DETECTION

a) GPT-4V Experiments: In preliminary experiments,
we wanted to evaluate whether GPT-4V can describe a
drone image accurately. We prompted it with the image from
Figure 1 and the following text prompt:

• Prompt: “You are an expert in classifying persons and
their actions in pixelated images recorded from drones.
Describe this picture in a few sentences. How many
people are there, where are they in the image and what
are they doing?”

• Response: “In the image, there appear to be five in-
dividuals and various objects that could be tables or
benches. The people are dispersed across the frame with
no two individuals close together, suggesting they may
be engaging in independent activities. One person is
sitting on a bench, another is near a table, and the others
are standing. They seem to be in a public space, possibly
a park, given the open grassy area and the park-like
furniture visible. It’s difficult to ascertain their specific
actions due to the image’s perspective and resolution,
but they do not appear to be interacting with each
other and are rather involved in separate tasks or leisure
activities.”

As the response suggests, GPT-4V can grasp the overall
scene depicted in the image and has a basic understanding of
what the people are doing and what might be the background.
However, it struggles with accurately counting the number of
people and identifying their locations within the image. Ad-
ditional preliminary experiments also suggest that GPT-4V
lacks the ability to determine the boundaries of individuals



Fig. 2. YOLO-World detection of aerial image. We prompt the model
with a single class ‘Person’ and loaded pre-trained weights. We uploaded a
detection video of the full test dataset here: https://www.youtube.
com/watch?v=QntgkMKVuVQ.

accurately. In most cases, the boundaries were significantly
misaligned and individuals were not captured by them at all.
We attempted various prompts, including requesting relative
image coordinates for axis-aligned bounding boxes, center
coordinates of individuals, and indexing an imaginary grid,
as well as overlaying an actual grid onto the image. However,
none of those methods resulted in a significant improvement
in detection quality.

It is also worth mentioning that GPT-4V often refuses to
give an answer because of safety policies [33]. However, we
could circumvent this issue by “distracting” it to reply in a
specific JSON format. We assume that then, it interpreted
the request more like a programming task, rather than a
“detect and classify humans” task. However, it is likely
that these safety-related fine-tuning steps are also negatively
influencing the accuracy of GPT-4V.

b) YOLO-World Experiments: To compensate for the
person detection shortcomings of GPT-4V, we apply YOLO-
World with pre-trained weights on the dataset. We prompt the
model just with a single-word text-prompt ‘Person’ and load
the published weights YOLO-Worldv2-L-1280. We applied
a basic non-maximum suppression to the predicted bounding
boxes. Other than that, the predicted bounding boxes were
calculated separately for each frame and we haven’t applied
any filtering, filling, smoothing or any other post-processing
on them.

As depicted in Figure 2, YOLO-World accurately detects
the persons in the images. However, the confidence scores
associated with the bounding boxes are relatively low, likely
because the model was primarily trained with close-ups
or group portraits. To address this, we filter the bounding
boxes using a very low confidence threshold of 0.01. This
approach results in some false positive detections, which can
be subsequently filtered out by GPT-4V. We delve deeper into
this issue in Section III-C.

Table I depicts the performance of YOLO-World. We
calculate the precision, recall and F1 scores of the detections.
We classify a detection to be true if the bounding box is
overlapping with the ground-truth bounding box by at least
10%. This low percentage is justified because the ground-
truth bounding boxes are not very accurate. Only one in

TABLE I
YOLO-WORLD ZERO-SHOT PERSON DETECTION PERFORMANCE.

flight precision recall F1 mIOU
2.2.10 0.643 0.530 0.572 0.228
1.2.1 0.946 0.575 0.707 0.494
2.1.9 0.888 0.880 0.868 0.622
1.2.3 0.866 0.748 0.785 0.468
1.1.9 0.802 0.839 0.791 0.507
2.2.3 0.866 0.814 0.820 0.651
2.2.1 0.369 0.317 0.333 0.117
2.1.8 0.067 0.066 0.066 0.033
1.2.10 0.674 0.642 0.654 0.281
1.1.8 0.728 0.818 0.742 0.539

every 10 frames was manually annotated, while the rest were
interpolated, and their quality per flight varies drastically
– we could confirm that flight 2.2.1 and 2.1.8 had a very
poor annotation, which is especially reflected in the mean
Intersection Over Union (mIOU) column of Table I. The
accuracy of YOLO-World stays consistent across the flights,
which is shown in the rendered video linked in the caption
of Figure 2.

It is noticeable that, performance-wise, YOLO-World
cannot compete with a traditionally trained YOLOv3 ap-
proach [31], especially regarding mean Intersection over
Union (mIOU). However, the achieved performance may be
sufficient for drone use cases where detecting a person is
more important than the prediction of an accurate image
location.

