

# 000 COGNITIVE-AWAKENING CHAIN-OF-SURGERY FOR 001 COMPOSITIONAL ZERO-SHOT SURGICAL TRIPLET 002 RECOGNITION 003

004 **Anonymous authors**  
005  
006

007 Paper under double-blind review  
008  
009

## 010 ABSTRACT 011

012  
013 Compositional Zero-shot Surgical Triplet Recognition (CZSTR) is a challenging  
014 task that requires models to recognize unseen combinations of  $\langle$ instrument, verb,  
015 target $\rangle$  that never co-occurred during training. This task captures the inherent  
016 generalization requirement in real surgical procedures. Large Vision-Language  
017 Models (LVLMs) with Chain-of-Thought (CoT), as one of the most advanced  
018 methods, are limitedly exposed to sufficient surgical semantics, leading to a short-  
019 age on the CZSTR task. To tackle this, we explore a more intuitive and natural  
020 human-like reasoning framework, which is introduced as **Cognitive-awakening**  
021 **Chain-of-Surgery** (CoCoS). CoCoS mirrors the way surgeons think: it starts by  
022 glancing at the scene, then gazing at the operation process over time, and finally  
023 drawing structured conclusions. Such a step-by-step cognitive-awakening process  
024 reflects how we naturally interpret surgical procedures and instruct large vision-  
025 language models (LVLMs) to deeply understand surgical scenes. Observing that  
026 LVLMs often hallucinate on relatively simple subtasks, e.g., identifying instru-  
027 ments, we further propose a Multimodal image–Sequence–Text (MiST) fusion  
028 module to reinforce the stability of the framework. To evaluate our framework,  
029 we also develop a strategy to reorganize existing surgical triplet datasets into a  
030 compositional zero-shot benchmark. Experiments show that our framework im-  
031 proves generalization to unseen triplets, outperforming both traditional models  
032 and LVLMs under this challenging task.  
033

## 034 1 INTRODUCTION 035

036 Surgical video understanding, as a critical aspect in the development of intelligent assistance systems  
037 for laparoscopic surgery, has seen a surge of interest in recent years from researchers(Hu et al., 2024;  
038 2025a). In contrast to the coarse-grained phase recognition, recognizing fine-grained surgical actions  
039 in the form of structured  $\langle$ instrument, verb, target $\rangle$  triplets (Nwoye et al., 2023a;b) is essential for  
040 building interpretable, generalizable, and trustworthy models of surgical activity. Such fine-grained  
041 tasks are crucial for evaluating surgical quality and documenting procedure details.  
042

043 Conventional visual recognition frameworks (Nwoye et al., 2022; Sharma et al., 2023) have demon-  
044 strated reliable performance in early benchmarks, but they often struggle with generalization, se-  
045 mantic abstraction, and compositional reasoning, especially in zero-shot scenarios. In recent years,  
046 methods based on Visual Language Model (VLM) (Li et al., 2025a; Chen et al., 2025; Xi et al.,  
047 2023; Sharma et al., 2025) have achieved impressive results, especially in aligning textual and vi-  
048 sual representations, but most of them put more emphasis on text-side modeling, leaving the visual  
049 side underexplored. Methods such as (Low et al., 2025), which enhance implicit information in text  
050 generated by VLM, often underestimate temporal relations in continuous sequences with consistent  
labels.

051 To address the shortcomings mentioned above, we propose a novel framework called  
052 **Cognitive-Awakening Chain-of-Surgery** (CoCoS), as shown in Figure 1. Inspired by  
053 how surgeons observe and reason during and after operations, **Chain-of-Surgery** (CoS)  
is designed to comprehend surgical video clips in a progressive, step-by-step manner.

Unlike previous methods using VLM to retrieve captions of every single given frame in a single pass, our Chain-of-Surgery presents frames and corresponding video clips separately during the glancing and gazing stages within a shared context, encouraging LVLMs to engage more deeply with the complex surgical scenes. To aggregate multimodal information more effectively, we introduce the Multimodal image–Sequence–Text (MiST) fusion module. MiST aggregates pre-observation during glancing, procedure evaluation during gazing, triplet judgement during thinking, image features, and video features, enabling comprehensive diagnosis.

In addition to architectural innovation, we address a zero-shot compositional surgical triplet recognition task to capture the inherent generalization requirement in real surgical procedures. Unlike prior work where all test triplets appear in training, we construct splits where each individual component  $\langle instrument, verb, target \rangle$  is seen during training, but their specific combinations are unseen at test time. This setting closely mimics real-world deployment, where a surgical assistance system must reason about plausible yet unseen action compositions in the operating room.

In summary, the contributions of this work are as follows:

- **Human-like reasoning framework.** We propose a novel **Cognitive-Awakening Chain-of-Surgery (CoCoS)** framework to instruct LVLMs to perform surgical scene reasoning from low-level cognition to high-level cognition.
- **Chain-of-Surgery.** We present a chain-of-surgery prompting scheme that gradually shows visual data to the model, which constructs an accumulated context step by step. Chain-of-Surgery (CoS) helps LVLMs to focus more on surgical scenes and retrieve relevant domain knowledge.
- **Multimodal image–Sequence–Text fusion.** We develop MiST, a transformer-based fusion module that fuses visual features from images and videos with LVLM-encoded semantic descriptions. By leveraging information across spatial, temporal, and textual domains, MiST serves as a bridge for triplet diagnosis.

## 2 RELATED WORKS

### 2.1 SURGICAL ACTION TRIPLET RECOGNITION

Understanding surgical activities at a fine-grained level is crucial for surgery AI assistance systems. Recent works have introduced triplet-based modeling, which simultaneously recognizes triplets  $\langle instrument, verb, target \rangle$  in endoscopic videos. RDV (Nwoye et al., 2022) pioneered this direction by defining the recognition of surgical actions as triplet classification tasks, using a structured learning framework to predict action combinations such as  $\langle grasper, grasp, liver \rangle$ . Some studies (Lin et al., 2024; Pei et al., 2025; Liu et al., 2024) try to capture the interactions between surgical instruments and anatomical targets explicitly which leverage spatial-temporal attention to condition tool usage on nearby anatomy and temporal context. From the perspective of long-tailed data distribution, some multi-task learning and contrastive methods (Li et al., 2023; Gui & Wang, 2024) have been proposed to improve the model performance on rare triplet categories. Despite these innovations, existing surgical triplet recognition models tend to struggle when generalizing to unseen combinations due to their closed-world assumptions. This limitation motivates the transition to compositional generalization, which we address through a zero-shot lens.

