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Abstract

Self-Supervised Learning (SSL) methods often consist of elaborate pipelines with
hand-crafted data augmentations and computational tricks. However, it is unclear
what is the provably minimal set of building blocks that ensures good downstream
performance. The recently proposed instance discrimination method, coined DIET,
stripped down the SSL pipeline and demonstrated how a simple SSL algorithm
can work by predicting the sample index. Our work proves that DIET recovers
cluster-based latent representations, while successfully identifying the correct
cluster centroids in its classification head. We demonstrate the identifiability of
DIET on synthetic data adhering to and violating our assumptions, revealing that
the recovery of the cluster centroids is even more robust than the feature recovery.

1 Introduction

Self-Supervised Learning (SSL) methods use unlabeled datasets to learn representations by solving an
auxiliary task, thus bypassing time-consuming labelling efforts. Importantly, co-occurance–based SSL
relies on positive data pairs (similar samples, e.g., an original sample and a transformed/augmented
one) and negative data pairs (dissimilar samples, often randomly drawn from the dataset). Contrastive
and non-contrastive learning, the two prominent families of SSL methods, utilize positives and
negatives differently, though they are theoretically connected [Balestriero and LeCun, 2022]. Con-
trastive Learning (CL) [Chen et al., 2020, Zimmermann et al., 2021, von Kügelgen et al., 2021, Lyu
et al., 2021, Eastwood et al., 2023] attracts positive pairs’ and repels negative pairs’ representations.
Non-contrastive learning [Bardes et al., 2021, Zbontar et al., 2021, Mialon et al., 2022] only uses
positive pairs, and avoids representation collapse with strategies such as momentum encoders or
covariance regularization. Unfortunately, the many actively developed Self-Supervised Learning
methods with such computational tricks potentially hinder selecting the best performing and simplest
SSL method for a given task. Recently, Ibrahim et al. [2024] proposed DIET, a SSL method that
strips away unnecessary details by reducing the auxiliary task to a simple instance classification
paradigm, and showed competitive performance on small datasets.
Identifiability theory, particularly Independent Component Analysis (ICA) [Comon, 1994, Hyvarinen
et al., 2001] studies guarantees of probabilistic models to recover the ground-truth latent variables
in a probabilistic latent variable model (LVM). Recent advances in nonlinear ICA theory proposed
multiple self-supervised/weakly supervised models with identifiability guarantees [Hyvarinen et al.,
2019, Gresele et al., 2019, Khemakhem et al., 2020a, Hälvä et al., 2021, Hyvarinen and Morioka,
2016, Khemakhem et al., 2020b, Locatello et al., 2020, Morioka and Hyvarinen, 2023, Morioka et al.,
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Figure 1: DIET [Ibrahim et al., 2024] learns identifiable features: DIET learns a linear
(N × d)−dimensional classification head W on top of a nonlinear encoder f through an instance
discrimination objective (1). For unit-normalized f(xn), DIET maps samples and their augmenta-
tions close to the cluster vector vc corresponding to the class as if sampled from a von Mises-Fisher
(vMF) distribution, centered around the cluster vector. In case of duplicate samples, i.e., matching
class labels, the corresponding rows ofW will be the same, as shown for x1 and xi with w1 = wi

2021]. Several papers study a contrastive scenario, [Hyvarinen and Morioka, 2016, Hyvarinen et al.,
2019, Zimmermann et al., 2021, von Kügelgen et al., 2021, Rusak et al., 2024], providing a possible
theoretical explanation for CL’s practical success.
Our paper investigates whether DIET’s competitive performance can be explained by identifiability
theory. We model the data generating process (DGP) in a new, cluster-based way, and show that
DIET’s learned representation is linearly related to the ground truth representation. We also show
how DIET’s classification head recovers the cluster centroids, a connection to clustering that is absent
from prior identifiability works for Self-Supervised Learning. Unlike other SSL solutions such as
SimCLR [Chen et al., 2020], BYOL [Grill et al., 2020], BarlowTwins [Zbontar et al., 2021], or
VICReg [Bardes et al., 2021], DIET’s training objective applies to the same representation that is
used post-training for solving downstream tasks. More precisely, no projector network is removed
post-training. This implies that our theoretical guarantees directly apply to the SSL representation
being used post-training, as opposed to other identifiability results in SSL [Zimmermann et al., 2021,
von Kügelgen et al., 2021, Daunhawer et al., 2023, Rusak et al., 2024]. We corroborate our theoretical
claims on synthetic data adhering to our assumptions—we even show that good performance is
possible when the assumptions are violated. Notably, we observe that cluster centroids recovery
from DIET’s classification head is more robust than ground-truth representation prediction from the
learned representation.