C. ACTION RECOGNITION

In this section, we explore whether GPT-4V can classify
the actions of the persons detected in the previous subsection.
Our experimental setup is as follows: we select 10 images
from each flight of the test dataset, and we utilize YOLO-
World for person detection. For each prediction, we calculate
the Intersection over Union (IOU) with all the ground-truth
bounding boxes and assign the label of the bounding box
with the highest IOU. If there is no overlap, we label the
predicted bounding box as ‘no person’.

We define two recognition problems. Firstly, we assess
whether GPT-4V can effectively filter out region proposals
that do not contain a person, which is essentially a binary
classification problem of ‘person’ or ‘no person’. Secondly,
we investigate whether GPT-4V can accurately determine the
correct action class for each person, representing a 13-class
classification problem (12 action classes and the ‘no person’
token). For each problem, we calculate the 0/1 accuracy and
the F1 score.

For each problem, we have conducted four experiments:
• Experiment XXX: We used the simplest prompt: “Is

there a person in this image? If yes, what activity is he
or she doing? Return one of the following answers and
nothing else: [action classes and ‘no person’ token].”

• Experiment EXX: We applied an ‘expert priming’
by prepending the sentence: “You are an expert in
classifying persons and their actions in pixelated images
recorded from drones.” to the XXX prompt.

• Experiment EDX: We requested an explanation for the
recognized class by appending the following to the EXX

https://www.youtube.com/watch?v=QntgkMKVuVQ
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prompt: “Return the activity and a short statement why
you think the person is doing this activity. Return in
this format and nothing else: [”activity”, ”statement”].”

• Experiment EDS: We incorporated the preceding and
subsequent image in the time series to consider tem-
poral information (each of them is 10 frames, or 0.3
seconds, apart of the image of interest). We hope that
by adding the time dimension, actions like walking can
be classified more accurately because the model would
recognize the movement of the legs.

TABLE II
GPT-4V SCORES FOR PERSON/NON-PERSON RECOGNITION AND THE

RECOGNITION OF 13 ACTION CLASSES.

exp valid responses person rec action rec
valid/total ratio 0/1 F1 0/1 F1

XXX 436/447 0.975 0.725 0.362 0.248 0.255
EXX 435/447 0.973 0.724 0.381 0.266 0.274
EDX 436/447 0.975 0.734 0.333 0.262 0.268
EDS 360/447 0.805 0.750 0.483 0.277 0.344

The results of the four experiments are listed in Table II. In
general, performance improves slightly with expert priming
(Experiment EXX). Demanding an explanation from the
model does not seem to enhance the recognition performance
(Experiment EDX). Querying the model with an image
sequence (Experiment EDS) delivered the best results but
for this experiment 20% of the queries were rejected by
OpenAI due to their safety policies (see Table II, column
‘valid responses’).

However, the model can not predict action class accurately.
This might be because of the inherently challenging nature
of the dataset, where one person can perform multiple
actions simultaneously, but only the most prominent action
is labeled. For instance, a person could be carrying an
item while walking. Predicting the class ‘walking’ would be
considered incorrect because the prominent class would be
‘carrying’. We have depicted a confusion matrix to highlight
this characteristic of the dataset in Figure 3. However,
there are instances where unambiguous actions are also
misclassified. For experiments EDX and EDS we verified
the explanations the model returned for some examples.
Sentences like “The person appears to have one foot in front
of the other, suggesting movement typical of walking.” or
“The person appears to have one hand raised to their ear
in a manner that suggests they are holding a phone, which
indicates they might be making a call.” indicates, that the
model has a good understanding about the images and the
prompted action classes. However, often the explanations
were just wrong. We have illustrated the action recognition
results for the previously discussed image in Figure 4.

IV. CONCLUSIONS

We evaluated two zero-shot LMMs for their recognition
applicability within a drone context. Our results suggest
that YOLO-World achieved good detection performance.
Subsequently, we employed GPT-4V to classify the predicted
region proposals with action classes. However, the model

Fig. 3. Confusion matrix for action recognition using GPT-4V.

Fig. 4. GPT-4V classification of YOLO-World region proposals.

struggles to provide accurate zero-shot predictions for the 12
action classes. Nevertheless, it could potentially be utilized to
filter out unwanted region proposals or to provide a general
description of the scenery. While the accuracy may not yet
be comparable to traditional approaches, there is a significant
advantage in not having to train the models but simply
prompting them. By changing just one word in the two
prompts, a robot could be applicable for an entirely different
use case, such as finding dogs or other objects of interest.
This increased flexibility could potentially compensate for
the current limitations in recognition quality.

In our future work we aim to assess whether the two mod-
els are applicable in a rescue drone use case. Our preliminary
investigation has revealed that GPT-4V possesses a detailed
basic understanding of drone images, but it struggles to
accurately determine the location and actions of people. The
latter problem could potentially be addressed by prompting
the model with supervisory input in a few-shot learning
manner, providing it with additional prior task knowledge.
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