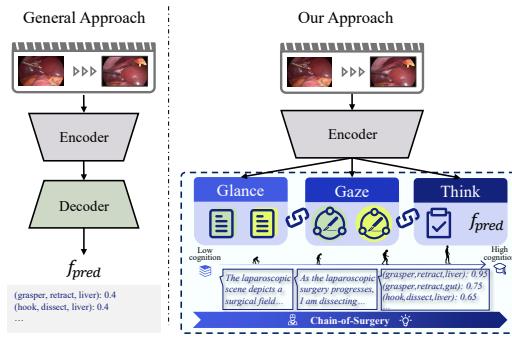


Figure 1: Insights of this work. General approach directly gives the score of surgical triplet recognition, suffering from the generalization of the compositional zero-shot case. Our approach understands surgical scenes via a human-like cognitive-awakening process: Glance, Gaze, and Think, showing better generalization of the compositional zero-shot case.

108  
109

## 2.2 COMPOSITIONAL ZERO-SHOT RECOGNITION

110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120

Compositional Zero-Shot Learning (CZSL) aims to recognize novel attribute–object combinations unseen during training, making it suitable for surgical settings where plausible but unobserved tool–action–target triplets often arise. The foundational idea of the visual composition concept (Misra et al., 2017) was introduced to enable models to infer valid novel pairs by learning from seen ones. Building on this, (Naeem et al., 2021) proposed a graph embedding framework that leverages structured semantic graphs to capture higher-order dependencies and guide composition in zero-shot settings. More recently, with the extensive exploration of CLIP, many researchers have adapted CLIP to the CZS tasks through graph modeling, soft prompting, and particular prompt structure designing (Nayak et al., 2022; Li et al., 2024; Xu et al., 2024; Hu et al., 2025b). In the medical domain, not all plausible action combinations can be exhaustively annotated or collected in the training data. Our work addresses this gap by restructuring standard datasets using a reusable split strategy.

121  
122

## 2.3 CHAIN OF THOUGHT

123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135

Chain of Thought (CoT) prompting (Wei et al., 2022) has emerged as an effective strategy to improve the reasoning capabilities of large language models (LLMs). Unlike direct answer generation, CoT encourages models to generate intermediate reasoning steps, thereby enabling better performance on tasks requiring multi-hop inference or arithmetic logic. Subsequent research (Kojima et al., 2022; Li et al., 2025b) explored automated generation of CoT demonstrations, introducing zero-shot CoT prompting without manual exemplars. In the multi-modal domain, multimodal reasoning frameworks such as MuKCoT (Qiu et al., 2024) leverage LLM-generated knowledge-enriched chains of thought to improve knowledge-based VQA. Inspired by these advances, we design a Chain-of-Surgery (CoS) prompting mechanism tailored to surgical scene understanding. CoS simulates a staged diagnostic process—first glancing at a keyframe, then gazing at surrounding temporal context, and finally thinking through a triplet inference. This contrasts with prior works that use flat prompts or retrieve captions independently, enabling more coherent multi-step reasoning in visual understanding tasks.

136  
137

## 3 METHODOLOGY

138  
139  
140  
141  
142  
143  
144  
145  
146

The overall framework comprises two synergistic components as shown in Figure 2: a LVLM surgical agent, which is responsible for progressive semantic reasoning, and a SAM-enhanced Machine Encoding, which focuses on capturing spatially and temporally fine-grained visual evidence. The LVLM surgeon is guided by a novel CoS prompting strategy, simulating human-like, stage-wise reasoning over surgical procedures. The machine assistant leverages pretrained encoders to extract spatial region features and video-level temporal dynamics, offering detailed grounding cues to complement the LVLM’s reasoning. The outputs of the two parts are then integrated via a lightweight yet expressive fusion block called MiST, which aligns spatial, temporal, and semantic information through attention-based aggregation to enable structured action prediction.

147  
148  
149  
150  
151

Finally, to evaluate in a fair and extensible way under realistic generalization scenarios, we design a flexible compositional split strategy that converts any existing surgical triplet recognition dataset into a compositional zero-shot benchmark. This ensures that individual components remain seen during training, while their combinations are held out for testing.

152  
153

## 3.1 SURGICAL REASONING AGENT WITH CHAIN OF SURGERY

154  
155  
156  
157  
158  
159

LVLMs possess a natural capacity for generalization across previously unseen images, videos, and text, owing to the vast and diverse data they are pre-trained on. However, the sparse and specialized nature of surgical visual data presents unique challenges that cannot be effectively addressed through general-purpose prompting alone. This low prevalence and domain specificity underscore the need for a multi-stage chain-of-surgery prompting paradigm to elicit clinically aligned, context-aware reasoning from the model.

160  
161

Analogous to the reasoning process of human surgeons, we propose a cognitive-awakening, three-stage analysis pipeline that progressively decouples the spatial and temporal information from surgical video clips, ultimately enabling structured triplet classification.