2 Identifiability guarantees for DIET

This section presents our main theoretical contribution. After summarizing DIET, we introduce a
mildly constrained theoretical setup, in which DIET provably recovers the correct latents. The setup
is followed by the main result and a discussion on the intuition for our theoretical model.

DIET [Ibrahim et al., 2024]. DIET solves an instance classification problem, where each sample x
in the training dataset has a unique instance label i. Augmentations do not affect this label. We have a
composite modelW ◦f , where the backbone f produces d-dimensional representations, and a linear,
bias-free classification headW that maps these representations to a logit vector equal in size to the
cardinality of the training dataset. If the parameter vector corresponding to logit i is denoted aswi,
thenW effectively computes similarity scores (scalar products) between the wi’s and embeddings
f(x). DIET trains this architecture to predict the correct instance label using multinomial regression
(with f ,W and temperature β as variables):

L(f ,W , β) = E(x,i)

[
− ln

eβ⟨wi,f(x)⟩∑
j e

β⟨wj ,f(x)⟩

]
. (1)

Setup. For our theory, we need to formally define a latent variable model (LVM) for the data
generating process (DGP) to assess the identifiability of latent factors. For this, we take a cluster-
centric approach, representing semantic classes by cluster vectors, similar to proxy-based metric
learning [Kirchhof et al., 2022]. Then, we model the samples of a class with a von Mises-Fisher (vMF)
distribution, centered around the class’s cluster vector. This conditional distribution jointly models
intra-class sample selection and augmentations of samples, together called intra-class variances.
Our conditional does not mean that each sample pair transforms into each other via augmentations
with high probability. It does mean that—since we assume an LVM on the hypersphere; i.e., all
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semantic concepts (color, position, etc.) correspond to a continuous latent factor—the latent manifold
is connected, or equivalently, that the augmentation graph is connected, which is an assumption used
in [Wang et al., 2022, Balestriero and LeCun, 2022, HaoChen et al., 2022]. We provide an overview
of our assumptions, and defer additional details to Assums. 1C in Appx. A:
Assumptions 1 (DGP with vMF samples around cluster vectors. Details omitted.).

(i) There is a finite set of semantic classes C , represented by a set of unit-norm d-dimensional
cluster-vectors {vc|c ∈ C } ⊆ Sd−1. The system {vc} is sufficiently large and spread out.

(ii) Any sample i belongs to exactly one class c = C(i).
(iii) The latent z ∈ Sd−1 of our data sample with instance label i is drawn from a vMF distribution

around the cluster vector vc of class c = C(i):

z ∼ p(z|c) ∝ eα⟨vc,z⟩. (2)

(iv) Sample x is generated by passing latent z through an injective generator function: x = g(z).

Main result. Under Assums. 1, we prove the identifiability of both the latent representations and
the cluster vectors, vc, in all four combinations of unit-normalized (i.e., when the latent space is the
hypersphere, commonly used, e.g., in InfoNCE [Chen et al., 2020]); and non-normalized (as in the
original DIET paper [Ibrahim et al., 2024]) latents, z, and weight vectors, wi . We state a concise
version of our result and defer the full treatment and the proof to Thm. 1C in Appx. A:
Theorem 1 (Identifiability of latents drawn from vMF around cluster vectors. Details omitted.). Let
(f ,W , β) globally minimize the DIET objective (1) under the following additional constraints:
C3. the embeddings f(x) are unnormalized, while the wi’s are unit-normalized. Then wi identifies

the cluster vector vC(i) up to an orthogonal linear transformation O: wi = OvC(i), for any i.
Furthermore, the inferred latents z̃ = f(x) identify the ground-truth latents z up to the same
orthogonal transformation, but scaled.

C4. neither the embeddings f(x) nor the wi’s are unit-normalized. Then the cluster vectors vc and
the latent z are identified up to an affine linear and linear transformation, respectively.

In all cases, the weight vectors belonging to samples of the same class are equal, i.e., for any i, j,
C(i) = C(j) implies wi = wj .

Intuition. DIET assigns a different (instance) label and a unique weight vectorwi to each training
sample. The cross-entropy objective is optimized if the trained neural network can distinguish
between the samples. Thus, the learned representation z̃ = f(x) should capture enough information
to distinguish different samples, even from the same class.
However, the weight vectorswi’s cannot be sensitive to the intra-class sample variance or the sample’s
instance label i (because multiple instances will usually belong to the same class). This leads to the
weight vectors taking the values of the cluster vectors. As cluster vectors only capture some statistics
of the conditional, feature recovery is more fine-grained than cluster identifiability. The interaction
between the two is dictated by the cross-entropy loss, which is minimized if the representation z̃
is most similar to its own assigned weight vector wi. Fig. 1 provides a visualization conveying the
intuition behind Thm. 1.

3 Experiments

In the following section, we empirically verify the claims made in Thm. 1 in the synthetic setting.
We generate data samples according to Assums. 1: ground-truth latents are sampled around cluster
centroids vc following a vMF distribution. Data augmentations, which share the same instance label
i, are sampled from the same vMF distribution around vc.

Synthetic Setup. We consider N data samples of dimensionality d generated from z ∼ p(z|vc),
sampled around a set of |C | class vectors, vc uniformly distributed across the unit hyper-sphere. We
use an invertible multi-layer perceptron (MLP) to map ground truth latents to data samples. We
train a classification headW =[w⊤

i |Ni=1] and an MLP encoder that maps samples to representations
z̃ ∈ Rd using the DIET objective (1). While to verify Thm. 1 case C4., we do not normalizeW , we
do unit-normalize the weight vectors to validate Thm. 1 case C3. We verify our theoretical claims by
measuring the predictability of the ground-truth z from z̃ and vc fromwi using the R2 score on a
held-out dataset. For identifiability up to orthogonal linear transformations, we train linear mappings
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with no intercept, assess the R2 score and verify that the singular values of this transformation
converge to one, while for identifiability up to affine linear transformations, we simply assess the
predictive accuracy of a linear predictor with intercept.

Table 1: Identifiability in the synthetic setup. Mean ± standard deviation across 5 random seeds.
Settings that match and violate our theoretical assumptions are ✓ and ✗ respectively. We report the
R2 score for linear mappings, z̃ → z andwi → vc for cases with normalized (o) and not normalized
(a) wi. For normalized wi, we verify that mappings z̃ → z are orthogonal by reporting the mean
absolute error between their singular values and those of an orthogonal transformation.

normalized wi cases unnormalized wi

R2
o(↑) MAEo(↓) R2

a (↑)
N d |C | p(z|vc) M. z̃ → z wi → vc z̃ → z wi → vc z̃ → z wi → vc

103 5 100 vMF(κ=10) ✓ 98.6±0.01 99.9±0.00 0.01±0.00 0.00±0.00 99.0±0.00 99.9±0.00

105 5 100 vMF(κ=10) ✓ 98.2±0.01 99.5±0.00 0.00±0.00 0.00±0.00 99.7±0.00 99.8±0.00

103 5 100 vMF(κ=10) ✓ 98.6±0.01 99.9±0.00 0.01±0.00 0.00±0.00 99.0±0.00 99.9±0.00

103 10 100 vMF(κ=10) ✓ 92.5±0.01 99.6±0.00 0.01±0.00 0.00±0.00 93.0±0.03 99.6±0.00

103 20 100 vMF(κ=10) ✓ 70.8±0.02 97.1±0.01 0.03±0.00 0.00±0.00 81.9±0.01 99.7±0.00

103 5 10 vMF(κ=10) ✓ 88.6±0.05 85.7±0.15 0.02±0.00 0.00±0.00 90.0±0.05 99.0±0.03

103 5 100 vMF(κ=10) ✓ 98.6±0.01 99.9±0.01 0.01±0.00 0.00±0.00 99.0±0.00 99.9±0.00

103 5 1000 vMF(κ=10) ✓ 99.3±0.00 99.9±0.00 0.00±0.00 0.00±0.00 99.2±0.00 99.9±0.00

103 5 100 vMF(κ=5) ✓ 98.6±0.01 99.9±0.01 0.01±0.00 0.00±0.00 99.0±0.00 99.8±0.00

103 5 100 vMF(κ=10) ✓ 99.0±0.00 99.9±0.00 0.00±0.00 0.00±0.00 99.1±0.00 99.9±0.00

103 5 100 vMF(κ=50) ✓ 45.0±0.06 49.7±0.06 0.30±0.00 0.00±0.00 72.5±0.03 75.5±0.00

103 5 100 vMF(κ=10) ✓ 98.6±0.01 99.9±0.01 0.01±0.00 0.00±0.00 99.0±0.00 99.9±0.00

103 5 100 Laplace (b=1.0) ✗ 85.2±0.01 99.7±0.01 0.01±0.00 0.00±0.00 85.4±0.00 99.5±0.00

103 5 100 Normal (σ2=1.0) ✗ 98.7±0.00 99.8±0.00 0.01±0.00 0.00±0.00 98.6±0.00 99.6±0.00