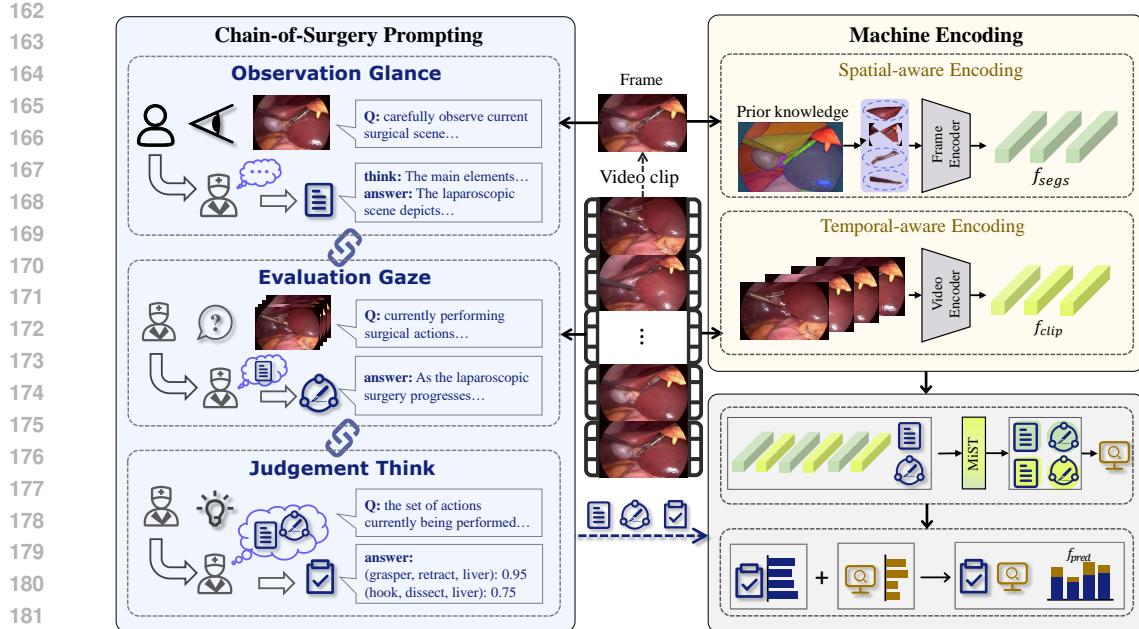


Figure 2: Framework of our CoCoS. We propose the Chain-of-Surgery Prompting (left) to establish cognitive awakening through three stages: Glance (scene-level observation), Gaze (action-level understanding), and Think (structured triplet prediction). Through this process of cognitive awakening, the model is aware of more surgical scene-related context. The spatial and temporal features extracted by Machine Encoding (right) are used in Multimodal image-Sequence-Text (MiST) to reinforce the stability of the whole framework.

In the first stage, termed open observation glance, a vision-language model endowed with visual reasoning capabilities observes a representative key frame from the surgical video in an open-ended manner. This stage is designed to initiate domain-specific reasoning, prompting the agent to adopt a surgery-oriented cognitive mode rather than a generic one. Following this phase, the agent is expected to internalize a clinical perspective in its subsequent reasoning.

In the second stage, called evaluation gaze, the agent is exposed to the entire surgical video clip, allowing it to perceive the temporal dynamics and procedural flow underlying the current operation. This stage emphasizes the recognition of task-relevant cues that emerge over time and are critical for accurate triplet inference.

Finally, in the judgement think stage, the agent performs structured inference by integrating the spatiotemporal context accumulated from the earlier stages. This phase is dedicated to holistic and clinically aligned decision-making, aiming to generate precise triplet predictions grounded in the long-range procedural context.

Compared to the Chain-of-Thought (CoT) paradigm (Figure 3), our Chain-of-Surgery (CoS) introduces a multimodal and clinically grounded reasoning flow. By progressively delivering both visual and textual cues across stages, CoS enables the agent to form a richer internal representation that aligns with human surgical cognition. As shown in Figure 4, the Glance stage primarily focuses on describing the visual scene, while the Gaze stage involves more causal reasoning, helping to resolve uncertainties in the initial description.

### 3.2 MACHINE ENCODING

While LVLMs excel in complex, multi-faceted reasoning tasks, their performance often deteriorates in simpler or lower-level perception tasks due to domain shifts and hallucination. To mitigate this, we incorporate machine encoding modules to provide stable, grounded representations of spatial and

216 temporal surgical cues. As illustrated in Figure 5, when LVLMs hallucinate in some circumstances,  
 217 the Machine Encoding module can correct these errors.  
 218

219 **3.2.1 SPATIAL AND TEMPORAL-AWARE REPRESENTATION.**

220 Given a video clip  $X = \{x_1, x_2, \dots, x_L\}$ , we first apply a segmentation model such as SAM on  
 221 every frame and get a series of segments as in Eq. 1, where  $N_i$  denotes the total number of segments  
 222 within the  $i$ -th frame of the clip:  
 223

$$224 \quad S = \left\{ [s_1^1, s_1^2, \dots, s_1^{N_1}], \dots, [s_L^1, s_L^2, \dots, s_L^{N_L}] \right\}. \quad (1)$$

227 To filter out valid segments unsupervisedly, i.e., the instruments and the anatomical structures, we  
 228 manually design prior rules based on domain knowledge such as the area and the continuity of  
 229 segmentation. As a result, we retain the top-k segmentation with the highest predicted IoU and  
 230 stability scores, provided that their mask pixel count exceeds a predefined threshold as follows:  
 231

$$232 \quad S' = \{[s_1^1, \dots, s_1^K, x_1], \dots, [s_L^1, \dots, s_L^K, x_L]\}, \quad (2)$$

$$233 \quad f_{\text{segs}} = \text{Enc}_{\text{img}}(S'), \quad f_{\text{clip}} = \text{Enc}_{\text{vid}}(X). \quad (3)$$

236 After adding the corresponding frame to the segment list as shown in Eq. 2, we feed  $S'$  and  $X$  into  
 237 the image encoder and video encoder, respectively, to obtain  $f_{\text{segs}} \in \mathbb{R}^{T \times (K+1) \times C' \times H' \times W'}$  and  
 238  $f_{\text{clip}} \in \mathbb{R}^{C' \times D}$ , where  $T$  denotes the number of frames within a clip,  $K$  is the number of retained  
 239 segmentations per frame.  
 240

241 In this way, the framework jointly leverages both the fine-grained spatial cues from the segmentation  
 242 masks and the global temporal dynamics from the video, ensuring that subsequent modules can  
 243 exploit complementary information from multiple levels of representation.  
 244