Results. Tab. 1 depicts our results for synthetic experiments. For both cases, when W is and
is not unit-normalized, the R2 score for both the latents and the cluster vectors is close to 100%,
except when the latent dimensionality is 20—such scalability problems are a common artifact in
SSL [Zimmermann et al., 2021, Rusak et al., 2024]. For unit-normalizedW , the MAE is close to zero
even in such cases. For a higher concentration of samples around vc (i.e., κ=50) as well as a lower
number of clusters (i.e., |C |=10), the R2 score decreases, which is also a common phenomenon,
and is possibly explained by too strong augmentation overlap [Wang et al., 2022, Rusak et al., 2024].
For a low number of clusters, high κ and a fixed number of training samples, the concentration of
samples in regions surrounding centroids, vc, increases, a setting, refered to as “overly overlapping
augmentations”, known to be suboptimal and leading to a drop in downstream performance [Wang
et al., 2022]. Our results also suggest that even under model misspecification (last two rows with
non-vMF latent distributions), identifiability still holds. We provide an additional ablation study for
the concentration of vc across the unit hyper-sphere in Appx. B.

4 Discussion

Limitations. Our analysis proves the identifiability of DIET [Ibrahim et al., 2024] with a cluster-
based DGP, thus providing the first such result for self-supervised parametric instance classification
methods. However, our theory cannot yet explain the importance of label smoothing in DIET, noted
by Ibrahim et al. [2024], and it also remains to be seen whether such identifiability results scale
for larger datasets, for which the large-dimensional classifier head in DIET in the original form is
prohibitive. It also remains an issue that the vMF conditional distribution around cluster centroids
jointly models intra-class sample selection and augmentations of samples, as we suspect that the
supports of augmentation spaces of different samples do not overlap as much as it would be suggested
by the choice of conditional. Also, we leave it for future work to investigate a formal connection to
nonlinear ICA methods such as InfoNCE [Zimmermann et al., 2021] or the Generalized Contrastive
Learning framework [Hyvarinen et al., 2019].
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Conclusion. By modeling the DGP in DIET [Ibrahim et al., 2024] with a cluster-based latent
variable model, we provide identifiability results for both the latent representation and the cluster
vectors, which is the first of its kind for self-supervised instance discrimination methods. We also
showcase this in synthetic settings, where we recover both the latents and cluster vectors even
under model misspecification. We hope that our work inspires further research into investigating the
theoretical guarantees of simplified but effective SSL methods like DIET.
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A Identifiability of latents drawn from a vMF around cluster vectors

In this section, we formally state and prove our core theoretical result. We start off by defining
and discussing a useful notion, then introduce our assumptions on the data generating process. We
proceed with the main statement and finish with the proof.

A.1 Affine Generator Systems

Definition 1 (Affine Generator System). A system of vectors {vc ∈ Rd|c ∈ C } is called an affine
generator system if the affine hull defined by them is Rd. More precisely, any vector in Rd is an
affine linear combination of the vectors in the system. Put into symbols: for any v ∈ Rd there exist
coefficients αc ∈ R, such that

v =
∑
c∈C

αcvc and
∑
c∈C

αc = 1. (3)

Lemma 1 (Properties of affine generator systems). The following hold for any affine generator
system {vc ∈ Rd|c ∈ C }:

1. for any a ∈ C the system {vc − va|c ∈ C } is now a generator system of Rd;
2. the invertible linear image of an affine generator system is also an affine generator system.

A.2 Assumptions and main result

Assumptions 1C (DGP with vMF samples around cluster vectors). Assume the following DGP:
(i) There exists a finite set of classes C , represented by a set of unit-norm d-dimensional cluster-

vectors {vc|c ∈ C } ⊆ Sd−1 such that they form an affine generator system of Rd.
(ii) There is a finite set of instace labels I and a well-defined, surjective class function C : I → C

(every label belongs to exactly one class and every class is in use).
(iii) Our data sample is labelled with an instance label chosen uniformly, i.e., I ∈ Uni(I ) and,

hence, belongs to class C = C(I).
(iv) The latent z ∈ Sd−1 of our data sample with label I is drawn from a vMF distribution around

the cluster vector vC , where C = C(I):

z ∼ p(z|C) ∝ eα⟨vC ,z⟩. (4)

(v) The data sample x is generated by passing the latent z through a continuous and injective
generator function g :Sd−1→RD, i.e., x = g(z).

Assume that, using the DIET objective (6), we train a continuous encoder f : RD → Rd on x and a
linear classification head W on top of f . The rows of W are

{
w⊤

i | i ∈ I
}

. In other words, W
computes similarities (scalar products) between its rows and the embeddings:

W : f(x) 7→
[
⟨wi,f(x) ⟩ | i∈I

]
. (5)

In DIET, we optimize the following objective amongst all possible continuous encoders f , linear
classifiersW , and β > 0:

L(f ,W , β) = E(x,I)

[
− ln

eβ⟨wI ,f(x)⟩∑
j∈I eβ⟨wj ,f(x)⟩

]
(6)

Theorem 1C (Identifiability of latents drawn from a vMF around cluster vectors). Let (f ,W , β)
globally minimize the DIET objective (6) under the following additional constraints:
C1. both the embeddings f(x) and wi’s are unit-normalized. Then:

(a) h = f ◦ g is orthogonal linear, i.e., the latents are identified up to an orthogonal linear
transformation;

(b) wi = h(vC(i)) for any i ∈ I , i.e., wi’s identify the cluster-vectors vc up to the same
orthogonal linear transformation;

(c) β = α, the temperature of the vMF distribution is also identified.
C2. the embeddings f(x) are unit-normalized, the wi’s are unnormalized. Then:

(a) h = f ◦ g is orthogonal linear;
(b) wi =

α
βh(vC(i)) +ψ for any i ∈ I , where ψ is a constant vector independent of i.
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C3. the embeddings f(x) are unnormalized, while the wi’s are unit-normalized. If the system
{vc|c} is diverse enough in the sense of Assum. 2, then:
(a) wi = OvC(i), for any i ∈ I , where O is orthogonal linear;
(b) h = f ◦ g = α

βO with the same orthogonal linear transformation, but scaled with α
β .

C4. neither the embeddings f(x) nor the rows ofW are unit-normalized. Then:
(a) h = f ◦ g is linear;
(b) wi identifies vC(i) up to an affine linear transformation.

Furthermore, in all cases, the row vectors that belong to samples of the same class are equal, i.e., for
any i, j ∈ I , C(i) = C(j) implies wi = wj .

Remark. In cases C2 and C4, the cluster vectors are unnormalized and, therefore, can absorb the
temperature parameter β. Thus β can be set to 1 without loss of generality. In case C3, it is f that
can absorb β.

Assumption 2 (Diverse data). The system {vc|c ∈ C } is said to be diverse enough, if the following
|C | × 2d matrix has full column rank of 2d: · · · · · · · · · · · · · · · · · ·

(vc ⊙ vc)⊤ v⊤c
· · · · · · · · · · · · · · · · · ·

 , (7)

where [x⊙ y]i = xiyi is the elementwise- or Hadamard product.

As long as |C | ≥ 2d, this property holds almost surely w.r.t. the Lebesgue-measure of Sd−1 or any
continuous probability distribution of vc ∈ Sd−1.

Proof. Step 1: Deriving an equation characterizing the global optimizers of the objective.

Rewriting the objective in terms of latents: we plug the expressionx = g(z) into the optimization
objective (6) to express the dependence in terms of the latents z:

L(f ,W , β) = E(z,I)

[
− ln

eβ⟨wI ,f◦g(z)⟩∑
j∈I eβ⟨wj ,f◦g(z)⟩

]
= Lz(f ◦ g,W , β), (8)

where the optimization is still over f (and not h = f ◦ g).
We note that the generator g is, by assumption, continuously invertible on the compact set Sd−1.
Therefore, its image g(Sd−1) is compact, too, and its inverse g−1 is also continuous. By Tietze’s
extension theorem [Wikipedia, 2024b], g−1 can be continuously extended to a function F : RD →
Sd−1. Therefore, any continuous function h : Sd−1 → Rd can take the role of f ◦ g by substituting
f = h ◦ F continuous, since now f ◦ g = h ◦ (F ◦ g) = h ◦ idSd−1 = h.
Hence, minimizing Lz(f ◦ g,W , β) (and by extension L(f ,W , β)) for continuous f equates to
minimizing Lz(h,W , β) for continuous h:

Lz(h,W , β) = E(z,I)

[
− ln

eβ⟨wI ,h(z)⟩∑
j∈I eβ⟨wj ,h(z)⟩

]
. (9)

Expressing the condition for global optimality of the objective: We rewrite the objective (9) by
1) using the indicator variable δI=i of the event {I = i} and 2) applying the law of total expectation:

Lz(h,W , β) = E(z,I)

[
−
∑
i∈I

δI=i ln
eβ⟨wi,h(z)⟩∑

j∈I eβ⟨wj ,h(z)⟩

]
(10)

= Ez

[
EI

[
−
∑
i∈I

δI=i ln
eβ⟨wi,h(z)⟩∑

j∈I eβ⟨wj ,h(z)⟩

∣∣∣∣ z]
]
. (11)
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Using the properties that E
[
Af(B)

∣∣B] = E
[
A
∣∣B]f(B) and that E[δI=i] = P(I = i), we conclude

that:

Lz(h,W , β) = Ez

[
−
∑
i∈I

EI

[
δI=i ln

eβ⟨wi,h(z)⟩∑
j∈I eβ⟨wj ,h(z)⟩

∣∣∣∣ z]
]

(12)

= Ez

[
−
∑
i∈I

EI

[
δI=i

∣∣z] ln eβ⟨wi,h(z)⟩∑
j∈I eβ⟨wj ,h(z)⟩

]
(13)

= Ez

[
−
∑
i∈I

P(I = i|z) ln eβ⟨wi,h(z)⟩∑
j∈I eβ⟨wj ,h(z)⟩

]
. (14)

By Gibbs’ inequality [Wikipedia, 2024a], the cross-entropy inside the expectation is globally mini-
mized if and only if

eβ⟨wi,h(z)⟩∑
j∈I eβ⟨wj ,h(z)⟩ = P(I = i|z), for any i ∈ I . (15)

Moreover, the entire expectation is globally minimized if and only if the above equality (15) holds
almost everywhere for z ∈ Sd−1.
Using that instance label I is uniformly distributed, or P(I = j) = P(I = i), the likelihood of the
sample being in class i can be expressed via Bayes’ theorem as:

P(I = i|z) = p(z|I = i)P(I = i)∑
j∈I p(z|I = j)P(I = j)

=
p(z|I = i)∑

j∈I p(z|I = j)
. (16)

Substituting (16) into (15) yields that for any i ∈ I and almost everywhere w.r.t. z ∈ Sd−1:
eβ⟨wi,h(z)⟩∑

j∈I eβ⟨wj ,h(z)⟩ =
p(z|I = i)∑

j∈I p(z|I = j)
. (17)

We now divide the equation (17) for the probability of a sample having label i with that of having
label k and take the logarithm. This yields that Lz(h,W , β) is globally minimized if and only if

β⟨wi −wk,h(z)⟩ = ln
p(z|I = i)

p(z|I = k)
(18)

holds for any i, k ∈ I and almost everywhere w.r.t. z ∈ Sd−1.

Plugging in the vMF distribution: Plugging the assumed conditional distribution from (4) into
(18) yields the equivalent expression:

β⟨wi −wk,h(z)⟩ = α⟨vC(i) − vC(k), z⟩ (19)

holds for any i, k ∈ I and almost everywhere w.r.t. z ∈ Sd−1. Since h is continuous, the equation
holds almost everywhere w.r.t. z if and only if it holds for all z ∈ Sd−1.
Observe that if h = id|Sd−1 ,wi = vC(i) for any i ∈ I , and β = α, then the equation is satisfied.
Thus, we can conclude that the global minimum of the cross-entropy loss is achieved.
Step 2: Solving the equation for h,W and proving identifiability.
We now find all solutions to prove the identifiability of the latent variables and that of the cluster
vectors. Denote w̃i =

β
αwi to simplify the above equation to:

⟨w̃i − w̃k,h(z)⟩ = ⟨vC(i) − vC(k), z⟩. (20)

h is injective and has full-dimensional image: We prove that h is injective. Assume that
h(z1) = h(z2) for some z1, z2 ∈ Sd−1. Plugging z1 and z2 into (20) and subtracting the two
equations yields:

0 = ⟨w̃i − w̃k,h(z1)− h(z2)⟩ = ⟨vC(i) − vC(k), z1 − z2⟩, (21)
for any i, k. However, as the cluster vectors {vc|c} form an affine generator system, the vectors
{vC(i) − vC(k)|i, k} form a generator system of Rd (see Lem. 1). Therefore, ⟨y, z1 − z2⟩ = 0, for
any y ∈ Rd, which holds if and only if z1 = z2. Hence, h is injective.
By the Borsuk-Ulam theorem, for any continuous map from Sd−1 to a space of dimensionality at
most d−1 there exists some pair of antipodal points that are mapped to the same point. Consequently,
no such function can be injective at the same time. Since h : Sd−1 → Rd is injective, the linear span
of its image must be Rd.

10



Collapse of wi’s: We prove that w̃i = w̃k if C(i) = C(k), i.e., samples from the same cluster will
have equal rows ofW associated with them.
Assume that C(i) = C(k) and substitute them into (20):

⟨w̃i − w̃k,h(z)⟩ = 0 for any z ∈ Sd−1. (22)

However, we have just seen that the linear span of the image of h is Rd, which implies that w̃i = w̃k.
Consequently, we may abuse out notation by setting w̃c = w̃i if C(i) = c, which yields a new form
for (20):

⟨w̃a − w̃b,h(z)⟩ = ⟨va − vb, z⟩, (23)
for any a, b ∈ C and any z ∈ Sd−1.