245 **3.2.2 MULTIMODAL IMAGE-SEQUENCE-TEXT FUSION.**

246 To enhance the reasoning ability of the LVLM and mitigate its susceptibility to hallucinations in  
 247 straightforward or unambiguous surgical scenarios, we propose a dedicated multimodal fusion mod-  
 248 ule, termed MiST. This module is specifically designed to integrate domain-grounded features de-  
 249 rived from static segmentation, temporal dynamics, and textual prompts. By consolidating these  
 250 heterogeneous modalities, MiST facilitates structured multimodal reasoning within the proposed  
 251 Chain-of-Surgery framework, thereby enabling more reliable and context-aware surgical video un-  
 252 derstanding.  
 253

254 We first enhance the raw text features via self-attention and project them to a common feature space:  
 255

$$256 \quad F_{\text{text}} = \text{Proj}_{\text{text}}(\text{SelfAtten}(f_{\text{text}})). \quad (4)$$

257 Next, we use  $F_{\text{text}}$  as a query to extract semantically aligned spatial representations. Specifically,  
 258 we compute instrument-related and target-related features using independent cross-attention blocks,  
 259 followed by residual fusion:  
 260

$$261 \quad f_{\text{segs}}^{\{\text{I,T}\}} = \text{Proj}_{\{\text{I,T}\}}(f_{\text{segs}}), \quad (5)$$

$$263 \quad F_{\{\text{I,T}\}} = \text{CrossAtten}_{\{\text{I,T}\}}(F_{\text{text}}, f_{\text{segs}}^{\{\text{I,T}\}}, f_{\text{segs}}^{\{\text{I,T}\}}) + f_{\text{segs}}^{\{\text{I,T}\}}. \quad (6)$$

265 For the verb component, we align temporal video features to the semantic context using a separate  
 266 cross-attention block. In this case, the temporal features serve as query tokens, the text as keys, and  
 267 the projected segmentation as value embeddings:  
 268

$$269 \quad F_V = \text{CrossAtten}_{\text{verb}}(\text{Proj}_{\text{clip}}(f_{\text{clip}}), F_{\text{text}}, \text{Proj}_{\text{seg}}(f_{\text{segs}})). \quad (7)$$

270  
271 3.3 COMPOSITIONAL ZERO-SHOT SURGICAL TRIPLET RECOGNITION

272 Traditional surgical triplet recognition tasks  
 273 assume that all candidate triplets appear during  
 274 training. While effective in limited settings,  
 275 substantial cases in real-world surgical  
 276 environments do not satisfy this as-  
 277 sumption. To simulate this realistic and  
 278 more challenging scenario, we propose com-  
 279 positional zero-shot surgical triplet recog-  
 280 nition—a new problem formulation aimed at  
 281 evaluating a model’s ability to generalize to  
 282 unseen compositions of previously observed  
 283 components.

284 Let  $\mathcal{T} = (i, v, t)$  denote the space of surgical  
 285 triplets, where each triplet is composed of an  
 286 instrument  $i \in I$ , an action verb  $v \in V$ , and  
 287 a target  $t \in T$ . In conventional settings, the  
 288 training and test sets share the same triplet  
 289 space  $\mathcal{T}_{\text{train}} = \mathcal{T}_{\text{test}}$ . In our compositional  
 290 zero-shot setup, however, we impose the fol-  
 291 lowing constraint:

$$(i, v, t) \in \mathcal{T}_{\text{test}} \text{ such that } (i, v, t) \notin \mathcal{T}_{\text{train}}, \quad (8)$$

$$i, v, t \in I_{\text{train}} \times V_{\text{train}} \times T_{\text{train}}. \quad (9)$$

---

**Algorithm 1** Compositional Zero-Shot Split Construction
 

---

**Input:** dataset of labeled frames  $\mathcal{D}$

**Parameter:**  $\gamma$

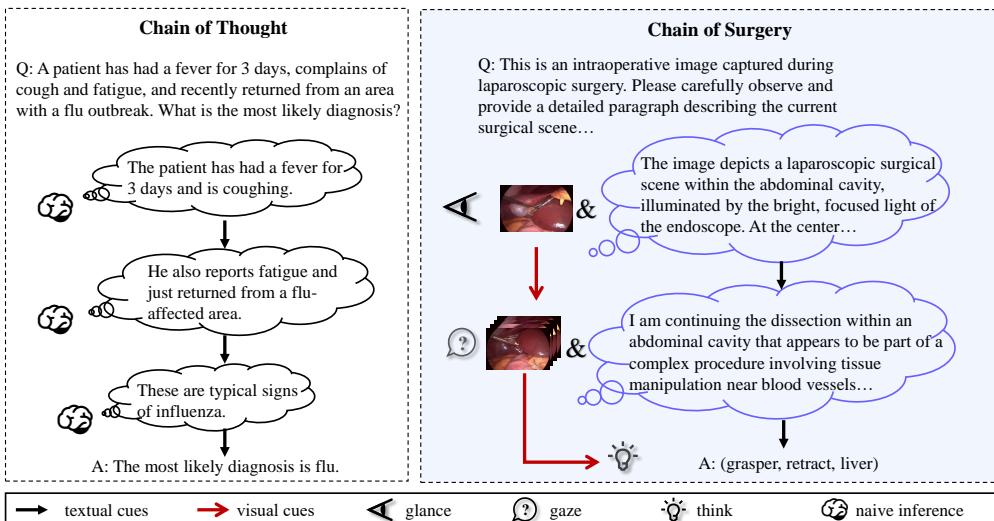
**Output:**  $\mathcal{T}_{\text{train}}, \mathcal{T}_{\text{test}}$

```

1: Initialize empty count map  $C$ 
2: for all frame  $(x, (i, v, t))$  in  $\mathcal{D}$  do
3:    $C[(i, v, t)] \leftarrow C[(i, v, t)] + 1$ 
4: end for
5:  $\mathcal{T}_{\text{test}} \leftarrow \{(i, v, t) \mid C[(i, v, t)] < \gamma\}$ 
6:  $\mathcal{T}_{\text{train}} \leftarrow \mathcal{T} \setminus \mathcal{T}_{\text{test}}$ 
7: for all  $(i, v, t)$  in  $\mathcal{T}_{\text{test}}$  do
8:   if  $i \notin I_{\text{train}}$  or  $v \notin V_{\text{train}}$  or  $t \notin T_{\text{train}}$  then
9:     Move  $(i, v, t)$  from  $\mathcal{T}_{\text{test}}$  to  $\mathcal{T}_{\text{train}}$ 
10:  end if
11: end for
12: return  $\mathcal{T}_{\text{train}}, \mathcal{T}_{\text{test}}$ 