Linear transformation from va − vb to w̃a − w̃b: We now prove the existence of a linear map
A on Rd such that A(va − vb) = w̃a − w̃b for any a, b ∈ C . For this, we prove that the following
mapping is well-defined:

A :
∑

a,b∈C

λab(va − vb) 7→
∑

a,b∈C

λab(w̃a − w̃b). (24)

Since the system {va − vb|a, b} is not necessarily linearly independent, we have to prove that
the mapping is independent of the choice of the linear combination. More precisely if for some
coefficients λab, λ

′
ab ∑

a,b∈C

λab(va − vb) =
∑

a,b∈C

λ′
ab(va − vb) (25)

holds, then it should be implied that∑
a,b∈C

λab(w̃a − w̃b) =
∑

a,b∈C

λ′
ab(w̃a − w̃b). (26)

Assume that (25) holds. Then, the difference of the two sides is:

0 =
∑

a,b∈C

(λab − λ′
ab)(va − vb). (27)

Taking the scalar product with an arbitrary z ∈ Sd−1 and using the linearity of the scalar product
gives us:

0 = ⟨
∑

a,b∈C

(λab − λ′
ab)(va − vb), z⟩ =

∑
a,b∈C

(λab − λ′
ab)⟨va − vb, z⟩. (28)

Now using (23) yields:

0 =
∑

a,b∈C

(λab − λ′
ab)⟨w̃a − w̃b,h(z)⟩ = ⟨

∑
a,b∈C

(λab − λ′
ab)(w̃a − w̃b),h(z)⟩. (29)

However, the linear span of the image of h is Rd, which implies that∑
a,b∈C

(λab − λ′
ab)(w̃a − w̃b) = 0, (30)

equivalent to (26). Therefore, the mapping is well-defined. The linearity of A follows trivially.

h is linear: Equation (23) becomes:

⟨A(va − vb),h(z)⟩ = ⟨va − vb, z⟩, (31)

for any a, b ∈ C and any z ∈ Sd−1. Nevertheless, {va − vb|a, b ∈ C } is a generator system of Rd,
and, hence, (31) is equivalent to

⟨Ay,h(z)⟩ = ⟨y, z⟩, for any y ∈ Rd and any z ∈ Sd−1. (32)

This is further equivalent to
⟨y,A⊤h(z)⟩ = ⟨y, z⟩. (33)

Since y is arbitrary, we conclude that A⊤h(z) = z for any z ∈ Sd−1. Therefore A is an invertible
transformation and h = (A⊤)−1 is linear.
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Proving Thm. 1C case C4: We have shown that h is linear. Furthermore, from (31) it follows, by
fixing b and defining ψ = Avb −wb, that

w̃a = Ava +ψ, for any a ∈ C , (34)

which proves case C4 of Thm. 1C.

Proving Thm. 1C case C2: As a special case of the previous one, now we assume that h(z)
is unit-normalized and maps Sd−1 to Sd−1. That amounts to h = (A⊤)−1 being linear, norm-
preserving, and therefore orthogonal. Consequently A is also orthogonal, h = A and (34) simplifies
to β

αwa = w̃a = Ava +ψ = h(va) +ψ, which proves C2 of Thm. 1C.

Proving Thm. 1C case C1: We now assume that both h and wi’s are unit-normalized. Conse-
quently, h = A is orthogonal linear and wa = α

βAva +ψ.

Therefore, on one hand, the wa’s lie on a d-dimensional hypersphere of radius α
β and center ψ. On

the other hand, by definition, wa’s also lie on the unit hypersphere Sd−1.
Since the system {wa|a ∈ C } is the bijective affine linear image of the affine generator system
{va|a ∈ C }, {wa|a ∈ C } is also an affine generator system (Lem. 1). Consequently, there could be
at most one hypersphere in Rd which contains all thewa’s. Hence α

β = 1, ψ = 0, andwa = h(va),
which proves C1 of Thm. 1C.

Proving Thm. 1C case C3: Finally, we assume that wi’s are unit-normalized. As this is a special
case of Thm. 1C C4, we know that there exists a constant vector ψ such that:

wa =
α

β
Ava +ψ, (35)

for any a ∈ C . We are going to prove that O = α
βA is orthogonal and ψ = 0.