```

---



314  
 315 Figure 3: Illustration of the difference between Chain-of-Thought and Chain-of-Surgery reasoning.  
 316 The left example shows a conventional Chain-of-Thought (CoT) process in a medical diagnosis sce-  
 317 nario, where reasoning unfolds solely through textual cues. In contrast, the right example presents a  
 318 Chain-of-Surgery (CoS) process for intraoperative scene understanding, which progresses through  
 319 three stages, which are Glance, Gaze, and Think, while explicitly incorporating both textual and  
 320 visual cues at each stage.

321 That is, each individual component must appear in the training set, but their composition must not.  
 322 This encourages models to perform compositional generalization, i.e., the ability to understand novel  
 323 compositions. Based on this setup, we design principled Algorithm 1 to transform existing surgical  
 triplet recognition datasets into compositional zero-shot splits.

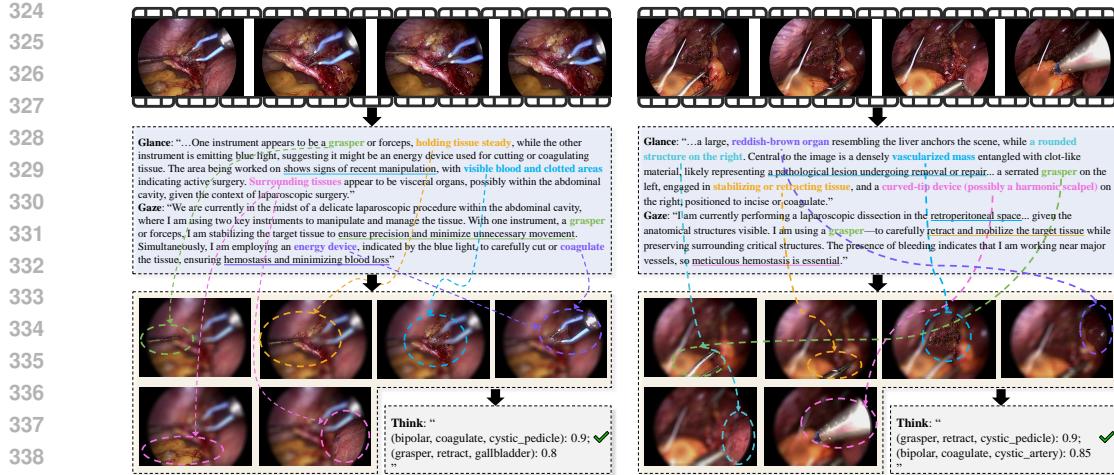


Figure 4: Visualization of textual description generated in glance and gaze. The multi-color lines indicate the corresponding phrases and segments in spatial-aware encoding, and the underlines highlight causal relations associated with the respective phrases.

| Type                                            | Method                        | mAP <sub>i</sub> | mAP <sub>v</sub> | mAP <sub>t</sub> | mAP <sub>ivt</sub> |
|-------------------------------------------------|-------------------------------|------------------|------------------|------------------|--------------------|
| Conventional                                    | RDV (Nwoye et al., 2022)      | <u>36.90</u>     | 10.84            | 6.91             | 2.52               |
|                                                 | RiT (Sharma et al., 2023)     | 26.75            | 12.60            | 12.49            | 2.02               |
| VLM                                             | HecVL (Yuan et al., 2024a)    | 21.91            | 17.69            | 16.43            | 7.78               |
|                                                 | PeskaVLP (Yuan et al., 2024b) | 20.10            | 16.23            | 14.14            | 6.72               |
|                                                 | SurgVLP (Yuan et al., 2025)   | 21.44            | 18.44            | 15.87            | 5.95               |
| <b>Ours (Qwen-VL-Max&amp;QVQ-Max)</b>           |                               | <b>52.54</b>     | <b>37.56</b>     | <u>21.55</u>     | <u>9.39</u>        |
| <b>Ours (Qwen3-VL-8B-Instruct&amp;Thinking)</b> |                               | 32.82            | <u>27.67</u>     | <u>22.30</u>     | <b>9.98</b>        |

Table 1: Performance comparison on the CholecT50 dataset with the compositional zero-shot setting.

Additionally, to adapt to the compositional zero-shot setup, we redefine the basic recognition unit from a single frame to a short video clip depicting the same action triplet label. Each clip consists of a fixed number of loosely consecutive frames (e.g., 16), all sampled from the same surgical video in their natural chronological order.

## 4 EXPERIMENTS

### 4.1 ZERO-SHOT TRIPLET SPLITTING

Following the data partitioning strategy introduced as Algorithm 1, we construct a compositional zero-shot setting by selecting 40 triplets with less than 80 labeled frames for testing and using the remaining 60 for training. The threshold  $\gamma = 80$  ensures a sufficient support for both training and evaluation on CholecT50. This splitting strategy guarantees that all test components are seen during training while enforcing compositional disjointness at the triplet level.