Let O = U⊤ΣV be the singular value decomposition (SVD) of O. Consequently, after premultiplying
with U , we receive:

Uwa = ΣVva + Uψ. (36)
As orthogonal transformations U and V keep their arguments unit-normalized and {Vva − Vvb} is
still an affine generator system (Lem. 1), we may assume without the loss of generality that

wa = Σva +ψ, (37)

for any a ∈ C , where all va’s and wa’s are unit-normalized.
Let us assume that ψ ̸= 0. In that case both sides of (37) can be scaled such that the offset ψ has
unit norm. In this case wa’s are no longer on the unit hypersphere, but they instead have a mutual
norm r. Assuming that the diagonal elements of Σ are σ = (σ1, . . . , σd), this is equivalent to:

r2 = ∥Σva +ψ∥2 = ∥Σva∥2 + 2⟨Σva,ψ⟩+ ∥ψ∥2 (38)
= ⟨va ⊙ va,σ ⊙ σ⟩+ ⟨va, 2σ ⊙ψ⟩+ 1, (39)

where [x⊙ y]i = xiyi is the elementwise product. Eq. (39) is equivalent to the following:

(va ⊙ va)⊤(σ ⊙ σ) + v⊤a (2σ ⊙ψ)− r2 = −1. (40)

Collecting the equations for all a ∈ C yields:

D

 σ ⊙ σ
2σ ⊙ψ

r2

 = −1|C |, (41)

where D is the following |C | × (2d+ 1) matrix:

D =

 · · · · · · · · · · · · · · · · · · · · ·
(va ⊙ va)⊤ v⊤a −1
· · · · · · · · · · · · · · · · · · · · ·

 . (42)

By Assum. 2, the left |C | × 2d submatrix of D has full rank of 2d. Consequently, the solution space
to the more general, linear equation Dt = −1|C |, where t ∈ Rd, has a dimensionality of at most 1.
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Using the unit-normality of va’s, we see that (va ⊙ va)⊤1d = 1. From this, it follows that the
solutions are exactly the following:

t =

(
γ · 1d

0d

γ + 1

)
, where γ ∈ R. (43)

Therefore, for any solution of (41) there exists γ such that:

σ ⊙ σ = γ · 1d (44)
σ ⊙ψ = 0d. (45)

However, as the original transformation A was invertible, all singular values σi are strictly positive
and, thus, it follows that ψ = 0. Technically speaking, this is a contradiction to our initial assumption
that ψ ̸= 0. All in all, it follows that ψ = 0 is the only possibility.
Therefore, (37) becomes:

wa = Σva, (46)
where all va’s and wa’s are unit-normalized. Following the same derivation yields:

1 = ∥Σva∥2 = (va ⊙ va)⊤(σ ⊙ σ), (47)

or, after collecting the equations for all a ∈ C :

B(σ ⊙ σ) = 1|C |, (48)

where B is the |C | × d matrix

B =

 · · · · · · · · ·
(va ⊙ va)⊤
· · · · · · · · ·

 . (49)

By Assum. 2, B has full rank, thus, there is at most one solution to the equation Bt = 1|C |. Due to
the unit-normality of va’s, this solution is exactly t = 1d. However, as the singular values σi are all
positive, the only solution to σ ⊙ σ = 1d is σ = 1d. This is equivalent to saying that O = α

βA is
orthogonal.

Furthermore, h = (A⊤)−1 = (βαO
⊤)−1 = α

βO.

B Additional experimental results

In Tab. 2, we present additional ablation studies exploring the effect of varying the levels of con-
centration for vc across the unit hyper-sphere. We do not observe any significant impact on the R2

scores from more concentrated cluster centroids vc.

Table 2: Identifiability in the synthetic setup. Mean ± standard deviation across 5 random seeds.
Settings that match our theoretical assumptions are ✓. We report the R2 score for linear mappings,
z̃ → z and wi → vc for cases with normalized (o) and unormalized (a) wi. For unormalized wi,
we verify that mappings z̃ → z are orthogonal by reporting the mean absolute error between their
singular values and those of an orthogonal transformation.

normalized wi cases unnormalized wi

R2
o(↑) MAEo(↓) R2

a (↑)
N d |C | p(vc) p(z|vc) M. z̃ → z wi → vc z̃ → z wi → vc z̃ → z wi → vc

103 5 100 Uniform vMF(κ=10) ✓ 98.6±0.01 99.9±0.01 0.01±0.00 0.00±0.00 99.0±0.00 99.9±0.00

103 5 100 Laplace vMF(κ=10) ✓ 98.7±0.00 99.5±0.00 0.01±0.00 0.00±0.00 99.1±0.00 99.8±0.00

103 5 100 Normal vMF(κ=10) ✓ 98.2±0.01 99.2±0.01 0.01±0.00 0.00±0.00 99.2±0.00 99.8±0.00
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C Acronyms

CL Contrastive Learning

DGP data generating process

ICA Independent Component Analysis

LVM latent variable model

SSL Self-Supervised Learning

vMF von Mises-Fisher
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