### 4.2 DATASET AND EVALUATION METRICS

We conduct experiments on the CholecT50 dataset, which contains dense frame-level triplet annotations from real-world laparoscopic cholecystectomy videos. To support temporal modeling and ensure semantic consistency, each video is divided into non-overlapping 16-frame clips, where all frames share the same triplet label and preserve their natural chronological order. This preprocessing ensures that each clip is both temporally and semantically coherent. We report mean average

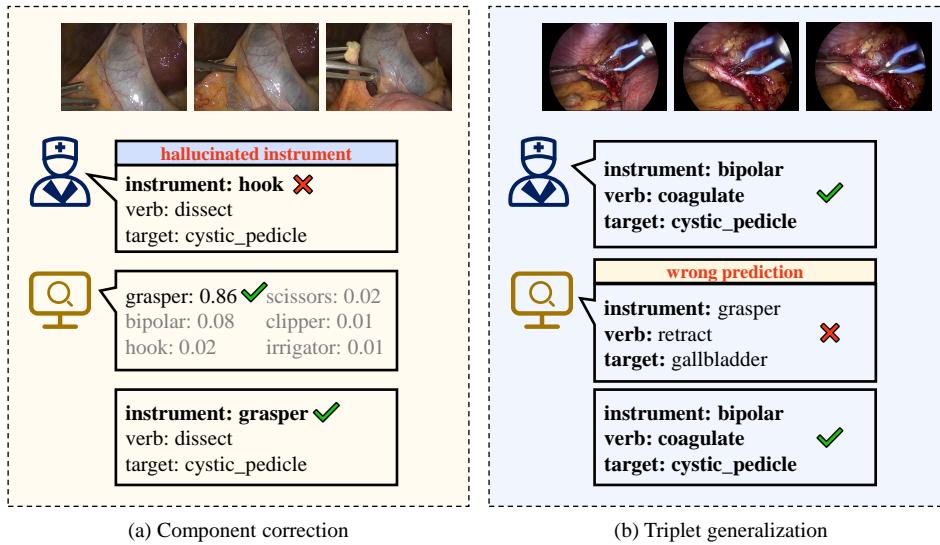


Figure 5: The case study of (a) component correction and (b) triplet generalization. While the conventional model excels at correcting hallucinated predictions in individual components like instruments, the LVLM shows stronger generalization in predicting unseen full triplets. This highlights their complementary strengths and the necessity of coordinated reasoning in surgical scene understanding.

| Method               | mAP <sub>i</sub> | mAP <sub>v</sub> | mAP <sub>t</sub> | mAP <sub>ivt</sub> |
|----------------------|------------------|------------------|------------------|--------------------|
| ME                   | <b>24.06</b>     | <b>19.34</b>     | <b>16.36</b>     | <b>2.50</b>        |
| Glance               | 21.20            | 32.90            | 19.57            | 3.90               |
| Glance+Gaze          | 38.19            | 34.06            | 18.25            | 6.52               |
| Glance+Gaze+Think    | 39.79            | 36.31            | 19.79            | 6.61               |
| Glance+Gaze+Think+ME | 52.54            | 37.56            | 21.55            | 9.39               |

Table 2: Ablation study for Chain-of-Surgery (CoS) with Qwen-VL-Max&QVQ-Max setting.

precision (mAP) of the whole triplet and every single component at the clip level, aligning with the model’s prediction granularity.

### 4.3 IMPLEMENTATION DETAILS

Our framework is implemented using PyTorch and trained on a single NVIDIA RTX 3090 GPU. For machine encoding, we employ ResNet-18 and MViT for spatial and temporal encoding, respectively. The textual descriptions generated during inference are encoded using BioBERT before fusing with MiST. For the chain of surgery, we use QVQ-Max for the Glance stage, which conducts open-ended visual observation and summarization of the current surgical scene, and Qwen-VL-Max for the subsequent Gaze and Think stages, which performs deeper reasoning about ongoing surgical actions and full triplet composition. **To further prove the power of CoS, we also conduct an extra experiment, which replaces QVQ-Max and Qwen-VL-Max with open-source Qwen3-VL-8B-Thinking and Qwen3-VL-8B-Instruct separately.**

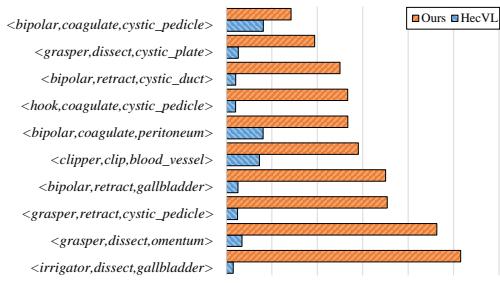
### 4.4 RESULTS AND ANALYSIS

We test our method on the CholecT50 dataset under the proposed compositional zero-shot setting, where the model must recognize novel combinations of surgical instruments, actions, and targets. As shown in Table 1, our approach outperforms both traditional visual recognition models and recent VLM-based pretrained methods across all evaluation metrics, including individual triplet components and the full triplet composition.

432 The most substantial improvement comes in verb prediction, with performance more than doubling  
 433 compared to the second-best approach. This is typically a shortage for VLMs, especially those  
 434 built on CLIP, which tend to struggle with temporal reasoning. In contrast, our Chain-of-Surgery  
 435 framework explicitly constructs temporality-related context with a quick glance at the scene, then  
 436 gazing on motion cues before thinking out a conclusion. That progression seems to help the model  
 437 better interpret dynamic patterns of activity.

438 For components that are mostly spatial, such as instrument and target recognition, our method con-  
 439 sistently outperforms existing baselines. Conventional models typically perform well on instru-  
 440 ments, likely because these tools have stable and distinctive appearances. Targets, on the other  
 441 hand, are more challenging due to their greater visual variability and frequent occlusion within the  
 442 surgical field. By grounding the visual evidence within temporal and textual context, it becomes eas-  
 443 ier to disambiguate tools from surrounding clutter and to more reliably identify subtle targets like  
 444 tissue regions or anatomical landmarks. This suggests that even for tasks dominated by static visual  
 445 cues, the added reasoning and multimodal alignment in our framework can provide a meaningful  
 446 boost, especially when visual signals alone are incomplete or ambiguous.

447 In full triplet prediction, our model achieves  
 448 9.39 on the  $mAP_{ivt}$  metric, which is nearly qua-  
 449 drupling the performance of RDV and outper-  
 450 forming all other VLM baselines. This reflects  
 451 the challenge of combining correct predictions  
 452 across all three components and indicates the  
 453 strength of our multimodal fusion and struc-  
 454 tured reasoning. As shown in Figure 6, due  
 455 to the strong generalization ability of CoS, our  
 456 method achieves particularly notable improve-  
 457 ments in several challenging triplet categories  
 458 compared to HecVL (Yuan et al., 2024a) which  
 459 performs second-best in  $mAP_{ivt}$ .



460 Figure 6: Top-10 triplets improvements in  $mAP_{ivt}$   
 461 of our framework compared to the HecVL (the  
 462 second-best method).

#### 463 4.5 ABLATION STUDY

464 We conduct an ablation study to validate the effectiveness of Chain-of-Surgery. Table 2 shows the  
 465 individual contributions of each stage in our Chain-of-Surgery (CoS) prompting. Starting from the  
 466 base case of Glance, which performs an initial scene description from a single frame, we observe  
 467 limited performance across all triplet components, especially in full triplet prediction. After adding  
 468 the Gaze stage, which introduces temporal dynamics by prompting based on short clips, brings a  
 469 noticeable improvement. Finally, incorporating the Think stage yields further gains, especially in  
 470 verb recognition, by improving  $mAP_{ivt}$  by 3.41 compared to the Glance stage.

471 When compared with the performance of the whole framework as shown in Table 1, we find the com-  
 472 plete framework yields a substantial jump to 9.39  $mAP_{ivt}$ . This gap underscores the complementary  
 473 role of our spatial-temporal visual encoding pipeline, which inherits robustness from conventional  
 474 models and grounds CoS reasoning more effectively.

## 475 5 CONCLUSION AND DISCUSSION

476 In this paper, we propose a novel Cognitive-Awakening Chain-of-Surgery (CoCoS) framework to  
 477 tackle the more challenging yet realistic task of compositional zero-shot surgical triplet recognition.  
 478 This design bridges the strengths of both conventional encoders and modern LVLMs. Experimental  
 479 results demonstrate that this staged reasoning approach makes LVLMs not only more interpretable  
 480 but also more reliable. The Glance–Gaze–Think pattern underpinning Chain-of-Surgery (CoS) mir-  
 481 rrors how humans perceive and interpret complex, dynamic surgical scenes and guides the model on  
 482 when to observe, when to focus, and when to conclude.

483 Future work will focus on narrowing the remaining gap between seen and unseen triplet compo-  
 484 sitions, which remains a key challenge in compositional generalization. Additionally, modeling more  
 485 adaptive temporal reasoning and enhancing real-time applicability in real-world scenarios are also  
 486 important directions for future optimization.

486 6 ETHICS STATEMENT  
487488 This study uses only publicly available endoscopic video datasets with all patient-identifiable infor-  
489 mation removed. No additional human or animal data were collected, and no personally identifiable  
490 information is involved. We do not foresee any ethical concerns in this work.  
491492 REFERENCES  
493

494 Tingxuan Chen, Kun Yuan, Vinkle Srivastav, Nassir Navab, and Nicolas Padoy. Text-driven  
495 adaptation of foundation models for few-shot surgical workflow analysis. *arXiv preprint*  
496 *arXiv:2501.09555*, 2025.

497 Shuangchun Gui and Zhenkun Wang. Tail-enhanced representation learning for surgical triplet  
498 recognition. In *International Conference on Medical Image Computing and Computer-Assisted*  
499 *Intervention*, pp. 689–699, 2024.

500 Ming Hu, Peng Xia, Lin Wang, Siyuan Yan, Feilong Tang, Zhongxing Xu, Yimin Luo, Kaimin Song,  
501 Jürgen Leitner, Xuelian Cheng, et al. Ophnet: A large-scale video benchmark for ophthalmic  
502 surgical workflow understanding. In *European Conference on Computer Vision*, pp. 481–500.  
503 Springer, 2024.

504 Ming Hu, Zhengdi Yu, Feilong Tang, Kaiwen Chen, Yulong Li, Imran Razzak, Junjun He, Tolga  
505 Birdal, Kaijing Zhou, and Zongyuan Ge. Towards dynamic 3d reconstruction of hand-instrument  
506 interaction in ophthalmic surgery. *arXiv preprint arXiv:2505.17677*, 2025a.

507 Ming Hu, Kun Yuan, Yaling Shen, Feilong Tang, Xiaohao Xu, Lin Zhou, Wei Li, Ying Chen,  
508 Zhongxing Xu, Zelin Peng, et al. Ophclip: Hierarchical retrieval-augmented learning for oph-  
509 thalmic surgical video-language pretraining. In *Proceedings of the IEEE/CVF International Con-  
510 ference on Computer Vision*, pp. 19838–19849, 2025b.

511 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large  
512 language models are zero-shot reasoners. *Advances in Neural Information Processing Systems*,  
513 35:22199–22213, 2022.

514 Pengpeng Li, Xiangbo Shu, Chun-Mei Feng, Yifei Feng, Wangmeng Zuo, and Jinhui Tang. Surgical  
515 video workflow analysis via visual-language learning. *npj Health Systems*, 2:5, 2025a.

516 Wei Li, Ming Hu, Guoan Wang, Lihao Liu, Kaijing Zhou, Junzhi Ning, Xin Guo, Zongyuan Ge,  
517 Lixu Gu, and Junjun He. Ophora: a large-scale data-driven text-guided ophthalmic surgical video  
518 generation model. In *International Conference on Medical Image Computing and Computer-  
519 Assisted Intervention*, pp. 425–435. Springer, 2025b.

520 Yuchong Li, Tong Xia, Huolong Luo, Baochun He, and Fucang Jia. Mt-fist: a multi-task fine-grained  
521 spatial-temporal framework for surgical action triplet recognition. *IEEE Journal of Biomedical  
522 and Health Informatics*, 27:4983–4994, 2023.

523 Yun Li, Zhe Liu, Hang Chen, and Lina Yao. Context-based and diversity-driven specificity in com-  
524 positional zero-shot learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision  
525 and Pattern Recognition*, pp. 17037–17046, 2024.

526 Wenjun Lin, Yan Hu, Huazhu Fu, Mingming Yang, Chin-Boon Chng, Ryo Kawasaki, Cheekong  
527 Chui, and Jiang Liu. Instrument-tissue interaction detection framework for surgical video under-  
528 standing. *IEEE Transactions on Medical Imaging*, 43:2803–2813, 2024.

529 Junyan Liu, Peng Qiao, Yong Dou, Sidun Liu, Lu Shen, Xi Wang, and Wenyu Li. Surgical action  
530 triplet recognition assisted by foundation models-based instrument localization. In *International  
531 Conference on Neural Information Processing*, pp. 383–396, 2024.

532 Chang Han Low, Ziyue Wang, Tianyi Zhang, Zhitao Zeng, Zhu Zhuo, Evangelos B Mazomenos,  
533 and Yueming Jin. Surgraw: Multi-agent workflow with chain-of-thought reasoning for surgical  
534 intelligence. *arXiv preprint arXiv:2503.10265*, 2025.

540 Ishan Misra, Abhinav Gupta, and Martial Hebert. From red wine to red tomato: Composition  
 541 with context. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*  
 542 *Recognition*, pp. 1792–1801, 2017.

543

544 Muhammad Ferjad Naeem, Yongqin Xian, Federico Tombari, and Zeynep Akata. Learning graph  
 545 embeddings for compositional zero-shot learning. In *Proceedings of the IEEE/CVF Conference*  
 546 *on Computer Vision and Pattern Recognition*, pp. 953–962, 2021.

547 Nihal V Nayak, Peilin Yu, and Stephen H Bach. Learning to compose soft prompts for compositional  
 548 zero-shot learning. *arXiv preprint arXiv:2204.03574*, 2022.

549

550 Chinedu Innocent Nwoye, Tong Yu, Cristians Gonzalez, Barbara Seeliger, Pietro Mascagni, Didier  
 551 Mutter, Jacques Marescaux, and Nicolas Padoy. Rendezvous: Attention mechanisms for the  
 552 recognition of surgical action triplets in endoscopic videos. *Medical Image Analysis*, 78:102433,  
 553 2022.

554 Chinedu Innocent Nwoye, Deepak Alapatt, Tong Yu, Armine Vardazaryan, Fangfang Xia, Zixuan  
 555 Zhao, Tong Xia, Fucang Jia, Yuxuan Yang, Hao Wang, et al. Cholectriplet2021: A benchmark  
 556 challenge for surgical action triplet recognition. *Medical Image Analysis*, 86:102803, 2023a.

557 Chinedu Innocent Nwoye, Tong Yu, Saurav Sharma, Aditya Murali, Deepak Alapatt, Armine Var-  
 558 dazaryan, Kun Yuan, Jonas Hajek, Wolfgang Reiter, Amine Yamlahi, et al. Cholectriplet2022:  
 559 Show me a tool and tell me the triplet—an endoscopic vision challenge for surgical action triplet  
 560 detection. *Medical Image Analysis*, 89:102888, 2023b.

561

562 Jialun Pei, Jiaan Zhang, Guanyi Qin, Kai Wang, Yueming Jin, and Pheng-Ann Heng. Instrument-  
 563 tissue-guided surgical action triplet detection via textual-temporal trail exploration. *IEEE Trans-*  
 564 *actions on Medical Imaging*, 2025.

565 Chen Qiu, Zhiqiang Xie, Maofu Liu, and Huijun Hu. Explainable knowledge reasoning via thought  
 566 chains for knowledge-based visual question answering. *Information Processing & Management*,  
 567 61:103726, 2024.

568

569 Saurav Sharma, Chinedu Innocent Nwoye, Didier Mutter, and Nicolas Padoy. Rendezvous in time:  
 570 an attention-based temporal fusion approach for surgical triplet recognition. *International Journal*  
 571 *of Computer Assisted Radiology and Surgery*, 18:1053–1059, 2023.

572

573 Saurav Sharma, Didier Mutter, and Nicolas Padoy. fine-clip: Enhancing zero-shot fine-grained  
 574 surgical action recognition with vision-language models. *arXiv preprint arXiv:2503.19670*, 2025.

575

576 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny  
 577 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*  
 578 *Neural Information Processing Systems*, 35:24824–24837, 2022.

579

580 Nan Xi, Jingjing Meng, and Junsong Yuan. Chain-of-look prompting for verb-centric surgical triplet  
 581 recognition in endoscopic videos. In *Proceedings of the 31st ACM International Conference on*  
 582 *Multimedia*, pp. 5007–5016, 2023.

583

584 Guangyue Xu, Joyce Chai, and Parisa Kordjamshidi. Gipcol: graph-injected soft prompting for  
 585 compositional zero-shot learning. In *Proceedings of the IEEE/CVF Winter Conference on Appli-*  
 586 *cations of Computer Vision*, pp. 5774–5783, 2024.

587

588 Kun Yuan, Vinkle Srivastav, Nassir Navab, and Nicolas Padoy. Hecvl: hierarchical video-language  
 589 pretraining for zero-shot surgical phase recognition. In *International Conference on Medical*  
 590 *Image Computing and Computer-Assisted Intervention*, pp. 306–316, 2024a.

591

592 Kun Yuan, Vinkle Srivastav, Nassir Navab, and Nicolas Padoy. Procedure-aware surgical video-  
 593 language pretraining with hierarchical knowledge augmentation. *Advances in Neural Information*  
 594 *Processing Systems*, 37:122952–122983, 2024b.

595

596 Kun Yuan, Vinkle Srivastav, Tong Yu, Joel L Lavanchy, Jacques Marescaux, Pietro Mascagni, Nas-  
 597 sir Navab, and Nicolas Padoy. Learning multi-modal representations by watching hundreds of  
 598 surgical video lectures. *Medical Image Analysis*, pp. 103644, 2025.

594  
595

## A APPENDIX

596  
597

### A.1 USE OF LARGE LANGUAGE MODELS (LLMs)

598  
599

We used large language models (LLMs), specifically OpenAI’s ChatGPT (GPT-4o/5), as an assistive tool during the preparation of this paper. The LLMs were used for language polishing, grammar refinement, and improving readability of the text. All technical content, data interpretation, and scientific contributions were generated entirely by the authors. The authors take full responsibility for the correctness, originality, and integrity of the content presented in this paper.

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647